JP2001060792A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber

Info

Publication number
JP2001060792A
JP2001060792A JP11232788A JP23278899A JP2001060792A JP 2001060792 A JP2001060792 A JP 2001060792A JP 11232788 A JP11232788 A JP 11232788A JP 23278899 A JP23278899 A JP 23278899A JP 2001060792 A JP2001060792 A JP 2001060792A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
alloy
wave absorber
absorbing material
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11232788A
Other languages
Japanese (ja)
Inventor
Takeshi Iwashita
斌 岩下
Junichi Toyoda
準一 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11232788A priority Critical patent/JP2001060792A/en
Publication of JP2001060792A publication Critical patent/JP2001060792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electromagnetic wave absorber with higher low efficiency than ferrite without generating any iron oxides by performing heating oxidation treatment to an alloy particle for forming an electromagnetic wave absorption material in wet hydrogen gas atmosphere. SOLUTION: A hydrogen gas is supplied from hydrogen piping 1 in the direction of an arrow A, and an end 1a of the hydrogen piping 1 becomes wet hydrogen due to pure water 3 in a bubbler 2, passes through a supply pipe 4, and is introduced to a reaction pipe 5. The reaction pipe 5 is made of crystal, and the central part is covered with a furnace 7 that is heated by a surrounding heater 6. Also, an exhaust pipe 11 is provided at the opposite side of the supply pipe 4. Alloy metal powder 8 that becomes an electromagnetic wave absorption material is placed at the central part of the reaction pipe 5 in a container 9. The metal powder 8 is obtained by making granular or flatly granular such alloy as silicon steel, permaloy, sendust, or stainless steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁波吸収体に関す
る。より詳しくは、電子部品などから放射する電磁波を
吸収するための電磁波吸収材料と有機結合材を混練して
形成した電磁波吸収体に関するものである。
[0001] The present invention relates to an electromagnetic wave absorber. More specifically, the present invention relates to an electromagnetic wave absorber formed by kneading an electromagnetic wave absorbing material for absorbing electromagnetic waves radiated from electronic components and an organic binder.

【0002】[0002]

【従来の技術】電子部品から放射する電磁波による、周
囲の半導体装置などへの悪影響を防止するために、フェ
ライト等の磁性体粒子からなる電磁波吸収材料とエポキ
シ樹脂等の有機結合材を混練した電磁波吸収体が用いら
れている。この電磁波吸収体はペースト状に形成して電
子部品の電磁波を放射する部位に塗布したり、または電
磁波吸収体をシート状に加工して電子部品に被せて電磁
波による電磁干渉を抑制していた。
2. Description of the Related Art Electromagnetic waves obtained by kneading an electromagnetic wave absorbing material composed of magnetic particles such as ferrite and an organic binder such as epoxy resin in order to prevent adverse effects on surrounding semiconductor devices due to electromagnetic waves radiated from electronic components. An absorber is used. This electromagnetic wave absorber is formed in a paste form and applied to a portion of the electronic component that emits electromagnetic waves, or the electromagnetic wave absorber is processed into a sheet shape and put on the electronic component to suppress electromagnetic interference due to the electromagnetic waves.

【0003】一方、鉄(Fe)とシリコン(Si)、ア
ルミニウム(Al)、クロム(Cr)、ニッケル(N
i)等の金属の合金が電磁波吸収材料として用いられて
いる。このような金属の合金はフェライトに比べ飽和磁
化が大きく、透磁率が高く、高周波用として使用でき、
電磁波吸収材料としては好ましい材料ではあるが、抵抗
率が低い(フェライトの抵抗率は約5×106μΩ・
m、合金軟磁性体の抵抗率は約0.4〜1.3μΩ・
m)ので、インピーダンスのマッチングが困難であっ
た。
On the other hand, iron (Fe), silicon (Si), aluminum (Al), chromium (Cr), nickel (N
An alloy of a metal such as i) is used as an electromagnetic wave absorbing material. Alloys of such metals have higher saturation magnetization, higher magnetic permeability than ferrite, and can be used for high frequencies.
Although it is a preferable material as an electromagnetic wave absorbing material, its resistivity is low (the resistivity of ferrite is about 5 × 10 6 μΩ ·
m, the resistivity of the alloy soft magnetic material is about 0.4 to 1.3 μΩ.
m), impedance matching was difficult.

【0004】このため、従来ではこのような鉄(Fe)
を主成分としたシリコン、アルミニウム、クロムまたは
ニッケルを含ませた金属の合金を電磁波吸収材料として
用い、これを粒状又は扁平状にして酸素雰囲気中(例え
ば空気中)で加熱し、酸化膜を成長させて表面を絶縁体
でコーティングして抵抗率を高めていた。
Therefore, conventionally, such iron (Fe)
Using an alloy of a metal containing silicon, aluminum, chromium or nickel, which is mainly composed of, as an electromagnetic wave absorbing material, granulating or flattening it and heating it in an oxygen atmosphere (for example, in air) to grow an oxide film Then, the surface was coated with an insulator to increase the resistivity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の鉄の合金からなる電磁波吸収体の粒子を酸素雰囲気
中で酸化させた場合、電磁波吸収材料の主成分である鉄
の酸化物(Fe23)が表面に大量に生成してしまい、
表面が不安定となり、電気抵抗がフェライトの109Ω
cm以上に対し、106〜107Ωcmと低くなる。この
ため、用途によっては使用できなくなったり、用途を限
定されるなどの問題を生じていた。
However, when the particles of the above-described conventional electromagnetic wave absorber made of an iron alloy are oxidized in an oxygen atmosphere, an oxide of iron (Fe 2 O) which is a main component of the electromagnetic wave absorbing material is used. 3 ) is generated in large quantities on the surface,
The surface becomes unstable and the electric resistance is 10 9 Ω of ferrite.
cm or more, which is as low as 10 6 to 10 7 Ωcm. For this reason, there have been problems such as being unusable or limited in some applications.

【0006】本発明は、上記従来技術を考慮したもので
あって、鉄の酸化物が生成することなく、フェライトよ
りも抵抗率の高い電磁波吸収体の提供を目的とする。
The present invention has been made in consideration of the above-mentioned conventional technique, and has as its object to provide an electromagnetic wave absorber having a higher resistivity than ferrite without generating iron oxide.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、磁性体粒子からなる電磁波吸収材料
と、前記電磁波吸収材料と有機結合材を混練して形成さ
れた電磁波吸収体において、前記電磁波吸収材料は、合
金粒子からなり、該合金粒子にウェット水素ガス雰囲気
中で加熱酸化処理を施したことを特徴とする電磁波吸収
体を提供する。
According to the present invention, there is provided an electromagnetic wave absorbing material comprising magnetic particles, and an electromagnetic wave absorbing material formed by kneading the electromagnetic wave absorbing material and an organic binder. The electromagnetic wave absorbing material is made of alloy particles, and the alloy particles are subjected to a heating oxidation treatment in a wet hydrogen gas atmosphere to provide an electromagnetic wave absorber.

【0008】この構成によれば、ウェット水素ガス雰囲
気中で加熱酸化処理を施すので、合金粒子の表面は強固
な酸化物で覆われるため、絶縁性の優れた粒子を得るこ
とができ、電磁波吸収体の抵抗も高まる。また、生成し
た酸化物の酸化膜厚の制御が容易にできる。
According to this structure, since the heat oxidation treatment is performed in a wet hydrogen gas atmosphere, the surface of the alloy particles is covered with a strong oxide, so that particles having excellent insulating properties can be obtained, and electromagnetic wave absorption can be obtained. Body resistance also increases. Further, it is possible to easily control the oxide film thickness of the generated oxide.

【0009】好ましい構成例においては、前記合金は、
鉄と安定した酸化膜を形成する元素との合金であること
を特徴としている。
In a preferred embodiment, the alloy comprises:
It is characterized by being an alloy of iron and an element forming a stable oxide film.

【0010】この構成によれば、安定した酸化膜を形成
する元素の酸化物により、合金の絶縁性が優れる。
According to this structure, the oxide of the element that forms a stable oxide film has excellent alloy insulating properties.

【0011】好ましい構成例においては、前記元素は、
Si,Al,Cr,またはNiのいずれかを含むことを
特徴としている。
In a preferred embodiment, the element is
It is characterized by containing any of Si, Al, Cr and Ni.

【0012】この構成によれば、生成される合金の酸化
物は、SiO2やAl23やCrO2等の強固で安定した
被膜で覆われるので、合金の絶縁性が優れる。
According to this structure, the oxide of the produced alloy is covered with a strong and stable film such as SiO 2 , Al 2 O 3 or CrO 2, so that the alloy has excellent insulation properties.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図1は、ウェット水素ガス
雰囲気中で合金粒子を酸化するときの概略図である。図
示したように、矢印A方向に水素配管1から水素ガスを
供給し、この水素配管1の端部1aはバブラー2内の純
水3中に設置される。端部1aから放出した水素ガスは
純水3によりウェット水素となり供給管4を通って反応
管5に導入される。この反応管5は石英製であり、その
中央部を周囲のヒーター6で加熱する炉7により覆われ
ている。また、供給管4の反対側には排気管11が備え
てある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram when oxidizing alloy particles in a wet hydrogen gas atmosphere. As shown in the figure, hydrogen gas is supplied from a hydrogen pipe 1 in the direction of arrow A, and an end 1 a of the hydrogen pipe 1 is installed in pure water 3 in a bubbler 2. The hydrogen gas released from the end 1a becomes wet hydrogen by the pure water 3 and is introduced into the reaction tube 5 through the supply tube 4. The reaction tube 5 is made of quartz, and its center is covered by a furnace 7 which is heated by a surrounding heater 6. An exhaust pipe 11 is provided on the opposite side of the supply pipe 4.

【0014】反応管5の中央部には電磁波吸収材料とな
る合金の金属粉末8が容器9に入って載置されている。
この金属粉末8は、ケイ素鋼(Fe−Si)、パーマロ
イ(Fe−Ni)、センダスト(Fe−Al−Si)、
又はステンレス(Fe−Cr−Si)等の合金を100
μm以下(平均粒径10μm程度)の粒状にしたものや
平均30μm×1〜2μm厚の扁平粒状にしたものであ
る。合金は機械的に粉砕して粉末化したり、その他公知
の適当な方法で粒状あるいは扁平状の粒子にすることが
できる。
At the center of the reaction tube 5, a metal powder 8 of an alloy serving as an electromagnetic wave absorbing material is placed in a container 9.
The metal powder 8 is made of silicon steel (Fe-Si), permalloy (Fe-Ni), sendust (Fe-Al-Si),
Or an alloy such as stainless steel (Fe-Cr-Si)
It may be in the form of particles having a particle size of not more than μm (average particle size of about 10 μm) or in the form of flat particles having an average thickness of 30 μm × 1-2 μm. The alloy can be pulverized by mechanical pulverization, or can be formed into granular or flat particles by any other appropriate known method.

【0015】合金を粒状にする方法として、例えばアト
マイズ法又は化学的析出法を使用する。アトマイズ法
は、高速流体中に溶融金属を滴下又はノズルで吹き出
し、流体によって冷却過程中に微粒子を形成するもので
ある。この場合、流速や金属吹き出し量などの形成条件
により粒径を変えることができる。化学的析出法は、金
属塩を還元して微粒子を析出するものである。この場合
にも、析出条件により粒径を変えることができる。
As a method for granulating the alloy, for example, an atomizing method or a chemical precipitation method is used. The atomizing method is a method in which a molten metal is dropped or blown out by a nozzle into a high-speed fluid, and fine particles are formed by the fluid during a cooling process. In this case, the particle size can be changed depending on the forming conditions such as the flow rate and the amount of blown metal. In the chemical deposition method, fine particles are precipitated by reducing a metal salt. Also in this case, the particle size can be changed depending on the precipitation conditions.

【0016】合金扁平状にする方法としては、例えば上
記アトマイズ法や化学的析出法によって形成した粒状の
微粒子を圧延ロール又はスタンプミルなどの物理的な力
を加えることにより押しつぶして扁平な円盤形状の微粒
子とする。
As a method of forming the alloy into a flat shape, for example, the granular fine particles formed by the atomizing method or the chemical precipitation method are crushed by applying a physical force such as a rolling roll or a stamp mill to form a flat disk shape. Fine particles.

【0017】炉7のヒーター6により700〜800℃
に加熱すると、反応管5内部に載置された容器9内の金
属粉末8の酸化が始まる。このとき、金属中の鉄成分は
酸化せず、ケイ素、アルミニウム、クロム又はニッケル
等の鉄に添加した添加元素の酸化が始まる。金属粉末8
の酸化膜厚が必要な酸化膜厚に達したら、反応管5の両
端部に巻回された矢印方向に冷却水が流れる冷却管10
によって反応管5を冷却し、金属粉末を取り出す。この
場合、膜厚は処理時間、水素供給量、温度等の制御によ
り調整可能である。
700-800 ° C. by the heater 6 of the furnace 7
, The oxidation of the metal powder 8 in the container 9 placed inside the reaction tube 5 starts. At this time, the iron component in the metal is not oxidized, and the oxidation of the additional element added to the iron such as silicon, aluminum, chromium or nickel starts. Metal powder 8
When the thickness of the oxide film reaches the required oxide film thickness, the cooling pipe 10 through which the cooling water flows in the direction of the arrow wound around both ends of the reaction tube 5.
To cool the reaction tube 5 and take out the metal powder. In this case, the film thickness can be adjusted by controlling the processing time, hydrogen supply amount, temperature and the like.

【0018】このように、ウェット水素ガス雰囲気中で
加熱酸化処理を施すことにより、金属粉末8の表面は強
固で安定した酸化膜(SiO2、Al23、CrO2等)
の被膜で覆われるので、絶縁性の優れた電磁波吸収材料
が得られる。さらに、鉄が酸化されないので、電磁波吸
収体として用いたときに電気抵抗が低下することはな
い。
As described above, by performing the heat oxidation treatment in a wet hydrogen gas atmosphere, the surface of the metal powder 8 has a strong and stable oxide film (SiO 2 , Al 2 O 3 , CrO 2, etc.).
Thus, an electromagnetic wave absorbing material having excellent insulating properties can be obtained. Further, since iron is not oxidized, the electric resistance does not decrease when used as an electromagnetic wave absorber.

【0019】このような電磁波吸収材料は、樹脂又はエ
ラストマーと混合し、ペースト状またはシート状の電磁
波吸収体として用いられる。このような混合体を形成す
るのは、金属磁性体微粒子を適当に分散させるため、お
よびペースト状あるいはシート状などその他電波吸収体
として実際に使用しやすい形態とするためである。
Such an electromagnetic wave absorbing material is mixed with a resin or an elastomer, and used as a paste-like or sheet-like electromagnetic wave absorber. The reason why such a mixture is formed is to appropriately disperse the metal magnetic fine particles and to make the paste into a form such as a paste or a sheet and other forms which can be easily used as a radio wave absorber.

【0020】[0020]

【発明の効果】以上説明したように、本発明において
は、この構成によれば、ウェット水素ガス雰囲気中で加
熱酸化処理を施すので、合金粒子の表面は強固なSiO
2やAl23やCrO2等の酸化物で覆われるため、絶縁
性の優れた電磁波吸収材料を得ることができ、電磁波吸
収体の抵抗も高まり、抵抗率が高く吸収特性の優れた電
磁波吸収体を得ることができる。また、生成した酸化物
の酸化膜厚の制御が容易にできる。
As described above, according to the present invention, according to this structure, since the heat oxidation treatment is performed in a wet hydrogen gas atmosphere, the surface of the alloy particles has a strong SiO
2 or an oxide such as Al 2 O 3 or CrO 2, it is possible to obtain an electromagnetic wave absorbing material having excellent insulation properties, increase the resistance of the electromagnetic wave absorber, and provide an electromagnetic wave having a high resistivity and excellent absorption characteristics. An absorber can be obtained. Further, it is possible to easily control the oxide film thickness of the generated oxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ウェット水素ガス雰囲気中で合金粒子を酸化す
るときの概略図。
FIG. 1 is a schematic diagram when oxidizing alloy particles in a wet hydrogen gas atmosphere.

【符号の説明】[Explanation of symbols]

1:水素配管、2:バブラー、3:純水、4:供給管、
5:反応管、6:ヒーター、7:炉、8:金属粉末、
9:容器、10:冷却管、11:排気管
1: hydrogen piping, 2: bubbler, 3: pure water, 4: supply pipe,
5: reaction tube, 6: heater, 7: furnace, 8: metal powder,
9: container, 10: cooling pipe, 11: exhaust pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁性体粒子からなる電磁波吸収材料と、 前記電磁波吸収材料と有機結合材を混練して形成された
電磁波吸収体において、 前記電磁波吸収材料は、合金粒子からなり、該合金粒子
にウェット水素ガス雰囲気中で加熱酸化処理を施したこ
とを特徴とする電磁波吸収体。
1. An electromagnetic wave absorbing material formed by kneading an electromagnetic wave absorbing material composed of magnetic particles, and an electromagnetic wave absorbing material and an organic binder, wherein the electromagnetic wave absorbing material is made of alloy particles. An electromagnetic wave absorber subjected to heat oxidation treatment in a wet hydrogen gas atmosphere.
【請求項2】前記合金は、鉄と安定した酸化膜を形成す
る元素との合金であることを特徴とする請求項1に記載
の電磁波吸収体。
2. The electromagnetic wave absorber according to claim 1, wherein the alloy is an alloy of iron and an element that forms a stable oxide film.
【請求項3】前記元素は、Si,Al,Cr,またはN
iのいずれかを含むことを特徴とする請求項1に記載の
電磁波吸収体。
3. The method according to claim 1, wherein the element is Si, Al, Cr, or N.
The electromagnetic wave absorber according to claim 1, wherein the electromagnetic wave absorber includes any one of i.
JP11232788A 1999-08-19 1999-08-19 Electromagnetic wave absorber Pending JP2001060792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11232788A JP2001060792A (en) 1999-08-19 1999-08-19 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11232788A JP2001060792A (en) 1999-08-19 1999-08-19 Electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2001060792A true JP2001060792A (en) 2001-03-06

Family

ID=16944768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11232788A Pending JP2001060792A (en) 1999-08-19 1999-08-19 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2001060792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368480A (en) * 2001-06-12 2002-12-20 Nitto Denko Corp Electromagnetic wave suppressor sheet
JP2003017887A (en) * 2001-06-29 2003-01-17 Takenaka Komuten Co Ltd Method for manufacturing electromagnetic wave absorbing board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368480A (en) * 2001-06-12 2002-12-20 Nitto Denko Corp Electromagnetic wave suppressor sheet
JP2003017887A (en) * 2001-06-29 2003-01-17 Takenaka Komuten Co Ltd Method for manufacturing electromagnetic wave absorbing board

Similar Documents

Publication Publication Date Title
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
TWI626666B (en) Soft magnetic alloy and magnetic parts
JP2006351946A (en) Method for manufacturing soft magnetic compact
CN108597717A (en) The preparation method of nucleocapsid soft-magnetic composite material
JP2008231534A5 (en)
JP2019123894A (en) Soft magnetic alloy and magnetic component
JP2019123930A (en) Soft magnetic alloy and magnetic component
JP2018142602A (en) Soft magnetic alloy
CN109023162B (en) Preparation method of iron-based amorphous alloy magnetic core and iron-based amorphous alloy
Chen et al. Microstructural and magnetic properties of core–shell FeSiAl composites with Ni0. 4Zn0. 45Co0. 15Fe2O4 layer by sol–gel method
JPH1187123A (en) High-frequency soft magnetic powder
JP2001060792A (en) Electromagnetic wave absorber
JPH05222483A (en) Production of iron nitride based high density sintered compact
JPH07320920A (en) Nano-crystal alloy magnetic core and heat-treatment method thereof
CN108511143B (en) A kind of high-performance electromagnet
CN113628823B (en) Iron-based nanocrystalline magnetically soft alloy with high corrosion resistance and preparation method thereof
JP2021017614A (en) Nanocrystal soft magnetic alloy and magnetic component
KR20090057752A (en) Method for formming oxide layer for amorphous soft magnetic powder and electromagnetic wave absorber compring the soft magnetic powder prepared by the same method
JPS5848652A (en) Amorphous alloy with high magnetic permeability
JP7474561B2 (en) Coating treatment solution, its manufacturing method, and coating material manufacturing method
JP2019016670A (en) Soft magnetic alloy powder and powder-compact magnetic core arranged by use thereof
JPH10251815A (en) Fe base amorphous soft magnetic material and production thereof
JPS6052557A (en) Low-loss amorphous magnetic alloy
JPS59177902A (en) Core