JP3858647B2 - High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same - Google Patents

High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same Download PDF

Info

Publication number
JP3858647B2
JP3858647B2 JP2001275096A JP2001275096A JP3858647B2 JP 3858647 B2 JP3858647 B2 JP 3858647B2 JP 2001275096 A JP2001275096 A JP 2001275096A JP 2001275096 A JP2001275096 A JP 2001275096A JP 3858647 B2 JP3858647 B2 JP 3858647B2
Authority
JP
Japan
Prior art keywords
steel
toughness
strength
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001275096A
Other languages
Japanese (ja)
Other versions
JP2002339037A (en
Inventor
弘 勝元
知哉 藤原
昌彦 濱田
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001275096A priority Critical patent/JP3858647B2/en
Publication of JP2002339037A publication Critical patent/JP2002339037A/en
Application granted granted Critical
Publication of JP3858647B2 publication Critical patent/JP3858647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低温継手靭性と耐硫化物応力腐食割れ性とに優れた高張力鋼およびその製造方法に関する。より具体的には、湿潤硫化水素環境下にあるLPG などの貯蔵容器や圧力容器用途に好適な、低温継手靭性と耐硫化物応力腐食割れ性(以下、「耐SSC 性」と略記する)とに優れた高張力鋼、特に引張強さが720N/mm2以上の高張力鋼に関する。
【0002】
【従来の技術】
LPG 貯蔵タンク、その他の圧力容器等では、内部に存在する液体に含有される硫化水素(H2S) に起因する硫化物応力腐食割れ(以下、「SSC 」と略記する)が発生する危険がある。SSC は、腐食反応によって発生した水素が硫化水素の存在により多量に鋼中に侵入するために生じる水素脆化割れの1種であると考えられている。
【0003】
鋼のSSC の発生のしやすさ(以下、「SSC 感受性」と略記する)は、その化学成分やミクロ組織等の影響を受ける。例えば、鋼の低温靭性を改善するには、鋼にNiを含有させるのが有効であることが知られているが、「川崎製鉄技報」第17巻 (1985) 第2号第178 頁〜第184 頁に記載されているように、Niにより活性経路腐食が促進され耐SSC 性が劣化する。このため、SSC を伴う場合、鋼の低温靱性改善のためにNiを添加することはできないのが実情である。
【0004】
また、SSC 感受性には鋼の硬さも大きく影響し、鋼の硬さが低くなれば割れ感受性が低減すると考えられている。SSC は溶接部、特に溶接熱影響部 (HAZ)において多く発生する。これは溶接後に急速冷却されやすいためにHAZ が硬化することと密接に関係しているものと思われる。
【0005】
この問題に対して、例えば特開昭55−76044 号公報には鋼を低合金化し、Bを含有させることによって鋼の強度( 以下、「母材強度」と略記する)を確保しつつHAZ の硬さ上昇を抑制し、鋼のSSC 感受性を抑制する方法が提案されている。
【0006】
また、特許第2705946 号公報には、Bを含有させずに低C化を図ることによって焼入れ性を低下させてHAZ の硬化を防止し、Nbによる析出硬化を活用することによって母材強度の不足分を補う方法が提案されている。
【0007】
また、特開2000−80434 号公報には、Ti含有量とN含有量とのバランスを最適化することにより、焼入れ性を向上させてHAZ 組織をマルテンサイトと下部べイナイトとの混合組織とし、これにより、溶接継手部の低温靱性(以下、「低温継手靱性」とも略記することがある)が優れた、引張強さ(以下、「TS」と略記する)が780N/mm2以上である(以下、「HT780 級」と略記する)高張力鋼を得る発明が提案されている。
【0008】
【発明が解決しようとする課題】
LPG などの貯蔵容器や圧力容器等の素材には、容量拡大や性能向上等の実現のために、さらに高強度の鋼の適用が進められており、例えばTSが720N/mm2以上である高張力鋼( 以下、「HT720 級と略記する)が求められている。
【0009】
しかしながら、特開昭55−76044 号公報や特許第2705946 号公報で提案された高張力鋼は、いずれも、引張強さが580N/mm2級( 以下、「HT580 級」と略記する)であり、鋼の強度が満足なものではない。さらにHT720 級への高強度化を図ろうとしても、HAZ の硬化を招いてしまうばかりでなく、HAZ を含む継手部の低温靭性が不足するという問題がある。このため、これらの提案にかかる高張力鋼は、湿潤硫化水素環境下にあるLPG などの貯蔵容器や圧力容器等に適用することはできない。
【0010】
また、特開2000−80434 号公報で提案された高張力鋼は、HT780 級と十分な強度を有するが、必要とされている−80℃での継手靭性を保証するのに十分であるとはいえず、より一層の改善が望まれている。
【0011】
本発明はこれらの状況に鑑みてなされたものであり、その目的とするところは、高強度かつ強靭性な鋼であり、さらに溶接部でも優れた優れた低温靭性と耐SSC 性とを有する、湿潤硫化水素環境下にあるLPG などの貯蔵容器や圧力容器等の素材として好適な高張力鋼、具体的には720N/mm2以上の引張強さを備えた高張力鋼、およびその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、HT720 級の強度を有し、HAZ の低温継手靭性と耐SSC 性が共に優れた鋼を得る方法について種々研究を重ねた結果、以下の知見を得た。
【0013】
母材強度と、耐SSC 性に影響を及ぼすHAZ の硬さは、いずれも鋼の焼入れ性に依存する。従って鋼(母材)の高強度化とHAZ の硬さ上昇の抑制を両立させるには、鋼の焼入れ性を最適化することが不可欠である。また、HAZ を優れた低温継手靭性を有するものとするには、HAZ の結晶組織をマルテンサイトと下部ベイナイトとからなる混合組織とし、さらに低温継手靭性に悪影響を及ぼすとされる島状マルテンサイトの生成を抑制した結晶組織とすることも重要である。
【0014】
鋼の焼入れ性の向上にはCを含有させることが有効であるが、Cを過度に含有させるとHAZ の硬さが上昇し、かつ、島状マルテンサイトが生成する。従ってこれを防ぐためにC含有量は低く制限する必要がある。
【0015】
低C化による焼入れ性が不足するため、焼入れ性を補う元素を含有させる必要がある。焼入れ性向上元素として低温靭性の改善作用があるNiが考えられるが、Niは耐SSC 性を劣化させる作用があるので好ましくない。
【0016】
HT720 級の強度を有し、かつ、HAZ の組織を最適なマルテンサイトと下部ベイナイトとの混合組織を有するものとするには、焼入れ性向上作用に富むMn、CrおよびMo含有量を適正範囲に調整したスラブに特定条件下で熱間圧延を行い熱処理を施すことが有効である。
【0017】
本発明者らの研究結果によれば、鋼のこれらの元素の含有量から式:4.10×Mn(%)+2.33×Cr(%)+3.14×Mo(%) で計算される値と、鋼の引張強さ、溶接部の継手靱性および溶接部の硬さとの間には、図1 、図2 および図3 に示す関係がある。ここで%表示は質量%を意味する。 これらの図にからわかるように、上記式で計算される値が8.0 に満たない場合には鋼の引張強さが目標値を満足することができず、溶接部の継手靱性も結晶組織が上部ベイナイトを主体とする組織となるために、所望の性能が得られない。
【0018】
他方上記式で計算される値が13を超える場合には、鋼の引張強さは目標値を満足するが継手部には島状マルテンサイトが析出するために靱性が損なわれるうえ、継手硬さが高くなり、SSC が発生するようになる。これらのことから、上記式で計算される値が8.0 以上、13以下の範囲にある場合に、所望の引張強さ、継手靱性および耐SSC を兼ね備えた鋼を得ることができる。
【0019】
本発明はこれらの知見を基にして完成されたものであり、その要旨は下記(1) 〜(5) に記載の低温継手靱性と耐硫化物応力腐食割れ性に優れた高張力鋼、および(6) 、(7) に記載のその製造方法にある。
【0020】
(1) 質量%で、C:0.02〜0.10%、Si:0.30%以下、Mn:1.0〜2.0%、P:0.015 %以下、S:0.005 %以下、Cr:0.50〜1.50%、Mo:0.30〜1.0 %、sol.Al:0.001 〜0.05%、N:0.0050%以下、O:0.0040%以下、残部が実質的にFeおよび不可避的不純物からなり、さらに9.0 ≦{4.10×Mn( %) +2.33×Cr( %) +3.14×Mo( %) }≦13を満足するものであることを特徴とする高張力鋼。
【0021】
(2) さらに、質量%で、Cu:0.50%以下、V:0.01〜0.10%、Nb:0.01〜0.05%、またはB:0.0005〜0.0030%のうちの1種または2種以上を含有する(1) に記載の高張力鋼。
【0022】
(3) さらに、Ti:0.005〜0.05質量%を含有する(1) または(2) に記載の高張力鋼。
(4) さらに、Ca:0.0005〜0.005 質量%を含有する上記(1) 〜(3) のいずれかに記載の高張力鋼。
【0023】
(5) 鋼が720N/mm2以上の引張強さを有するものであることを特徴とする上記(1) 〜(4) のいずれかに記載の高張力鋼。
(6) 上記(1) 〜(4) のいずれかに記載の化学組成を備えた鋼を1000〜1200℃に加熱して熱間圧延を施した後、Ac3 点以上に加熱して焼入れ処理を施し、次いでAc1 点以下で焼戻し処理を施すことを特徴とする低温継手靱性と耐耐硫化物応力腐食割れ性に優れた高張力鋼の製造方法。
【0024】
(7) 上記(1) 〜(4) のいずれかに記載の化学組成を備えた鋼を1000〜1200℃に加熱して900 ℃以下、Ar3 点以上での累積圧下率が50%以上となる熱間圧延を施した後、Ar3 点以上の温度から焼入れ処理を施し、次いでAc1 点以下で焼戻し処理を施すことを特徴とする低温継手靱性と耐硫化物応力腐食割れ性 に優れた高張力鋼の製造方法。
【0025】
【発明の実施の形態】
次に、本発明において上述のように化学組成および製造条件を規定する理由と共に本発明の実施の形態を詳細に説明する。
【0026】
なお、以下で化学組成を表す%表示は特に断らないかぎり質量%を意味する。
鋼の化学組成;
C:Cは鋼の強度を高めるとともに鋼の焼入れ性を高める作用がある。本発明においては鋼の強度を高めるためにCを0.02%以上含有させる。望ましくは0.03%以上である。他方、C含有量が0.10%を超えるとHAZ の硬さが過度に高くなるとともに島状マルテンサイトの生成量が増加する。このため、低温継手靱性と耐SSC 性が損なわれる。これを避けるためにC含有量は0.10%以下とする。望ましくは0.08%以下である。
【0027】
Si:Siは鋼の強度を高める作用があり、安価でもあるので、鋼の強度を高めるために含有させても構わない。しかしながらSi含有量を過度に高めると溶接部靭性を劣化させるため、低温継手靱性が損なわれる。これを避けるためにSi含有量は0.30%以下とする。望ましくは0.15%以下である。
【0028】
Mn:Mnは鋼の強度と靭性を確保する上で不可欠な元素であり、1.0 %以上含有させることにより焼入れ性を充分に確保することができ、必要な強度および靭性を得ることができる。しかしながらMn含有量が2.0 %を超えると、靭性が劣化すると共にHAZ の硬さも高くなりすぎる。従って本発明においてはMnを1.0 %以上、2.0 %以下の範囲で含有させる。望ましくは1.2 %以上、1.8 %以下である。
【0029】
Cr:Crを0.50%以上含有させると鋼の焼入れ性を向上させることができると共に、強度および靭性を大きく改善することができる。しかしながらCr含有量が1.50%を超えると、継手部の靭性、特に低温靱性が劣化する。従って本発明においてはCrを0.50%以上、1.50%以下の範囲で含有させる。望ましくは0.70%以上、1.20%以下である。
【0030】
Mo:MoはMnやCrと同様に重要な元素であり、0.30%以上含有させることにより強度と靭性を改善することができる。しかしながらMo含有量が1.0 %を超えるとHAZ の靭性が劣化し、HAZ の硬度も高くなりすぎる。従って本発明においてMoを0.30%以上、1.0 %以下の範囲で含有させる。望ましくは0.40%以上、0.70%以下である。
【0031】
Mn、CrおよびMoはいずれも鋼の強度と靭性を高める作用がある。HT720 級の強度を有し、優れた低温継手靭性と、HAZ の硬さが抑制されて優れた耐SSC 性を併せ持つ鋼材を得るためには、HAZ 組織を最適なマルテンサイトと下部ベイナイトとの混合組織を有するものとする必要がある。これを実現するために、鋼の焼入れ性に重要な作用を及ぼす上記Mn、CrおよびMo含有量が、下記式(1) で計算される値が9.0 以上13以下を満足するようにこれらの元素の含有量を調整する。
【0032】
{4.10×Mn(%)+2.33×Cr(%)+3.14×Mo(%) }・・・ (1)
上記式(1) で計算される値が9.0 に満たない場合には焼入れ性が不足して十分な母材強度および靭性を確保できず、またHAZ 組織が靭性の低い上部ベイナイトの混入した組織となるために十分な低温継手靭性が得られない
【0033】
他方、上記式(1) で計算される値が13を超えると、マルテンサイト比率が増して強度が高くなり、HAZ には島状マルテンサイトが析出しやすくなるため低温継手靭性が劣化する。さらに、HAZ の硬さも高くなるため耐SSC 性が損なわれる。望ましくは上記式(1) で計算される値が12以下となるようにこれらの元素の含有量を調整する。
【0034】
sol.Al:Alは鋼を脱酸して健全な鋼とする作用があり、また、焼入れ時に AlNとして結晶粒界の移動を阻止するピンニング作用により、オーステナイト粒の粗大化を防止する。さらに、鋼にBを含有させた場合にはHAZ の靭性に有害なNをAlN として固定し、オーステナイト粒界に偏析した有効Bがフェライト生成を抑制し、焼入れ性改善効果を発揮させる作用がある。
【0035】
これらの効果を得るために鋼にはAlをsol.Alとして0.001 %以上含有させる。望ましくは0.005 %以上である。他方、sol.Alを過剰に含有させると介在物が増し、靭性が劣化する。これを避けるためにsol.Al含有量は0.05%以下とする。望ましくは0.035 %以下である。
【0036】
P、S、NおよびO:これらの元素はいずれも不可避的不純物であるが、P含有量が増すとスラブの中心偏析が著しくなり、粒界破壊や低温靱性の低下の原因となる。これを避けるためにP含有量は0.015 %以下とする。
【0037】
また、S含有量が増すと熱間圧延によって伸展したMnS 系介在物が増し、靱性を損なううえ、湿潤硫化水素環境下で鋼中に侵入した水素の集積を促進し、耐SSC 性をも損なう。これを避けるためにS含有量は0.005 %以下とする。
【0038】
N含有量が0.0050%を超えると固溶Nが増してHAZ の硬さが上昇し、HAZ の靭性も劣化する。これを避けるためにN含有量は0.0050%以下とする。望ましくは0.0040%以下である。
【0039】
O含有量が増すと鋼中の非金属介在物が増し、低温靱性と耐SSC 性を損なう。これを避けるためにO含有量は0.0040%以下とする。
残部は実質的にFeおよび不可避的不純物からなる。実質的にとの意味は、任意添加元素として、以下に記す元素のうちの1種または2種以上を含有させても構わないことを意味する。
【0040】
▲1▼Cu、V、NbおよびB、▲2▼NbおよびTi、そして▲3▼Ca、これらの元素は以下に述べるように、いずれも、強度や靱性の向上に有効な元素である。従って強度や靱性の向上を目的として、これらの元素からなる群の少なくとも1つから、それぞれ1種または2種以上を含有させても構わない。
【0041】
Cu:Cuには鋼の焼入れ性を向上させる作用があるうえ、焼戻し処理後の析出現象により鋼の強度を高める作用もある。従ってこれらの効果を得るためにCuを含有させても構わない。しかしながらCu含有量が0.50%を超えるとCuチエッキング現象により高温割れが生じる懸念があるので、Cu含有量は0.50%以下とするのが望ましい。
【0042】
V:Vを0.01%以上含有させると鋼の焼入れ性向上効果が得られるうえ、焼戻し処理時の析出効果により鋼の強度を高めることもできる。しかしながらV含有量が0.10%を超えると、上記効果が飽和してコストが嵩むうえ、靭性をも著しく阻害する。従ってVを含有させる場合には、0.01%以上、0.10%以下とするのが望ましい。
【0043】
Bはオーステナイト粒界に偏析しフェライトの生成を抑制することによって焼入れ性を向上させる作用がある。この効果を得るためにはBを0.0005%以上含有させるのが望ましい。他方、B含有量が0.0030%を超えると靭性が劣化するので、Bを含有させる場合には、その含有量を0.0030%以下とするのが望ましい。
【0044】
Nb:Nbはスラブ加熱時や焼入れ処理時に結晶粒の粗大化を抑制する作用があり、破面単位の微細な鋼を得て母材の強度と靱性を向上させるのに有効な元素である。さらに、焼戻し処理時に結晶粒内に炭窒化物として析出し、鋼の降伏強さを高める作用もある。このような効果を得るためにはNbを0.01%以上含有させるのが望ましい。しかしながらNb含有量が0.05%を超えると析出物が粗大化して靭性を低下させる。従ってその上限は0.05%とするのが望ましい。
【0045】
Ti:TiはNと結合して微細なTiN として析出し、高温での結晶粒界の移動を阻止してオーステナイト結晶粒の成長を抑制する作用があり、母材および溶接部の靱性を向上させるのに有効な元素である。また、鋼がBを含有するものである場合には、Bのオーステナイト粒界への偏析を助けて焼入れ性を高める作用もある。このような効果を得るためにTiを0.005 %以上含有させても構わない。他方、Ti含有量が0.05%を超えるとTiN が粗大化して靭性を低下させる。このため、Tiを含有させる場合の含有量は0.05%以下とするのが望ましい。
【0046】
Ca:Caを0.0005%以上含有させると非金属介在物が球状化し、低温靱性を向上させることができる。このため、低温継手靱性をさらに向上させたい場合にはCaを0.0005%以上含有させても構わない。しかしながらCa含有量が0.005 %を超えると、CaO 、CaS 等の介在物が多量に生成して鋼の靱性を損なううえ、湿潤硫化水素環境下で鋼中の水素が介在物周辺に集積し易くなり、耐SSC 性が劣化する。これを避けるためにCaを含有させるときは、その上限を0.005 %とするのが望ましい。
【0047】
製造方法;
本発明の低温継手靱性と耐SSC 性に優れた高張力鋼は、(a) 上記化学組成を有する鋼片(スラブ)を1000〜1200℃に加熱して熱間圧延を施した後、Ac3 点以上に加熱して焼入れ処理を施し、次いでAc1 点以下で焼戻し処理を施す方法(以下、「再加熱焼入れ法」と略記する)か、(b) 上記加熱したスラブを、Ar3 点以上900 ℃以下の温度領域での累積圧下率が50%以上となる圧延を含む熱間圧延を施した後、Ar3 点以上の温度域から焼入れ処理を施し、次いでAc1 点以下の温度での焼戻し処理を施す方法(以下、「直接焼入れ法」と略記する)で製造するのが好適である。以下にこれらの方法について詳細に説明する。
【0048】
(a) 再加熱焼入れ法
上記化学組成を有するスラブの製造は公知の方法によればよく、特に限定するものではない。例えば鋼の精錬は、転炉、電気炉等公知の方法によればよい。得られた溶鋼は、連続鋳造によりスラブとするのが効率的であるが、一旦鋼塊とした後分塊圧延してスラブとしても構わない。
【0049】
スラブは、一旦室温または中間温度まで冷却した後に再加熱するか、冷却しないで再加熱するなどの方法で1000℃以上、1200℃以下の温度に加熱する。スラブの加熱温度が1000℃に満たない場合には鋼が凝固する際に生成した各種析出物が十分に再固溶せず、焼入れ性や焼入れ前のオーステナイト結晶粒の微細化が不十分となる。また、スラブ加熱温度が1200℃を超えるとオーステナイト粒が粗大化して母材の靱性が劣化するので好ましくない。
【0050】
本方法では熱間圧延後に焼入れ焼戻し処理を施すので、熱間圧延条件は特に限定するものではない。例えば、生産性向上のために、スラブを加熱炉から抽出した後圧延が終了するまでの時間を極力短縮するべく、仕上温度はできるだけ高めにするのが望ましいが、後ほど述べるように900 ℃以下の温度域での低温圧延などを含んでいても差し支えない。
【0051】
熱間圧延した鋼は、鋼のAc3 点以上に再加熱した後、焼入れ処理を施し、次いで Ac1 点以下で焼戻し処理を施す。
再加熱温度がAc3 点に満たない場合には、不完全なオーステナイト組織からの焼入れとなるため、得られる鋼の強度や靱性が不足する。望ましくはAc3 点+20℃以上である。再加熱温度の上限は特に限定するものではないが、結晶粒の粗大化を抑制するために、950 ℃以下とするのが望ましい。
【0052】
焼入れ方法は公知の方法によればよいが、鋼の結晶組織を厚さ方向中心部までマルテンサイトと下部ベイナイトからなる混合組織とするために、焼入れ時の平均冷却速度を5 ℃/S以上とするのが好適である。
【0053】
焼戻し処理は焼入れ処理によって導入された歪を除去し、かつ炭化物を微細に析出させることにより強度と靱性のバランスを改善するために施すものである。焼戻し温度は、靱性を高めるために、Ac1 点以下、500 ℃以上の温度領域でおこなうのがよい。その他の焼戻し処理条件は公知のものでよい。なお、本発明においては、鋼のAc3 点、Ac1 点およびAr3 点は鋼の化学組成あるいはその厚さ(t 、単位はmm)から以下の式で計算するものとする。なおここで各元素は質量%を意味する。
【0054】
Ac3 点(℃)=897.3-271.1C+43.7Si-17Mn+117.8P+159.3S-40.8Cu-22.3Ni-6.5Cr+6.5Mo+65.8V+56.9Al+145.2Nb+88.5Ti+121.8N-1765.4B
Ac1 点(℃)=712+20.1C-17.8Mn-9.8Mo+11.9Cr-19.1Ni
Ar3 点(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo+0.35(t-8)
(b) 直接焼入れ法
スラブの製造およびスラブ加熱条件は上記再加熱焼入れ法のそれと同じである。加熱されたスラブには、900 ℃以下、Ar3 点以上での累積圧下率が50%以上となる圧延を含む熱間圧延を施し、圧延終了後直ちに焼入れ処理を施す。
【0055】
上記熱間圧延では、加熱されたスラブに900 ℃を超える温度領域での圧延を施すのは差し支えないが、少なくとも900 ℃以下、Ar3 点以上の温度領域での圧延(以下、「低温圧延」と略記する)を、その累積圧下率が50%以上となるように施す。
【0056】
低温圧延の目的は、直接焼入れの前に未再結晶域での圧延を施し、オーステナイト結晶粒内に変形帯を導入することによって、焼入れ処理後の結晶組織を微細化し、高強度と高靱性を兼備した鋼を得ることにある。
【0057】
上記低温圧延の温度が900 ℃を超えると、低温圧延で導入された変形帯が回復現象により解消してしまい、上記の結晶組織微細化効果が得られなくなる。また、低温圧延温度がAr3 点に満たない場合にはフェライト組織が生じるために焼入れ性が低下するのでよくない。このため、低温圧延の温度領域を900 ℃以下、Ar3 点以上とする。
【0058】
上記温度領域での圧下率が累積圧下率で50%に満たない場合には、低温圧延による変形帯の導入が不十分となり、焼入れ処理後の組織の微細化が十分に図られない。これを避けるために上記温度領域での累積圧下率は50%以上とする。
【0059】
直接焼入れ時の焼入れ温度は、焼入れ性を確保するために高温から行うことが望ましい。すなわち、Ar3 点未満からの焼入れでは十分な焼入れ性が確保できず、最適なマルテンサイトと下部ベイナイトの混合組織を得られないため、強度や靱性が不足する。これを避けるために、低温圧延終了後直ちにAr3 点以上の温度から焼入れ処理をおこなうのが好適である。
【0060】
その他の焼入れ条件は特に限定するものではないが、冷却停止温度は200 ℃以下、冷却速度は5 ℃/S以上とするのが望ましい。また、冷却方法は公知のものでよいが、加速水冷装置等を用いるのが好適である。
【0061】
本発明の鋼は上記以外は常法により製造すればよい。鋼の形状は、厚鋼板が好適である。
本発明の低温継手靱性と耐SSC 性に優れた高張力鋼は、HT720 級の強度を備え、かつ、従来の鋼では困難であった強靭性と耐SSC 性とを高いレベルで兼ね備えたものである。このため、本発明の高張力鋼は、優れた低温継手靭性と耐SSC 性とを有し、湿潤硫化水素環境下にあるLPG などの貯蔵容器や圧力容器等に好適に使用することができる。
【0062】
【実施例】
(実施例1)
種々の化学組成を有する鋼を転炉にて溶製し、連続鋳造法により、厚さ:300mm 、幅:2300mmのスラブとし、熱間圧延を行った後再加熱焼入法により種々の性能を有する高張力鋼を作製した。
【0063】
鋼板の化学組成を表1に示す。
【0064】
【表1】

Figure 0003858647
【0065】
これらの鋼のAr3 点は680 〜760 ℃の範囲にあり、Ac3 点は840 〜880 ℃の範囲にあり、Ac1 点は680 〜710 ℃の範囲にあった。これらのスラブを1120℃に加熱した後、周知慣用の手段により熱間圧延して室温まで空冷して厚さ:50mmの厚鋼板とした。圧延開始温度は950 ℃、圧延終了温度は850 ℃であった。次いでこれらの鋼板を900 ℃まで再加熱し、板厚中心部の平均冷却速度を約10℃/Sとする焼入れ処理を施し、次いで600 ℃に加熱し、大気中で室温まで放冷する焼戻し処理を施した。
【0066】
得られた鋼板の性能を以下の方法で評価した。
鋼板の引張特性:各鋼板から、圧延方向に垂直な方向からJIS Z 2201に規定される4 号引張試験片を採取し、引張試験をおこなって母材強度を測定し、引張強さ(TS)が720N/mm2以上である場合を良好と判断した。なお、YSについては620N/mm2以上であるのが望ましい。
【0067】
鋼板の靱性(以下、「母材靱性」と略記する):各鋼板から、圧延方向に平行にJIS Z 2202に規定されるシャルピー衝撃試験片を切出し、衝撃試験をおこなって−80℃における吸収エネルギーvE-80(単位はJ)を測定し、vE-80 が47J 以上である場合を鋼板の靱性(以下、「母材靱性」と略記する)が良好と判断した。
【0068】
溶接継ぎ手性能:各鋼板から長さ:600 mm、幅:300 mmの溶接試験片を切り出し、その端部をX型開先に加工し、入熱量が3.0kJ/mmのサブマージアーク溶接をおこなって溶接継手部を作製し、各溶接継手部から、ノッチ中心位置がフユージョンラインに一致するように板厚の1/4 位置からシャルピー衝撃試験片を採取し、シャルピー衝撃試験をおこなって溶接継手部の低温靱性、つまり、低温継手靱性を評価し、vE-80 が47J 以上である場合を低温継手靱性が良好と判断した。
【0069】
また、上記溶接継手部から硬さ測定用試験片を切り出し、最も応力集中度が大きく、SSC が生じ易いとされる溶接止端部の硬さを測定した。ビッカース硬さ(Hv)が300 以下である場合が良好と判断した。
【0070】
さらに、上記各溶接継手の溶接ビードまま表面から、長さ:115mm 、幅:30mm、厚さ:1.5mm のSSC 試験用素材を切り出し、4点曲げによって降伏応力の100 %に相当する応力を付与してSSC 試験片を作成した。これらの試験片は5.0 %NaCl+0.5 %CH3COOH 水溶液に分圧を調整したH2S ガスを通気し、H2S 濃度100ppmとした飽和水溶液中に720 時間浸潰し、試験終了後に光学顕微鏡を用いて試験片表面における割れの有無を調査した。割れが観察されなかった場合を良好(○)、割れが認められた場合を不良(×)として評価した。
【0071】
これらの性能評価結果を表2に示す。
【0072】
【表2】
Figure 0003858647
【0073】
表2に示すように、本発明で規定する条件を満足する鋼番号1 〜16の鋼板は、いずれもHT720 級として十分な強度と靭性を備え、さらに溶接継手部の低温靭性や耐SSC 性も優れていた。
【0074】
これに対し、鋼番号17の鋼板はC含有量が少なすぎたために鋼板の強度が不十分であり、鋼番号18の鋼板はC含有量が高すぎたために継手靭性と耐SSC 性がよくなかった。鋼番号19の鋼板はSi含有量が高すぎたために継手靭性がよくなかった。鋼番号20の鋼板はMn含有量が少なすぎたために母材強度が低く、継手靭性もよくなかった。鋼番号21の鋼板はMn含有量が高すぎたためにHAZ の硬さが高くなり耐SSC 性がよくなかった。鋼番号22の鋼板はP含有量が高すぎたために母材靭性と継手靭性とがよくなかった。鋼番号23の鋼板はS含有量が高すぎたために母材靭性、継手靭性および耐SSC 性とがよくなかった。
【0075】
鋼番号24の鋼板はCr含有量が少なすぎたために、鋼番号26の鋼板はMo含有量が少なすぎたためにいずれも母材強度が低くなった。鋼番号25の鋼板はCr含有量が高すぎたために、鋼番号27の鋼板はMo含有量が高すぎたために、いずれも継手靭性がよくなかった。鋼番号28の鋼板はsol.Al含有量が高すぎたために母材靭性と継手靭性がよくなかった。鋼番号29の鋼板はN含有量が高すぎたために継手靭性がよくなかった。鋼番号30の鋼板は式{4.10×Mn( %) +2.33×Cr( %) +3.14×Mo( %) }で計算される値が大きすぎたためにHAZ に島状マルテンサイトが生成し、継手靱性がよくなかった。またHAZ が硬化して耐SSC 性がよくなかった。鋼番号31の鋼板は上記式で計算される値が小さすぎたために母材強度が低すぎたうえ、母材靭性と継手靭性もよくなかった。鋼番号32の鋼板はO含有量が高すぎたために母材靱性、継手靱性および耐SSC 性がよくなかった。鋼番号33の鋼板はCuを過剰に含有したために、鋼番号34の鋼板はV含有量が高すぎたために、鋼番号35の鋼板はNb含有量が高すぎたために、鋼番号36の鋼板はB含有量が高すぎたために、鋼番号37の鋼板はTi含有量が高すぎたために、いずれも母材靭性と継手靭性がよくなかった。鋼番号38の鋼板はCa含有量が高すぎたために母材靱性、継手靱性および耐SSC 性がよくなかった。
【0076】
以上の結果からも明らかなように、本発明の規定する条件を満足する鋼番号1 〜鋼番号16の鋼板は、高強度かつ優れた靭性を備えており、さらに優れた低温継手靭性と耐SSC 性とを有しており、湿潤硫化水素環境下にあるLPG などの貯蔵容器や圧力容器等に好適に使用することができる。
【0077】
(実施例2)
表1に記載の鋼番号3 と鋼番号13の化学組成を備えたスラブを加熱し、一部のスラブは通常の条件で熱間圧延して室温まで空冷して厚さ:50mmの厚鋼板とした。圧延開始温度は950 ℃、圧延終了温度は850 ℃であった。次いでこれらの鋼板を再加熱焼入れ温度に加熱し、板厚中心部の平均冷却速度を約10℃/Sとする焼入れ処理を施し、次いで焼戻し温度に加熱し、大気中で室温まで放冷する焼戻し処理を施した。
【0078】
他のスラブは種々の温度に加熱した後、種々の累積圧下率での低温域圧延を含む熱間圧延を施して厚さ:50mmの厚鋼板とし、直ちに板厚中心部の平均冷却速度を約10℃/Sとする焼入れ処理を施し、次いで焼戻し温度に加熱し、大気中で室温まで放冷する焼戻し処理を施した。上記において直接焼き入れ温度は圧延終了温度にほぼ等しい。
【0079】
これらの厚鋼板の母材特性、継手特性および耐SSC 性を実施例1に記載したのと同様の方法で調査した。表3に圧延条件、熱処理条件および諸特性調査結果をまとめて示す。
【0080】
【表3】
Figure 0003858647
【0081】
表3に示すように、圧延条件と再加熱焼入れ条件が共に好ましい範囲であった試験番号41、50、および、圧延条件と直接焼入れ条件が共に好ましい範囲であった試験番号45、54は、いずれもHT720 級の高強度と良好な母材靱性を有し、さらに優れた低温継手靱性と耐SSC 性を備えていた。
【0082】
他方、スラブ加熱温度が高すぎた試験番号42、46、51および55は母材靱性がよくなかった。再加熱焼入れ法で処理したが再加熱焼入れ温度が低すぎた試験番号43と52は母材強度が低く、母材靱性もよくなかった。焼戻し温度が高すぎた試験番号44と53は母材強度が低かった。
【0083】
直接焼入れ法で処理したが低温圧延における累積圧下率が少なすぎた試験番号47と56は母材靱性がよくなかった。直接焼入れ温度が低すぎた試験番号48と57は母材強度が低くかった。焼戻し温度が高すぎた試験番号49と58はいずれも母材強度が低かった。
【0084】
【発明の効果】
以上詳細に説明したように、本発明の高張力鋼は、HT720 級の高強度を有し、母材、溶接継手共に−80℃においても優れた靭性を備え、かつ、優れた耐硫化物応力腐食割れ性を備えている。また、本発明の高張力鋼は、所定の化学組成を備えた鋼を用いて容易に製造することができる。従って湿潤硫化水素環境下にあるLPG 等の貯蔵容器や圧力容器等の高性能化に寄与するところが大きく、本発明の工業上の価値は極めて大きい。
【図面の簡単な説明】
【図1】式1で計算される値と鋼の引張強さとの関係を示すグラフである。
【図2】式1で計算される値と継手靱性との関係を示すグラフである。
【図3】式1で計算される値と溶接部の硬さとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel excellent in low-temperature joint toughness and sulfide stress corrosion cracking resistance and a method for producing the same. More specifically, low temperature joint toughness and sulfide stress corrosion cracking resistance (hereinafter abbreviated as “SSC resistance”) suitable for storage containers and pressure vessels such as LPG in a wet hydrogen sulfide environment. High-strength steel with excellent tensile strength, especially 720N / mm2It relates to the above high-tensile steel.
[0002]
[Prior art]
In LPG storage tanks and other pressure vessels, hydrogen sulfide (H2There is a risk of sulfide stress corrosion cracking (hereinafter abbreviated as “SSC”) due to S). SSC is considered to be one of the hydrogen embrittlement cracks that occur because a large amount of hydrogen generated by the corrosion reaction penetrates into the steel due to the presence of hydrogen sulfide.
[0003]
The ease of occurrence of SSC in steel (hereinafter abbreviated as “SSC sensitivity”) is affected by its chemical composition and microstructure. For example, in order to improve the low temperature toughness of steel, it is known that it is effective to contain Ni in the steel, but “Kawasaki Steel Technical Report” Vol. 17 (1985) No. 2, p. 178- As described on page 184, Ni promotes active path corrosion and degrades SSC resistance. For this reason, when SSC is involved, Ni cannot be added to improve the low temperature toughness of steel.
[0004]
In addition, the hardness of steel greatly affects SSC susceptibility, and it is thought that crack susceptibility will decrease if the hardness of steel decreases. SSCs frequently occur in welds, especially in weld heat affected zones (HAZ). This seems to be closely related to the hardening of HAZ because it is easily cooled rapidly after welding.
[0005]
In response to this problem, for example, Japanese Patent Application Laid-Open No. 55-76044 discloses that HAZ is made of a low alloy steel and contains B, while ensuring the strength of the steel (hereinafter abbreviated as “base material strength”). A method for suppressing the increase in hardness and suppressing the SSC sensitivity of steel has been proposed.
[0006]
In addition, Japanese Patent No. 2705946 discloses that low C content without containing B reduces hardenability to prevent HAZ hardening, and lack of base material strength by utilizing precipitation hardening by Nb. A method of compensating for minutes has been proposed.
[0007]
In addition, JP 2000-80434 A improves the hardenability by optimizing the balance between Ti content and N content, and makes the HAZ structure a mixed structure of martensite and lower bainite, As a result, the weld joint has excellent low-temperature toughness (hereinafter sometimes abbreviated as “low-temperature joint toughness”) and a tensile strength (hereinafter abbreviated as “TS”) of 780 N / mm.2There has been proposed an invention for obtaining high-tensile steel (hereinafter abbreviated as “HT780 class”) as described above.
[0008]
[Problems to be solved by the invention]
For materials such as LPG and other storage containers and pressure vessels, higher strength steel is being applied to increase capacity and improve performance. For example, TS is 720 N / mm.2There is a demand for high-strength steel (hereinafter abbreviated as “HT720 class”).
[0009]
However, the high strength steels proposed in Japanese Patent Laid-Open Nos. 55-76044 and 2705946 all have a tensile strength of 580 N / mm.2Grade (hereinafter abbreviated as “HT580 grade”), and the strength of the steel is not satisfactory. Furthermore, attempts to increase the strength to the HT720 class not only cause hardening of the HAZ, but also have a problem that the low-temperature toughness of the joint containing HAZ is insufficient. For this reason, the high-strength steel according to these proposals cannot be applied to storage containers such as LPG or pressure vessels in a wet hydrogen sulfide environment.
[0010]
Moreover, the high-tensile steel proposed in Japanese Patent Application Laid-Open No. 2000-80434 has sufficient strength with HT780 class, but is sufficient to guarantee the required joint toughness at -80 ° C. No, further improvements are desired.
[0011]
The present invention has been made in view of these circumstances, the purpose of which is high-strength and tough steel, and also has excellent low-temperature toughness and SSC resistance even in welds, High-strength steel suitable as a material for storage containers and pressure vessels such as LPG in a wet hydrogen sulfide environment, specifically 720 N / mm2An object of the present invention is to provide a high-strength steel having the above tensile strength and a manufacturing method thereof.
[0012]
[Means for Solving the Problems]
The present inventors have made various studies on methods for obtaining steel having HT720 grade strength and excellent HAZ low-temperature joint toughness and SSC resistance. As a result, the following knowledge has been obtained.
[0013]
Both the strength of the base metal and the hardness of HAZ, which affects SSC resistance, depend on the hardenability of the steel. Therefore, it is essential to optimize the hardenability of the steel in order to achieve both high strength of the steel (base metal) and suppression of the HAZ hardness increase. In order to make HAZ have excellent low-temperature joint toughness, the HAZ crystal structure is a mixed structure consisting of martensite and lower bainite, and island-like martensite, which is considered to have an adverse effect on low-temperature joint toughness. It is also important to have a crystal structure with suppressed formation.
[0014]
In order to improve the hardenability of steel, it is effective to contain C. However, if C is contained excessively, the hardness of HAZ increases and island martensite is generated. Therefore, to prevent this, the C content needs to be limited to a low level.
[0015]
Since the hardenability due to low C is insufficient, it is necessary to contain an element that supplements the hardenability. Ni that has an effect of improving low temperature toughness can be considered as an element for improving hardenability, but Ni is not preferable because it has an effect of deteriorating SSC resistance.
[0016]
In order to have the strength of HT720 grade and the HAZ structure to have the optimal mixed structure of martensite and lower bainite, the contents of Mn, Cr and Mo, which are rich in hardenability, should be within the proper range. It is effective to heat-treat the adjusted slab by hot rolling under specific conditions.
[0017]
According to the research results of the present inventors, the value calculated from the content of these elements in steel by the formula: 4.10 × Mn (%) + 2.33 × Cr (%) + 3.14 × Mo (%) 1, 2, and 3 have the relationship among the tensile strength of the weld, the joint toughness of the weld, and the hardness of the weld. Here, “%” means mass%. As can be seen from these figures, when the value calculated by the above formula is less than 8.0, the tensile strength of the steel cannot satisfy the target value, and the joint toughness of the welded part has an upper crystal structure. Since the structure is mainly composed of bainite, desired performance cannot be obtained.
[0018]
On the other hand, if the value calculated by the above formula exceeds 13, the tensile strength of the steel satisfies the target value, but island martensite precipitates in the joint, resulting in impaired toughness and joint hardness. Becomes higher and SSC occurs. From these, when the value calculated by the above formula is in the range of 8.0 to 13, the steel having the desired tensile strength, joint toughness and SSC resistance can be obtained.
[0019]
The present invention has been completed based on these findings, the gist of which is the high strength steel excellent in low temperature joint toughness and sulfide stress corrosion cracking resistance described in (1) to (5) below, and (6) The production method according to (7).
[0020]
  (1) By mass%, C: 0.02 to 0.10%, Si: 0.30% or less, Mn: 1.0 to 2.0%, P: 0.015% or less, S: 0.005% or less, Cr: 0.50 to 1.50%, Mo: 0.30 to 1.0%, sol.Al: 0.001 to 0.05%, N: 0.0050% or less, O: 0.0040% or less, the balance being substantially composed of Fe and inevitable impurities,9.0≦ {4.10 × Mn (%) + 2.33 × Cr (%) + 3.14 × Mo (%)} ≦ 13 which satisfies the requirement.
[0021]
(2) Further, by mass%, Cu: 0.50% or less, V: 0.01 to 0.10%, Nb: 0.01 to 0.05%, or B: 0.0005 to 0.0030% are contained, or one or more of them (1 ) High-strength steel as described in).
[0022]
(3) The high-strength steel according to (1) or (2), further containing Ti: 0.005 to 0.05% by mass.
(4) The high-tensile steel according to any one of (1) to (3), further including Ca: 0.0005 to 0.005 mass%.
[0023]
(5) Steel is 720N / mm2The high-tensile steel according to any one of (1) to (4) above, which has the above tensile strength.
(6) After the steel having the chemical composition according to any one of (1) to (4) above is heated to 1000 to 1200 ° C. and hot-rolled, AcThreeHeat to above the point and quenching, then Ac1A method for producing high-tensile steel excellent in low-temperature joint toughness and resistance to sulfide stress corrosion cracking, characterized by performing tempering treatment at a temperature below the point.
[0024]
(7) A steel having the chemical composition according to any one of (1) to (4) above is heated to 1000 to 1200 ° C and 900 ° C or less, ArThreeAfter hot rolling to achieve a cumulative reduction ratio of 50% or more above the point, ArThreeQuenching from a temperature above the point, then Ac1A method for producing a high-strength steel excellent in low temperature joint toughness and sulfide stress corrosion cracking resistance, characterized by performing tempering treatment at a temperature below the point.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, the embodiments of the present invention will be described in detail together with the reasons for defining the chemical composition and production conditions as described above in the present invention.
[0026]
In addition, the% display showing a chemical composition below means the mass% unless otherwise indicated.
Chemical composition of steel;
C: C has the effect of increasing the strength of the steel and enhancing the hardenability of the steel. In the present invention, C is contained in an amount of 0.02% or more in order to increase the strength of the steel. Desirably, it is 0.03% or more. On the other hand, if the C content exceeds 0.10%, the hardness of HAZ becomes excessively high and the amount of island martensite produced increases. For this reason, low temperature joint toughness and SSC resistance are impaired. In order to avoid this, the C content is 0.10% or less. Desirably, it is 0.08% or less.
[0027]
Si: Si has an effect of increasing the strength of steel and is inexpensive, so it may be contained in order to increase the strength of steel. However, if the Si content is excessively increased, the weld joint toughness is deteriorated, so that the low temperature joint toughness is impaired. In order to avoid this, the Si content should be 0.30% or less. Desirably, it is 0.15% or less.
[0028]
Mn: Mn is an indispensable element for securing the strength and toughness of steel. By containing 1.0% or more, the hardenability can be sufficiently secured, and the necessary strength and toughness can be obtained. However, if the Mn content exceeds 2.0%, the toughness deteriorates and the HAZ hardness becomes too high. Therefore, in the present invention, Mn is contained in the range of 1.0% to 2.0%. Desirably, it is 1.2% or more and 1.8% or less.
[0029]
When Cr: Cr is contained in an amount of 0.50% or more, the hardenability of the steel can be improved, and the strength and toughness can be greatly improved. However, if the Cr content exceeds 1.50%, the toughness of the joint, particularly the low temperature toughness, deteriorates. Therefore, in the present invention, Cr is contained in the range of 0.50% to 1.50%. Desirably, it is 0.70% or more and 1.20% or less.
[0030]
Mo: Mo is an important element like Mn and Cr, and the strength and toughness can be improved by adding 0.30% or more. However, if the Mo content exceeds 1.0%, the toughness of HAZ deteriorates and the hardness of HAZ becomes too high. Therefore, in the present invention, Mo is contained in the range of 0.30% or more and 1.0% or less. Desirably, it is 0.40% or more and 0.70% or less.
[0031]
  Mn, Cr and Mo all have the effect of increasing the strength and toughness of the steel. In order to obtain a steel material that has HT720 grade strength, excellent low temperature joint toughness and excellent SSC resistance with reduced HAZ hardness, the HAZ structure is optimally mixed with martensite and lower bainite. It is necessary to have an organization. In order to achieve this, the Mn, Cr and Mo contents that have an important effect on the hardenability of steel have the values calculated by the following formula (1):9.0The content of these elements is adjusted so as to satisfy the above 13 or less.
[0032]
    {4.10 × Mn (%) + 2.33 × Cr (%) + 3.14 × Mo (%)} (1)
  The value calculated by the above equation (1) is9.0If it is less than the above, hardenability is insufficient and sufficient base metal strength and toughness cannot be secured, and the HAZ structure becomes a structure mixed with upper bainite having low toughness, so sufficient low temperature joint toughness cannot be obtained..
[0033]
On the other hand, if the value calculated by the above formula (1) exceeds 13, the martensite ratio increases and the strength increases, and island martensite tends to precipitate in HAZ, so that the low temperature joint toughness deteriorates. In addition, the hardness of the HAZ increases and the SSC resistance is impaired. Desirably, the content of these elements is adjusted so that the value calculated by the above formula (1) is 12 or less.
[0034]
sol.Al: Al has the effect of deoxidizing steel to make it healthy, and also prevents austenite grains from coarsening by a pinning action that prevents the movement of grain boundaries as AlN during quenching. Furthermore, when B is contained in the steel, N which is harmful to the toughness of HAZ is fixed as AlN, and effective B segregated at the austenite grain boundaries suppresses the formation of ferrite and exerts an effect of improving hardenability. .
[0035]
In order to obtain these effects, the steel contains Al in an amount of 0.001% or more as sol.Al. Desirably, it is 0.005% or more. On the other hand, when sol.Al is contained excessively, inclusions increase and toughness deteriorates. In order to avoid this, the sol.Al content is 0.05% or less. Desirably, it is 0.035% or less.
[0036]
P, S, N and O: All of these elements are unavoidable impurities, but when the P content increases, the center segregation of the slab becomes remarkable, causing grain boundary fracture and low temperature toughness. In order to avoid this, the P content is 0.015% or less.
[0037]
In addition, when the S content increases, the MnS inclusions expanded by hot rolling increase, impairing the toughness, promoting the accumulation of hydrogen that has penetrated into the steel in a wet hydrogen sulfide environment, and impairing the SSC resistance. . In order to avoid this, the S content should be 0.005% or less.
[0038]
If the N content exceeds 0.0050%, the solid solution N increases, the hardness of the HAZ increases, and the toughness of the HAZ deteriorates. In order to avoid this, the N content is 0.0050% or less. Desirably, it is 0.0040% or less.
[0039]
As the O content increases, non-metallic inclusions in the steel increase and the low temperature toughness and SSC resistance are impaired. In order to avoid this, the O content is 0.0040% or less.
The balance substantially consists of Fe and inevitable impurities. The meaning of “substantially” means that one or more of the elements described below may be contained as an optional additive element.
[0040]
{Circle around (1)} Cu, V, Nb and B, {circle around (2)} Nb and Ti, and {circle around (3)} Ca, these elements are all effective elements for improving strength and toughness as described below. Therefore, for the purpose of improving strength and toughness, one or more of each of these elements may be contained from at least one of the group consisting of these elements.
[0041]
Cu: Cu has the effect of improving the hardenability of the steel, and also has the effect of increasing the strength of the steel by the precipitation phenomenon after tempering. Therefore, Cu may be contained in order to obtain these effects. However, if the Cu content exceeds 0.50%, there is a concern that hot cracking may occur due to the Cu checking phenomenon, so the Cu content is preferably 0.50% or less.
[0042]
V: When V is contained in an amount of 0.01% or more, the effect of improving the hardenability of the steel can be obtained, and the strength of the steel can be increased by the precipitation effect during the tempering treatment. However, if the V content exceeds 0.10%, the above effects are saturated and the cost increases, and the toughness is also significantly impaired. Therefore, when V is contained, the content is desirably 0.01% or more and 0.10% or less.
[0043]
B segregates at austenite grain boundaries and has the effect of improving hardenability by suppressing the formation of ferrite. In order to acquire this effect, it is desirable to contain B 0.0005% or more. On the other hand, if the B content exceeds 0.0030%, the toughness deteriorates. Therefore, when B is contained, the content is preferably 0.0030% or less.
[0044]
Nb: Nb is an element effective in suppressing coarsening of crystal grains during slab heating or quenching, and is effective in obtaining fine steel in fracture units and improving the strength and toughness of the base material. Furthermore, it has the effect | action which precipitates as a carbonitride in a crystal grain at the time of a tempering process, and raises the yield strength of steel. In order to obtain such an effect, it is desirable to contain Nb by 0.01% or more. However, if the Nb content exceeds 0.05%, the precipitate becomes coarse and the toughness is lowered. Therefore, the upper limit is desirably 0.05%.
[0045]
Ti: Ti combines with N and precipitates as fine TiN, has the effect of suppressing the growth of austenite grains by preventing the movement of grain boundaries at high temperatures, and improves the toughness of the base metal and welds It is an effective element. Moreover, when steel contains B, it also has the effect | action which helps the segregation to the austenite grain boundary of B, and improves hardenability. In order to obtain such an effect, 0.005% or more of Ti may be contained. On the other hand, if the Ti content exceeds 0.05%, TiN becomes coarse and lowers toughness. For this reason, when Ti is contained, the content is preferably 0.05% or less.
[0046]
When Ca: Ca is contained in an amount of 0.0005% or more, non-metallic inclusions are spheroidized and low-temperature toughness can be improved. For this reason, in order to further improve the low temperature joint toughness, 0.0005% or more of Ca may be contained. However, if the Ca content exceeds 0.005%, a large amount of inclusions such as CaO and CaS are generated, and the toughness of the steel is impaired. In addition, the hydrogen in the steel tends to accumulate around the inclusions in a wet hydrogen sulfide environment. SSC resistance deteriorates. In order to avoid this, when Ca is contained, the upper limit is preferably 0.005%.
[0047]
Production method;
The high-strength steel excellent in low temperature joint toughness and SSC resistance according to the present invention is obtained by (a) heating a steel slab (slab) having the above chemical composition to 1000 to 1200 ° C.ThreeHeat to above the point and quenching, then Ac1A method of tempering below the point (hereinafter abbreviated as “reheat quenching method”), or (b)ThreeAfter performing hot rolling including rolling with a cumulative reduction ratio of 50% or more in the temperature range of the point to 900 ° C, ArThreeQuenching from a temperature range above the point, then Ac1It is preferable to produce by a method of tempering at a temperature below the point (hereinafter abbreviated as “direct quenching method”). These methods are described in detail below.
[0048]
(a) Reheating quenching method
Production of the slab having the above chemical composition may be carried out by a known method, and is not particularly limited. For example, steel refining may be performed by a known method such as a converter or an electric furnace. Although it is efficient to make the obtained molten steel into a slab by continuous casting, it may be a slab by rolling it once into a steel ingot.
[0049]
The slab is heated to a temperature of 1000 ° C. or higher and 1200 ° C. or lower by a method such as once it is cooled to room temperature or intermediate temperature and then reheated or reheated without cooling. When the heating temperature of the slab is less than 1000 ° C, the various precipitates generated when the steel solidifies do not re-solidify sufficiently, resulting in insufficient hardenability and austenite grain refinement before quenching. . Further, if the slab heating temperature exceeds 1200 ° C., the austenite grains become coarse and the toughness of the base material deteriorates, which is not preferable.
[0050]
In this method, since the quenching and tempering treatment is performed after the hot rolling, the hot rolling conditions are not particularly limited. For example, in order to improve productivity, it is desirable to increase the finishing temperature as much as possible in order to shorten the time from the extraction of the slab from the heating furnace to the end of rolling as much as possible. It may include low temperature rolling in the temperature range.
[0051]
Hot-rolled steel is steel AcThreeAfter reheating above the point, quenching is performed, then Ac1A tempering process is performed below the point.
Reheat temperature is AcThreeIf it is less than the point, quenching from an incomplete austenite structure results in insufficient strength and toughness of the resulting steel. Desirably AcThreePoint + 20 ° C or higher. The upper limit of the reheating temperature is not particularly limited, but is desirably 950 ° C. or lower in order to suppress coarsening of crystal grains.
[0052]
The quenching method may be a known method, but in order to make the steel crystal structure a mixed structure consisting of martensite and lower bainite up to the center in the thickness direction, the average cooling rate during quenching is 5 ° C / S or more. It is preferable to do this.
[0053]
The tempering treatment is performed in order to improve the balance between strength and toughness by removing the strain introduced by the quenching treatment and finely depositing carbides. Tempering temperature is increased to increase toughness.1It is better to perform in the temperature range below the point and above 500 ° C. Other tempering conditions may be known. In the present invention, the steel AcThreeDot, Ac1Dot and ArThreePoints are calculated from the chemical composition of steel or its thickness (t, unit: mm) using the following formula. Here, each element means mass%.
[0054]
AcThreePoint (℃) = 897.3-271.1C + 43.7Si-17Mn + 117.8P + 159.3S-40.8Cu-22.3Ni-6.5Cr + 6.5Mo + 65.8V + 56.9Al + 145.2Nb + 88.5Ti + 121.8N-1765.4B
Ac1Point (℃) = 712 + 20.1C-17.8Mn-9.8Mo + 11.9Cr-19.1Ni
ArThreePoint (℃) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo + 0.35 (t-8)
(b) Direct quenching method
The slab production and slab heating conditions are the same as those of the reheat quenching method. For heated slabs, 900 ° C or less, ArThreeHot rolling is performed including rolling in which the cumulative reduction ratio at or above the point is 50% or more, and a quenching treatment is performed immediately after the end of rolling.
[0055]
In the above hot rolling, the heated slab may be rolled in a temperature range exceeding 900 ° C, but at least 900 ° C or less, ArThreeRolling in a temperature region above the point (hereinafter abbreviated as “low temperature rolling”) is performed so that the cumulative rolling reduction is 50% or more.
[0056]
The purpose of low-temperature rolling is to perform rolling in the non-recrystallized zone before direct quenching, and to introduce a deformation zone in the austenite grains, thereby refining the crystal structure after quenching treatment, and to achieve high strength and high toughness. The purpose is to obtain a combined steel.
[0057]
When the temperature of the low-temperature rolling exceeds 900 ° C., the deformation band introduced by the low-temperature rolling is eliminated by the recovery phenomenon, and the above-mentioned crystal structure refinement effect cannot be obtained. Also, the low temperature rolling temperature is ArThreeIf it is less than the point, a ferrite structure is formed, and the hardenability is lowered, which is not good. Therefore, the temperature range for low temperature rolling is 900 ° C or less, ArThreeMore than points.
[0058]
When the rolling reduction in the above temperature range is less than 50% in terms of cumulative rolling reduction, the introduction of deformation bands by low temperature rolling becomes insufficient, and the structure after quenching cannot be sufficiently refined. In order to avoid this, the cumulative rolling reduction in the above temperature range is 50% or more.
[0059]
The quenching temperature at the time of direct quenching is preferably performed from a high temperature in order to ensure hardenability. That is, ArThreeWhen quenching from below the point, sufficient hardenability cannot be secured, and an optimal mixed structure of martensite and lower bainite cannot be obtained, so that strength and toughness are insufficient. To avoid this, Ar immediately after the end of low-temperature rollingThreeIt is preferable to perform the quenching process from a temperature higher than the point.
[0060]
Other quenching conditions are not particularly limited, but it is desirable that the cooling stop temperature is 200 ° C. or lower and the cooling rate is 5 ° C./S or higher. Moreover, although a well-known thing may be sufficient as the cooling method, it is suitable to use an accelerated water cooling apparatus etc.
[0061]
What is necessary is just to manufacture the steel of this invention by a conventional method except the above. A steel plate is suitable for the shape of the steel.
The high-tensile strength steel with excellent low-temperature joint toughness and SSC resistance according to the present invention has a strength of HT720 class, and has a high level of toughness and SSC resistance that was difficult with conventional steels. is there. For this reason, the high-tensile steel of the present invention has excellent low temperature joint toughness and SSC resistance, and can be suitably used for a storage container such as LPG or a pressure container under a wet hydrogen sulfide environment.
[0062]
【Example】
(Example 1)
Steels with various chemical compositions are melted in a converter and made into a slab with a thickness of 300mm and a width of 2300mm by continuous casting, and after hot rolling, various performances are obtained by reheating and quenching. A high-strength steel having was prepared.
[0063]
Table 1 shows the chemical composition of the steel sheet.
[0064]
[Table 1]
Figure 0003858647
[0065]
These steels ArThreeThe point is in the range of 680-760 ° C, AcThreeThe point is in the range of 840-880 ° C, Ac1The point was in the range of 680-710 ° C. After heating these slabs to 1120 ° C., they were hot-rolled by well-known and conventional means and air-cooled to room temperature to obtain a thick steel plate having a thickness of 50 mm. The rolling start temperature was 950 ° C and the rolling end temperature was 850 ° C. These steel plates are then reheated to 900 ° C, subjected to quenching treatment with an average cooling rate of about 10 ° C / S at the center of the plate thickness, then heated to 600 ° C and allowed to cool to room temperature in the atmosphere. Was given.
[0066]
The performance of the obtained steel sheet was evaluated by the following method.
Tensile properties of steel sheets: From each steel sheet, take a No. 4 tensile test piece specified in JIS Z 2201 from the direction perpendicular to the rolling direction, conduct a tensile test, measure the base material strength, and determine the tensile strength (TS). 720N / mm2The case where it was more than that was judged favorable. For YS, 620 N / mm2The above is desirable.
[0067]
Steel sheet toughness (hereinafter abbreviated as "base metal toughness"): Charpy impact test pieces defined in JIS Z 2202 were cut out from each steel plate in parallel with the rolling direction, and the impact test was performed to absorb the energy at -80 ° C. vE-80(Unit is J) and vE-80The steel sheet was judged to have good toughness (hereinafter abbreviated as “base metal toughness”) when the steel sheet was 47 J or more.
[0068]
Weld joint performance: Cut out a test piece of length: 600 mm and width: 300 mm from each steel plate, machine the end into an X-shaped groove, and perform submerged arc welding with a heat input of 3.0 kJ / mm Prepare welded joints, and from each welded joint, collect Charpy impact test specimens from 1/4 of the plate thickness so that the notch center position coincides with the fusion line. Evaluate low temperature toughness, that is, low temperature joint toughness, and-80Was determined to be good at low temperature joint toughness.
[0069]
In addition, a specimen for hardness measurement was cut out from the welded joint, and the hardness of the weld toe, which had the greatest stress concentration and was likely to cause SSC, was measured. A case where the Vickers hardness (Hv) was 300 or less was judged to be good.
[0070]
Furthermore, a material for SSC test with a length of 115 mm, a width of 30 mm, and a thickness of 1.5 mm is cut out from the surface of the weld bead of each of the above welded joints, and a stress equivalent to 100% of the yield stress is applied by 4-point bending. Thus, an SSC test piece was prepared. These specimens are 5.0% NaCl + 0.5% CHThreeH with partial pressure adjusted to COOH aqueous solution2S Vent gas and H2S was immersed in a saturated aqueous solution with a concentration of 100 ppm for 720 hours, and after the test, the presence or absence of cracks on the surface of the specimen was investigated using an optical microscope. The case where a crack was not observed was evaluated as good (◯), and the case where a crack was observed was evaluated as defective (×).
[0071]
These performance evaluation results are shown in Table 2.
[0072]
[Table 2]
Figure 0003858647
[0073]
As shown in Table 2, all steel plates 1 to 16 that satisfy the conditions specified in the present invention have sufficient strength and toughness as HT720 grade, and also have low temperature toughness and SSC resistance at welded joints. It was excellent.
[0074]
On the other hand, the steel No. 17 steel plate has insufficient strength because the C content is too low, and the steel No. 18 steel plate has too high C content, resulting in poor joint toughness and SSC resistance. It was. Steel plate No. 19 had poor joint toughness because the Si content was too high. Steel plate No. 20 had a low Mn content, so the base metal strength was low and the joint toughness was not good. Steel No. 21 had an Mn content that was too high, resulting in high HAZ hardness and poor SSC resistance. Steel plate No. 22 was not good in base metal toughness and joint toughness because the P content was too high. Steel plate No. 23 was not good in base metal toughness, joint toughness and SSC resistance because the S content was too high.
[0075]
Steel No. 24 had too little Cr content, and Steel No. 26 had too little Mo content, so the base metal strength was low. Steel No. 25 had a too high Cr content, and Steel No. 27 had a too high Mo content. Steel plate No. 28 had poor base metal toughness and joint toughness because the sol.Al content was too high. Steel plate No. 29 had poor joint toughness because the N content was too high. Steel plate No. 30 has an island martensite formed in HAZ because the value calculated by the formula {4.10 x Mn (%) + 2.33 x Cr (%) + 3.14 x Mo (%)} is too large. The joint toughness was not good. Also, HAZ hardened and the SSC resistance was not good. Steel plate No. 31 was too low in base metal strength because the value calculated by the above formula was too small, and the base metal toughness and joint toughness were also not good. Steel plate No. 32 was too poor in base metal toughness, joint toughness and SSC resistance due to its O content being too high. Steel No. 33 contained excessive Cu, Steel No. 34 steel was too high in V content, Steel No. 35 steel was too high in Nb, Steel No. 36 steel was Since the B content was too high, the steel No. 37 steel plate was too high in the base metal toughness and joint toughness because the Ti content was too high. Steel plate No. 38 was not good in base metal toughness, joint toughness and SSC resistance because the Ca content was too high.
[0076]
As is clear from the above results, the steel Nos. 1 to 16 satisfying the conditions specified in the present invention have high strength and excellent toughness, as well as excellent low temperature joint toughness and SSC resistance. Therefore, it can be suitably used for a storage container such as LPG or a pressure container in a wet hydrogen sulfide environment.
[0077]
(Example 2)
Heat the slabs with the chemical compositions of steel numbers 3 and 13 listed in Table 1 and hot-roll some slabs under normal conditions and air-cool to room temperature. did. The rolling start temperature was 950 ° C and the rolling end temperature was 850 ° C. Next, these steel sheets are reheated to a quenching temperature, subjected to a quenching treatment with an average cooling rate of about 10 ° C / S at the center of the plate thickness, then heated to a tempering temperature and allowed to cool to room temperature in the atmosphere. Treated.
[0078]
The other slabs are heated to various temperatures and then hot rolled, including low temperature rolling at various cumulative reduction ratios, to give a thick steel plate with a thickness of 50 mm. Immediately reduce the average cooling rate at the center of the plate thickness. A quenching treatment of 10 ° C./S was performed, followed by a tempering treatment that was heated to a tempering temperature and allowed to cool to room temperature in the atmosphere. In the above, the direct quenching temperature is substantially equal to the rolling end temperature.
[0079]
The base metal properties, joint properties, and SSC resistance of these thick steel plates were investigated in the same manner as described in Example 1. Table 3 summarizes the rolling conditions, heat treatment conditions, and various characteristics investigation results.
[0080]
[Table 3]
Figure 0003858647
[0081]
As shown in Table 3, test numbers 41 and 50 in which both rolling conditions and reheat quenching conditions were in a preferred range, and test numbers 45 and 54 in which both rolling conditions and direct quenching conditions were in a preferred range, In addition, it had high strength of HT720 class and good base metal toughness, and also had excellent low temperature joint toughness and SSC resistance.
[0082]
On the other hand, the test numbers 42, 46, 51 and 55 in which the slab heating temperature was too high did not have good base material toughness. Test Nos. 43 and 52, which were processed by the reheating and quenching method but the reheating and quenching temperature was too low, had low base metal strength and poor base metal toughness. Test numbers 44 and 53, where the tempering temperature was too high, had a low base metal strength.
[0083]
Test Nos. 47 and 56, which were processed by the direct quenching method but had a low cumulative rolling reduction in low temperature rolling, had poor base metal toughness. Test numbers 48 and 57, in which the direct quenching temperature was too low, had a low base metal strength. In both test numbers 49 and 58, where the tempering temperature was too high, the base metal strength was low.
[0084]
【The invention's effect】
As explained in detail above, the high-tensile steel of the present invention has a high strength of HT720 class, has excellent toughness at -80 ° C for both base metal and welded joint, and has excellent sulfide stress resistance. Has corrosion cracking properties. Moreover, the high-tensile steel of the present invention can be easily manufactured using steel having a predetermined chemical composition. Therefore, it greatly contributes to high performance of storage containers such as LPG and pressure containers in a wet hydrogen sulfide environment, and the industrial value of the present invention is extremely large.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the value calculated by Equation 1 and the tensile strength of steel.
FIG. 2 is a graph showing the relationship between the value calculated by Equation 1 and joint toughness.
FIG. 3 is a graph showing the relationship between the value calculated by Equation 1 and the hardness of the weld.

Claims (7)

化学組成が、質量%で、
C:0.02〜0.10%、Si:0.30%以下、Mn:1.0〜2.0%、
P:0.015%以下、S:0.005%以下、Cr:0.50〜1.50%、
Mo:0.30〜1.0%、sol.Al:0.001〜0.05%、N:0.0050%以下、O:0.0040%以下、
残部が Feおよび不可避的不純物からなり、さらに下記式(1)を満足するものであることを特徴とする高張力鋼。
9.0≦{4.10×Mn(%)+2.33×Cr(%)+3.14×Mo(%)}≦13・・・(1)
Chemical composition is mass%,
C: 0.02 to 0.10%, Si: 0.30% or less, Mn: 1.0 to 2.0%,
P: 0.015% or less, S: 0.005% or less, Cr: 0.50 to 1.50%,
Mo: 0.30 to 1.0%, sol.Al: 0.001 to 0.05%, N: 0.0050% or less, O: 0.0040% or less,
A high-strength steel characterized in that the balance consists of Fe and inevitable impurities and further satisfies the following formula (1).
9.0 ≦ {4.10 × Mn (%) + 2.33 × Cr (%) + 3.14 × Mo (%)} ≦ 13 (1)
前記化学組成が、さらに、質量%で、Cu:0.50%以下、V:0.01〜0.10%、Nb:0.01〜0.05%、またはB:0.0005〜0.0030%のうちの1種または2種以上を含有する請求項1に記載の高張力鋼。  The chemical composition further contains one or more of Cu: 0.50% or less, V: 0.01 to 0.10%, Nb: 0.01 to 0.05%, or B: 0.0005 to 0.0030% by mass%. The high-tensile steel according to claim 1. 前記化学組成が、さらに、Ti:0.005〜0.05質量%を含有する請求項1または請求項2に記載の高張力鋼。  The high-tensile steel according to claim 1 or 2, wherein the chemical composition further contains Ti: 0.005 to 0.05 mass%. 前記化学組成が、さらに、Ca:0.0005〜0.005質量%を含有する請求項1〜3のいずれかに記載の高張力鋼。  The high-tensile steel according to any one of claims 1 to 3, wherein the chemical composition further contains Ca: 0.0005 to 0.005 mass%. 鋼が720N/mm2以上の引張強さを有するものであることを特徴とする請求項1〜4のいずれかに記載の高張力鋼。The high-tensile steel according to any one of claims 1 to 4, wherein the steel has a tensile strength of 720 N / mm 2 or more. 請求項1〜4のいずれかに記載の化学組成を備えた鋼を1000〜1200℃に加熱して熱間圧延を施した後、Ac3点以上に加熱して焼入れ処理を施し、次いでAc1点以下で焼戻し処理を施すことを特徴とする低温継手靱性と耐硫化物応力腐食割れ性に優れた高張力鋼の製造方法。The steel having the chemical composition according to any one of claims 1 to 4 is heated to 1000 to 1200 ° C and hot-rolled, and then heated to Ac 3 point or higher to be quenched, and then Ac 1 A method for producing a high-strength steel excellent in low-temperature joint toughness and sulfide stress corrosion cracking resistance, characterized by performing a tempering treatment below the point. 請求項1〜4のいずれかに記載の化学組成を備えた鋼を1000〜1200℃に加熱して900℃以下、Ar3点以上での累積圧下率が50%以上となる熱間圧延を施した後、Ar3点以上の温度から焼入れ処理を施し、次いでAc1点以下で焼戻し処理を施すことを特徴とする低温継手靱性と耐硫化物応力腐食割れ性に優れた高張力鋼の製造方法。The steel having the chemical composition according to any one of claims 1 to 4 is heated to 1000 to 1200 ° C and subjected to hot rolling so that the cumulative rolling reduction at 900 ° C or lower and Ar 3 point or higher is 50% or higher. After that, quenching treatment is performed at a temperature of 3 or more points of Ar, and then tempering treatment is performed at a temperature of 1 point or less of Ac. .
JP2001275096A 2001-03-13 2001-09-11 High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same Expired - Fee Related JP3858647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275096A JP3858647B2 (en) 2001-03-13 2001-09-11 High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001070526 2001-03-13
JP2001-70526 2001-03-13
JP2001275096A JP3858647B2 (en) 2001-03-13 2001-09-11 High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002339037A JP2002339037A (en) 2002-11-27
JP3858647B2 true JP3858647B2 (en) 2006-12-20

Family

ID=26611150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275096A Expired - Fee Related JP3858647B2 (en) 2001-03-13 2001-09-11 High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3858647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709075C1 (en) * 2019-08-19 2019-12-13 Акционерное общество "Выксунский металлургический завод" Method of producing hot-rolled coil of low-alloy steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710423B2 (en) * 2005-06-08 2011-06-29 Jfeスチール株式会社 Method for producing high-tensile steel plate with excellent SSC resistance
JP4604917B2 (en) * 2005-08-30 2011-01-05 Jfeスチール株式会社 780 MPa class high strength steel sheet and method for producing the same
CN104630636A (en) * 2015-02-06 2015-05-20 铜陵百荣新型材料铸件有限公司 Low-carbon cast steel and preparation method thereof
CN105603322B (en) * 2016-01-29 2017-10-31 宝山钢铁股份有限公司 Ultra Low Cost 800MPa grade high ductilities, the steel plate of superior weldability and its manufacture method
CN114250424B (en) * 2020-09-21 2022-10-21 宝山钢铁股份有限公司 Ni-free steel for low-temperature pressure vessel and manufacturing method thereof
CN116288042A (en) * 2023-02-21 2023-06-23 包头钢铁(集团)有限责任公司 Hot-rolled steel with tensile strength greater than 700MPa and thickness of 2-4mm for automobile structure and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709075C1 (en) * 2019-08-19 2019-12-13 Акционерное общество "Выксунский металлургический завод" Method of producing hot-rolled coil of low-alloy steel

Also Published As

Publication number Publication date
JP2002339037A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
CN112236539B (en) High-tensile thick steel plate for extremely low temperature and method for producing same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP5333021B2 (en) High strength steel plate excellent in ductility, weldability and surface properties, and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JPH0657375A (en) Ultrahigh tensile strength cold-rolled steel sheet and its production
WO2007080645A1 (en) Cryogenic steel excelling in ctod performance of weld heat-affected zone
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4660363B2 (en) Manufacturing method of thick steel plate with excellent toughness
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP3705161B2 (en) High tensile steel plate
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP2582147B2 (en) Method for producing low temperature nickel steel sheet with excellent weld toughness
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
EP1378580A1 (en) Structural Fe-Cr steel sheet, manufacturing method thereof, and structural shaped steel
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JP3449307B2 (en) B-added high-strength steel with excellent toughness in the heat affected zone
JP6835054B2 (en) High-strength steel plate and its manufacturing method
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3858647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees