JP2001064747A - B-added high tensile strength steel excellent in toughness in weld heat-affected zone - Google Patents

B-added high tensile strength steel excellent in toughness in weld heat-affected zone

Info

Publication number
JP2001064747A
JP2001064747A JP23793499A JP23793499A JP2001064747A JP 2001064747 A JP2001064747 A JP 2001064747A JP 23793499 A JP23793499 A JP 23793499A JP 23793499 A JP23793499 A JP 23793499A JP 2001064747 A JP2001064747 A JP 2001064747A
Authority
JP
Japan
Prior art keywords
toughness
steel
content
affected zone
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23793499A
Other languages
Japanese (ja)
Other versions
JP3449307B2 (en
Inventor
Masahiko Hamada
昌彦 濱田
Takahiro Kamo
孝浩 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17022633&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2001064747(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23793499A priority Critical patent/JP3449307B2/en
Publication of JP2001064747A publication Critical patent/JP2001064747A/en
Application granted granted Critical
Publication of JP3449307B2 publication Critical patent/JP3449307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel in which the necessity of extreme reduction in the amounts of C, N, and Al is obviated and which is easily capable of stable and mass production and has desired base-material characteristics and weld cracking resistance by incorporating respectively specified percentages of elements and specifying the relation between Al content and O content. SOLUTION: The B-added high tensile strength steel excellent in toughness in weld heat-affected zone has a composition which consists of, by weight, 0.05-0.15% C, <=0.3% Si, 0.5-3.5% Mn, <=0.03% P, <=0.01% S, 0.3-2.5% Ni, <=0.005% Ti, 0.0003-0.0025% B, 0.002-0.06% Al, <=0.004% N, <=0.004% O, one or more kinds among 0.2-0.8% Cu, 0.2-1.0% Cr, 0.2-1.0% Mo, 0.005-0.1% V, and 0.005-0.1% Nb, and the balance Fe and in which the relation between Al content and O content satisfies inequality Al/O>=1.12. The tensile strength of this high tensile strength steel is >=80 kgf/m2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、引張強さが80k
gf/mm2 以上の溶接熱影響部靭性に優れたB添加高
張力鋼に関する。
BACKGROUND OF THE INVENTION The present invention relates to a tensile strength of 80 k.
The present invention relates to a B-added high-strength steel having excellent weld heat-affected zone toughness of not less than gf / mm 2 .

【0002】[0002]

【従来の技術】構造物の高性能化、大型化が進むのに伴
って高強度鋼板の開発の重要性が高まっている。鋼板強
度は、添加元素の増加により達成される。しかし、添加
元素の増加は、一般に、溶接施工時の耐溶接割れ性を低
下させる。このため、添加元素量を増加させることなく
高強度が得られるような組成、製造法に関する種々の検
討がなされてきた。その結果、微量(0.0003〜
0.002%程度)のB添加により鋼の焼入性が著しく
向上することから、耐溶接割れ性の極端な劣化を生じさ
せることなく引張強さが80kgf/mm2 を超える高
強度鋼を製造できることが明らかにされている。
2. Description of the Related Art The development of high-strength steel sheets has become increasingly important as structures have become more sophisticated and larger. Steel sheet strength is achieved by increasing the additional elements. However, an increase in the added element generally lowers the resistance to weld cracking during welding. For this reason, various studies have been made on compositions and production methods that can provide high strength without increasing the amount of added elements. As a result, a very small amount (0.0003-
Since the hardenability of steel is remarkably improved by the addition of B (about 0.002%), a high-strength steel having a tensile strength exceeding 80 kgf / mm 2 is produced without causing extreme deterioration of weld cracking resistance. It is clear what can be done.

【0003】溶接構造用の鋼板には、一般に、上記の耐
溶接割れ感受性の他に溶接熱影響部靭性が要求される。
溶接熱影響部靭性の改善方法としては、一般的に、以下
の(イ)〜(ニ)の方法が有効とされている。
In general, a steel plate for a welded structure is required to have a weld heat-affected zone toughness in addition to the above-described weld crack resistance.
In general, the following methods (a) to (d) are considered to be effective as methods for improving the toughness of the heat affected zone.

【0004】(イ)析出物を利用して高温加熱された際
の旧オーステナイト結晶粒の粗大化を防止する。
(A) To prevent coarsening of prior austenite crystal grains when heated at a high temperature by utilizing precipitates.

【0005】(ロ)析出物を利用して粒内変態を促進す
ることにより組織を微細化する。
(B) Microstructure is refined by promoting intragranular transformation using precipitates.

【0006】(ハ)C、Si、Alを低減することによ
り島状マルテンサイト組織などの硬化第二相の生成を抑
制する。
(C) The formation of a hardened second phase such as an island martensite structure is suppressed by reducing C, Si and Al.

【0007】(ニ)N量を低減することによりマトリッ
クスの靭性を向上させる。
(D) The toughness of the matrix is improved by reducing the amount of N.

【0008】ただし、上記(イ)〜(ニ)の方法が検討
された対象は、引張強さが60kgf/mm2 程度の比
較的低強度の鋼材においてである。
[0008] However, the method (a) to (d) was studied for a relatively low-strength steel material having a tensile strength of about 60 kgf / mm 2 .

【0009】母材の引張強さが80kgf/mm2 以上
の高強度B添加鋼の溶接熱影響部靭性の改善方法として
は、C、SiおよびSol.Al量を低減して島状マル
テンサイト組織などの硬化第二相の生成量を減らす方法
(特開平9−67620号公報)や、N量を0.002
%以下に低減する方法(特公平1−21847号公報)
があるにすぎない。
Methods for improving the toughness of the heat-affected zone of a high-strength B-added steel having a base material having a tensile strength of 80 kgf / mm 2 or more include C, Si and Sol. A method of reducing the amount of Al to reduce the amount of a hardened second phase such as an island martensite structure (Japanese Patent Application Laid-Open No. 9-67620), or reducing the amount of N to 0.002
% (Japanese Patent Publication No. 1-28474)
There is only.

【0010】ところが、安定かつ安価に高強度を確保す
るめには、C量を無制限に低減することができない。ま
た、実製造を想定した場合、Al量の極端な低減は脱酸
不足を招く懸念がある。すなわち、上記の特開平9−6
7620号公報に示される方法では、実質的に効果を挙
げうるのはSi量の低減だけであるという問題があっ
た。また、特公平1−21847号公報に示されるN量
を低減する方法については、N量が0.002%以下の
鋼を安定かつ大量に生産することが難しいという問題が
あった。
However, in order to secure high strength stably and inexpensively, the amount of carbon cannot be reduced without limit. Further, when assuming actual production, an extreme decrease in the amount of Al may cause insufficient deoxidation. That is, Japanese Patent Application Laid-Open No. 9-6
The method disclosed in Japanese Patent No. 7620 has a problem that only the reduction of the Si amount can be substantially effective. Further, the method of reducing the amount of N disclosed in Japanese Patent Publication No. 21847/1990 has a problem that it is difficult to stably produce a steel having an N amount of 0.002% or less in large quantities.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、C、
NおよびAl量の極端な低減が不要で、安定かつ大量に
生産することが容易であり、所望の母材特性と耐溶接割
れ性を備えるとともに、良好な溶接熱影響部靭性を示す
引張強さが80kgf/mm2 以上のB添加高張力鋼を
提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide C,
Extremely low N and Al contents are unnecessary, stable and easy to mass-produce, with desired base metal properties and weld cracking resistance, and tensile strength showing good weld heat affected zone toughness Is to provide a B-added high-strength steel of 80 kgf / mm 2 or more.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、次の溶
接熱影響部靭性に優れたB添加高張力鋼にある。
The gist of the present invention resides in a B-added high-strength steel excellent in the toughness of the weld heat-affected zone as described below.

【0013】重量%で、C:0.05〜0.15%、S
i:0.3%以下、Mn:0.5〜3.5%、P:0.
03%以下、S:0.01%以下、Ni:0.3〜2.
5%、Ti:0.005%以下、B:0.0003〜
0.0025%、Al:0.002〜0.06%、N:
0.004%以下、O:0.004%以下、ならびにC
u:0.2〜0.8%、Cr:0.2〜1.0%、M
o:0.2〜1.0%、V:0.005〜0.1%およ
びNb:0.005〜0.1%のうちの1種または2種
以上を含有し、残部は実質的にFeからなり、かつAl
含有量とO含有量の関係が式「Al/O≧1.12」を
満たす溶接熱影響部靭性に優れたB添加高張力鋼。
C: 0.05-0.15% by weight, S
i: 0.3% or less, Mn: 0.5 to 3.5%, P: 0.
03% or less, S: 0.01% or less, Ni: 0.3-2.
5%, Ti: 0.005% or less, B: 0.0003-
0.0025%, Al: 0.002 to 0.06%, N:
0.004% or less, O: 0.004% or less, and C
u: 0.2 to 0.8%, Cr: 0.2 to 1.0%, M
o: one or more of 0.2 to 1.0%, V: 0.005 to 0.1% and Nb: 0.005 to 0.1%, and the balance substantially Fe and Al
A B-added high-strength steel excellent in the weld heat-affected zone toughness in which the relationship between the content and the O content satisfies the expression “Al / O ≧ 1.12”.

【0014】本発明者らは、B添加高張力鋼の母材特性
と耐溶接割れ性を劣化させることなく、溶接熱影響部靭
性を向上させる方法について鋭意研究を行った結果、次
のことを知見して上記の本発明を完成させた。
The present inventors have conducted intensive studies on a method for improving the toughness of the heat-affected zone of a B-added high-strength steel without deteriorating the properties of the base metal and the resistance to weld cracking. The inventors have found that the present invention has been completed.

【0015】すなわち、代表的なB添加高張力鋼の一つ
であるHT100相当鋼(0.11%C−0.2%Si
−0.9%Mn−1.3%Ni−0.5%Cr−0.5
%Mo−0.04V−0.01%Nb−0.01%Ti
−0.02%Al−0.001%B−0.004%N)
を用いて溶接入熱量4.5kJ/mmの1層溶接を行
い、その溶接部の靭性、硬さ分布およびミクロ組織を詳
細に調査した。
That is, HT100 equivalent steel (0.11% C-0.2% Si
-0.9% Mn-1.3% Ni-0.5% Cr-0.5
% Mo-0.04V-0.01% Nb-0.01% Ti
-0.02% Al-0.001% B-0.004% N)
Was used to perform single-layer welding with a welding heat input of 4.5 kJ / mm, and the toughness, hardness distribution and microstructure of the weld were examined in detail.

【0016】その結果、溶接熱影響部において靭性が最
も低下するのは溶融線近傍である。また、溶接部、具体
的には溶接金属の厚さ方向の中央を通る母材表面に平行
な線上では、図1に示すような硬さ分布を示し、溶融線
近傍には硬さ低下領域が存在していることが判明した。
これは、溶融線近傍のミクロ組織の観察結果と硬さ測定
結果より、溶融線近傍では何らかの理由で焼入性が低下
し、上部ベイナイト組織が生成するためと推定される。
As a result, the toughness is most reduced in the heat affected zone near the melting line. In addition, a hardness distribution as shown in FIG. 1 is shown on a line parallel to the surface of the base material passing through the center of the weld metal, specifically, the thickness direction of the weld metal, and a reduced hardness region is shown near the melting line. Turned out to be present.
This is presumed to be from the observation result of the microstructure near the melting line and the hardness measurement result that the hardenability decreases for some reason near the melting line and the upper bainite structure is generated.

【0017】上記の結果は、溶融線近傍での靭性低下の
原因が下記の2つのうちのいずれかであることを示唆し
ている。
The above results suggest that the cause of the decrease in toughness near the melting line is one of the following two.

【0018】(A)溶融線近傍では旧オーステナイト粒
が粗大化するために靭性が低下する。
(A) In the vicinity of the melting line, the prior austenite grains are coarsened and the toughness is reduced.

【0019】(B)溶融線近傍では上部ベイナイト組織
が生成するために靭性が低下する。
(B) The upper bainite structure is generated near the melting line, so that the toughness is reduced.

【0020】そこで、これらのいずれが靭性低下の主原
因であるかを究明するために次の実験を行った。すなわ
ち、その実験は、上記のHT100相当鋼を1350℃
に加熱した後に冷却速度10℃/秒で200℃まで冷却
した試験片(以下、急冷材という)と、1350℃に加
熱した後に冷却速度10℃/秒で500℃まで冷却し、
次いで冷却速度1℃/秒で200℃まで冷却した試験片
(以下、徐冷材という)を作製し、両者の組織、硬さお
よび靭性を調査する実験である。なお、実際の溶接熱サ
イクルは徐冷材に近い。
Therefore, the following experiment was conducted to determine which of these is the main cause of the decrease in toughness. That is, in the experiment, the above HT100 equivalent steel was
After cooling to 200 ° C. at a cooling rate of 10 ° C./sec to 200 ° C. (hereinafter referred to as “quenched material”), heating to 1350 ° C., and then cooling to 500 ° C. at a cooling rate of 10 ° C./sec.
Next, a test piece (hereinafter, referred to as a gradually cooled material) cooled to 200 ° C. at a cooling rate of 1 ° C./sec is an experiment for examining the structure, hardness and toughness of both. It should be noted that the actual welding heat cycle is close to the slow cooling material.

【0021】その結果、急冷材と徐冷材の旧オーステナ
イト粒径は、いずれも約200μmで大きな差はなかっ
た。急冷材のビッカース硬さHvは320であり、粒内
に上部ベイナイト組織の生成は認められなかった。一
方、徐冷材のビッカース硬さHvは270程度であり、
粒内に上部ベイナイト組織の生成が認められた。また、
急冷材の靭性は−10℃のシャルピー衝撃試験において
150J以上の吸収エネルギーを示したのに対し、徐冷
材の吸収エネルギーは40J程度であった。
As a result, the former austenite grain size of the quenched material and the slowly cooled material was about 200 μm, and there was no significant difference. The Vickers hardness Hv of the quenched material was 320, and generation of an upper bainite structure in the grains was not observed. On the other hand, the Vickers hardness Hv of the gradually cooled material is about 270,
The formation of upper bainite structure was observed in the grains. Also,
The toughness of the quenched material showed an absorbed energy of 150 J or more in a Charpy impact test at −10 ° C., whereas the absorbed energy of the slowly cooled material was about 40 J.

【0022】以上の結果、実際の溶接継手の溶融線近傍
での靭性低下の原因は、結晶粒の粗大化によるのではな
く、焼入性の低下による上部ベイナイト組織の生成が主
たる原因であることが判明した。これは、両者の硬さが
明確に相違することか明らかである。
As a result of the above, the cause of the decrease in toughness in the vicinity of the melting line of the actual welded joint is not due to the coarsening of the crystal grains, but mainly to the formation of the upper bainite structure due to the decrease in hardenability. There was found. It is clear that the hardness of the two is clearly different.

【0023】そこで、溶融線近傍での焼入性の低下(硬
さ低下)を防止し、優れた溶接熱影響部靭性を有する鋼
を得るための条件について種々検討を行った結果、以下
の知見を得た。
Therefore, various investigations were made on the conditions for preventing a decrease in hardenability (hardness decrease) near the melting line and obtaining a steel having excellent weld heat affected zone toughness. I got

【0024】(a) 溶融線近傍の溶接熱影響部靭性に優れ
た鋼では、図1中に示したmin.Hv(HAZ)は下
記の(1) 式を満たす。
(A) In the steel having excellent toughness in the weld heat affected zone near the melting line, the min. Hv (HAZ) satisfies the following equation (1).

【0025】 min.Hv(HAZ)≧0.7×(800×C+295)・・・(1) なお、(1) 式中のCは母材のC含有量(重量%)であ
る。また、(1) 式中の右辺における「800×C+29
5」は母材のC含有量より推定されるマルテンサイト組
織の硬さを示している。
Min. Hv (HAZ) ≧ 0.7 × (800 × C + 295) (1) where C in the equation (1) is the C content (% by weight) of the base material. Also, “800 × C + 29” on the right side of the equation (1)
"5" indicates the hardness of the martensite structure estimated from the C content of the base material.

【0026】(b) 低Ti化と低N化は、いずれも、図1
中に示したmax.Hv(HAZ)を上昇させることな
くmin.Hv(HAZ)のみを上昇させ、溶融線近傍
の硬さを上昇させて靭性を向上させる。その効果は、T
iについては0.005重量%以下、Nについては0.
002重量%以下に低減した場合に顕著になる。
(B) Both the reduction of Ti and the reduction of N are shown in FIG.
The max. Hv (HAZ) without increasing min. Only Hv (HAZ) is increased, and the hardness near the melting line is increased to improve toughness. The effect is T
i is 0.005% by weight or less;
It becomes remarkable when it is reduced to 002% by weight or less.

【0027】上記のうち、Nによる効果は、前述の特公
平1−21847号公報に示されるのと同じであるが、
Ti量を0.005重量%以下にした場合、0.004
重量%までであればNを含んでも、N量が0.0015
重量%、Ti量が0.01重量%の鋼と同等の吸収エネ
ルギーを示すことを確認した。
Among the above, the effect of N is the same as that shown in the aforementioned Japanese Patent Publication No. 1-28474,
When the Ti content is 0.005% by weight or less, 0.004%
Even if N is contained up to the weight%, the N amount is 0.0015.
It was confirmed that the steel had an absorption energy equivalent to that of steel having a weight% and a Ti content of 0.01 weight%.

【0028】すなわち、大気中から混入しやすいため
に、商業規模ではN含有量を0.002%以下に低減す
るのは難しい。しかし、N含有量が0.004%までで
あれば、Nに比べてその含有量を低くしやすいTiの含
有量を0.005%以下に制限することで、溶接熱影響
部靭性に優れた鋼を安定かつ大量生産することが可能で
あることを知見した。
That is, it is difficult to reduce the N content to 0.002% or less on a commercial scale because it is easily mixed from the atmosphere. However, when the N content is up to 0.004%, the content of Ti, whose content is easily reduced as compared with N, is limited to 0.005% or less, so that the weld heat affected zone toughness is excellent. It has been found that it is possible to stably and mass-produce steel.

【0029】なお、TiおよびN量を低減した場合、上
記のmin.Hv(HAZ)のみが上昇する理由の詳細
は不明であるが、次によるものと推定される。
When the amounts of Ti and N are reduced, the above min. The details of the reason why only Hv (HAZ) increases are unknown, but are presumed to be due to the following.

【0030】すなわち、従来の大入熱対策鋼では、Ti
Nが高温でも比較的安定なことと、溶接による加熱冷却
が短時間加熱であることが相まって、溶融線近傍の高温
加熱域においてもTiNの一部が結晶質のまま残留し、
旧オーステナイト結晶粒の粗大化が抑制される。さら
に、冷却過程においては、フェライトの変態生成核とし
て機能するため組織が微細化されて靭性が向上する。こ
れらの作用は、TiNが溶融線近傍の焼入性を低下させ
る作用を持つことを示している。
That is, in the conventional high heat input resistance steel, Ti
The fact that N is relatively stable even at a high temperature and that the heating and cooling by welding is heating for a short time combine, so that even in the high temperature heating region near the melting line, part of the TiN remains crystalline,
The coarsening of prior austenite crystal grains is suppressed. Further, in the cooling process, the structure functions as a transformation nucleus of ferrite, so that the structure is refined and the toughness is improved. These effects indicate that TiN has an effect of reducing the hardenability near the melting line.

【0031】これに対し、本発明が対象とするB添加高
張力鋼では、低Ti化によってTiNの影響が取り除か
れて焼入性が上昇し、この焼入性の上昇により低靭性な
上部ベイナイト組織の生成量が減少するために靭性が向
上するものと推定される。
On the other hand, in the case of the B-added high-strength steel, which is the object of the present invention, the effect of TiN is removed by the reduction of Ti, thereby increasing the hardenability. It is presumed that toughness is improved due to a decrease in the amount of microstructure generated.

【0032】(c) C量、Al量およびSi量の増加に伴
って溶接部の靭性が低下する。その原因は、島状マルテ
ンサイト組織などの硬化第二相の減少に伴うものと推定
される。このため、C、AlおよびSi含有量は、それ
ぞれ、0.15%以下、0.06%以下、0.3%以下
に制限する必要がある。
(C) The toughness of the weld decreases as the amounts of C, Al and Si increase. The cause is presumed to be due to a decrease in the hardened second phase such as an island martensite structure. Therefore, it is necessary to limit the contents of C, Al and Si to 0.15% or less, 0.06% or less, and 0.3% or less, respectively.

【0033】(d) Al量を低減した場合には靭性が向上
するが、「Al/O(酸素)」値が1.12未満となる
量にまでAl量を低減しすぎると上記のmin.Hv
(HAZ)が低下し、これに伴って靭性が低下する。こ
れは、「Al/O」値が1.12未満では、Ti酸化物
が生成するため粒内変態核が増加して変態温度が上昇
し、焼入性が低下して上部ベイナイト組織が生成しやす
くなるためと推定される。したがって、「Al/O」値
は、O量を0.004重量%以下に制限したうえで、
1.12以上にする必要がある。
(D) When the Al content is reduced, the toughness is improved. However, when the Al content is excessively reduced to an amount where the “Al / O (oxygen)” value is less than 1.12, the above min. Hv
(HAZ) decreases, and accordingly, toughness decreases. This is because when the “Al / O” value is less than 1.12, Ti oxides are formed, so that the intragranular transformation nuclei increase, the transformation temperature rises, the hardenability decreases, and the upper bainite structure is formed. It is presumed to be easier. Therefore, the “Al / O” value is obtained by limiting the amount of O to 0.004% by weight or less.
Must be 1.12 or more.

【0034】[0034]

【発明の実施の形態】以下、本発明のB添加高張力鋼の
化学組成を上記のように定めた理由について詳細に説明
する。なお、以下において、「%」は「重量%」を意味
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the reason why the chemical composition of the B-added high-strength steel of the present invention is determined as described above will be described in detail. In the following, “%” means “% by weight”.

【0035】C:0.05〜0.15% Cは鋼の強度を上昇させるうえで最も重要な元素であ
る。その効果を得るためには0.05%以上の含有量が
必要である。一方、Cの過剰な添加は溶接熱影響部での
島状マルテンサイト組織などの硬化第二相の生成を助長
するので、その上限を0.15%とした。好ましい範囲
は0.05〜0.12%、より好ましい範囲は0.07
〜0.12%である。
C: 0.05 to 0.15% C is the most important element for increasing the strength of steel. To obtain the effect, a content of 0.05% or more is required. On the other hand, excessive addition of C promotes the formation of a hardened second phase such as an island-like martensite structure in the weld heat affected zone, so the upper limit was made 0.15%. A preferred range is 0.05 to 0.12%, and a more preferred range is 0.07%.
~ 0.12%.

【0036】Si:0.3%以下 Siは鋼の脱酸元素または強度上昇元素として重要であ
る。そのためには最低でも0.05%程度含有させるの
がよい。しかし、過剰なSi添加は溶接熱影響部での島
状マルテンサイト組織の生成量の増加を招き、靭性を低
下させる。このため、上限を0.3%に限定した。好ま
しい上限は0.20%、より好ましい上限は0.10%
である。なお、脱酸または強度補償をSi以外の他の元
素で代替することが可能であるため、特に下限値は設け
ない。
Si: 0.3% or less Si is important as a deoxidizing element or a strength increasing element of steel. For that purpose, it is preferable to contain at least about 0.05%. However, excessive addition of Si causes an increase in the amount of island martensite structure generated in the heat affected zone by welding, and lowers toughness. For this reason, the upper limit was limited to 0.3%. A preferred upper limit is 0.20%, and a more preferred upper limit is 0.10%.
It is. In addition, since it is possible to substitute deoxidation or intensity | strength compensation by elements other than Si, a lower limit is not specifically provided.

【0037】Mn:0.5〜3.5% Mnは鋼の強度、靭性を調整する上で重要な元素であ
る。これらの効果を得るためには最低でも0.5%が必
要である。一方、過剰なMn添加は中心偏析を助長し、
板厚方向での特性バラツキを生じるため、その上限を
3.5%とした。好ましい範囲は0.5〜2.5%、よ
り好ましい範囲は0.8〜1.5%である。
Mn: 0.5 to 3.5% Mn is an important element for adjusting the strength and toughness of steel. To obtain these effects, at least 0.5% is required. On the other hand, excessive Mn addition promotes central segregation,
Since characteristic variations occur in the thickness direction, the upper limit is set to 3.5%. A preferred range is 0.5 to 2.5%, and a more preferred range is 0.8 to 1.5%.

【0038】P:0.03%以下 Pは鋼に不可避的に混入する不純物元素であり、その含
有量は低いほど好ましい。実用上許容しうる上限は0.
03%である。好まし上限は0.02%、より好ましい
上限は0.01%である。
P: 0.03% or less P is an impurity element inevitably mixed into steel, and the lower the content, the better. The practically acceptable upper limit is 0.
03%. A preferred upper limit is 0.02%, and a more preferred upper limit is 0.01%.

【0039】S:0.01%以下 Sは上記のPと同様に、鋼に不可避的に混入する不純物
元素であり、その含有量は低いほど好ましい。実用上許
容しうる上限は0.01%である。好まし上限は0.0
05%、より好ましい上限は0.002%である。
S: 0.01% or less S is an impurity element unavoidably mixed into steel, as in the case of P described above, and the lower the content, the better. A practically acceptable upper limit is 0.01%. Preferred upper limit is 0.0
05%, and a more preferred upper limit is 0.002%.

【0040】Ni:0.3〜2.5% Niは母材の靭性を損なうことなく強度上昇に寄与する
元素である。また、溶接熱影響部の靭性向上にも効果を
有する。これらの効果を得るためには最低でも0.3%
が必要である。一方、過剰なNi添加は溶接部の硬度上
昇を招いて耐溶接割れ性を劣化させるので上限を2.5
%とした。好ましい範囲は0.5〜2.5%、より好ま
しい範囲は1.0〜2.5%である。
Ni: 0.3 to 2.5% Ni is an element that contributes to an increase in strength without impairing the toughness of the base material. It also has the effect of improving the toughness of the heat affected zone. To achieve these effects, at least 0.3%
is necessary. On the other hand, excessive Ni addition causes an increase in the hardness of the welded portion and deteriorates the crack resistance to welding.
%. A preferred range is 0.5 to 2.5%, and a more preferred range is 1.0 to 2.5%.

【0041】Ti:0.005%以下 Tiは本発明鋼を特徴付ける重要な元素で、その含有量
が0.005%を超えると溶融線近傍での焼入性が低下
し、所望の溶接熱影響部靭性が確保できないので、0.
005%以下とした。なお、十分な焼入性を確保するに
はTiの含有量を0.005%以下に制限するととも
に、N含有量を0.004%以下に抑える必要がある。
それにより、少なくとも溶融線近傍の十分な焼入性が確
保される。好まし上限は0.003%、より好ましい上
限は0.001%である。
Ti: 0.005% or less Ti is an important element characterizing the steel of the present invention. If its content exceeds 0.005%, the hardenability near the melting line decreases, and the desired welding heat effect is reduced. Since the toughness of the part cannot be secured, 0.
005% or less. In order to secure sufficient hardenability, it is necessary to limit the Ti content to 0.005% or less and to suppress the N content to 0.004% or less.
Thereby, sufficient hardenability at least near the melting line is secured. A preferred upper limit is 0.003%, and a more preferred upper limit is 0.001%.

【0042】B:0.0003〜0.0025% Bは極微量で焼入性を高める元素である。この効果を得
るには0.0003%以上の含有量が必要である。しか
し、過剰なBの添加は溶接性を悪くするので上限を0.
0025%とした。好ましい範囲は0.0003〜0.
0020%、より好ましい範囲は0.0003〜0.0
015%である。
B: 0.0003% to 0.0025% B is an element which enhances hardenability in a very small amount. To obtain this effect, a content of 0.0003% or more is required. However, excessive addition of B deteriorates the weldability, so the upper limit is set to 0.
0025%. The preferred range is from 0.0003 to 0.
0020%, a more preferred range is from 0.0003 to 0.0.
015%.

【0043】Al:0.002〜0.06% Alは鋼の脱酸に重要な元素である。この効果を得るた
めには0.002%以上の含有量が必要である。しか
し、過剰なAl添加は溶接熱影響部において島状マルテ
ンサイト組織の生成を助長し、靭性を劣化させる。この
ため、Al含有量は0.002〜0.06%とした。好
ましい範囲は0.004〜0.04%、より好ましい範
囲は0.004〜0.02%である。
Al: 0.002 to 0.06% Al is an important element for deoxidizing steel. To obtain this effect, a content of 0.002% or more is required. However, excessive addition of Al promotes the formation of an island-like martensite structure in the weld heat affected zone and deteriorates toughness. For this reason, the Al content is set to 0.002 to 0.06%. A preferred range is 0.004 to 0.04%, and a more preferred range is 0.004 to 0.02%.

【0044】N:0.004%以下 Nは鋼に不可避的に混入する不純物元素である。よって
その含有量は低いほど好ましい。本発明において許容し
うる上限は0.004%である。好まし上限は0.00
3%、より好ましい上限は0.0015%である。
N: 0.004% or less N is an impurity element inevitably mixed into steel. Therefore, the lower the content, the better. The upper limit allowable in the present invention is 0.004%. Preferred upper limit is 0.00
3%, and a more preferred upper limit is 0.0015%.

【0045】O(酸素):0.004%以下 Oは鋼に不可避的に混入する不純物元素である。よって
その含有量は低いほど好ましい。本発明において許容し
うる上限は0.004%である Al/O:1.12以上 Al含有量とO含有量の比Al/Oが1.12以上で
は、酸化物のほぼ全量が実質的にAl23(アルミナ)
となる。これに対し、Al/Oが1.12未満ではTi
酸化物が形成される。このTi酸化物は、鋼中に均一に
分散し、かつ粒内変態の生成核となる。このことは、T
i酸化物の形成が実質的には変態温度を上昇させること
を示している。本発明鋼では、溶接熱影響部における焼
入性向上を主眼としており、Ti酸化物の形成は好まし
くない。よってTi酸化物を実質的に含有しない鋼を得
るために本限定を加えた。
O (oxygen): 0.004% or less O is an impurity element inevitably mixed into steel. Therefore, the lower the content, the better. The upper limit allowable in the present invention is 0.004%. Al / O: 1.12 or more When Al / O is 1.12 or more, almost all of the oxide is substantially reduced. Al 2 O 3 (alumina)
Becomes On the other hand, if Al / O is less than 1.12, Ti
An oxide is formed. This Ti oxide is uniformly dispersed in the steel and serves as a nucleus for intragranular transformation. This means that T
This shows that the formation of i-oxide substantially increases the transformation temperature. In the steel of the present invention, the purpose is to improve the hardenability in the weld heat affected zone, and the formation of Ti oxide is not preferred. Therefore, this limitation was added in order to obtain a steel substantially containing no Ti oxide.

【0046】Cu、Cr、Mo、V、Nb:これらの元
素は添加しなくてもよいが、添加すれば、いずれの元素
も鋼の強度を向上させる。したがって、この効果を得た
い場合には、これらのうちから選んだ1種を単独添加ま
たは2種以上を複合添加してよい。その効果は、Cu、
CrおよびMoについては0.2%以上、VとNbにつ
いては0.005%以上で顕著になる。しかし、Cuは
0.8%、CrとMoは1.0%、VとNbは0.1%
を超えて含有させると、いずれも溶接性が劣化する。こ
のため、これらの元素を添加する場合の含有量は、Cu
は0.2〜0.8%、CrとMoは0.2〜1.0%、
VとNbは0.005〜0.1%とするのがよい。
Cu, Cr, Mo, V, Nb: These elements do not need to be added, but if added, any of them improves the strength of steel. Therefore, in order to obtain this effect, one selected from these may be added alone or two or more may be added in combination. The effect is Cu,
It becomes remarkable at 0.2% or more for Cr and Mo, and 0.005% or more for V and Nb. However, Cu is 0.8%, Cr and Mo are 1.0%, V and Nb are 0.1%.
If the content exceeds the above range, the weldability of any of them will deteriorate. Therefore, the content when these elements are added is Cu
Is 0.2-0.8%, Cr and Mo are 0.2-1.0%,
V and Nb are preferably set to 0.005 to 0.1%.

【0047】上記の化学組成を有する本発明のB含有高
張力鋼は、転炉や電気炉などの製鋼炉を用いて溶製し、
必要に応じてその溶湯をAOD炉やVOD炉などの製錬
炉を用いて製錬し、次いで造塊法や連続鋳造法などで所
定の大きさの鋳片(スラブ)とすることで容易に製造す
ることができる。また、その鋼板などの製品は、前記の
鋳片(スラブ)を例えば既存の厚板圧延ミルやホットス
トリップミルなどに供して所定寸法に成形することで容
易に製造できる。
The B-containing high-strength steel of the present invention having the above chemical composition is melted using a steelmaking furnace such as a converter or an electric furnace.
If necessary, the molten metal is smelted using a smelting furnace such as an AOD furnace or a VOD furnace, and then easily formed into a slab of a predetermined size by an ingot casting method or a continuous casting method. Can be manufactured. The product such as a steel plate can be easily manufactured by subjecting the slab (slab) to, for example, an existing plate rolling mill or hot strip mill to form it into a predetermined size.

【0048】[0048]

【実施例】容量が200kgの真空精錬炉を用い、表1
に示す化学組成を有する7種類の鋼を溶解した。そし
て、得られた各鋼の鋼塊を熱間鍛造と熱間圧延によって
板厚50mmの鋼板に仕上げた後、980℃での焼入れ
と630℃での焼戻し処理を施して母材とした。
EXAMPLE A vacuum refining furnace with a capacity of 200 kg was used.
Seven types of steels having the chemical compositions shown in Table 1 were melted. Then, the obtained ingot of each steel was finished into a steel plate having a thickness of 50 mm by hot forging and hot rolling, and then subjected to quenching at 980 ° C. and tempering at 630 ° C. to obtain a base material.

【0049】[0049]

【表1】 [Table 1]

【0050】表2に、各母材鋼板の機械的性質(降伏強
さ、引張強さ、伸び)と試験温度−80℃のシャルピー
吸収ネルギーを示すが、いずれの母材鋼板も優れた強度
と靭性を備えている。
Table 2 shows the mechanical properties (yield strength, tensile strength, elongation) and Charpy absorption energy at a test temperature of −80 ° C. of each base steel sheet. Has toughness.

【0051】[0051]

【表2】 [Table 2]

【0052】上記の各母材鋼板を対象に、表3に示す条
件のもとで1層盛りSAW溶接を行った。
A single-layer SAW welding was performed on each of the base steel plates under the conditions shown in Table 3.

【0053】[0053]

【表3】 [Table 3]

【0054】そして、得られた各鋼板の溶接部、具体的
には溶接金属の厚さ方向の中央を通る母材表面に平行な
線上母材肉厚の中央位置における硬さ分布を測定して溶
接熱影響部内における最低硬さ(min.Hv)と最高
硬さ(max.Hv)を調べた。また、各鋼板の溶接部
から、溶接金属の厚さ方向の中央と溶融線とがノッチ溝
の長手方向の中央に位置するJIS Z 2202に規
定される4号試験片を採取して試験温度−10℃のシャ
ルピー衝撃試験に供し、吸収エネルギーを測定すること
によって溶接熱影響部の靭性を調べた。
Then, the hardness distribution at the central position of the base material thickness on a line parallel to the base material surface passing through the center of the weld metal in the thickness direction of the obtained steel plate, specifically, the weld metal, was measured. The minimum hardness (min. Hv) and the maximum hardness (max. Hv) in the heat affected zone were examined. Further, a No. 4 test piece defined in JIS Z 2202 where the center in the thickness direction of the weld metal and the melting line are located at the center in the longitudinal direction of the notch groove is sampled from the welded portion of each steel plate, and the test temperature is determined by It was subjected to a Charpy impact test at 10 ° C., and the toughness of the heat affected zone was examined by measuring the absorbed energy.

【0055】以上の結果を、表4に示した。なお、表4
中のHvCRは、母材のC含有量より推定されるマルテ
ンサイト組織の硬さから予想される溶融線近傍の最低硬
さ(min.Hv)を示し、式「0.7×(800×C
+295)」で求められる値である。
Table 4 shows the above results. Table 4
HvCR in the table indicates the minimum hardness (min.Hv) near the melting line estimated from the hardness of the martensite structure estimated from the C content of the base material, and the equation “0.7 × (800 × C
+295) ".

【0056】[0056]

【表4】 [Table 4]

【0057】表4に示す結果からわかるように、本発明
例の鋼(鋼No. 1〜3)は、いずれも溶接熱影響部内で
の最低硬さがHvCRより大きく、吸収エネルギーが1
05〜120Jと溶接熱影響部の靭性が良好であった。
As can be seen from the results shown in Table 4, the steels of the present invention (Steel Nos. 1 to 3) all have a minimum hardness in the weld heat affected zone greater than HvCR and an absorbed energy of 1
The toughness of the weld heat affected zone was in the range of 0.05 to 120 J.

【0058】これに対し、比較例の鋼(鋼No. 4〜7)
のうち、鋼No. 4〜6は、いずれも溶接熱影響部内での
最低硬さがHvCRより小さく、吸収エネルギーも43
〜51Jと本発明例鋼の1/2以下で、溶接熱影響部の
靭性が悪かった。
On the other hand, the steels of the comparative examples (steel Nos. 4 to 7)
Among them, steel Nos. 4 to 6 all have a minimum hardness in the weld heat affected zone smaller than HvCR and an absorbed energy of 43.
The toughness of the weld heat-affected zone was poor at ~ 51J and 1/2 or less of the steel of the present invention.

【0059】また、鋼No. 7は、最低硬さはHvCRよ
りも大きいものの、吸収エネルギーが48Jで溶接熱影
響部の靭性が悪かった。これは、Al量が多すぎるため
に島状マルテンサイト組織などの硬化第二層が生成した
ためと考えられる。
Further, steel No. 7 had a minimum hardness greater than that of HvCR, but the absorbed energy was 48 J and the toughness of the heat affected zone was poor. This is considered to be because the hardened second layer such as the island-like martensite structure was generated due to the excessive amount of Al.

【0060】[0060]

【発明の効果】本発明のB添加高張力鋼は、N含有量が
比較的高いにもかかわらず、溶接部靭性に優れている。
このため、生産性、経済性の面で不利な脱N処理が不要
で、溶接部靭性に優れたB添加高張力鋼を安価に提供で
きる。
The B-added high-strength steel of the present invention has excellent weld toughness despite its relatively high N content.
For this reason, denitrification treatment disadvantageous in terms of productivity and economy is unnecessary, and a B-added high tensile steel excellent in weld toughness can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶接部の硬さ分布の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a hardness distribution of a welded portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.05〜0.15%、S
i:0.3%以下、Mn:0.5〜3.5%、P:0.
03%以下、S:0.01%以下、Ni:0.3〜2.
5%、Ti:0.005%以下、B:0.0003〜
0.0025%、Al:0.002〜0.06%、N:
0.004%以下、O:0.004%以下、ならびにC
u:0.2〜0.8%、Cr:0.2〜1.0%、M
o:0.2〜1.0%、V:0.005〜0.1%およ
びNb:0.005〜0.1%のうちの1種または2種
以上を含有し、残部は実質的にFeからなり、かつAl
含有量とO含有量の関係が式「Al/O≧1.12」を
満たすことを特徴とする溶接熱影響部靭性に優れたB添
加高張力鋼。
(1) C: 0.05 to 0.15% by weight, S
i: 0.3% or less, Mn: 0.5 to 3.5%, P: 0.
03% or less, S: 0.01% or less, Ni: 0.3-2.
5%, Ti: 0.005% or less, B: 0.0003-
0.0025%, Al: 0.002 to 0.06%, N:
0.004% or less, O: 0.004% or less, and C
u: 0.2 to 0.8%, Cr: 0.2 to 1.0%, M
o: one or more of 0.2 to 1.0%, V: 0.005 to 0.1% and Nb: 0.005 to 0.1%, and the balance substantially Fe and Al
A B-added high-strength steel excellent in welding heat-affected zone toughness, characterized in that the relationship between the content and the O content satisfies the expression “Al / O ≧ 1.12”.
JP23793499A 1999-08-25 1999-08-25 B-added high-strength steel with excellent toughness in the heat affected zone Expired - Lifetime JP3449307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23793499A JP3449307B2 (en) 1999-08-25 1999-08-25 B-added high-strength steel with excellent toughness in the heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23793499A JP3449307B2 (en) 1999-08-25 1999-08-25 B-added high-strength steel with excellent toughness in the heat affected zone

Publications (2)

Publication Number Publication Date
JP2001064747A true JP2001064747A (en) 2001-03-13
JP3449307B2 JP3449307B2 (en) 2003-09-22

Family

ID=17022633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23793499A Expired - Lifetime JP3449307B2 (en) 1999-08-25 1999-08-25 B-added high-strength steel with excellent toughness in the heat affected zone

Country Status (1)

Country Link
JP (1) JP3449307B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027179A (en) * 2001-07-10 2003-01-29 Nkk Corp Steel for welding structure having excellent low temperature toughness
EP2371982A1 (en) * 2008-11-26 2011-10-05 Sumitomo Metal Industries, Ltd. Seamless steel pipe and method for manufacturing same
JP2013220431A (en) * 2012-04-13 2013-10-28 Kobe Steel Ltd Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027179A (en) * 2001-07-10 2003-01-29 Nkk Corp Steel for welding structure having excellent low temperature toughness
JP4599770B2 (en) * 2001-07-10 2010-12-15 Jfeスチール株式会社 Welded structural steel with excellent low temperature toughness
EP2371982A1 (en) * 2008-11-26 2011-10-05 Sumitomo Metal Industries, Ltd. Seamless steel pipe and method for manufacturing same
EP2371982A4 (en) * 2008-11-26 2017-03-29 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe and method for manufacturing same
JP2013220431A (en) * 2012-04-13 2013-10-28 Kobe Steel Ltd Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire

Also Published As

Publication number Publication date
JP3449307B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
EP3239327B1 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
KR100712796B1 (en) A thick steel plate having superior toughness in high input heat welding joint
KR101846759B1 (en) Steel plate and method for manufacturing same
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP6056236B2 (en) Method for producing high-tensile steel sheet having excellent weldability and delayed fracture resistance and tensile strength of 780 MPa or more
JP5549618B2 (en) High strength steel plate for spot welding with a tensile strength of 980 MPa or more
JP4210010B2 (en) Manufacturing method of high toughness and high strength steel
JP3970801B2 (en) High strength high toughness steel plate
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP3449307B2 (en) B-added high-strength steel with excellent toughness in the heat affected zone
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JP3722044B2 (en) Welded joint
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
EP2801638A1 (en) Steel material for high-heat-input welding
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability
JP3837083B2 (en) One-pass large heat input welding method with excellent weld heat-affected zone toughness

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

RVTR Cancellation of determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6