JP2001082302A - Ignition timing control device of internal combustion engine - Google Patents

Ignition timing control device of internal combustion engine

Info

Publication number
JP2001082302A
JP2001082302A JP25711299A JP25711299A JP2001082302A JP 2001082302 A JP2001082302 A JP 2001082302A JP 25711299 A JP25711299 A JP 25711299A JP 25711299 A JP25711299 A JP 25711299A JP 2001082302 A JP2001082302 A JP 2001082302A
Authority
JP
Japan
Prior art keywords
ignition timing
advance
internal combustion
combustion engine
timing control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25711299A
Other languages
Japanese (ja)
Inventor
Toru Mashita
亨 真下
Masaki Kobayashi
正樹 小林
Junichi Furuya
純一 古屋
Toru Kitayama
亨 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP25711299A priority Critical patent/JP2001082302A/en
Priority to DE10044510A priority patent/DE10044510A1/en
Publication of JP2001082302A publication Critical patent/JP2001082302A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out an advance control of an ignition timing in order to reduce an HC amount discharged from an engine for a predetermined period from starting. SOLUTION: Before completion of starting, an ignition timing is controlled to be limitation of advance in response to a cooling water temperature and an engine speed (S4). In a predetermined period after completion of starting (first complete explosion) is determined based on the engine speed (S2, S7, S8), a basic ignition timing (S10) is corrected using an advance angle correction value (S9) in response to a passage of time after starting and the cooling water temperature. Accordingly, an advance angle in response to a change in a cylinder temperature which is not accompanied with a change in the cooling water temperature immediately after the first complete explosion can be set.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の点火時期
制御装置に関し、特に、始動時における点火時期の制御
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ignition timing control device for an internal combustion engine, and more particularly to a technique for controlling an ignition timing at the time of starting.

【0002】[0002]

【従来の技術】従来の内燃機関の点火時期制御装置とし
て、暖機後は、機関回転速度と機関負荷に応じてマップ
に予め記憶されている進角値を点火時期とし、暖機中に
は、機関回転速度に応じた進角値と冷却水温度に応じた
進角値とから得られる進角値を点火時期とする構成のも
のがあった。
2. Description of the Related Art As a conventional ignition timing control device for an internal combustion engine, after warm-up, an advance value previously stored in a map according to the engine speed and engine load is used as the ignition timing. There has been a configuration in which the ignition timing is set to an advance value obtained from an advance value corresponding to the engine rotation speed and an advance value corresponding to the coolant temperature.

【0003】また、始動時における触媒活性を早める目
的で、暖機中に点火時期を遅角補正する場合があった。
一方、スタートスイッチのON状態(クランキング中)
においては、冷却水温度に応じた始動用の進角値で点火
を制御するようにしていた。
In some cases, the ignition timing is retarded during warm-up for the purpose of accelerating the catalyst activity at the start.
On the other hand, the start switch is in the ON state (during cranking)
In, the ignition is controlled by a starting advance value corresponding to the cooling water temperature.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の点
火時期制御装置における暖機中の進角値では、始動完了
直後(初完爆直後)の筒内温度(燃焼速度)の変化に対
応できず、燃焼速度に対応した点火時期よりも遅角側に
制御されてHC排出量が多くなるという問題があった。
However, the advance value during warm-up in the above-mentioned conventional ignition timing control device can cope with a change in the in-cylinder temperature (combustion speed) immediately after the start is completed (immediately after the first complete explosion). However, there is a problem in that the ignition timing is controlled to be more retarded than the ignition timing corresponding to the combustion speed and the amount of HC emission increases.

【0005】即ち、暖機中の冷却水温度に応じた進角値
は、水温と筒内温度(燃焼速度)との相関に基づいて設
定される。しかし、始動完了直後(初完爆直後)では、
水温が同じでも筒内温度(燃焼速度)が増大変化するこ
とになるが、この間、水温が変化しないことから燃焼速
度変化に応じた進角値に制御できず、結果、筒内温度の
上昇にリンクして水温が上昇変化を示すようになるまで
の間、要求よりも遅角側に点火時期が設定されて、機関
からのHC排出量が多くなってしまうという問題があっ
たものである。
That is, the advance angle value corresponding to the cooling water temperature during warm-up is set based on the correlation between the water temperature and the in-cylinder temperature (combustion speed). However, immediately after the start-up is completed (immediately after the first complete explosion),
Even if the water temperature is the same, the in-cylinder temperature (combustion rate) will increase and change. However, during this time, the water temperature does not change, and it is not possible to control the advance angle in accordance with the change in the combustion speed. Until the water temperature shows a rising change by linking, there is a problem that the ignition timing is set on the more retarded side than the request, and the amount of HC emission from the engine increases.

【0006】また、従来、クランキング中においては点
火時期を水温のみから決定しているが、係る構成では、
回転速度による進角限界の変化に対応できないため、如
何なる回転速度条件であっても逆回転を招くことがない
ように、要求よりも遅角側に点火時期を設定せざるを得
ず、これによってクランキング中の燃焼時において機関
からのHC排出量を充分に抑制することができないとい
う問題があった。
Conventionally, during cranking, the ignition timing is determined only from the water temperature.
Since it is not possible to cope with a change in the advance angle limit due to the rotation speed, the ignition timing must be set to a more retarded side than required so that reverse rotation does not occur under any rotation speed conditions. There has been a problem that the amount of HC emission from the engine cannot be sufficiently suppressed during combustion during cranking.

【0007】本発明は上記問題点に鑑みなされたもので
あり、始動から所定期間(始動中及び始動後の所定期
間)におけるHC排出量を抑制できる内燃機関の点火時
期制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide an ignition timing control device for an internal combustion engine which can suppress the amount of HC emission during a predetermined period from the start (a predetermined period during and after the start). Aim.

【0008】また、始動完了直後の筒内温度の変化に応
じて最適な進角値に設定できる内燃機関の点火時期制御
装置を提供することを目的とする。また、始動中に逆回
転を招くことなく、要求の進角値を与えられる内燃機関
の点火時期制御装置を提供することを目的とする。
It is another object of the present invention to provide an ignition timing control device for an internal combustion engine which can set an optimum advance value in accordance with a change in the cylinder temperature immediately after the start of the engine. It is another object of the present invention to provide an ignition timing control device for an internal combustion engine that can provide a required advance value without causing reverse rotation during startup.

【0009】[0009]

【課題を解決するための手段】そのため請求項1記載の
発明は、始動から所定期間において、運転性に影響を与
えない範囲の最大進角値で点火を制御する構成とした。
Therefore, the invention according to claim 1 is configured to control ignition at a maximum advance value within a range that does not affect drivability during a predetermined period from the start.

【0010】かかる構成によると、始動から所定期間
(始動中及び始動後の所定期間)においては、逆転など
を発生させることが無い範囲で、点火時期が最大限に進
角設定される。
According to this configuration, during a predetermined period from the start (a predetermined period during the start and after the start), the ignition timing is set to the maximum advance as long as the reverse rotation or the like does not occur.

【0011】請求項2記載の発明では、前記最大進角値
を、冷却水温度,機関回転速度,始動後の経過期間のう
ちの少なくとも1つに基づいて決定する構成とした。か
かる構成によると、運転性に影響を与えない範囲の最大
進角値を、冷却水温度,機関回転速度,始動後の経過期
間のうちの単独又は組合わせに応じて決定する。
[0011] In the second aspect of the invention, the maximum advance value is determined based on at least one of a cooling water temperature, an engine speed, and an elapsed time after starting. According to this configuration, the maximum advance value within a range that does not affect the operability is determined according to the cooling water temperature, the engine rotation speed, and the elapsed time after the start alone or in combination.

【0012】請求項3記載の発明は、始動後の経過期間
に応じた進角補正を施す構成とした。かかる構成による
と、点火時期が、始動後の経過期間に応じた進角補正値
により進角補正される。即ち、始動直後であって水温が
リンクせずに筒内温度のみが上昇変化するときに、係る
筒内温度の変化に応じた補正を施す。
The invention according to claim 3 is configured to perform advance angle correction according to the elapsed time after the start. According to this configuration, the ignition timing is advanced by the advance correction value corresponding to the elapsed time after the start. That is, when the water temperature does not link and only the in-cylinder temperature rises and changes immediately after the start, a correction is made according to the change in the in-cylinder temperature.

【0013】請求項4記載の発明では、始動後の経過期
間に応じて進角補正量を徐々に減じる構成とした。かか
る構成によると、始動後の経過期間に応じて筒内温度が
上昇変化し、燃焼速度が速くなることに対応して、進角
補正量を徐々に減じて点火時期を遅角側に変化させる。
According to the fourth aspect of the present invention, the advance correction amount is gradually reduced according to the elapsed time after the start. According to such a configuration, the in-cylinder temperature rises and changes according to the elapsed time after the start, and the ignition timing is changed to the retard side by gradually reducing the advance correction amount in response to the increase in the combustion speed. .

【0014】請求項5記載の発明では、始動後の経過期
間と機関運転条件とに応じて進角補正値を設定する構成
とした。かかる構成によると、始動後の経過期間と機関
運転条件とに応じて、始動直後の筒内温度(燃焼速度)
変化を推定し、該筒内温度(燃焼速度)に対応して進角
補正を施す。
According to the fifth aspect of the present invention, the advance correction value is set in accordance with the elapsed time after the start and the engine operating conditions. According to this configuration, the in-cylinder temperature (combustion rate) immediately after the start according to the elapsed time after the start and the engine operating conditions.
The change is estimated, and the advance angle is corrected in accordance with the in-cylinder temperature (burning speed).

【0015】請求項6記載の発明では、前記機関運転条
件として少なくとも冷却水温度を含む構成とした。かか
る構成によると、始動後の経過期間と冷却水温度とに応
じて、始動直後の筒内温度(燃焼速度)変化を推定し、
該筒内温度(燃焼速度)に対応して進角補正を施す。
In the invention according to claim 6, the engine operating condition includes at least a cooling water temperature. According to this configuration, the in-cylinder temperature (combustion rate) change immediately after the start is estimated according to the elapsed time after the start and the coolant temperature,
Advance angle correction is performed in accordance with the in-cylinder temperature (combustion speed).

【0016】請求項7記載の発明では、前記始動後の経
過期間に応じた進角補正が施される間、点火時期のステ
ップ変化量の制限を強制的に停止し、前記始動後の経過
期間に応じた進角補正が解除された後、点火時期のステ
ップ変化量を制限する構成とした。
In the invention according to claim 7, the restriction of the step change amount of the ignition timing is forcibly stopped while the advance correction according to the elapsed time after the start is performed, and the elapsed time after the start is performed. After the advance correction according to the above is canceled, the step change amount of the ignition timing is limited.

【0017】かかる構成によると、始動後の経過期間に
応じた進角補正が施される間は、点火時期のステップ変
化量が制限されず、燃焼毎の点火時期の変化要求がその
まま許容されるが、始動後の経過期間に応じた進角補正
が解除されるようになると、点火時期のステップ変化量
が制限されることになり、燃焼毎の点火時期の変化を制
限する。
According to this configuration, while the advance correction according to the elapsed time after the start is performed, the step change amount of the ignition timing is not limited, and the request for changing the ignition timing for each combustion is allowed as it is. However, when the advance correction according to the elapsed time after the start is released, the step change amount of the ignition timing is limited, and the change of the ignition timing for each combustion is limited.

【0018】請求項8記載の発明は、始動開始から始動
完了までの間において、機関回転速度と冷却水温度とに
応じて予め割り付けられた進角限界の点火時期に制御す
る構成とした。
According to the present invention, during the period from the start to the completion of the start, the ignition timing is controlled to the advance limit limit which is pre-assigned according to the engine speed and the coolant temperature.

【0019】かかる構成によると、始動開始から始動完
了までの始動中(クランキング中)は、冷却水温度とそ
のときの機関回転速度から進角限界の点火時期が決定さ
れ、該進角限界の点火時期で点火が制御される。
With this configuration, during the start (start of cranking) from the start to the completion of the start, the ignition timing of the advance limit is determined from the coolant temperature and the engine speed at that time, and the advance limit is determined. The ignition is controlled by the ignition timing.

【0020】請求項9記載の発明では、始動完了を、機
関回転速度,機関回転速度の変化速度,筒内圧のいずれ
かに基づいて判定する構成とした。かかる構成による
と、機関回転速度,機関回転速度の変化速度,筒内圧が
所定値を超えた時点を初完爆による回転変化又は筒内圧
変化と見做し、以って、始動完了と判定する。
According to the ninth aspect of the invention, the completion of the start is determined based on any one of the engine speed, the change speed of the engine speed, and the in-cylinder pressure. According to such a configuration, a point in time at which the engine speed, the change speed of the engine speed, and the in-cylinder pressure exceed a predetermined value is regarded as a rotation change or an in-cylinder pressure change due to the first complete explosion, and thus, the start is determined to be completed. .

【0021】[0021]

【発明の効果】請求項1記載の発明によると、運転性を
悪化させることなく、始動時に内燃機関から排出される
HC量を低減することができるという効果がある。
According to the first aspect of the present invention, there is an effect that the amount of HC discharged from the internal combustion engine at the time of starting can be reduced without deteriorating drivability.

【0022】請求項2記載の発明によると、冷却水温
度,機関回転速度,始動後の経過期間によって異なる進
角要求に対応して、運転性を悪化させることのない最大
進角値に制御できるという効果がある。
According to the second aspect of the invention, it is possible to control the maximum advance value without deteriorating the drivability in response to the advance angle request which varies depending on the cooling water temperature, the engine speed, and the elapsed time after the start. This has the effect.

【0023】請求項3記載の発明によると、始動直後の
筒内温度の変化に対して冷却水温度が変化するようにな
るまでの間、点火時期を要求点火時期に進角補正でき、
以って、HC排出量を低減できるという効果がある。
According to the third aspect of the invention, the ignition timing can be advanced to the required ignition timing until the coolant temperature changes with respect to the in-cylinder temperature change immediately after the start,
This has the effect of reducing the amount of HC emissions.

【0024】請求項4記載の発明によると、始動直後の
筒内温度の上昇変化に対応して点火時期を徐々に遅角側
に変化させることができるという効果がある。請求項
5,6記載の発明によると、始動直後の筒内温度(燃焼
速度)を精度良く推定して、最適な点火時期に進角補正
できるという効果がある。
According to the invention described in claim 4, there is an effect that the ignition timing can be gradually changed to the retard side in response to a change in the in-cylinder temperature immediately after the start. According to the fifth and sixth aspects of the present invention, there is an effect that the in-cylinder temperature (combustion rate) immediately after starting can be accurately estimated, and the advance angle can be corrected to an optimal ignition timing.

【0025】請求項7記載の発明によると、始動直後
(初完爆直後)の要求点火時期の急変に対応して点火時
期を変化させつつ、通常運転時の燃焼安定性を確保する
ことができるという効果がある。
According to the seventh aspect of the invention, it is possible to secure the combustion stability during normal operation while changing the ignition timing in response to a sudden change in the required ignition timing immediately after the start (immediately after the first complete explosion). This has the effect.

【0026】請求項8記載の発明によると、始動開始か
ら始動完了まで間において、冷却水温度と機関回転速度
に応じた進角限界に点火時期を制御するので、初完爆か
ら始動完了までの燃焼時に最大限に進角させて、機関か
ら排出されるHC量を低減させることができるという効
果がある。
According to the eighth aspect of the invention, the ignition timing is controlled to the advance limit corresponding to the cooling water temperature and the engine rotation speed from the start of the start to the completion of the start. There is an effect that the amount of HC discharged from the engine can be reduced by maximally advancing the fuel during combustion.

【0027】請求項9記載の発明によると、始動完了
(初完爆)を的確に判断し、以って、始動完了まで又は
始動後の点火時期制御を高精度に行なわせることができ
るという効果がある。
According to the ninth aspect of the present invention, the completion of the start (first complete explosion) is accurately determined, so that the ignition timing control until or after the start can be performed with high accuracy. There is.

【0028】[0028]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図1は、本発明に係る点火時期制御装置を含む内
燃機関の制御システムを示す図である。
Embodiments of the present invention will be described below. FIG. 1 is a diagram showing a control system of an internal combustion engine including an ignition timing control device according to the present invention.

【0029】この図1において、内燃機関1にはエアク
リーナ2から吸気ダクト3,スロットル弁4及び吸気マ
ニホールド5を介して空気が吸入される。前記吸気マニ
ホールド5の各ブランチ部には、各気筒別に燃料噴射弁
6が設けられている。
In FIG. 1, air is sucked into an internal combustion engine 1 from an air cleaner 2 through an intake duct 3, a throttle valve 4 and an intake manifold 5. In each branch of the intake manifold 5, a fuel injection valve 6 is provided for each cylinder.

【0030】燃料噴射弁6は、ソレノイドに通電されて
開弁し、通電停止されて閉弁する電磁式燃料噴射弁であ
って、後述するコントロールユニット12から各気筒の
行程にタイミングを合わせて出力される噴射パルス信号
により通電されて開弁し、図示しない燃料ポンプから圧
送されてプレッシャレギュレータにより所定の圧力に調
整された燃料を噴射供給する。
The fuel injection valve 6 is an electromagnetic fuel injection valve that is energized by a solenoid and opens, and is deenergized and closed by a control unit 12 described later. The output is synchronized with the stroke of each cylinder. The valve is energized by the injection pulse signal to be opened, the valve is opened, and fuel which is fed from a fuel pump (not shown) and adjusted to a predetermined pressure by a pressure regulator is injected and supplied.

【0031】機関1の各燃焼室には点火栓7が設けられ
ていて、これにより火花点火して混合気を着火燃焼させ
る。そして、機関1からは、排気マニホールド8,排気
ダクト9,三元触媒10及びマフラー11を介して排気
が排出される。
Each combustion chamber of the engine 1 is provided with an ignition plug 7, which ignites a spark to ignite and burn an air-fuel mixture. Then, exhaust gas is discharged from the engine 1 through the exhaust manifold 8, the exhaust duct 9, the three-way catalyst 10, and the muffler 11.

【0032】コントロールユニット12は、CPU,R
OM,RAM,A/D変換器及び入出力インタフェイス
等を含んで構成されるマイクロコンピュータを備え、各
種のセンサからの入力信号を受け、後述の如く演算処理
して、燃料噴射弁6及び点火栓7の作動を制御する。
The control unit 12 comprises a CPU, R
The microcomputer includes a microcomputer including an OM, a RAM, an A / D converter, an input / output interface, and the like. The microcomputer receives input signals from various sensors, performs arithmetic processing as described later, and performs fuel injection valve 6 and ignition The operation of the stopper 7 is controlled.

【0033】前記各種のセンサとしては、吸気ダクト3
中にエアフローメータ13が設けられていて、機関1の
吸入空気流量Qに応じた信号を出力する。また、クラン
ク角センサ14が設けられていて、各気筒の基準ピスト
ン位置毎の基準角度信号REFと、クランク角1°又は
2°毎の単位角度信号POSとを出力する。ここで、基
準角度信号REFの周期、或いは、所定時間内における
単位角度信号POSの発生数を計測することにより、機
関回転速度Neを算出できる。
As the various sensors, an intake duct 3
An air flow meter 13 is provided therein, and outputs a signal corresponding to the intake air flow rate Q of the engine 1. Further, a crank angle sensor 14 is provided, and outputs a reference angle signal REF for each reference piston position of each cylinder and a unit angle signal POS for each crank angle of 1 ° or 2 °. Here, the engine rotation speed Ne can be calculated by measuring the cycle of the reference angle signal REF or the number of occurrences of the unit angle signal POS within a predetermined time.

【0034】図示しないカム軸には、気筒判別信号を出
力するカムセンサ15が設けられている。機関1のウォ
ータジャケットには、該ウォータジャケット内の冷却水
温度Twを検出する水温センサ16が設けられている。
The cam shaft (not shown) is provided with a cam sensor 15 for outputting a cylinder discrimination signal. The water jacket of the engine 1 is provided with a water temperature sensor 16 for detecting a cooling water temperature Tw in the water jacket.

【0035】排気マニホールド8の集合部には、酸素セ
ンサ17が設けられている。前記酸素センサ17は、大
気中の酸素濃度(基準酸素濃度)に対する排気中の酸素
濃度の比に応じた起電力を発生する公知の酸素濃淡電池
式のセンサである。
An oxygen sensor 17 is provided at the gathering portion of the exhaust manifold 8. The oxygen sensor 17 is a known oxygen concentration cell type sensor that generates an electromotive force according to the ratio of the oxygen concentration in the exhaust to the oxygen concentration in the atmosphere (reference oxygen concentration).

【0036】前記スロットル弁4には、該スロットル弁
4の全閉位置(アイドル位置)でONとなるアイドルス
イッチ18が設けられている。ここにおいて、コントロ
ールユニット12に内蔵されたマイクロコンピュータの
CPUは、前記燃料噴射弁6の燃料噴射量(噴射パルス
幅)Tiを、Ti←Tp×CO×α+Tsとして算出
し、該燃料噴射量Tiに相当するパルス幅の噴射パルス
信号を燃料噴射弁6に出力する。
The throttle valve 4 is provided with an idle switch 18 which is turned on when the throttle valve 4 is fully closed (idle position). Here, the CPU of the microcomputer built in the control unit 12 calculates the fuel injection amount (injection pulse width) Ti of the fuel injection valve 6 as Ti ← Tp × CO × α + Ts, and calculates the fuel injection amount Ti. An injection pulse signal having a corresponding pulse width is output to the fuel injection valve 6.

【0037】ここで、前記Tpは、吸入空気流量Qと機
関回転速度Neとに基づいて算出される基本噴射量(基
本噴射パルス幅)であり、前記COは冷却水温度Twに
応じて燃料を増量補正するための水温増量補正係数KTW
を含んで設定される各種補正係数である。
Here, Tp is a basic injection amount (basic injection pulse width) calculated based on the intake air flow rate Q and the engine rotation speed Ne, and the CO is a fuel in accordance with the cooling water temperature Tw. Water temperature increase correction coefficient KTW for increase correction
And various correction coefficients set.

【0038】前記α(初期値=1.0 )は、酸素センサ1
7で検出される空燃比を目標空燃比(理論空燃比)に近
づけるべく基本燃料噴射量Tpを補正するための空燃比
フィードバック補正係数であり、前記酸素センサ17で
検出される理論空燃比に対するリッチ・リーンに基づい
て例えば比例・積分制御によって設定される。
The above α (initial value = 1.0) is the value of the oxygen sensor 1
7 is an air-fuel ratio feedback correction coefficient for correcting the basic fuel injection amount Tp to bring the air-fuel ratio detected at 7 close to the target air-fuel ratio (the stoichiometric air-fuel ratio), and is rich relative to the stoichiometric air-fuel ratio detected by the oxygen sensor 17. -Set based on lean, for example, by proportional / integral control.

【0039】前記Tsは、バッテリ電圧の変化による燃
料噴射弁6の無効噴射時間の変化を補正するための電圧
補正分である。また、前記スロットル弁4をバイパスし
て補助空気通路19が設けられると共に、該補助空気通
路19には補助空気量制御弁20が介装されており、コ
ントロールユニット12は、アイドル回転速度を目標回
転速度に近づけるように、前記補助空気量制御弁20の
開度をフィードバック制御する。
Ts is a voltage correction for correcting a change in the invalid injection time of the fuel injector 6 due to a change in the battery voltage. An auxiliary air passage 19 is provided to bypass the throttle valve 4, and an auxiliary air amount control valve 20 is interposed in the auxiliary air passage 19, and the control unit 12 controls the idle rotation speed to the target rotation speed. The opening degree of the auxiliary air amount control valve 20 is feedback-controlled so as to approach the speed.

【0040】更に、前記コントロールユニット12は、
図2及び図3のフローチャートに示すようにして、前記
点火栓7による点火時期(点火進角値)を制御する。
尚、前記図2及び図3のフローチャートに示されるルー
チンは、所定時間毎又は前記基準角度信号REF毎に実
行されるようになっている。
Further, the control unit 12
2 and 3, the ignition timing (ignition advance value) of the ignition plug 7 is controlled.
The routines shown in the flowcharts of FIGS. 2 and 3 are executed every predetermined time or every reference angle signal REF.

【0041】図2及び図3のフローチャートにおいて、
まず、ステップS1では、始動完了フラグに1がセット
されているか否かを判別し、始動完了(初完爆)前で始
動完了フラグに0がセットされている間は、ステップS
2へ進む。
In the flowcharts of FIGS. 2 and 3,
First, in step S1, it is determined whether or not the start completion flag is set to 1. If the start completion flag is set to 0 before the start is completed (first complete explosion), step S1 is performed.
Proceed to 2.

【0042】ステップS2では、機関回転速度Neが所
定速度NeSを超えているか否かを判別することで、始
動完了(初完爆)を判定する。そして、機関回転速度N
eが所定速度NeS以下であれば、未だ始動中であると
判定してステップS3以降へ進むが、機関回転速度Ne
が所定速度NeSを超えると始動が完了したものと判定
し、ステップS6へ進んで、始動完了フラグに1をセッ
トする。
In step S2, it is determined whether or not the engine speed Ne exceeds a predetermined speed NeS, thereby determining the completion of the start (first complete explosion). And the engine speed N
If e is equal to or less than the predetermined speed NeS, it is determined that the engine is still being started, and the process proceeds to step S3 and subsequent steps.
If the speed exceeds the predetermined speed NeS, it is determined that the start has been completed, and the routine proceeds to step S6, where 1 is set to the start completion flag.

【0043】始動完了は、上記の機関回転速度Neと所
定速度NeSとの比較を行なわせる構成の他、クランキ
ング開始後に機関回転速度の変化速度(加速度)が初め
て所定値を超えた時点として判定させることができ、ま
た、筒内圧センサを備える場合には、該筒内圧センサで
検出される筒内圧(燃焼圧)のピーク値又は所定角度範
囲における積分値又は所定クランク角度における値が、
初めて所定値を超えた時点を、始動完了として判定させ
る構成とすることもできる。
The completion of the start is determined by comparing the engine speed Ne with the predetermined speed NeS as described above, and by judging that the change speed (acceleration) of the engine speed exceeds the predetermined value for the first time after the start of cranking. In the case where the in-cylinder pressure sensor is provided, the peak value of the in-cylinder pressure (combustion pressure) detected by the in-cylinder pressure sensor, the integral value in a predetermined angle range, or the value at a predetermined crank angle is:
It is also possible to adopt a configuration in which the point in time when the predetermined value is exceeded for the first time is determined as the start completion.

【0044】ステップS3では、始動完了(初完爆)後
の経過期間を計測するためのカウンタTIMを0リセッ
トし、次のステップS4では、予め冷却水温度と機関回
転速度とに応じて進角限界の点火時期を記憶したマップ
を参照し、そのときの冷却水温度及び機関回転速度(ク
ランキング速度)に対応する点火時期を求める。
In step S3, a counter TIM for measuring the elapsed time after the completion of the start (first complete explosion) is reset to 0, and in the next step S4, the advance is advanced according to the cooling water temperature and the engine speed. The ignition timing corresponding to the coolant temperature and the engine speed (cranking speed) at that time is obtained by referring to the map storing the limit ignition timing.

【0045】ステップS5では、前記ステップS4で求
めた進角限界の点火時期を、最終的な点火時期(点火進
角値)ADVにセットする。前記進角限界の点火時期と
は、機関の逆転などの運転性の悪化を生じさせることの
ない進角値の最大値であり、そのときの冷却水温度及び
機関回転速度(クランキング速度)に対応する最大進角
値を与えることで、始動完了判定されるまでの燃焼にお
けるHC排出量の低減を図るものである。
In step S5, the ignition timing at the advance limit obtained in step S4 is set to the final ignition timing (ignition advance value) ADV. The ignition timing at the advance angle limit is the maximum value of the advance angle value that does not cause deterioration in operability such as reverse rotation of the engine, and the cooling water temperature and the engine speed (cranking speed) at that time. By giving a corresponding maximum advance value, the HC emission amount in combustion until the completion of starting is determined is reduced.

【0046】一方、初完爆が判定されて始動完了フラグ
に1がセットされると、ステップS7へ進み、初完爆後
(始動後)の経過期間を計測するためのカウンタTIM
をカウントアップさせる。
On the other hand, when the first complete explosion is determined and the start completion flag is set to 1, the routine proceeds to step S7, where a counter TIM for measuring the elapsed time after the first complete explosion (after starting).
Is counted up.

【0047】ここで、本ルーチンが所定時間毎に実行さ
れる構成であれば、前記カウンタTIMにより初完爆後
(始動後)の経過期間が経過時間として計測されること
になり、本ルーチンが基準角度信号REF毎に実行され
る構成であれば、前記カウンタTIMにより初完爆後
(始動後)の経過期間がサイクル数として計測されるこ
とになる。
Here, if the present routine is executed every predetermined time, the elapsed time after the first complete explosion (after the start) is measured as the elapsed time by the counter TIM. If the configuration is executed for each reference angle signal REF, the elapsed period after the first complete explosion (after starting) is measured as the number of cycles by the counter TIM.

【0048】ステップS8では、前記カウンタTIMが
所定値TIMSを超えたか否かを判別するここで、前記
カウンタTIMが所定値TIMS以下であって、初完爆
後(始動後)の経過時間が所定時間内であるか、又は、
初完爆後(始動後)のサイクル数が所定サイクル数以下
である初完爆後(始動後)の所定期間内であるときに
は、ステップS9へ進む。
In step S8, it is determined whether or not the counter TIM has exceeded a predetermined value TIMS. Here, when the counter TIM is equal to or less than the predetermined value TIMS, the elapsed time after the first complete explosion (after starting) is determined. In time, or
If the number of cycles after the first complete explosion (after the start) is within the predetermined period after the first complete explosion (after the start), which is equal to or less than the predetermined number of cycles, the process proceeds to step S9.

【0049】ステップS9では、予め前記カウンタTI
M(始動後の経過時間又は経過サイクル数)と冷却水温
度とに応じて進角補正値を記憶したマップを参照し、そ
のときのカウンタTIMの値と冷却水温度とに対応する
進角補正値を求める。
In step S9, the counter TI
An advance correction corresponding to the value of the counter TIM and the coolant temperature at that time is referred to by referring to a map in which the advance correction value is stored according to M (elapsed time or the number of cycles after start) and the coolant temperature. Find the value.

【0050】前記進角補正値は、始動直後の筒内温度の
上昇変化に対応すべく、前記カウンタTIMが増大する
ほど進角補正を減少させるように設定され、また、始動
時の冷却水温度による筒内温度の変化特性の違いに対応
して異なる進角補正値に設定されるようになっている。
The advance correction value is set so as to decrease the advance correction as the counter TIM increases, so as to correspond to a change in the in-cylinder temperature immediately after the start. Is set to a different advance correction value corresponding to the difference in the in-cylinder temperature change characteristic due to the above.

【0051】ステップS10では、始動後の基本点火時
期(基本進角値)の設定を行う。例えば、冷却水温度が
所定温度以下である暖機中には、機関回転速度に応じた
進角値と冷却水温度に応じた進角値との加算値を基本点
火時期(基本進角値)とする。
In step S10, a basic ignition timing (basic advance value) after starting is set. For example, during a warm-up period in which the coolant temperature is equal to or lower than a predetermined temperature, the basic ignition timing (basic advance value) is obtained by adding the advance value corresponding to the engine speed and the advance value corresponding to the coolant temperature. And

【0052】ステップS11では、前記基本点火時期
(基本進角値)を、ステップS9で求めた進角補正値で
進角補正する。始動完了直後(初完爆直後)では、水温
が同じでも筒内温度(燃焼速度)が増大変化することに
なるが、この間、水温が変化しないことから基本点火時
期が燃焼速度変化に応じた進角値に制御できず、結果、
筒内温度の上昇にリンクして水温が上昇変化を示すよう
になるまでの間、要求よりも遅角側に点火時期が設定さ
れることになる。そこで、筒内温度の上昇にリンクして
水温が上昇変化を示すようになるまでの間において、始
動後の経過期間に応じた進角補正値で基本点火時期を進
角補正するものである。
In step S11, the basic ignition timing (basic advance value) is advanced by the advance correction value obtained in step S9. Immediately after the start-up is completed (immediately after the first complete explosion), the in-cylinder temperature (combustion speed) will increase and change even if the water temperature is the same, but during this time, since the water temperature does not change, the basic ignition timing advances in accordance with the change in combustion speed. The angle value cannot be controlled, resulting in
Until the water temperature shows a rising change linked to the rise in the cylinder temperature, the ignition timing is set to a more retarded side than required. Therefore, the basic ignition timing is advanced by an advanced correction value corresponding to the elapsed time after the start until the water temperature shows a rising change linked to the rise in the in-cylinder temperature.

【0053】従って、本実施の形態では、始動中及び始
動後の所定期間(始動から所定期間)において、運転性
を悪化させない範囲で最大限に進角補正され、この間に
おけるHC排出量を低減できる。即ち、始動完了が判定
される前の始動中には、水温と回転速度に応じた進角限
界に制御され、始動後は、そのときの燃焼速度(筒内温
度)応じた最大進角値に制御されて、HC排出量が低減
されるものである。
Therefore, in the present embodiment, during the start and during a predetermined period after the start (a predetermined period from the start), the advance angle is corrected to the maximum possible extent as long as the drivability is not deteriorated, and the HC discharge amount during this period can be reduced. . That is, during the start before the completion of the start is determined, the advance angle is controlled to the advance limit corresponding to the water temperature and the rotation speed, and after the start, the advance angle is set to the maximum advance value according to the combustion speed (in-cylinder temperature) at that time. It is controlled to reduce the amount of HC emission.

【0054】ステップS12では、前記ステップS4で
参照したマップからそのときの冷却水温度と機関回転速
度とに応じた進角限界を求める。そして、ステップS1
3では、前記ステップS11における進角補正の結果
が、前記進角限界よりも進角側であるか否かを判別し、
進角限界よりも進角側であるときには、ステップS14
へ進んで、予め設定される所定角度だけ遅角補正した
後、ステップS15へ進む。上記遅角補正により、進角
限界を超えた場合には進角限界に向けて徐々に遅角され
ることになる。
In step S12, an advance limit corresponding to the cooling water temperature and the engine speed at that time is obtained from the map referred to in step S4. Then, step S1
In 3, it is determined whether or not the result of the advance angle correction in step S11 is on the advance side of the advance angle limit.
If it is on the advance side of the advance limit, step S14
The program proceeds to step S15, and after performing retard correction by a predetermined angle set in advance, proceeds to step S15. When the advancement limit is exceeded by the above-described retardation correction, the retardation is gradually retarded toward the advancement limit.

【0055】一方、前記ステップS11における進角補
正の結果が、前記進角限界よりも遅角側であるときに
は、ステップS14を迂回してステップS15へ進む。
ステップS15では、上記補正結果としての点火時期
(点火進角値)を、最終的な点火時期(点火進角値)A
DVにセットする。
On the other hand, when the result of the advance angle correction in the step S11 is on the retard side from the advance angle limit, the process proceeds to the step S15 bypassing the step S14.
In step S15, the ignition timing (ignition advance value) as a result of the correction is converted into a final ignition timing (ignition advance value) A
Set to DV.

【0056】また、ステップS8で、前記カウンタTI
Mが所定値TIMSを超えたと判別されると、ステップ
S16へ進み、暖機中であれば、機関回転速度に応じた
進角値と冷却水温度に応じた進角値との加算結果として
基本進角値(基本点火時期)を設定し、暖機後は、機関
回転速度と機関負荷に応じてマップに予め記憶されてい
る進角値を基本進角値(基本点火時期)として検索す
る。
In step S8, the counter TI
If it is determined that M has exceeded the predetermined value TIMS, the process proceeds to step S16. If the engine is warming up, the basic result is an addition result of the advance value corresponding to the engine speed and the advance value corresponding to the coolant temperature. An advance value (basic ignition timing) is set, and after warm-up, an advance value previously stored in a map is searched as a basic advance value (basic ignition timing) according to the engine speed and the engine load.

【0057】ステップS17では、機関の排気浄化触媒
を早期に活性化させるための遅角補正値であるファース
トアイドルリタードを、冷却水温度に応じて設定する。
即ち、前記カウンタTIMが所定値TIMSを超えるま
では、たとえ暖機中であっても、ファーストアイドルリ
タードを付加せずに最大限の進角を与えることで、機関
からのHC排出量の低減を図り、その後、触媒活性を促
進させるための遅角補正を実行させる。
In step S17, a first idle retard, which is a retard correction value for activating the exhaust gas purifying catalyst of the engine at an early stage, is set according to the cooling water temperature.
That is, until the counter TIM exceeds the predetermined value TIMS, even if the engine is warming up, the maximum advance angle is given without adding the first idle retard to reduce the HC emission from the engine. After that, a retard correction for promoting the catalyst activity is executed.

【0058】ステップS18では、前記ステップS16
で設定した基本進角値(基本点火時期)を、前記ファー
ストアイドルリタードやノッキング補正分で補正し、更
に、ステップS19では、点火毎の点火時期のステップ
変化量を所定のリミット値内に制限する処理を施し、ス
テップS20で点火時期(点火進角値)ADVにセット
する。
In step S18, step S16
The basic advance value (basic ignition timing) set in step (1) is corrected by the above-mentioned first idle retard and knocking correction. Further, in step S19, the step change amount of the ignition timing for each ignition is limited within a predetermined limit value. The process is performed, and in step S20, the ignition timing (ignition advance value) ADV is set.

【0059】尚、前記リミット値による点火時期のステ
ップ変化量の制限は、前記カウンタTIMが所定値TI
MSを超えるまでは実行されず、ステップ変化量の制限
が強制的に解除されるため、始動後の経過期間による補
正が施された要求点火時期に実際の点火時期を追従変化
させることができる一方、カウンタTIMが所定値TI
MSを超えた後は、点火時期のステップ変化量を制限し
て、燃焼安定性を確保できる。
The limit of the step change amount of the ignition timing by the limit value is determined by the counter TIM being a predetermined value TI.
This is not performed until the time exceeds MS, and the limitation of the step change amount is forcibly released, so that the actual ignition timing can be changed to follow the required ignition timing corrected by the elapsed time after the start. , The counter TIM has a predetermined value TI
After exceeding MS, the amount of step change in the ignition timing is limited to ensure combustion stability.

【0060】ところで、上記実施の形態では、始動後の
経過期間と冷却水温度とに基づいて進角補正値を記憶し
たマップを逐次参照して進角補正値を決定したが、冷却
水温度に基づいて進角補正値の初期値を決定し、該初期
値を始動後の経過期間に応じた徐々に減少させるように
しても良い。前記初期値を徐々に減少させる方法として
は、初期値を所定角度ずつ減少させる方法の他、始動後
の経過期間に応じたリミッタによって進角補正に制限を
加える方法を用いても良い。
In the above embodiment, the advance correction value is determined by sequentially referring to the map storing the advance correction value based on the elapsed time after the start and the coolant temperature. An initial value of the advance angle correction value may be determined based on the initial value, and the initial value may be gradually decreased according to an elapsed time after the start. As a method of gradually reducing the initial value, a method of reducing the initial value by a predetermined angle or a method of limiting the advance angle correction by a limiter according to an elapsed time after starting may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態における内燃機関のシステム構成
図。
FIG. 1 is a system configuration diagram of an internal combustion engine according to an embodiment.

【図2】実施の形態における点火時期制御を示すフロー
チャート。
FIG. 2 is a flowchart showing ignition timing control in the embodiment.

【図3】実施の形態における点火時期制御を示すフロー
チャート。
FIG. 3 is a flowchart showing ignition timing control in the embodiment.

【符号の説明】[Explanation of symbols]

1…内燃機関 4…スロットル弁 6…燃料噴射弁 12…コントロールユニット 13…エアフローメータ 14…クランク角センサ 15…カムセンサ 16…水温センサ 17…酸素センサ DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 4 ... Throttle valve 6 ... Fuel injection valve 12 ... Control unit 13 ... Air flow meter 14 ... Crank angle sensor 15 ... Cam sensor 16 ... Water temperature sensor 17 ... Oxygen sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古屋 純一 神奈川県厚木市恩名1370番地 株式会社ユ ニシアジェックス内 (72)発明者 北山 亨 神奈川県厚木市恩名1370番地 株式会社ユ ニシアジェックス内 Fターム(参考) 3G022 BA01 CA01 CA02 CA03 DA01 DA02 DA04 DA07 DA10 EA01 FA06 FA08 GA05 GA09 GA12 GA15 3G084 BA17 CA01 CA02 CA03 DA10 DA27 EA11 EB08 EC02 FA20 FA21 FA33 FA36  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Junichi Furuya 1370 Onna, Onna, Atsugi, Kanagawa Prefecture, Japan Inside (72) Inventor Tohru Kitayama 1370 Onna, Atsugi, Kanagawa, Japan In front of Unisia Jex F Terms (reference) 3G022 BA01 CA01 CA02 CA03 DA01 DA02 DA04 DA07 DA10 EA01 FA06 FA08 GA05 GA09 GA12 GA15 3G084 BA17 CA01 CA02 CA03 DA10 DA27 EA11 EB08 EC02 FA20 FA21 FA33 FA36

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】始動から所定期間において、運転性に影響
を与えない範囲の最大進角値で点火を制御することを特
徴とする内燃機関の点火時期制御装置。
An ignition timing control apparatus for an internal combustion engine, wherein ignition is controlled at a maximum advance value within a range that does not affect drivability during a predetermined period from a start.
【請求項2】前記最大進角値を、冷却水温度,機関回転
速度,始動後の経過期間のうちの少なくとも1つに基づ
いて決定することを特徴とする請求項1記載の内燃機関
の点火時期制御装置。
2. The ignition of an internal combustion engine according to claim 1, wherein the maximum advance value is determined based on at least one of a coolant temperature, an engine speed, and an elapsed time after starting. Timing control device.
【請求項3】始動後の経過期間に応じた進角補正を施す
ことを特徴とする内燃機関の点火時期制御装置。
3. An ignition timing control device for an internal combustion engine, wherein an advance angle correction is performed according to an elapsed period after starting.
【請求項4】始動後の経過期間に応じて進角補正量を徐
々に減じることを特徴とする請求項3記載の内燃機関の
点火時期制御装置。
4. The ignition timing control device for an internal combustion engine according to claim 3, wherein the advance correction amount is gradually reduced in accordance with an elapsed time after the start.
【請求項5】始動後の経過期間と機関運転条件とに応じ
て進角補正値を設定することを特徴とする請求項3又は
4記載の内燃機関の点火時期制御装置。
5. The ignition timing control device for an internal combustion engine according to claim 3, wherein the advance correction value is set in accordance with an elapsed period after starting and the engine operating conditions.
【請求項6】前記機関運転条件として少なくとも冷却水
温度を含むことを特徴とする請求項5記載の内燃機関の
点火時期制御装置。
6. An ignition timing control apparatus for an internal combustion engine according to claim 5, wherein said engine operating condition includes at least a cooling water temperature.
【請求項7】前記始動後の経過期間に応じた進角補正が
施される間、点火時期のステップ変化量の制限を強制的
に停止し、前記始動後の経過期間に応じた進角補正が解
除された後、点火時期のステップ変化量を制限すること
を特徴とする請求項3〜6のいずれか1つに記載の内燃
機関の点火時期制御装置。
7. While the advance correction according to the elapsed time after the start is performed, the limitation of the step change amount of the ignition timing is forcibly stopped, and the advance correction according to the elapsed time after the start is performed. The ignition timing control device for an internal combustion engine according to any one of claims 3 to 6, wherein the step change amount of the ignition timing is limited after the control is canceled.
【請求項8】始動開始から始動完了までの間において、
機関回転速度と冷却水温度とに応じて予め割り付けられ
た進角限界の点火時期に制御することを特徴とする内燃
機関の点火時期制御装置。
8. From the start to the completion of the start,
An ignition timing control device for an internal combustion engine, wherein the ignition timing is controlled to an advance limit ignition timing which is assigned in advance according to an engine rotation speed and a cooling water temperature.
【請求項9】始動完了を、機関回転速度,機関回転速度
の変化速度,筒内圧のいずれかに基づいて判定すること
を特徴とする請求項3〜8のいずれか1つに記載の内燃
機関の点火時期制御装置時。
9. The internal combustion engine according to claim 3, wherein the completion of starting is determined based on one of an engine speed, a change speed of the engine speed, and an in-cylinder pressure. When the ignition timing control device.
JP25711299A 1999-09-10 1999-09-10 Ignition timing control device of internal combustion engine Pending JP2001082302A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25711299A JP2001082302A (en) 1999-09-10 1999-09-10 Ignition timing control device of internal combustion engine
DE10044510A DE10044510A1 (en) 1999-09-10 2000-09-08 Ignition timing method during starting phase of IC engines with correction of base ignition timing dependent upon time elapsed since ending of engine start-up phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25711299A JP2001082302A (en) 1999-09-10 1999-09-10 Ignition timing control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001082302A true JP2001082302A (en) 2001-03-27

Family

ID=17301910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25711299A Pending JP2001082302A (en) 1999-09-10 1999-09-10 Ignition timing control device of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2001082302A (en)
DE (1) DE10044510A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922627B2 (en) 2002-12-20 2005-07-26 Nissan Motor Co., Ltd. Detection of engine rotation speed in spark ignition internal combustion engine
JP2008280914A (en) * 2007-05-10 2008-11-20 Toyota Motor Corp Control system of internal combustion engine
JP2009013997A (en) * 2008-10-20 2009-01-22 Toyota Motor Corp Ignition control system of internal combustion engine
JP2009079578A (en) * 2007-09-27 2009-04-16 Hitachi Ltd Ignition timing control device of spark ignition internal combustion engine
JP2009191816A (en) * 2008-02-18 2009-08-27 Honda Motor Co Ltd Ignition time control device for internal combustion engine
EP2138713A4 (en) * 2007-04-26 2017-08-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controlling apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791364B2 (en) * 2001-08-15 2006-06-28 日産自動車株式会社 Engine ignition timing control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922627B2 (en) 2002-12-20 2005-07-26 Nissan Motor Co., Ltd. Detection of engine rotation speed in spark ignition internal combustion engine
EP2138713A4 (en) * 2007-04-26 2017-08-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controlling apparatus
JP2008280914A (en) * 2007-05-10 2008-11-20 Toyota Motor Corp Control system of internal combustion engine
JP2009079578A (en) * 2007-09-27 2009-04-16 Hitachi Ltd Ignition timing control device of spark ignition internal combustion engine
JP2009191816A (en) * 2008-02-18 2009-08-27 Honda Motor Co Ltd Ignition time control device for internal combustion engine
JP4536787B2 (en) * 2008-02-18 2010-09-01 本田技研工業株式会社 Ignition timing control device for internal combustion engine
JP2009013997A (en) * 2008-10-20 2009-01-22 Toyota Motor Corp Ignition control system of internal combustion engine
JP4656222B2 (en) * 2008-10-20 2011-03-23 トヨタ自動車株式会社 Ignition control system for internal combustion engine

Also Published As

Publication number Publication date
DE10044510A1 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
US5586537A (en) Fuel property detecting apparatus for internal combustion engines
US9708986B2 (en) Method and apparatus for controlling start-up of internal combustion engine
JP3323974B2 (en) Control device for internal combustion engine
JPH1122512A (en) Control device for direct injection spark ignition internal combustion engine
US5664544A (en) Apparatus and method for control of an internal combustion engine
KR100206395B1 (en) Engine controller
JP2001082302A (en) Ignition timing control device of internal combustion engine
JP2002070706A (en) Ignition timing control system of internal combustion engine
JP2002242713A (en) Control device for internal combustion engine
EP0160959B1 (en) Method and apparatus for detecting surging in internal combustion engine
JPH0783148A (en) Control device for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP3829033B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2696444B2 (en) Fuel supply control device for internal combustion engine
JP2551378Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2000257476A (en) Control unit for in-cylinder injection engine
JP3968902B2 (en) Ignition timing control device
JP4415803B2 (en) Control device for internal combustion engine
JPH09324691A (en) Fuel control unit for combustion engine
JP3680505B2 (en) Fuel injection control device for direct-injection spark-ignition internal combustion engine
JP3561142B2 (en) Control device for internal combustion engine
JPH09177582A (en) Control device for cylinder direct injection type spark ignition engine
JP2681565B2 (en) Fuel injection device for internal combustion engine
JP2002276456A (en) Combustion control device for internal combustion engine
JPH0688562A (en) Ignition timing controller of internal combustion engine