JP2001085011A - Electrode active material for nonaqueous electrolyte battery, electrode and battery including it - Google Patents

Electrode active material for nonaqueous electrolyte battery, electrode and battery including it

Info

Publication number
JP2001085011A
JP2001085011A JP26288199A JP26288199A JP2001085011A JP 2001085011 A JP2001085011 A JP 2001085011A JP 26288199 A JP26288199 A JP 26288199A JP 26288199 A JP26288199 A JP 26288199A JP 2001085011 A JP2001085011 A JP 2001085011A
Authority
JP
Japan
Prior art keywords
active material
electrode
electrode active
group
moo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26288199A
Other languages
Japanese (ja)
Other versions
JP3928032B2 (en
Inventor
Shigeto Okada
重人 岡田
Tomoo Takada
智雄 高田
Minato Egashira
港 江頭
Junichi Yamaki
準一 山木
Mitsuharu Tabuchi
光春 田渕
Hiroyuki Kageyama
博之 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP26288199A priority Critical patent/JP3928032B2/en
Publication of JP2001085011A publication Critical patent/JP2001085011A/en
Application granted granted Critical
Publication of JP3928032B2 publication Critical patent/JP3928032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an excellent charging/discharging characteristics and flat discharging voltage by including one or more kinds of elements of Mo and O included in a 13th group by a specific rate. SOLUTION: An electrode active material for a nonaqueous electrolyte secondary battery is composed of a compound expressed by the formula: M2(MoO4)3 (M is one or more kinds of elements included in a 13th group). The compound is desirably expressed by the formula: M'2nFe2(1-n)(MoO4)3 (M' is an element included in a 13th group, and (n) is 0<n<=1). M' is desirably an element including Al or is Al. (n=1) is realized. The nonaqueous electrolyte secondary battery is manufactured by using such an electrode active material. The electrode active material is desirably a powder shape having the average particle size of 1 to 20 μm. An electrode is desirably used as a positive electrode, and an electrode including at least one kind of alkaline metal material or alkaline earth metal material is desirably used as a negative electrode. The nonaqueous electrolyte secondary battery having large capacity and the long cycle service life can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質電池、
さらに詳細には充放電可能な非水電解質二次電池に関
し、特に電極活物質の改良に関わり、電池の充放電容量
の増加を目指すものである。
The present invention relates to a non-aqueous electrolyte battery,
More specifically, the present invention relates to a chargeable / dischargeable non-aqueous electrolyte secondary battery, and more particularly to an improvement in an electrode active material, which aims at increasing the charge / discharge capacity of the battery.

【0002】[0002]

【従来の技術】リチウム等のアルカリ金属、マグネシウ
ム等のアルカリ土類金属、あるいはこれらの合金、化合
物等を負極活物質とする非水電解質電池は、負極金属イ
オンの正極活物質へのインサーションもしくはインター
カレーション反応によって、その大放電容量と充電可逆
性とが確保されている。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium, an alkaline earth metal such as magnesium, or an alloy or compound thereof as a negative electrode active material has a problem in which a negative electrode metal ion is inserted into a positive electrode active material. By the intercalation reaction, its large discharge capacity and charge reversibility are secured.

【0003】従来では、リチウムを負極活物質として用
いる二次電池として、リチウムに対してインターカレー
ションホストとなりうるV2O5、LiCoO2、LiNiO2等の層状
酸化物又はトンネル状酸化物を正極材料として用いた電
池が提案されている。ところが、これらの酸化物は中心
金属にクラーク数の極端に小さなレアメタルを用いてい
るため、量産化、大型化に伴ってコスト面での問題が大
きくなる。
Conventionally, as a secondary battery using lithium as a negative electrode active material, a layered oxide or a tunnel-shaped oxide such as V 2 O 5 , LiCoO 2 , or LiNiO 2 which can serve as an intercalation host for lithium is used as a positive electrode. A battery used as a material has been proposed. However, since these oxides use a rare metal having an extremely small number of Clarks as the central metal, the problem in terms of cost increases with mass production and enlargement.

【0004】一方、資源的に豊富であり、経済性も高い
鉄系化合物を正極として用いた電池として硫酸第二鉄
(Fe2(SO4)3)が提案されており、3.6Vの平坦な放電電
圧が得られているが、鉄3価/2価のレドックス反応に
よる3.6V放電平坦部の理論放電容量は134mAh/gで、まだ
充分とはいえない容量であった。
On the other hand, ferric sulfate (Fe 2 (SO 4 ) 3 ) has been proposed as a battery using an iron-based compound which is abundant in resources and highly economical as a positive electrode, and has a flatness of 3.6 V. Although the discharge voltage was obtained, the theoretical discharge capacity of the 3.6 V discharge flat portion by the trivalent / divalent iron redox reaction was 134 mAh / g, which was not yet sufficient.

【0005】また、この点を改善するために硫黄を遷移
金属であるMoに置換したモリブデン酸鉄(Fe2(MoO4)3
が提案されており、鉄3価/2価のレドックス反応によ
る3V放電平坦部の理論放電容量、90.6mAh/gに加え、Mo
6価/5価のレドックス反応により1.8Vにも放電平坦部を
もっているが、まだ充分な容量とはいえなかった。
Further, in order to improve this point, iron molybdate (Fe 2 (MoO 4 ) 3 ) in which sulfur is replaced by Mo which is a transition metal.
Has been proposed. In addition to the theoretical discharge capacity of 3V discharge flat part due to iron trivalent / divalent redox reaction, 90.6 mAh / g, Mo
Although it has a discharge flat portion at 1.8 V due to a hexavalent / 5-valent redox reaction, the capacity was not yet sufficient.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記現状の
問題点を改善するために提案されたものであり、その目
的は、充放電特性、放電電圧平坦性に優れた電池特性を
持つ大型電池用非水電解質電池を低コストで提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been proposed to improve the above-mentioned problems, and has as its object to provide a large-sized battery having excellent charge / discharge characteristics and excellent discharge voltage flatness. It is to provide a non-aqueous electrolyte battery for a battery at low cost.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、硫酸第二鉄に種々の改良検討を重
ねた結果、硫酸第二鉄と同じ組成式、M2 (XO4)3で表さ
れ、Mとして遷移金属である鉄を、価数変化しない典型
元素である第13族元素に部分的もしくは全て置換し、
またXとして非金属元素である硫黄の代わりに、遷移金
属元素であるモリブデンとした化合物を、非水電解質二
次電池用電極活物質としたときに、上記課題が達成でき
ることを見出した。即ち、本発明は、一般式(I): M2 (MoO4)3 (但し、Mは第13族に含まれる元素群から選ばれる少な
くとも1種を含む。)で表される化合物からなる非水電
解質二次電池用電極活物質を提供するものである。具体
的には、上記一般式(I)の化合物が下記一般式(I
I): M'2nFe2(1-n) (MoO4)3 (但し、M'は第13族に含まれる元素群から選ばれる少
なくとも1種である。nは、0<n≦1である。)で表さ
れる化合物である電極活物質を提供する。より具体的に
は、一般式(II)において、M'がAlを含む該電極活物
質、M'がAlである該電極活物質、n=1である該電極活
物質を提供する。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have conducted various studies on improving ferric sulfate. As a result, the same composition formula as ferric sulfate, M 2 ( XO 4 ) 3 , represented by M, partially or entirely substituting the transition metal iron for M with a Group 13 element which is a typical element having no valence change,
Further, they have found that the above-mentioned problem can be achieved when a compound in which molybdenum as a transition metal element is used as the electrode active material for a non-aqueous electrolyte secondary battery instead of sulfur as a non-metal element as X. That is, the present invention provides a non-compound comprising a compound represented by the general formula (I): M 2 (MoO 4 ) 3 (where M includes at least one element selected from the group consisting of elements belonging to Group 13). An object of the present invention is to provide an electrode active material for a water electrolyte secondary battery. Specifically, the compound of the above general formula (I) is represented by the following general formula (I)
I): M ′ 2n Fe 2 (1-n) (MoO 4 ) 3 (where M ′ is at least one selected from the group consisting of elements belonging to Group 13; n is 0 <n ≦ 1) The present invention provides an electrode active material which is a compound represented by the formula: More specifically, in the general formula (II), the present invention provides the electrode active material in which M ′ contains Al, the electrode active material in which M ′ is Al, and the electrode active material in which n = 1.

【0008】本発明は、また、上記いずれかに記載の電
極活物質を含む非水電解質二次電池用電極も提供する。
The present invention also provides an electrode for a non-aqueous electrolyte secondary battery containing any one of the above electrode active materials.

【0009】更に、本発明は、上記記載の電極を用いる
非水電解質二次電池も提供するものである。より具体的
には、上記記載の電極を正極として用いる非水電解質二
次電池、更に、負極として、アルカリ金属材料及びアル
カリ土類金属材料からなる群から選ばれる少なくとも1
種の負極活物質を含む電極を用いる上記非水電解質二次
電池を提供するものである。
Further, the present invention also provides a non-aqueous electrolyte secondary battery using the above-mentioned electrode. More specifically, a non-aqueous electrolyte secondary battery using the electrode described above as a positive electrode, and further, as a negative electrode, at least one selected from the group consisting of an alkali metal material and an alkaline earth metal material.
An object of the present invention is to provide the above nonaqueous electrolyte secondary battery using an electrode containing a kind of negative electrode active material.

【0010】これら電池を用いることで、上記課題を達
成できることも見出した。
It has also been found that the use of these batteries can achieve the above object.

【0011】[0011]

【発明の実施の形態】以下、本発明をさらに詳しく説明
する。 (1)非水電解質二次電池用電極活物質 本発明における電極活物質は、上記のごとく、一般式
(I): M2 (MoO4)3 (但し、Mは第13族に含まれる元素群から選ばれる少な
くとも1種を含む。)で表される化合物である。Mは、第
13族元素に含まれる元素から選ばれる少なくとも1種
を含むものであり、1種又は2種以上の混合物であって
もよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. (1) Electrode Active Material for Nonaqueous Electrolyte Secondary Battery The electrode active material in the present invention is, as described above, a general formula (I): M 2 (MoO 4 ) 3 (where M is an element belonging to Group 13) And at least one selected from the group). M contains at least one element selected from the elements included in Group 13 elements, and may be one kind or a mixture of two or more kinds.

【0012】本発明において、第13族とは、周期表の
族番号であり、IUPAC無機化学命名法改訂版(1989)に
よる族番号を示す。より具体的には、第13族には、
B、Al、Ga、In及びTlが含まれる。
In the present invention, group 13 is a group number in the periodic table, and indicates a group number according to the revised edition of IUPAC inorganic chemical nomenclature (1989). More specifically, group 13
B, Al, Ga, In and Tl are included.

【0013】より具体的には、Mは第13族に含まれる
上記元素群に加えて、他の元素を含んでいてもよい。例
えば、Fe、Co、Ni、Mn、Cr、V、Ti、Cu、Scなどを含ん
でいてもよい。 Mは、Alを含むことが好ましい。
[0013] More specifically, M may contain other elements in addition to the above group of elements contained in Group 13. For example, it may include Fe, Co, Ni, Mn, Cr, V, Ti, Cu, Sc and the like. M preferably contains Al.

【0014】具体的には、該化合物は下記一般式(I
I): M'2nFe2(1-n) (MoO4)3 (但し、M'は第13族に含まれる元素群から選ばれる少
なくとも1種である。nは、0<n≦1である。)で表さ
れるものである。M'は、第13族元素に含まれる元素群
から選ばれる少なくとも1種であり、1種又は2種以上
の混合物であってもよい。より具体的には、M'はB、A
l、Ga、In及びTlからなる群から選ばれる少なくとも1
種であって、Alを含むことが好ましい。より好ましく
は、M'はAlがよい。
Specifically, the compound is represented by the following general formula (I
I): M ′ 2n Fe 2 (1-n) (MoO 4 ) 3 (where M ′ is at least one selected from the group consisting of elements belonging to Group 13; n is 0 <n ≦ 1) ). M 'is at least one selected from the group of elements contained in the Group 13 elements, and may be one or a mixture of two or more. More specifically, M 'is B, A
at least one selected from the group consisting of l, Ga, In and Tl
It is a species and preferably contains Al. More preferably, M ′ is Al.

【0015】また、nの値は、0<n≦1であり、好まし
くは、n=1である。
Further, the value of n is 0 <n ≦ 1, preferably n = 1.

【0016】より具体的には、Al2(MoO4)3 、Al1.5Fe
0.5(MoO4)3 、AlFe(MoO4)3 、Al0.5Fe 1.5(MoO4)3、Ga
2(MoO4)3 、In2(MoO4)3 などが例示できる。
More specifically, AlTwo(MoOFour)Three , Al1.5Fe
0.5(MoOFour)Three , AlFe (MoOFour)Three , Al0.5Fe 1.5(MoOFour)Three, Ga
Two(MoOFour)Three , InTwo(MoOFour)Three And the like.

【0017】本発明の活物質である化合物は、公知の方
法によって製造することができ、その方法も、種々の方
法がある。
The compound as the active material of the present invention can be produced by a known method, and there are various methods.

【0018】具体的には、例えば、Al2(MoO4)3の場合
は、硝酸アルミニウム九水和物Al(NO3)3・9H2Oに七モリ
ブデン酸六アンモニウム四水塩(NH4) 6Mo7O24・4H2Oを
所定比で混合した後、大気下800℃で焼成することによ
り好ましく製造することができる。また、酸化アルミニ
ウム(Al2O3)と酸化モリブデン(MoO3)を所定比で混
合した後、大気下で焼成することによって、副生成物の
発生が無く、無公害かつ簡便にAl2(MoO4)3を製造するこ
とも可能である。
[0018] Specifically, for example, Al 2 (MoO 4) 3 case of aluminum nitrate nonahydrate Al (NO 3) 3 · 9H 2 O in hexaammonium heptamolybdate tetrahydrate (NH 4) after mixing 6 Mo 7 O 24 · 4H 2 O at a predetermined ratio, it can be preferably produced by firing under 800 ° C. atmosphere. In addition, after mixing aluminum oxide (Al 2 O 3 ) and molybdenum oxide (MoO 3 ) at a predetermined ratio, the mixture is calcined in the air, so that by-products are not generated, and pollution-free and simple Al 2 (MoO 3) 4 ) It is also possible to manufacture 3 .

【0019】また、Al2nFe2(1-n) (MoO4)3の場合は、酸
化鉄(Fe2O3)と酸化アルミニウム(Al2O3)及び酸化モ
リブデン(MoO3)を所定の化学量論比で混合し、大気
中、750〜780℃程度で1日間以上焼成することによって
得られる。
In the case of Al 2n Fe 2 (1-n) (MoO 4 ) 3 , iron oxide (Fe 2 O 3 ), aluminum oxide (Al 2 O 3 ), and molybdenum oxide (MoO 3 ) are used in a predetermined manner. It is obtained by mixing at a stoichiometric ratio and firing in air at about 750 to 780 ° C. for one day or more.

【0020】本発明の活物質に含まれる他の化合物につ
いても、上記記載の方法と同様な方法によって製造する
ことができる。 (2)本発明電極 本発明電極では、上記電極活物質(1)を用いる。この
場合、上記活物質は通常粉末状で用いればよく、その平
均粒径は1〜20μm程度とすればよい。また、電極中
における上記活物質の含有量は、用いる活物質の種類、
結着材、導電材の使用量等に応じて適宜設定すればよ
い。また、本発明電極においては、電極活物質として所
定の電極特性が得られる限りは、上記活物質(1)単独
又は他の従来から知られている電極活物質との混合物で
あってもよい。
Other compounds contained in the active material of the present invention can be produced by the same method as described above. (2) Electrode of the Present Invention The electrode of the present invention uses the above-mentioned electrode active material (1). In this case, the active material may be usually used in a powder form, and the average particle size may be about 1 to 20 μm. In addition, the content of the active material in the electrode, the type of active material used,
What is necessary is just to set suitably according to the usage-amount of a binder, a conductive material, etc. In the electrode of the present invention, the above-mentioned active material (1) may be used alone or in combination with other conventionally known electrode active materials, as long as predetermined electrode characteristics are obtained as the electrode active material.

【0021】本発明電極の作製に際しては、上記電極活
物質(1)を用いるほかは公知の電極の作成方法に従っ
て行えばよい。例えば、上記活物質の粉末を必要に応じ
て公知の結着材(ポリテトラフルオロエチレン、ポリビ
ニリデンフルオライド、ポリビニルクロライド、エチレ
ンプロピレンジエンポリマー等)、さらに必要に応じて
公知の導電材(アセチレンブラック、カーボン、グラフ
ァイト等)と混合した後、得られた混合粉末をステンレ
ス鋼製支持体上に圧着成形したり、金属製容器に充填す
ればよい。あるいは、上記混合粉末を有機溶剤(N-メ
チルピロリドン、トルエン、シクロヘキサン等)と混合
して得られたスラリーをアルミニウム、ニッケル、ステ
ンレス、銅等の金属基板上に塗布する等の方法によって
も本発明電極を作製することができる。 (3)本発明の非水電解質二次電池 本発明の非水電解質二次電池は、本発明電極(2)を電
極として用いる以外は、公知の非水電解質電池における
構成要素を採用することができる。本発明の電極は、通
常正極として使用することが可能である。
The production of the electrode of the present invention may be carried out according to a known method for producing an electrode, except that the above-mentioned electrode active material (1) is used. For example, a powder of the above-mentioned active material may be used, if necessary, with a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, etc.), and a known conductive material (acetylene black, if necessary). , Carbon, graphite, etc.) and then press-molding the obtained mixed powder on a stainless steel support or filling a metal container. Alternatively, the present invention may be carried out by a method such as applying a slurry obtained by mixing the above mixed powder with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, etc.) onto a metal substrate such as aluminum, nickel, stainless steel, copper, etc. Electrodes can be made. (3) Non-aqueous electrolyte secondary battery of the present invention The non-aqueous electrolyte secondary battery of the present invention may employ components of a known non-aqueous electrolyte battery except that the electrode (2) of the present invention is used as an electrode. it can. The electrode of the present invention can usually be used as a positive electrode.

【0022】この場合負極としては、電極活物質として
公知の負極活物質を使用することが可能であるが、アル
カリ金属材料及びアルカリ土類金属材料からなる群から
選ばれる少なくとも1種を用いることが好ましい。
In this case, as the negative electrode, a known negative electrode active material can be used as an electrode active material, and at least one selected from the group consisting of an alkali metal material and an alkaline earth metal material is used. preferable.

【0023】本発明にいうアルカリ金属材料とは、リチ
ウム、ナトリウム、カリウム等のアルカリ金属、アルカ
リ金属の化合物、合金等のほか、アルカリ金属イオンを
吸蔵・放出することが可能な材料(例えば、Li2.5Co0.5
N、Li4Ti5O12等)も含まれる。
The alkali metal material referred to in the present invention includes alkali metals such as lithium, sodium and potassium, alkali metal compounds and alloys, and materials capable of occluding and releasing alkali metal ions (for example, Li). 2.5 Co 0.5
N, Li 4 Ti 5 O 12 etc.).

【0024】また、アルカリ土類金属材料とは、マグネ
シウム、カルシウム等のアルカリ土類金属、アルカリ土
類金属の化合物、合金等のほか、アルカリ土類金属イオ
ンを吸蔵・放出することが可能な材料(例えば、MgxTi2
(PO4)3(0<x<4)等)等も含まれる。
Alkaline earth metal materials include alkaline earth metals such as magnesium and calcium, compounds and alloys of alkaline earth metals, and materials capable of occluding and releasing alkaline earth metal ions. (For example, Mg x Ti 2
(PO 4 ) 3 (0 <x <4) etc. are also included.

【0025】負極の作製は公知の方法に従えばよく、例
えばこれらの電極活物質の混合粉末をシート状に成形
し、これをステンレス、銅等の導電体網(集電体)に圧
着もしくは金属基板上に塗布する等の方法で作製するこ
とができる。なお負極においても、必要に応じて上記に
例示した結着材、導電材等を配合することができる。
The negative electrode may be prepared according to a known method. For example, a mixed powder of these electrode active materials is formed into a sheet, and this is pressed on a conductive net (collector) of stainless steel, copper, or the like, or a metal is pressed. It can be manufactured by a method such as coating on a substrate. Note that the binder, the conductive material, and the like exemplified above can be added to the negative electrode as needed.

【0026】その他の構成要素としては、公知の非水電
解質二次電池に使用されるものを構成要素として使用で
きる。例えば、以下のものが例示できる。
As the other components, those used in known non-aqueous electrolyte secondary batteries can be used. For example, the following can be exemplified.

【0027】電解液は通常、電解質及び溶媒を含む。電
解液の溶媒としては、非水系であれば特に制限されず、
例えば、ジメトキシエタン、2−メチルテトラヒドロフ
ラン、エチレンカーボネート、メチルホルメート、ジメ
チルスルホキシド、プロピレンカーボネート、アセトニ
トリル、ブチロラクトン、ジメチルホルムアミド、ジメ
チルカーボネート、ジエチルカーボネート、スルホラ
ン、エチルメチルカーボネート等が使用できる。これら
は1種または2種以上で用いることができる。
The electrolytic solution usually contains an electrolyte and a solvent. The solvent of the electrolyte is not particularly limited as long as it is a non-aqueous solvent.
For example, dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate and the like can be used. These can be used alone or in combination of two or more.

【0028】電解液としては、これらの溶媒に、負極活
物質中のアルカリ金属イオンもしくはアルカリ土類金属
イオンが、上記正極活物質又は正極活物質及び負極活物
質と電気化学反応するための移動を行うことができる電
解質物質、例えば、LiClO4、LiPF6、LiBF4、LiCF3SO3
LiAsF6等の公知の電解質(溶質)を溶解したものが使用
できる。また、本発明では公知の固体電解質(例えば、
ナシコン構造を有するLiTi2(PO4)3等)等も使用でき
る。
As the electrolytic solution, the transfer of an alkali metal ion or an alkaline earth metal ion in the negative electrode active material for electrochemical reaction with the positive electrode active material or the positive electrode active material and the negative electrode active material is performed in these solvents. Electrolyte substances that can be performed, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 ,
Obtained by dissolving LiAsF known electrolytes such as 6 (solute) can be used. In the present invention, a known solid electrolyte (for example,
LiTi 2 (PO 4 ) 3 having a NASICON structure or the like can also be used.

【0029】また、本発明電極(2)は、負極として用
いることも可能である。言い換えれば、本発明の電極活
物質(1)は電圧的に負極として使用できる初めてのナ
シコン化合物であり、これを用いることによって、ナシ
コン化合物のみからなる固体電池を製造することが可能
となる。例えば、Al2(MoO4)3を含む本発明電極を負極と
して用いることによって、負極/電解質/正極=LixAl2
(MoO4)3/LixSc2(WO4) 3-y(MoO4)y/LixFe2(MoO4)3とい
う電池を作成することができ、負極/電解質/正極すべ
てにMoO4という基本ユニットの共通性があることとな
る。よって、連続一体合成への可能性が開けるだけでな
く、固体電池で常に問題となる負極/電解質界面や電解
質/正極界面での格子不整やインピーダンスマッチング
の現象が、本質的に緩和解消することが可能となる。
The electrode (2) of the present invention is used as a negative electrode.
It is also possible. In other words, the electrode activity of the present invention
Substance (1) is the first material that can be used as a negative electrode in terms of voltage.
It is a silicon compound, and by using it,
It is possible to manufacture a solid battery consisting of only a compound
Becomes For example, AlTwo(MoOFour)ThreeThe electrode of the present invention containing
Negative electrode / electrolyte / positive electrode = LixAlTwo
(MoOFour)Three/ LixScTwo(WOFour) 3-y(MoOFour)y/ LixFeTwo(MoOFour)ThreeTo
The battery can be made with all anode / electrolyte / cathode
MoOFourAnd the basic unit
You. Therefore, it only opens up the possibility of continuous integrated synthesis.
Negative electrode / electrolyte interface and
Lattice / impedance matching at the quality / positive electrode interface
This phenomenon can be essentially relaxed and eliminated.

【0030】本発明電池では、セパレータ、電池ケース
他、構造材料等の要素についても従来公知の各種材料が
使用でき、特に制限はない。
In the battery of the present invention, conventionally known various materials can be used for components such as a separator, a battery case, and structural materials, and there is no particular limitation.

【0031】本発明の電池は、これらの電池要素を用い
て公知の方法に従って組み立てればよい。この場合、電
池形状についても特に制限されることはなく、例えば円
筒状、角型、コイン型等種々の形状、サイズを適宜採用
することができる。
The battery of the present invention may be assembled using these battery elements according to a known method. In this case, the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately adopted.

【0032】図1に示すようにM2(MoO4)3の基本構造単
位(Mは第13族の元素を少なくとも1種含む。)は、
各コーナーに酸素原子、中心に中心金属(●印)を持つ
2つの八面体MO6と各コーナーに酸素原子、中心にMo
(○印)を持つ3つのMoO4からなり、1つの酸素原子は
1つの八面体群と1つの四面体群によって共有されてい
る。このいわゆるナシコン型基本骨格内には、面共有や
辺共有がなく、頂点共有しか存在しないため、各Liサイ
トの拡散のボトルネックは大きく、互いに3次元的に連
結しているため、高いLi拡散性を維持できるのが特徴で
ある。
As shown in FIG. 1, the basic structural unit of M 2 (MoO 4 ) 3 (M contains at least one element of Group 13)
Two octahedrons MO 6 with oxygen atoms at each corner and a central metal (●) at the center and oxygen atoms at each corner and Mo at the center
It consists of three MoO 4 with (o), one oxygen atom is shared by one octahedral group and one tetrahedral group. In this so-called NASICON-type basic skeleton, there is no face sharing or side sharing, only vertex sharing, so the diffusion bottleneck of each Li site is large, and since it is three-dimensionally connected to each other, high Li diffusion is high. It is a characteristic that it can maintain sex.

【0033】Fe2(MoO4)3の場合は鉄3価とMo6価の2つ
の還元反応により3Vと1.8Vの2段の放電電圧を示すこ
とになるが、本発明の電極の場合、中心金属を鉄より軽
く、資源豊富なアルミニウムに置き換えることで、元素
置換量に応じて3V容量を失うものの、その分、Mo6価
の還元反応による1.8Vの放電平坦部に転換することが可
能となる。
In the case of Fe 2 (MoO 4 ) 3 , a two-stage discharge voltage of 3 V and 1.8 V is exhibited by two reduction reactions of trivalent iron and Mo hexavalent. By replacing metal with aluminum, which is lighter than iron and has abundant resources, it loses 3 V capacity according to the element replacement amount, but it can be converted to a 1.8 V discharge flat part by the reduction reaction of Mo hexavalent correspondingly .

【0034】[0034]

【発明の効果】本発明によれば、特定の電極活物質を利
用するので、特に充放電特性に優れ、大容量かつ長サイ
クル寿命の、実用性の高い非水電解質電池を低コストで
提供することができる。このため、本発明電極または電
池は、大型電池としても適している。また、その放電電
圧は低電圧ながら、現行ニッカド電池や乾電池と互換性
があり、これによりさらなる用途の拡大が期待できる。
更に、FeとAlなどの第13族の元素の配合割合を変える
ことで、3Vと1.8Vの容量比を自由に設計できる。また、
この3V領域は電解液の過充電による酸化分解防止のバ
ッファ層として機能可能である。
According to the present invention, since a specific electrode active material is used, a highly practical nonaqueous electrolyte battery having particularly excellent charge / discharge characteristics, a large capacity and a long cycle life is provided at a low cost. be able to. For this reason, the electrode or battery of the present invention is also suitable as a large battery. In addition, although the discharge voltage is low, it is compatible with existing nickel-cadmium batteries and dry batteries, which can be expected to further expand applications.
Further, the capacitance ratio between 3 V and 1.8 V can be freely designed by changing the mixing ratio of the group 13 elements such as Fe and Al. Also,
This 3V region can function as a buffer layer for preventing oxidative decomposition due to overcharging of the electrolytic solution.

【0035】[0035]

【実施例】以下、実施例によって本発明の方法をさらに
具体的に説明するが、本発明はこれらによりなんら制限
されるものではない。なお、実施例において電池の作成
及び測定は、アルゴン雰囲気下のドライボックス内で行
った。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention thereto. In the examples, the preparation and measurement of the battery were performed in a dry box under an argon atmosphere.

【0036】図2は本発明による電池の一具体例である
コイン型電池の断面図であり、図中、1は封口板、2は
ガスケット、3は正極ケース、4は負極、5はセパレー
タ、6は正極合剤ペレットを示す。
FIG. 2 is a sectional view of a coin-type battery which is a specific example of the battery according to the present invention. In the figure, 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator, Reference numeral 6 denotes a positive electrode mixture pellet.

【0037】実施例1 電極活物質であるAl2(MoO4)3を、酸化アルミニウム(Al
2O3)と酸化モリブデン(MoO3)を以下の反応式に従っ
て1:3の化学量論比で混合し、大気中、780℃で2日
間焼成することにより得た。
Example 1 Al 2 (MoO 4 ) 3 as an electrode active material was replaced with aluminum oxide (Al
2 O 3 ) and molybdenum oxide (MoO 3 ) were obtained by mixing at a stoichiometric ratio of 1: 3 according to the following reaction formula and calcining at 780 ° C. for 2 days in the air.

【0038】反応式:Al2O3 + 3MoO3 → Al2(MoO4)3 得られたAl2(MoO4)3のX線回折を行った。結果を図3に
示す。図3に示す粉末X線回折パターンから、斜方晶Al
2(MoO4)3であることを確認した。
[0038] Scheme: was Al 2 O 3 + 3MoO 3 → Al 2 (MoO 4) 3 resulting Al 2 (MoO 4) 3 X-ray diffraction. The results are shown in FIG. From the powder X-ray diffraction pattern shown in FIG.
2 (MoO 4 ) 3 was confirmed.

【0039】次に、正極活物質として、この試料を粉砕
して粉末(平均粒径13μm)とし、導電剤(アセチレン
ブラック)、結着剤(ポリテトラフルオロエチレン)と
共に重量比70:25:5重量比で混合の上、ロール成形
し、正極合剤ペレット6(厚さ0.5mm、直径15mm)とし
た。
Next, this sample was pulverized into a powder (average particle size: 13 μm) as a positive electrode active material, and a weight ratio of 70: 25: 5 together with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene) was used. After mixing at a weight ratio, the mixture was roll-formed to obtain a positive electrode mixture pellet 6 (thickness 0.5 mm, diameter 15 mm).

【0040】次にステンレス製の封口板1上に金属リチ
ウムの負極4を加圧配置したものをポリプロピレン製ガ
スケット2の凹部に挿入し、負極4の上にポリプロピレ
ン製で微孔性のセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液として、エチレンカーボネート
とジメチルカーボネートの等積混合溶媒にLiPF6を溶解
させた1規定溶液を適量注入して含浸させた後に、ステ
ンレス製の正極ケース3を被せてかしめることにより、
厚さ2mm、直径23mmのコイン型リチウム電池を作製し
た。このコイン型リチウム電池を電池aとする。
Next, a metal lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 is inserted into a concave portion of a polypropylene gasket 2, and a polypropylene microporous separator 5 is placed on the negative electrode 4. The positive electrode mixture pellets 6 are arranged in this order, and as an electrolyte, a proper amount of a 1 N solution of LiPF 6 dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate is injected and impregnated. By covering Case 3 and caulking,
A coin-type lithium battery having a thickness of 2 mm and a diameter of 23 mm was manufactured. This coin-type lithium battery is referred to as battery a.

【0041】電池aの0.2 mA/cm2の電流密度での放電曲
線を測定した。結果を図4に示す。Mo6価の還元反応に
起因する1.8Vの平坦な放電電位を示し、1.5V放電終止
までに6電子反応が可能であることがわかる。この容量
は300mAh/g、エネルギー密度にして530W h/kgという好
適な値を示すことがわかる。
The discharge curve of the battery a at a current density of 0.2 mA / cm 2 was measured. FIG. 4 shows the results. It shows a flat discharge potential of 1.8 V due to the reduction reaction of Mo hexavalent, indicating that a six-electron reaction is possible by the end of the 1.5 V discharge. It can be seen that this capacity shows a suitable value of 300 mAh / g and an energy density of 530 Wh / kg.

【0042】比較例1 酸化鉄(Fe2O3)と酸化モリブデン(MoO3)とをFe:Mo
=2:3のモル比で混合した後、大気中、780℃で1日焼成
して得た電極活物質Fe2(MoO4)3を正極活物質として用
い、他は実施例1と同様にしてコイン型リチウム電池を
製造した。
Comparative Example 1 Iron oxide (Fe 2 O 3 ) and molybdenum oxide (MoO 3 ) were mixed with Fe: Mo
= 2: 3 molar ratio and then calcined in air at 780 ° C. for 1 day, using the electrode active material Fe 2 (MoO 4 ) 3 as the positive electrode active material. To manufacture a coin-type lithium battery.

【0043】これを用いた擬似開放電位曲線を図5に示
す。図5より、鉄3価/2価の還元反応に起因する3V
放電平坦部に加え、Mo6価の還元反応に起因する1.8Vの
平坦な放電電位を示し、1.5V放電終止までに都合6電子
反応が可能であることがわかる。
FIG. 5 shows a pseudo open potential curve using this. From FIG. 5, it can be seen that 3V due to the reduction reaction of trivalent / divalent iron
It shows a flat discharge potential of 1.8 V due to the reduction reaction of Mo6 valence in addition to the discharge flat portion, and it can be seen that a convenient six-electron reaction is possible by the end of the 1.5 V discharge.

【0044】反応式: Fe2O3 + 3MoO3 → Fe2 (MoO4)3 実施例2 酸化鉄(Fe2O3)と酸化アルミニウム(Al2O3)及び酸化
モリブデン(MoO3)を以下の反応式に従って所定の化学
量論比で混合し、大気中、780℃で2日間焼成すること
により得た各種電極活物質Al2nFe2(1-n)(MoO4)3を正極
活物質として用いて、他は実施例1と同様にしてコイン
型リチウム電池を作成した。
Reaction formula: Fe 2 O 3 + 3MoO 3 → Fe 2 (MoO 4 ) 3 Example 2 Iron oxide (Fe 2 O 3 ), aluminum oxide (Al 2 O 3 ) and molybdenum oxide (MoO 3 ) Various electrode active materials Al 2n Fe 2 (1-n) (MoO 4 ) 3 obtained by mixing at a predetermined stoichiometric ratio according to the reaction formula and firing in air at 780 ° C. for 2 days are used as positive electrode active materials. A coin-type lithium battery was prepared in the same manner as in Example 1 except for using the above.

【0045】反応式: nAl 2O3 + (1-n)Fe 2O3 + 3MoO
3 → Al2nFe2(1-n)(MoO4)3 試験例1 実施例1及び2並びに比較例1で作成した電池につい
て、0.2 mA/cm2の放電電流密度での2.5V終止及び1.5V終
止での各放電容量を測定した。結果を表1に示す。
Reaction formula: nAl 2 O 3 + (1-n) Fe 2 O 3 + 3MoO
3 → Al 2n Fe 2 (1-n) (MoO 4 ) 3 Test Example 1 For the batteries prepared in Examples 1 and 2 and Comparative Example 1, 2.5 V termination and 1.5 V at a discharge current density of 0.2 mA / cm 2 Each discharge capacity at the end of V was measured. Table 1 shows the results.

【0046】[0046]

【表1】 [Table 1]

【0047】特にAlは、地殻中にもっとも多く含まれて
いる金属元素で、環境への負荷が小さい上、鉄より原子
量が小さいので、1Li反応当たりの容量は、Fe2(MoO4)3
が45.3mAh/gなのに対し、Al2(MoO4)3は50.2mAh/gと大き
い。
In particular, Al is a metal element most contained in the earth's crust, has a small load on the environment, and has a smaller atomic weight than iron. Therefore, the capacity per 1 Li reaction is Fe 2 (MoO 4 ) 3
Is 45.3 mAh / g, whereas Al 2 (MoO 4 ) 3 is as large as 50.2 mAh / g.

【0048】Feの含有量が多い程、3V領域の容量は大
きいが、1.8V領域の容量はAlの含有量が大きい方が大
きく、1.5V終止のトータルの放電容量ではAl含有量が
大きなもの程好適であることがわかる。
As the Fe content increases, the capacity in the 3V region increases, but the capacity in the 1.8V region increases as the Al content increases, and the Al content increases in the total discharge capacity at 1.5V termination. It turns out that the more suitable, the better.

【0049】実施例3 実施例1と同様にして作製したコイン型リチウム電池a
の0.2 mA/cm2の充放電電流密度での3.5V-1.5V間電圧規
制充放電曲線を図6に示す。3電子反応分の充放電可逆性
には少なくとも問題ないことがわかる。
Example 3 A coin-type lithium battery a produced in the same manner as in Example 1
FIG. 6 shows a 3.5V-1.5V voltage regulation charge / discharge curve at a charge / discharge current density of 0.2 mA / cm 2 . It can be seen that there is at least no problem with the charge / discharge reversibility for the three-electron reaction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例であるM2(MoO4)3基本構造
単位を示す。
FIG. 1 shows an M 2 (MoO 4 ) 3 basic structural unit according to an embodiment of the present invention.

【図2】 本発明の一具体例であるコイン型電池の構造
断面図を示す。
FIG. 2 is a structural sectional view of a coin-type battery as one specific example of the present invention.

【図3】 本発明の一実施例である斜方晶Al2(MoO4)3
X線回折図形を示す。
FIG. 3 shows an X-ray diffraction pattern of orthorhombic Al 2 (MoO 4 ) 3 according to one embodiment of the present invention.

【図4】 本発明の一実施例であるAl2(MoO4)3の電流密
度0.2mA/cm2での単純放電曲線を示す特性図を示す。
FIG. 4 is a characteristic diagram showing a simple discharge curve at a current density of 0.2 mA / cm 2 of Al 2 (MoO 4 ) 3 according to one embodiment of the present invention.

【図5】 本発明の比較例であるFe2(MoO4)3の擬似開放
電位曲線を示す特性図を示す。
FIG. 5 is a characteristic diagram showing a pseudo open potential curve of Fe 2 (MoO 4 ) 3 which is a comparative example of the present invention.

【図6】 本発明の一実施例であるAl2(MoO4)3の電流密
度0.2mA/cm2での3.5V-1.5V間電圧規制試験時の充放電
曲線を示す特性図を示す。
FIG. 6 is a characteristic diagram showing a charge / discharge curve during a voltage regulation test between 3.5 V and 1.5 V at a current density of 0.2 mA / cm 2 of Al 2 (MoO 4 ) 3 according to one embodiment of the present invention. .

【符号の説明】[Explanation of symbols]

1 封口板 2 ガスケット 3 正極ケース 4 負極 5 セパレータ 6 正極合剤ペレット DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江頭 港 福岡県春日市春日公園6−1 九州大学機 能物質科学研究所内 (72)発明者 山木 準一 福岡県春日市春日公園6−1 九州大学機 能物質科学研究所内 (72)発明者 田渕 光春 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 蔭山 博之 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 Fターム(参考) 5H003 AA01 AA02 AA04 BB02 BB04 BB05 BC01 BD03 5H014 AA02 EE05 EE10 HH01 5H029 AJ02 AJ03 AJ05 AK03 AL01 AL03 AL11 AL12 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 DJ16 HJ02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ega Port 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Inside the Institute of Functional Materials Science, Kyushu University (72) Inventor Junichi Yamaki 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Kyushu University Within the Institute for Functional Materials Science (72) Inventor Mitsuharu Tabuchi 1-8-31 Midorioka, Ikeda-shi, Osaka Prefecture Inside the Industrial Technology Institute Osaka Industrial Research Institute (72) Hiroyuki Kageyama 1-38-31 Midorioka, Ikeda-shi, Osaka No. F-term in Osaka Institute of Industrial Technology (Ref.) 5H003 AA01 AA02 AA04 BB02 BB04 BB05 BC01 BD03 5H014 AA02 EE05 EE10 HH01 5H029 AJ02 AJ03 AJ05 AK03 AL01 AL03 AL11 AL12 AL01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I): M2 (MoO4)3 (但し、Mは第13族に含まれる元素群から選ばれる少な
くとも1種を含む。)で表される化合物からなる非水電
解質二次電池用電極活物質。
1. A non-aqueous solution comprising a compound represented by the general formula (I): M 2 (MoO 4 ) 3 (where M includes at least one element selected from the group consisting of elements belonging to Group 13). Electrode active material for electrolyte secondary batteries.
【請求項2】 一般式(I)の化合物が下記一般式(I
I): M'2nFe2(1-n) (MoO4)3 (但し、M'は第13族に含まれる元素群から選ばれる少
なくとも1種である。nは、0<n≦1である。)で表さ
れる化合物である請求項1に記載の電極活物質。
2. The compound of the general formula (I)
I): M ′ 2n Fe 2 (1-n) (MoO 4 ) 3 (where M ′ is at least one selected from the group consisting of elements belonging to Group 13; n is 0 <n ≦ 1) The electrode active material according to claim 1, which is a compound represented by the formula:
【請求項3】 M'がAlを含む請求項2に記載の電極活物
質。
3. The electrode active material according to claim 2, wherein M ′ contains Al.
【請求項4】 M'がAlである請求項2に記載の電極活物
質。
4. The electrode active material according to claim 2, wherein M ′ is Al.
【請求項5】 n=1である請求項2に記載の電極活物
質。
5. The electrode active material according to claim 2, wherein n = 1.
【請求項6】 請求項1〜5のいずれかに記載の電極活
物質を含む非水電解質二次電池用電極。
6. An electrode for a non-aqueous electrolyte secondary battery, comprising the electrode active material according to claim 1.
【請求項7】 請求項6に記載の電極を用いる非水電解
質二次電池。
7. A non-aqueous electrolyte secondary battery using the electrode according to claim 6.
【請求項8】 請求項6に記載の電極を正極として用い
る請求項7に記載の非水電解質二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 7, wherein the electrode according to claim 6 is used as a positive electrode.
【請求項9】 アルカリ金属材料及びアルカリ土類金属
材料からなる群から選ばれる少なくとも1種の負極活物
質を含む電極を、負極として用いる請求項8記載の非水
電解質二次電池。
9. The non-aqueous electrolyte secondary battery according to claim 8, wherein an electrode containing at least one kind of negative electrode active material selected from the group consisting of an alkali metal material and an alkaline earth metal material is used as a negative electrode.
JP26288199A 1999-09-17 1999-09-17 Electrode active material for non-aqueous electrolyte battery, electrode and battery including the same Expired - Lifetime JP3928032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26288199A JP3928032B2 (en) 1999-09-17 1999-09-17 Electrode active material for non-aqueous electrolyte battery, electrode and battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26288199A JP3928032B2 (en) 1999-09-17 1999-09-17 Electrode active material for non-aqueous electrolyte battery, electrode and battery including the same

Publications (2)

Publication Number Publication Date
JP2001085011A true JP2001085011A (en) 2001-03-30
JP3928032B2 JP3928032B2 (en) 2007-06-13

Family

ID=17381933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26288199A Expired - Lifetime JP3928032B2 (en) 1999-09-17 1999-09-17 Electrode active material for non-aqueous electrolyte battery, electrode and battery including the same

Country Status (1)

Country Link
JP (1) JP3928032B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055172A1 (en) * 2005-11-10 2007-05-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and secondary battery containing same
JP2007258165A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2009099522A (en) * 2007-09-25 2009-05-07 Sanyo Electric Co Ltd Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
CN112678876A (en) * 2020-09-16 2021-04-20 烟台大学 Application of LiFe4Mo5O20 in lithium ion battery cathode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055172A1 (en) * 2005-11-10 2007-05-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and secondary battery containing same
US7524587B2 (en) 2005-11-10 2009-04-28 Panasonic Corporation Non-aqueous electrolyte and secondary battery containing same
JP2007258165A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2009099522A (en) * 2007-09-25 2009-05-07 Sanyo Electric Co Ltd Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
CN112678876A (en) * 2020-09-16 2021-04-20 烟台大学 Application of LiFe4Mo5O20 in lithium ion battery cathode

Also Published As

Publication number Publication date
JP3928032B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP6952247B2 (en) Positive electrode active material and battery
JP3625680B2 (en) Lithium secondary battery
JP4680637B2 (en) Lithium secondary battery
KR100451846B1 (en) Positive electrode activated material and non-aqueous electrolyte secondary battery using it
US11569502B2 (en) Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
JP5099168B2 (en) Lithium ion secondary battery
CN109565046B (en) Positive electrode active material and battery using same
JP2003221236A (en) Composite oxide containing lithium and nonaqueous secondary battery using it
JPH09134725A (en) Non-aqueous electrolyte secondary battery
JP2018085324A (en) Cathode active material for battery, and battery using cathode active material
JPWO2018092359A1 (en) Positive electrode active material for battery and battery
JP2006236830A (en) Lithium secondary battery
JP2000235856A (en) Lithium secondary battery
JPH06342673A (en) Lithium secondary battery
JP2003229126A (en) Electrode active material for non-aqueous electrolyte secondary battery
US20200403224A1 (en) Lithium molybdate anode material
JP2019216069A (en) Cathode active material for nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
AU2012206930A1 (en) Ion-exchange battery
JPH10112316A (en) Nonaqueous electrolyte secondary battery
EP4249436A1 (en) Method for producing lithium metal composite oxide
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3928032B2 (en) Electrode active material for non-aqueous electrolyte battery, electrode and battery including the same
JPH0644970A (en) Nonaqueous electrolyte lithium battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Ref document number: 3928032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term