JP2001058858A - Polyolefin-based fiber for cement reinforcement and its production - Google Patents

Polyolefin-based fiber for cement reinforcement and its production

Info

Publication number
JP2001058858A
JP2001058858A JP11234737A JP23473799A JP2001058858A JP 2001058858 A JP2001058858 A JP 2001058858A JP 11234737 A JP11234737 A JP 11234737A JP 23473799 A JP23473799 A JP 23473799A JP 2001058858 A JP2001058858 A JP 2001058858A
Authority
JP
Japan
Prior art keywords
fiber
amount
polyolefin
treatment
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11234737A
Other languages
Japanese (ja)
Other versions
JP4558859B2 (en
Inventor
Kenji Yamashita
憲司 山下
Hiroshi Okaya
洋志 岡屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Daiwabo Co Ltd
Original Assignee
Daiwa Boseki KK
Daiwabo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK, Daiwabo Co Ltd filed Critical Daiwa Boseki KK
Priority to JP23473799A priority Critical patent/JP4558859B2/en
Publication of JP2001058858A publication Critical patent/JP2001058858A/en
Application granted granted Critical
Publication of JP4558859B2 publication Critical patent/JP4558859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent floating of seed in cement slurry solution by using a polyolefin-based fiber in which a fiber treating agent is attached to fiber surface and fiber length is within a specific range and a ratio of oxygen element amourit to carbon element amount on fiber surface and a ratio of oxygen element amount to carbon element amount on fiber surface after decreasing an amount of the fiber treating agent is within a specific range. SOLUTION: In this polyolefin fiber for cement reinforcement, a fiber treating agent is attached to the fiber surface and the fiber length is 2-20 mm and a ratio of oxygen element amount to carbon element amount on fiber surface is 0.11-0.40 and a ratio of oxygen element amount to carbon element amount on fiber surface after reducing the fiber treating agent is 0.06-0.33. The polyolefin fiber is obtained by melt-spinning a polyolefin-based fiber, drawing the melt-spun yarn in warm water, etc., adjusting water content of drawn yarn bundle to <=5%, spreading the thickness of fiber to <=3 mm along a feed roll, subjecting the fiber to surface modification treatment of corona discharge, etc., while traveling the fiber at a rate of >=10 m/min and attaching a fiber treating agent to the fiber surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 〔発明の属する技術分野〕本発明はセメント製品全般に
おいて補強するためのセメント補強用ポリオレフィン系
繊維に関するものであり、さらに詳しくは、スラリー溶
液中に繊維を投入、攪拌して分散させた場合に繊維がス
ラリー溶液表面に浮遊(浮種現象)することのないセメ
ント補強用ポリオレフィン系繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin fiber for reinforcing cement for reinforcing cement products in general, and more particularly, to a method in which fibers are put into a slurry solution, stirred and dispersed. The present invention relates to a cement-reinforcing polyolefin-based fiber in which the fiber does not float on the surface of the slurry solution (floating phenomenon).

【0002】[0002]

【従来の技術】従来より、石綿に替わりセメント補強用
繊維としてガラス繊維等の無機繊維、あるいはナイロ
ン、ビニロン、ポリプロピレン等の合成繊維が提案され
ており、なかでもポリプロピレン繊維等のポリオレフィ
ン系繊維は、他の繊維に比べて加熱下において優れた耐
アルカリ性および強度を示すので、セメント製品とした
ときの耐衝撃性に優れており、広く使用されている。
2. Description of the Related Art Conventionally, inorganic fibers such as glass fibers or synthetic fibers such as nylon, vinylon and polypropylene have been proposed as cement reinforcing fibers in place of asbestos. Among them, polyolefin fibers such as polypropylene fibers have been proposed. Since it shows superior alkali resistance and strength under heating compared to other fibers, it has excellent impact resistance when used as a cement product and is widely used.

【0003】しかし、ポリオレフィン系繊維は本来、疎
水性が大きく比重が小さいためにスラリー溶液中で均一
に分散しにくく、スラリー溶液表面に浮遊し易いという
問題があり、セメント補強用繊維の浮種現象はセメント
成型体の品質のみならず、その製造工程においても種々
の問題の要因となるものである。そこでこれらの問題を
解決するべく、ポリオレフィン系繊維を親水化する様々
な試みがなされている。例えば、本出願人による特開平
7−10620号公報では、ポリプロピレン繊維表面に
繊維処理剤としてラリウルホスフェートカリウム塩等の
燐酸系塩を付着させることにより、繊維とセメントとの
親和性が向上し、セメント中の繊維が均一に分散しやす
くしている。また、特公平5−87460号公報のよう
に、幹枝形状のチョップドフィラメントタイプのポリプ
ロピレンフィルム繊維において、開裂分繊する前のフィ
ルムの状態でコロナ放電処理を施し、セメントマトリッ
クスとの密着性を向上させている。
[0003] However, polyolefin fibers are inherently high in hydrophobicity and low in specific gravity, so that they are difficult to uniformly disperse in a slurry solution and easily float on the surface of the slurry solution. Is a factor of various problems in the production process as well as the quality of the cement molded body. In order to solve these problems, various attempts have been made to hydrophilize polyolefin fibers. For example, in Japanese Patent Application Laid-Open No. Hei 7-10620 by the present applicant, the affinity between fiber and cement is improved by attaching a phosphoric acid salt such as potassium salt of lariur phosphate as a fiber treatment agent to the surface of polypropylene fiber, The fibers in the cement are easily dispersed uniformly. Further, as in Japanese Patent Publication No. 5-87460, a corona discharge treatment is applied to a chopped filament type polypropylene film fiber having a trunk branch shape in the state of a film before splitting and splitting, thereby improving the adhesion with a cement matrix. ing.

【0004】さらに、ポリオレフィン系繊維そのものの
比重を大きくさせる試みもなされており、例えば、特開
昭47−34832号公報においては高比重の酸化鉛を
混合した熱可塑性樹脂から製造されるモノフィラメント
が開示されており、また特開平4−74741号公報の
ように高融点熱可塑性樹脂繊維の全面または一部を低融
点合成樹脂でもって被覆し、低融点合成樹脂層に無機微
粒子を接着または付着させることにより、繊維の見掛け
の比重を大きくし、セメント中の繊維が均一に分散しや
すくしている。
Further, attempts have been made to increase the specific gravity of the polyolefin-based fiber itself. For example, Japanese Patent Application Laid-Open No. 47-34832 discloses a monofilament produced from a thermoplastic resin mixed with high specific gravity lead oxide. In addition, as described in JP-A-4-74741, the whole or a part of the high melting point thermoplastic resin fiber is coated with a low melting point synthetic resin, and inorganic fine particles are adhered or adhered to the low melting point synthetic resin layer. Thereby, the apparent specific gravity of the fiber is increased, and the fiber in the cement is easily dispersed uniformly.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
親水化、あるいは高比重ポリオレフィン系繊維には以下
の問題点がある。例えば、特開平7−10620号公報
においては、界面活性剤等の繊維処理剤によって繊維表
面を処理し親水化しても、スラリー中に長い間滞留する
と繊維処理剤が脱落してしまい、親水性がなくなってし
まい、繊維は浮遊し易くなり、これが浮種現象となる。
また特公平5−87460号公報においては、フィルム
の状態でコロナ放電処理を施した後、フィルムを開裂分
繊して細化しているため、細化したフィルム断面のフィ
ブリル部においてはコロナ放電処理されていない未処理
部分があり、その未処理部分の占める表面積割合は細化
の度合いによって異なるが、繊維表面全体がコロナ放電
処理による親水化の効果が得られず、繊維は浮遊し易く
なる。
However, the above-mentioned hydrophilic or high-density polyolefin fibers have the following problems. For example, in Japanese Patent Application Laid-Open No. Hei 7-10620, even if the fiber surface is treated with a fiber treatment agent such as a surfactant to make the surface hydrophilic, the fiber treatment agent falls off if the fiber stays in the slurry for a long time, and the hydrophilicity is reduced. The fibers disappear and the fibers are more likely to float, which is a floating phenomenon.
In Japanese Patent Publication No. Hei 5-87460, after a corona discharge treatment is performed in the state of a film, the film is split and divided and thinned. Therefore, a corona discharge treatment is performed in a fibril portion having a thinned film cross section. Although there is an untreated portion and the surface area ratio occupied by the untreated portion varies depending on the degree of thinning, the entire surface of the fiber does not have the effect of hydrophilization by corona discharge treatment, and the fiber easily floats.

【0006】また、特開昭47−34832号公報、お
よび特開平4−74741号公報においては、浮種現象
は起こり難いが、無機微粒子や金属酸化物を混合あるい
は付着させるため、繊維の強度やヤング率が小さく、得
られるセメント成型体の耐衝撃性等の品質が損なわれ
る。したがって、スラリー溶液中で繊維が溶液表面に浮
遊することのないセメント補強用ポリオレフィン系繊維
が未だ得られていないのが実情である。本発明はかかる
実情を鑑みてなされたものであり、スラリー溶液中で浮
種現象の生じないセメント補強用ポリオレフィン系繊維
を提供するものである。
In Japanese Patent Application Laid-Open No. 47-34832 and Japanese Patent Application Laid-Open No. 4-74741, the floating phenomenon is unlikely to occur, but the inorganic fine particles and metal oxide are mixed or adhered, so that the fiber strength and The Young's modulus is small, and the quality such as impact resistance of the obtained cement molded product is impaired. Therefore, the fact is that polyolefin fibers for cement reinforcement, in which the fibers do not float on the solution surface in the slurry solution, have not yet been obtained. The present invention has been made in view of such circumstances, and provides a polyolefin fiber for cement reinforcement which does not cause a floating phenomenon in a slurry solution.

【0007】[0007]

【課題を解決するための手段】本発明のセメント補強用
ポリオレフィン系繊維は、繊維長が2〜20mmであり、
繊維表面に繊維処理剤が付着したポリオレフィン系繊維
であって、繊維表面における酸素元素量と炭素元素量の
比(O/C)Aが0.10〜0.37であり、かつ繊維処理剤
を減量した後の繊維表面における酸素元素量と炭素元素
量の比(O/C)Wが0.10〜0.37であることを特徴と
する。かかる構成を採ることにより、スラリー溶液中に
繊維を投入、攪拌して分散させた時、繊維表面にセメン
ト系粒子が均一に付着し易く、繊維がスラリー溶液の液
面に浮遊することなく、中間浮遊もしくは完全に沈降す
るセメント補強用に好適なポリオレフィン系繊維が得ら
れる。
The cement reinforcing polyolefin fiber of the present invention has a fiber length of 2 to 20 mm,
A polyolefin fiber having a fiber treating agent attached to the fiber surface, wherein the ratio (O / C) A of the oxygen element amount to the carbon element amount on the fiber surface is 0.10 to 0.37, and the fiber treating agent is It is characterized in that the ratio (O / C) W of the oxygen element amount and the carbon element amount on the fiber surface after the weight reduction is 0.10 to 0.37. By adopting such a configuration, when the fibers are put into the slurry solution, and the fibers are stirred and dispersed, the cement-based particles easily adhere to the fiber surface evenly, and the fibers do not float on the surface of the slurry solution. A polyolefin-based fiber floating or completely settled and suitable for reinforcing cement is obtained.

【0008】また、本発明のセメント補強用ポリオレフ
ィン系繊維は、下記式(1)で示される繊維処理剤減量
前後における酸素元素量と炭素元素量の比の減少率が6
0%以下であることが望ましい。 減少率=[{(O/C)A − (O/C)W }×100]/(O/C)A ・・・(1)
Further, the polyolefin fiber for cement reinforcement of the present invention has a reduction rate of the ratio of the oxygen element amount to the carbon element amount before and after the reduction of the fiber treatment agent represented by the following formula (1) of 6:
Desirably, it is 0% or less. Reduction rate = [{(O / C) A − (O / C) W } × 100] / (O / C) A (1)

【0009】そして、本発明のセメント補強用ポリオレ
フィン系繊維は、ポリオレフィン系樹脂を溶融紡糸し、
温水、湿熱、あるいは、乾熱中で延伸した延伸糸束を水
分率5%以下に調整した後、フィードロールに沿って延
伸糸束の厚みを3mm以下に拡げ、10m/min 以上の速度
で走行させながら、1.0〜1.2倍の緊張状態でコロ
ナ放電処理、常圧プラズマ処理、オゾン水溶液処理のう
ちいずれかの表面改質処理を施した後、繊維表面に繊維
処理剤を付着させることにより製造できる。さらに、前
記コロナ放電処理は、繊維表面全体に施され、かつ1回
当たりの放電量が少なくとも50W/m2/minであることが
望ましい。以下、本発明の内容を具体的に説明する。
The polyolefin fiber for cement reinforcement of the present invention is obtained by melt-spinning a polyolefin resin,
After adjusting the moisture content of the drawn yarn bundle stretched in hot water, wet heat, or dry heat to 5% or less, the thickness of the drawn yarn bundle is expanded to 3 mm or less along a feed roll, and the yarn is run at a speed of 10 m / min or more. After applying any one of surface modification treatments of corona discharge treatment, normal pressure plasma treatment, and ozone aqueous solution treatment under a tension of 1.0 to 1.2 times, attaching a fiber treatment agent to the fiber surface Can be manufactured. Further, it is preferable that the corona discharge treatment is performed on the entire fiber surface, and the discharge amount per operation is at least 50 W / m 2 / min. Hereinafter, the contents of the present invention will be specifically described.

【0010】 〔発明の詳細な説明〕 本発明に用いられるポリオレフィン系繊維は、ポリエチ
レン、ポリプロピレン、ポリメチルペンテン、ポリブテ
ン−1等のポリオレフィン重合体もしくは共重合体が用
いられ、なかでもセメント補強用繊維の繊維表面はセメ
ント成型の際にオートクレーブ養生などで高温に曝され
るため、できるだけ高融点成分で構成されることが望ま
しく、ポリプロピレンもしくはポリメチルペンテンが最
も好ましい。また本発明のセメント補強用繊維の繊維形
態は、単一繊維または複合繊維のいずれであってもよ
く、複合繊維は鞘芯型、並列型、分割型のいずれであっ
ても差し支えない。
DETAILED DESCRIPTION OF THE INVENTION Polyolefin fibers used in the present invention include polyolefin polymers or copolymers such as polyethylene, polypropylene, polymethylpentene, and polybutene-1. Among them, cement reinforcing fibers Since the fiber surface is exposed to high temperatures during autoclave curing during cement molding, it is desirable that the fiber surface be composed of as high a melting point component as possible, and polypropylene or polymethylpentene is most preferred. The fiber form of the fiber for cement reinforcement of the present invention may be either a single fiber or a composite fiber, and the composite fiber may be any of a sheath-core type, a side-by-side type, and a split type.

【0011】また、本発明のセメント補強用ポリオレフ
ィン系繊維の繊度は、セメントの成型法やセメント曲げ
強度、衝撃強度等に応じて適宜決定すればよいが、0.
5〜90dtexが好ましい。一般に繊度が細いと繊維の表
面積が大きくなるため、繊維表面の親水基等がスラリー
溶液に接触し易くなり、浮種が少なくなる傾向にある。
The fineness of the polyolefin fiber for reinforcing cement of the present invention may be appropriately determined according to the cement molding method, cement bending strength, impact strength, and the like.
5-90 dtex is preferred. In general, when the fineness is small, the surface area of the fiber becomes large, so that the hydrophilic groups on the fiber surface and the like easily come into contact with the slurry solution, and the floating species tend to be reduced.

【0012】繊維長は、2〜20mmが好ましい。繊維長
が2mm未満であると、セメントの補強効果に劣り、20
mmを超えると、スラリー調製時に繊維同士が絡み易く、
分繊し難いため、補強効果が十分とはいえないからであ
る。
The fiber length is preferably 2 to 20 mm. If the fiber length is less than 2 mm, the effect of reinforcing cement is poor, and
If it exceeds mm, the fibers are easily entangled during slurry preparation,
This is because it is difficult to separate fibers, and the reinforcing effect is not sufficient.

【0013】本発明のセメント補強用ポリオレフィン系
繊維において、繊維表面に親水性の官能基が導入され
る。導入される親水性の官能基としては、例えば、−C
H−O−、−CO−、−COO−などが挙げられるが、
繊維表面における酸素元素量と炭素元素量の比(O/C)A
0.11〜0.40であり、かつ繊維処理剤を減量した
後の繊維表面における酸素元素量と炭素元素量の比(O/
C)Wが0.06〜0.33を満たすことにより、浮種現
象のないポリオレフィン系繊維となす。より好ましい(O
/C)Aは0.20〜0.30であり、かつ(O/C)Wは0.1
5〜0.25である。ここで、繊維処理剤を減量した後
のポリオレフィン系繊維とは、繊維処理剤が付着した元
の繊維を多量の水により洗浄し、エタノールで残りの付
着物を抽出し、抽出前後の重量から算出した抽出量が
0.05%以下となるまで洗浄したものをいう。
In the polyolefin fiber for cement reinforcement of the present invention, a hydrophilic functional group is introduced into the fiber surface. Examples of the hydrophilic functional group to be introduced include, for example, -C
H-O-, -CO-, -COO- and the like,
The ratio of the amount of oxygen element to the amount of carbon element on the fiber surface (O / C) A is 0.11 to 0.40, and the ratio of the amount of oxygen element to the amount of carbon element on the fiber surface after reducing the amount of the fiber treatment agent (O /
C) When W satisfies 0.06 to 0.33, a polyolefin fiber having no floating phenomenon is formed. More preferred (O
/ C) A is 0.20 to 0.30, and (O / C) W is 0.1
5 to 0.25. Here, the polyolefin fiber after the fiber treatment agent is reduced, the original fiber to which the fiber treatment agent is attached is washed with a large amount of water, the remaining attached matter is extracted with ethanol, and calculated from the weight before and after the extraction. Washed until the extracted amount becomes 0.05% or less.

【0014】そして、繊維表面における酸素元素量と炭
素元素量の比(O/C)A、および繊維処理剤を減量した後の
繊維表面における酸素元素量と炭素元素量の比(O/C)
Wは、株式会社島津製作所製のESCA−3300を用
い、繊維の表面元素組成分析を行い、測定したものであ
る。試料は両面テープの片面に、約1100dtexの延伸
糸束を引き揃えて並べて貼り付けた。測定条件として
は、線源はMg/Al、出力8kW、30mAとし、測定面
積50mm2 、繊維表面からの深度10nmで繊維表面に
存在するオレフィン主鎖および側鎖の全炭素元素、およ
び官能基の割合を測定した。(O/C)Aが0.11、(O/C)W
が0.06未満であると、セメント系粒子の付着が少な
く、浮種が解消されないだけでなく、セメント補強効果
も低下する。また、(O/C)Aが0.40、(O/C)Wが0.3
3を超えると、繊維強力の劣化が大きく、セメント補強
効果も低下する。
Then, the ratio of the amount of oxygen element to the amount of carbon element on the fiber surface (O / C) A , and the ratio of the amount of oxygen element and carbon element on the fiber surface after reducing the amount of the fiber treating agent (O / C)
W was measured by performing a surface element composition analysis of the fiber using ESCA-3300 manufactured by Shimadzu Corporation. The sample was attached to one side of a double-sided tape by arranging drawn yarn bundles of about 1100 dtex in parallel. The measurement conditions were as follows: the source was Mg / Al, the output was 8 kW, 30 mA, the measurement area was 50 mm 2 , the total carbon elements in the olefin main chain and side chains existing on the fiber surface at a depth of 10 nm from the fiber surface, and the functional groups The proportion was measured. (O / C) A is 0.11, (O / C) W
Is less than 0.06, adhesion of cement-based particles is small, not only floating species is not eliminated, but also the cement reinforcing effect is reduced. (O / C) A is 0.40, (O / C) W is 0.3
If it exceeds 3, the fiber strength is greatly deteriorated, and the cement reinforcing effect is also reduced.

【0015】さらに、本発明のセメント補強用ポリオレ
フィン系繊維において、前記式(1)で示される繊維処
理剤減量前後における酸素元素量と炭素元素量の比の減
少率が60%以下であることが好ましい。より好ましく
は、30%以下である。繊維処理剤減量前後における酸
素元素量と炭素元素量の比の減少率が60%を超える
と、セメント系粒子の付着性に対して、繊維処理剤への
依存の度合いが大きくなるため、例えば、湿式抄造法に
おいて初期(初回)はセメント系粒子の付着量が多く、
分散性に優れているが、さらに繰り返し、回収、再利用
された場合には、セメント系粒子の付着量が減少し、ス
ラリー溶液表面に浮遊(浮種)してしまうからである。
Further, in the polyolefin fiber for cement reinforcement of the present invention, the reduction rate of the ratio of the oxygen element amount to the carbon element amount before and after the reduction of the fiber treatment agent represented by the above formula (1) may be 60% or less. preferable. More preferably, it is 30% or less. If the reduction ratio of the ratio of the oxygen element amount to the carbon element amount before and after the fiber treatment agent weight loss exceeds 60%, the degree of dependence on the fiber treatment agent for the adhesion of the cement-based particles increases, for example, In the initial stage (first time) of wet papermaking, the amount of cement particles attached is large,
This is because, although excellent in dispersibility, when it is further repeatedly collected and reused, the amount of cement-based particles attached decreases and floats (floats) on the surface of the slurry solution.

【0016】前記繊維表面における酸素元素量と炭素元
素量の比(O/C)Wを得る方法として、繊維処理剤付着前お
よび/または後に表面改質することが好ましく、この方
法によれば、スラリー溶液中に分散しているセメント系
粒子の付着性が向上するのである。特に、表面改質は、
繊維処理剤が繊維重量あたり0.1重量%以下の状態で
施すと、耐久親水性が向上する点で好ましい。より好ま
しくは、繊維処理剤が繊維重量あたり0.05重量%以
下である。表面改質処理は、公知の処理方法の中から適
宜選定すればよく、例えば、コロナ放電処理、プラズマ
処理、オゾン水溶液処理、フッ素化処理、紫外線照射、
あるいはスルホン化処理等が挙げられる。また、これら
の処理を組み合わせても何ら支障はない。なかでも本発
明においては、安全性やコストの面からコロナ放電処
理、常圧プラズマ処理、もしくはオゾン水溶液処理が特
に好ましい。そして、コロナ放電処理、常圧プラズマ処
理、オゾン水溶液処理など表面改質処理を施すことによ
り、ポリオレフィン系繊維表面に水酸基等の酸素元素が
導入され、繊維表面に気泡が付着し難く、スラリー溶液
中に分散しているセメント系粒子が付着し易くなる。
As a method for obtaining the ratio (O / C) W of the oxygen element amount and the carbon element amount on the fiber surface, surface modification is preferably performed before and / or after the fiber treatment agent is adhered. This improves the adhesion of the cement-based particles dispersed in the slurry solution. In particular, surface modification
It is preferable to apply the fiber treating agent in a state of 0.1% by weight or less based on the weight of the fiber, since the durability and hydrophilicity are improved. More preferably, the content of the fiber treating agent is 0.05% by weight or less per fiber weight. The surface modification treatment may be appropriately selected from known treatment methods, for example, corona discharge treatment, plasma treatment, ozone aqueous solution treatment, fluorination treatment, ultraviolet irradiation,
Alternatively, sulfonation treatment and the like can be mentioned. There is no problem even if these processes are combined. Among them, in the present invention, corona discharge treatment, normal pressure plasma treatment, or ozone aqueous solution treatment is particularly preferable from the viewpoint of safety and cost. Then, by performing a surface modification treatment such as a corona discharge treatment, a normal pressure plasma treatment, and an ozone aqueous solution treatment, an oxygen element such as a hydroxyl group is introduced into the surface of the polyolefin-based fiber. The cement-based particles dispersed in the particles easily adhere.

【0017】また、本発明のポリオレフィン系繊維に付
着させる繊維処理剤は、繊維表面における酸素元素量と
炭素元素量の比(O/C)Aが0.11〜0.40を満たすも
のであれば特に限定されるものではなく、通常用いられ
る様々な繊維処理剤、例えばノルマルアルキルホスフェ
ートアルカリ金属塩としては、ノルマルアルキルホスフ
ェートカリウムまたはノルマルアルキルホスフェートナ
トリウムであって、炭素数8のオクチルアルキルホスフ
ェートカリウムまたはナトリウム、炭素数10のデシル
アルキルホスフェートカリウムまたはナトリウム、炭素
数12のラウリルアルキルホスフェートカリウムまたは
ナトリウム、炭素数13のトリデシルアルキルホスフェ
ートカリウムまたはナトリウム、炭素数14のミリスチ
ルアルキルホスフェートカリウムまたはナトリウム、炭
素数16のセチルアルキルホスフェートカリウムまたは
ナトリウム、炭素数18のステアリルアルキルホスフェ
ートカリウムまたはナトリウムを挙げることができる。
さらに燐酸系塩を付着させてもよく、例えば燐酸カリウ
ム、燐酸ナトリウム、燐酸カルシウム、燐酸水素二カリ
ウム、燐酸水素二ナトリウム、燐酸二水素カリウム、燐
酸二水素ナトリウム、燐酸二水素カルシウム、ピロ燐酸
カリウム、ピロ燐酸ナトリウム、ピロ燐酸カルシウム、
ピロ燐酸二水素カリウム、ピロ燐酸二水素ナトリウム、
メタ燐酸カリウム、メタ燐酸ナトリウム、トリポリ燐酸
カリウム、トリポリ燐酸ナトリウム等を挙げることがで
き、これらを2種以上混合してもよい。
The fiber treating agent to be adhered to the polyolefin fiber of the present invention is such that the ratio (O / C) A of the oxygen element amount to the carbon element amount on the fiber surface satisfies 0.11 to 0.40. It is not particularly limited, and various fiber treatment agents usually used, for example, normal alkyl phosphate alkali metal salts include potassium normal alkyl phosphate or sodium normal alkyl phosphate, and potassium octyl alkyl phosphate having 8 carbon atoms or Sodium, potassium or sodium decyl alkyl phosphate having 10 carbon atoms, potassium or sodium lauryl alkyl phosphate having 12 carbon atoms, potassium or sodium tridecyl alkyl phosphate having 13 carbon atoms, myristyl alkyl phosphate having 14 carbon atoms And potassium or sodium cetyl alkyl phosphate having 16 carbon atoms, potassium or sodium stearyl alkyl phosphate having 18 carbon atoms.
Further, a phosphate salt may be attached, for example, potassium phosphate, sodium phosphate, calcium phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, calcium dihydrogen phosphate, potassium pyrophosphate, Sodium pyrophosphate, calcium pyrophosphate,
Potassium dihydrogen pyrophosphate, sodium dihydrogen pyrophosphate,
Examples thereof include potassium metaphosphate, sodium metaphosphate, potassium tripolyphosphate, and sodium tripolyphosphate, and two or more of these may be mixed.

【0018】また、上記の繊維処理剤以外にも、水溶性
集束剤を付与して延伸糸束を集束してもよい。例えば、
コーンスターチ、フノリ、カゼイン、タピオカ、植物性
小麦澱粉、馬鈴薯澱粉、植物性ガム類、アルファ澱粉、
澱粉誘導体の酢酸澱粉、燐酸澱粉、酵素性澱粉、カチオ
ン化澱粉、焙焼澱粉、カルボキシメチルスターチ、カル
ボキシエチルスターチ、ヒドロキシエチルスターチ、陽
性澱粉、シアノエチル化澱粉、ジアルデヒドデンプン、
更に、セルロース誘導体としては、メチルセルロース、
エチルセルロース、ヒドロキシエチルセルロース、カル
ボキシメチルセルロース、アルギン酸ソーダ、あるい
は、ポリビニルアルコール、ポリアクリル酸等を挙げる
ことができる。
Further, in addition to the above-mentioned fiber treating agent, a water-soluble sizing agent may be provided to bundle the drawn yarn bundle. For example,
Corn starch, funori, casein, tapioca, vegetable wheat starch, potato starch, vegetable gums, alpha starch,
Starch derivatives starch acetate, phosphate starch, enzymatic starch, cationized starch, roasted starch, carboxymethyl starch, carboxyethyl starch, hydroxyethyl starch, positive starch, cyanoethylated starch, dialdehyde starch,
Further, as the cellulose derivative, methyl cellulose,
Examples include ethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, sodium alginate, polyvinyl alcohol, and polyacrylic acid.

【0019】上記の繊維処理剤は、繊維重量に対して
0.1〜0.5重量%繊維表面に付着させることが好ま
しい。繊維処理剤の付与方法としては、浸漬法、スプレ
ー法、コーティング法の何れでもよい。0.1重量%未
満であると、延伸糸束の集束が困難となり、所定の繊維
長に切断するときやセメント成型時の取り扱いが困難と
なる。0.5重量%を超えると、コスト高となる。
The above-mentioned fiber treating agent is preferably attached to the fiber surface at 0.1 to 0.5% by weight based on the weight of the fiber. The method of applying the fiber treatment agent may be any of an immersion method, a spray method, and a coating method. If the amount is less than 0.1% by weight, it becomes difficult to bundle the drawn yarn bundle, and it becomes difficult to cut the fiber into a predetermined fiber length and to handle it during cement molding. If it exceeds 0.5% by weight, the cost will increase.

【0020】次に、本発明のセメント補強用ポリオレフ
ィン系繊維の製造方法について説明する。本発明のセメ
ント補強用ポリオレフィン系繊維は、まずポリオレフィ
ン系樹脂は、公知の溶融紡糸法により紡糸される。得ら
れた紡糸フィラメントは、温水、湿熱、あるいは乾熱中
で所定の倍率に延伸されて延伸糸束を得る。次いで、表
面改質処理をコロナ放電処理やプラズマ処理などのよう
に繊維に対して非接触で実施する場合、水分率5%以下
に調整した55000〜1450000dtexの延伸糸束
を10m/min 以上の速度で走行させながら、1.0〜
1.2倍の緊張状態で表面改質処理を施すとよい。この
とき延伸糸束はフィードロールに沿って均一に薄膜状に
薄く拡げる必要があり、特に延伸糸束の厚みはできるだ
け薄い方が効率よく表面改質処理できるため、3mm以
下、好ましくは1mm以下とするとよい。そして、表面改
質処理は延伸糸束の両面を少なくとも1回処理される。
表面改質処理が片面だけであると、繊維表面への酸素元
素の導入が不均一となり、スラリー溶液中に分散してい
るセメント系粒子の付着性が不十分なだけでなく、付着
斑となるからである。
Next, a method for producing the polyolefin fiber for cement reinforcement of the present invention will be described. In the polyolefin fiber for cement reinforcement of the present invention, first, a polyolefin resin is spun by a known melt spinning method. The obtained spun filament is drawn at a predetermined magnification in warm water, wet heat or dry heat to obtain a drawn yarn bundle. Next, in the case where the surface modification treatment is performed in a non-contact manner with the fiber such as a corona discharge treatment or a plasma treatment, a drawn yarn bundle of 55,000 to 1450000 dtex adjusted to a moisture content of 5% or less has a speed of 10 m / min or more. While running at 1.0
The surface modification treatment may be performed under 1.2 times tension. At this time, the drawn yarn bundle needs to be spread uniformly and thinly along the feed roll in a thin film form. In particular, the thinner the drawn yarn bundle can be, the more efficiently the surface modification treatment can be performed. Good to do. In the surface modification treatment, both sides of the drawn yarn bundle are treated at least once.
If the surface modification treatment is performed only on one side, the introduction of the oxygen element to the fiber surface becomes uneven, which causes not only insufficient adhesion of the cement-based particles dispersed in the slurry solution, but also adhesion spots. Because.

【0021】例えば、表面改質処理をコロナ放電処理で
実施する場合、コロナ放電処理における1回当たりの放
電量は、少なくとも50W/m2/minであることが好まし
く、総放電量は100〜5000W/m2/minであることが
好ましい。より好ましい放電量は、250〜5000W/
m2/minである。放電量が50W/m2/min未満、あるいは総
放電量が100W/m2/min未満であると、酸素元素量が不
十分となり、5000W/m2/minを超えると、過剰処理と
なり高コストであるとともに繊維表面の劣化が生じて、
セメント強力にも影響を与える。
For example, when the surface modification treatment is performed by corona discharge treatment, the amount of discharge per corona discharge treatment is preferably at least 50 W / m 2 / min, and the total discharge amount is 100 to 5000 W / m 2 / min is preferred. More preferable discharge amount is 250 to 5000 W /
m 2 / min. Than the discharge amount of 50W / m 2 / min, or when the total amount of discharge is less than 100W / m 2 / min, the amount of oxygen element becomes insufficient, and when it exceeds 5000W / m 2 / min, high cost becomes excessive treatment And the fiber surface deteriorates,
It also affects cement strength.

【0022】また、表面改質処理を常圧プラズマ処理で
実施する場合は、電圧50〜250kV、周波数500〜
3000ppsで処理するとよい。常圧プラズマ処理であ
ると、低電圧で処理できるので、繊維の劣化が少なく都
合がよい。
In the case where the surface modification treatment is carried out by normal pressure plasma treatment, the voltage is 50 to 250 kV and the frequency is 500 to 500 kV.
It is good to process at 3000 pps. In the case of the normal pressure plasma treatment, since the treatment can be performed at a low voltage, the deterioration of the fiber is small and it is convenient.

【0023】表面改質処理をオゾン水溶液処理で実施す
る場合は、通常の水あるいは過酸化水素水等の水溶液中
にオゾンを吹き込んで処理するとよい。このとき、オゾ
ン濃度は、5ppm以上、好ましくは15ppm以上であると
都合がよい。
When the surface modification treatment is performed by an ozone aqueous solution treatment, ozone may be blown into an ordinary aqueous solution such as water or an aqueous solution of hydrogen peroxide. At this time, the ozone concentration is conveniently at least 5 ppm, preferably at least 15 ppm.

【0024】さらに、表面改質処理中および処理後の繊
維には熱を与えないことが好ましく、熱を与えるとして
も130℃以下の熱が好ましい。130℃を超えると、
酸素を導入した官能基が繊維表面から内部へと移動しセ
メント系粒子の付着性が低下するためである。
Further, it is preferable that heat is not applied to the fibers during and after the surface modification treatment, and even if heat is applied, heat of 130 ° C. or less is preferable. If it exceeds 130 ° C,
This is because the functional group into which oxygen has been introduced moves from the fiber surface to the inside, and the adhesiveness of the cement-based particles decreases.

【0025】そして、表面改質処理後に繊維処理剤を所
定量付着させ、アニーリング処理、乾燥、あるいは湿潤
状態のままで所定の繊維長に切断されて、乾燥状態の集
束繊維、あるいは湿潤状態の短繊維を得る。
After the surface modification treatment, a predetermined amount of a fiber treatment agent is applied, and the fiber is cut into a predetermined fiber length in an annealing treatment, a dry or wet state, and a bundled fiber in a dry state or a short fiber in a wet state is cut. Get the fiber.

【0026】このようにして得られたセメント補強用ポ
リオレフィン系繊維において、繊維処理剤減量前および
後の粒子付着率は、20%以上であることが好ましい。
より好ましくは35%以上、さらに好ましくは50%以
上である。粒子付着率とは、繊維とセメント系粒子の親
和性を表す指標であり、以下のように測定できる。 (粒子付着率)セメント補強用繊維1g(投入前の繊維
重量WB)、ブレーン値3000のセメント系粒子5
g、水1リットルを容量約1.3リットルの市販ミキサ
ーへ投入し、回転数4000rpm で10秒間撹拌し、1
0分間静置した後、繊維を全量取り出し、投入後の繊維
重量WAを秤量し、下記式(2)で算出した。 粒子付着率(%)=[{WB−WA}×100]/WA ・・・(2) ここでいうブレーン値とは、セメント系粒子1gあたり
の全粒子の表面積の合計をいい、ブレーン値3000
は、1gあたりに表面積の合計が3000cm2の粒子群の
ことである。そして、粒子付着率が20%未満である
と、セメント系粒子との馴染みが悪いため、繊維表面に
気泡が付着し易くなって、スラリー溶液表面に繊維が浮
遊(浮種)してしまうからである。
In the polyolefin fiber for cement reinforcement thus obtained, the particle adhesion rate before and after the weight reduction of the fiber treatment agent is preferably 20% or more.
It is more preferably at least 35%, further preferably at least 50%. The particle adhesion rate is an index indicating the affinity between the fiber and the cement-based particles, and can be measured as follows. (Particle adhesion rate) cement reinforcing fiber 1 g (in predose fiber weight W B), cementitious particles Blaine value 3000 5
g and 1 liter of water into a commercially available mixer having a capacity of about 1.3 liters, and stirred at 4000 rpm for 10 seconds.
After standing for 10 minutes, the fiber was removed the total amount, were weighed fiber weight W A post on, was calculated by the following formula (2). Particle adhesion rate (%) = a [{W B -W A} × 100] / W A ··· (2) Blaine here refers to the total surface area of all particles per cementitious particles 1g, Brain value 3000
Is a group of particles having a total surface area of 3000 cm 2 per gram. If the particle adhesion ratio is less than 20%, the affinity with the cement-based particles is poor, so that air bubbles easily adhere to the fiber surface, and the fiber floats (floats) on the slurry solution surface. is there.

【0027】本発明のポリオレフィン系繊維は、普通ポ
ルトランドセメント、高炉セメント、シリカセメント、
アルミナセメント等の補強に適用することができ、また
半水石膏、2水石膏とスラグあるいはこれらを上記セメ
ントと混合して使用する際にも用いることができ、モル
タル用はもちろんのこと湿式抄造法、流込方式、押出成
型法で自然養生、蒸気養生、オートクレーブ養生といか
なる製法にも適用することができる。
[0027] The polyolefin fiber of the present invention may be made of ordinary Portland cement, blast furnace cement, silica cement,
It can be used to reinforce alumina cement, etc., and it can also be used when hemihydrate gypsum, dihydrate gypsum and slag or a mixture thereof with the above cement is used. It can be applied to any curing method such as natural curing, steam curing, and autoclave curing by a casting method and an extrusion molding method.

【0028】[0028]

【実施例】以下、本発明の内容を実施例を挙げて説明す
る。なお、繊維強度、伸度は以下のように測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the contents of the present invention will be described with reference to embodiments. The fiber strength and elongation were measured as follows.

【0029】[繊維強度、伸度]JIS L 1013
における引張強さおよび伸び率に準ずる。
[Fiber strength and elongation] JIS L 1013
In accordance with the tensile strength and the elongation percentage.

【0030】[実施例1]樹脂として融点165℃のポ
リプロピレン樹脂を用いて、紡糸温度270℃、引取速
度500m/min で溶融紡糸し、8dtexの紡糸フィラメン
トを得た。前記紡糸フィラメントを150℃で4倍に乾
式延伸して延伸糸束とし、水分率0%の延伸糸束を10
m/min の速度で走行させながら、1.05倍の緊張状態
を保ち、均一に薄膜状に厚み1mmに拡げた状態で室温2
5℃の雰囲気下でコロナ放電処理機を通し、両面にそれ
ぞれ放電量1026W/m2/minを与えて、繊維表面にコロ
ナ放電処理を施した。その後、ラウリルホスフェートカ
リウム塩を主体とする繊維処理剤を含む25℃のオイル
バス槽に延伸糸束を浸漬して、繊維処理剤を0.3重量
%付着させ、切断することにより繊度2.2dtex、繊維
長6mmのセメント補強用ポリプロピレン繊維となした。
Example 1 A polypropylene resin having a melting point of 165 ° C. was melt-spun at a spinning temperature of 270 ° C. and a take-up speed of 500 m / min to obtain a spun filament of 8 dtex. The spun filament is dry-drawn four times at 150 ° C. to form a drawn yarn bundle.
While traveling at a speed of m / min, maintain a 1.05 times tension state.
The fiber surface was subjected to a corona discharge treatment by passing through a corona discharge treatment machine in an atmosphere of 5 ° C. to give a discharge amount of 1026 W / m 2 / min to both surfaces. Thereafter, the drawn yarn bundle is immersed in an oil bath at 25 ° C. containing a fiber treating agent mainly composed of lauryl phosphate potassium salt, and the fiber treating agent is attached by 0.3% by weight and cut to obtain a fineness of 2.2 dtex. And a polypropylene fiber for cement reinforcement having a fiber length of 6 mm.

【0031】[実施例2]放電量をそれぞれ71W/m2/m
inとした以外は実施例1と同様として、セメント補強用
ポリプロピレン繊維を得た。
Example 2 The discharge amount was 71 W / m 2 / m each.
A polypropylene fiber for cement reinforcement was obtained in the same manner as in Example 1 except that “in” was set.

【0032】[実施例3]実施例1の樹脂を用いて、紡
糸温度270℃、引取速度500m/min で溶融紡糸し、
65dtexの紡糸フィラメントを得た。前記紡糸フィラメ
ントを150℃で5倍に乾式延伸して、繊度13.2dt
ex、繊維長10mmとした以外は実施例1と同様として、
セメント補強用ポリプロピレン繊維を得た。
Example 3 The resin of Example 1 was melt-spun at a spinning temperature of 270 ° C. and a take-up speed of 500 m / min.
A 65 dtex spun filament was obtained. The spun filament is dry-drawn five times at 150 ° C., and has a fineness of 13.2 dt.
ex, the same as Example 1 except that the fiber length was 10 mm,
A polypropylene fiber for cement reinforcement was obtained.

【0033】[実施例4]表面改質処理として、延伸糸
束に電圧60kV、周波数1000pps の常圧プラズマ処
理を用いた以外は実施例1と同様として、セメント補強
用ポリプロピレン繊維を得た。
Example 4 A polypropylene fiber for cement reinforcement was obtained in the same manner as in Example 1 except that a normal pressure plasma treatment at a voltage of 60 kV and a frequency of 1000 pps was used for the drawn yarn bundle as a surface modification treatment.

【0034】[比較例1]コロナ放電処理を施さなかっ
た以外は実施例1と同様として、ポリプロピレン繊維を
得た。
Comparative Example 1 A polypropylene fiber was obtained in the same manner as in Example 1 except that the corona discharge treatment was not performed.

【0035】[比較例2]放電量をそれぞれ25W/m2/m
inのコロナ放電処理を施した以外は実施例1と同様とし
て、ポリプロピレン繊維を得た。
[Comparative Example 2] The discharge amount was 25 W / m 2 / m each.
A polypropylene fiber was obtained in the same manner as in Example 1, except that the in corona discharge treatment was performed.

【0036】[比較例3]現存の20μmのポリプロピ
レンフィルムを用いて実施例1と同様のコロナ放電処理
を施し、80μmの幅にフィブリル化した後、6mmに切
断し、ポリプロピレンフィブリル化繊維を得た。実施例
1〜4、および比較例1〜3の繊維物性を表1に示す。
[Comparative Example 3] The same corona discharge treatment as in Example 1 was performed using an existing 20 µm polypropylene film, fibrillated to a width of 80 µm, and then cut into 6 mm to obtain a polypropylene fibrillated fiber. . Table 1 shows the fiber properties of Examples 1 to 4 and Comparative Examples 1 to 3.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例1〜4において、初期(初回)は主
として繊維表面に付着した繊維処理剤が作用し、スラリ
ー溶液中で均一に分散していた。そして、スラリー溶液
を回収、再利用した際、回収タンク中の白水においても
液表面に浮種は発生しなかった。一方、比較例1、2に
おいて、初期のスラリー溶液中での分散性は若干の浮種
が生じた程度であったが、回収タンク中の白水において
はかなりの浮種が発生していた。また、比較例3は、繊
維表面全体がコロナ放電処理されていないためか、浮種
は解消されなかった。
In Examples 1 to 4, in the initial stage (first time), the fiber treating agent mainly attached to the fiber surface acted and was uniformly dispersed in the slurry solution. Then, when the slurry solution was collected and reused, no floating species occurred on the surface of the liquid even in the white water in the collection tank. On the other hand, in Comparative Examples 1 and 2, the initial dispersibility in the slurry solution was such that slight floating occurred, but considerable floating occurred in the white water in the recovery tank. In Comparative Example 3, floating species were not eliminated, probably because the entire fiber surface was not subjected to corona discharge treatment.

【0039】[0039]

【発明の効果】本発明のセメント補強用ポリオレフィン
系繊維は、繊維処理剤の減量前および減量後の繊維表面
における酸素元素量と炭素元素量の比を所定の範囲とす
ることにより、セメントスラリー溶液との親和性に優
れ、繊維表面にセメント系粒子が付着し易く、セメント
ボード製造工程で回収された白水タンクにおいて繊維が
白水表面に浮遊することなく白水中に中間浮遊もしくは
完全沈降し、白水再利用時に再び繊維がセメント製造工
程に戻るとともに白水上澄み液をセメント製造工程の洗
浄水として使用するときに浮遊した繊維が洗浄水配管に
詰まるということもなく、投入した繊維が効率よく使用
できる。
The polyolefin fiber for cement reinforcement of the present invention is obtained by adjusting the ratio of the oxygen element amount to the carbon element amount on the fiber surface before and after the weight reduction of the fiber treating agent within a predetermined range. It has excellent affinity with cement, and easily adheres cement-based particles to the fiber surface.In the white water tank collected in the cement board manufacturing process, the fiber does not float on the surface of the white water and floats in the white water or settles completely in the white water. At the time of use, the fibers return to the cement production process again, and the fibers put in can be used efficiently without floating fibers being clogged in the washing water pipe when the white water supernatant liquid is used as washing water in the cement production process.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維長が2〜20mmであり、繊維表面に
繊維処理剤が付着したポリオレフィン系繊維であって、
繊維表面における酸素元素量と炭素元素量の比(O/C)A
0.11〜0.40であり、かつ繊維処理剤を減量した
後の繊維表面における酸素元素量と炭素元素量の比(O/
C)Wが0.06〜0.33であることを特徴とするセメ
ント補強用ポリオレフィン系繊維。
1. A polyolefin fiber having a fiber length of 2 to 20 mm and a fiber treatment agent attached to the fiber surface,
The ratio of the amount of oxygen element and the amount of carbon element on the fiber surface (O / C) A is 0.11 to 0.40, and the ratio of the amount of oxygen element and the amount of carbon element on the fiber surface after reducing the amount of the fiber treatment agent (O /
C) A polyolefin fiber for cement reinforcement, wherein W is 0.06 to 0.33.
【請求項2】 下記式(1)で示される繊維処理剤減量
前後における酸素元素量と炭素元素量の比の減少率が6
0%以下であることを特徴とする請求項1記載のセメン
ト補強用ポリオレフィン系繊維。 減少率=[{(O/C)A − (O/C)W }×100]/(O/C)A ・・・(1)
2. The reduction rate of the ratio of the oxygen element amount to the carbon element amount before and after the reduction of the fiber treatment agent represented by the following formula (1) is 6:
The polyolefin fiber for cement reinforcement according to claim 1, wherein the content is 0% or less. Reduction rate = [{(O / C) A − (O / C) W } × 100] / (O / C) A (1)
【請求項3】 ポリオレフィン系樹脂を溶融紡糸し、温
水、湿熱、あるいは、乾熱中で延伸した延伸糸束を水分
率5%以下に調整した後、フィードロールに沿って延伸
糸束の厚みを3mm以下に拡げ、10m/min 以上の速度で
走行させながら、1.0〜1.2倍の緊張状態でコロナ
放電処理、常圧プラズマ処理、オゾン水溶液処理のうち
いずれかの表面改質処理を施した後、繊維表面に繊維処
理剤を付着させることを特徴とするセメント補強用ポリ
オレフィン系繊維の製造方法。
3. A polyolefin resin is melt-spun, and a stretched yarn bundle stretched in hot water, wet heat or dry heat is adjusted to a moisture content of 5% or less, and the thickness of the stretched yarn bundle is reduced to 3 mm along a feed roll. Spreading below, while running at a speed of 10 m / min or more, perform surface modification treatment of corona discharge treatment, normal pressure plasma treatment, or ozone aqueous solution treatment under 1.0 to 1.2 times tension. A method for producing a polyolefin fiber for cement reinforcement, which comprises adhering a fiber treating agent to the fiber surface after the above.
【請求項4】 コロナ放電処理が繊維表面全体に施さ
れ、かつ1回当たりの放電量が少なくとも50W/m2/min
であることを特徴とする請求項3記載のセメント補強用
ポリオレフィン系繊維の製造方法。
4. A corona discharge treatment is applied to the entire fiber surface, and the discharge amount per discharge is at least 50 W / m 2 / min.
The method for producing a polyolefin-based fiber for cement reinforcement according to claim 3, wherein:
JP23473799A 1999-08-20 1999-08-20 Manufacturing method of polyolefin fiber for cement reinforcement Expired - Fee Related JP4558859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23473799A JP4558859B2 (en) 1999-08-20 1999-08-20 Manufacturing method of polyolefin fiber for cement reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23473799A JP4558859B2 (en) 1999-08-20 1999-08-20 Manufacturing method of polyolefin fiber for cement reinforcement

Publications (2)

Publication Number Publication Date
JP2001058858A true JP2001058858A (en) 2001-03-06
JP4558859B2 JP4558859B2 (en) 2010-10-06

Family

ID=16975578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23473799A Expired - Fee Related JP4558859B2 (en) 1999-08-20 1999-08-20 Manufacturing method of polyolefin fiber for cement reinforcement

Country Status (1)

Country Link
JP (1) JP4558859B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227074A (en) * 2001-02-01 2002-08-14 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2003089559A (en) * 2001-09-14 2003-03-28 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
WO2004039744A1 (en) * 2002-10-30 2004-05-13 Hagihara Industries Inc. Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting
JP2004168643A (en) * 2002-10-30 2004-06-17 Hagihara Industries Inc Polypropylene fiber for cement reinforcement
EP1571196A2 (en) * 2004-02-27 2005-09-07 Ruredil S.p.A. Composition and method for improving the geotechnical characteristics of soils
JP2006096565A (en) * 2004-03-31 2006-04-13 Hagihara Industries Inc Cement-reinforcing fiber
JP2014071388A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Screen, image display system, and method for manufacturing screen
US9249052B2 (en) 2012-02-29 2016-02-02 Daiwabo Holdings Co., Ltd. Fiber for reinforcing cement, and cured cement produced using same
JP2017537241A (en) * 2014-11-27 2017-12-14 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Surface-modified polyolefin fiber
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104652131B (en) * 2015-01-23 2017-06-16 北京京阳环保工程有限公司 A kind of bio-active carbon fibre, the complex ecological film filler assembly including it and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211375A (en) * 1987-02-26 1988-09-02 三井化学株式会社 Production of permanent hydrophilic nonwoven fabric
JPH03501393A (en) * 1987-09-30 1991-03-28 ダナクロン アクティーゼルスカブ Reinforcing fiber and method for producing the reinforcing fiber
JPH04502142A (en) * 1988-12-14 1992-04-16 セムファイバー エー/エス Fibers and materials using fibers
JPH08311765A (en) * 1995-05-12 1996-11-26 Mitsubishi Chem Corp Polyolefin nonwoven fabric
JPH10130947A (en) * 1996-10-31 1998-05-19 Kanegafuchi Chem Ind Co Ltd Polyolefin-based fiber excellent in hydrophilicity and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211375A (en) * 1987-02-26 1988-09-02 三井化学株式会社 Production of permanent hydrophilic nonwoven fabric
JPH03501393A (en) * 1987-09-30 1991-03-28 ダナクロン アクティーゼルスカブ Reinforcing fiber and method for producing the reinforcing fiber
JPH04502142A (en) * 1988-12-14 1992-04-16 セムファイバー エー/エス Fibers and materials using fibers
JPH08311765A (en) * 1995-05-12 1996-11-26 Mitsubishi Chem Corp Polyolefin nonwoven fabric
JPH10130947A (en) * 1996-10-31 1998-05-19 Kanegafuchi Chem Ind Co Ltd Polyolefin-based fiber excellent in hydrophilicity and its production

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227074A (en) * 2001-02-01 2002-08-14 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2003089559A (en) * 2001-09-14 2003-03-28 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
WO2004039744A1 (en) * 2002-10-30 2004-05-13 Hagihara Industries Inc. Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting
JP2004168643A (en) * 2002-10-30 2004-06-17 Hagihara Industries Inc Polypropylene fiber for cement reinforcement
EP1580173A1 (en) * 2002-10-30 2005-09-28 Hagihara Industries, Inc. Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting
EP1580173A4 (en) * 2002-10-30 2007-05-09 Hagihara Ind Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting
EP1571196A3 (en) * 2004-02-27 2007-08-01 Ruredil S.p.A. Composition and method for improving the geotechnical characteristics of soils
EP1571196A2 (en) * 2004-02-27 2005-09-07 Ruredil S.p.A. Composition and method for improving the geotechnical characteristics of soils
JP2006096565A (en) * 2004-03-31 2006-04-13 Hagihara Industries Inc Cement-reinforcing fiber
US9249052B2 (en) 2012-02-29 2016-02-02 Daiwabo Holdings Co., Ltd. Fiber for reinforcing cement, and cured cement produced using same
JP2014071388A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Screen, image display system, and method for manufacturing screen
JP2017537241A (en) * 2014-11-27 2017-12-14 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Surface-modified polyolefin fiber
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement

Also Published As

Publication number Publication date
JP4558859B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP2688434B2 (en) Fiber for reinforcement
JP4558859B2 (en) Manufacturing method of polyolefin fiber for cement reinforcement
EP0062491B1 (en) Polymers in matrix reinforcement
CA1082382A (en) Fluid absorbent cellulose fibers containing alkaline salts of polymers of acrylic acid, methacrylic acid or an acryloamidoalkane sulfonic acid with aliphatic esters of acrylic acid or methacrylic acid
US9903053B2 (en) Fibers for reinforcing cured article and cured article using same
EP1044939B1 (en) Shaped fibrous cement products and reinforcement fibers for such products and method for treating such fibers
JP4860828B2 (en) Polyolefin fiber for cement reinforcement and method for producing the same
JP2009007727A (en) Method for producing polypropylene fiber excellent in heat resistance and strength
JP4970675B2 (en) Polyolefin fiber for cement reinforcement and method for producing the same
JP4636693B2 (en) Synthetic fiber and cementitious structure containing the same
JPS5831113A (en) Water-absorbing acrylic fiber
JP4005276B2 (en) Manufacturing method of spunlace nonwoven fabric
JP2835812B2 (en) Focused cement reinforcing fibers
US4670343A (en) Wholly aromatic polyamide fiber
JP2000199183A (en) Acrylonitrile fiber for producing carbon fiber
JP3847148B2 (en) Cement reinforcing fiber
FR2479280A1 (en) SYNTHETIC POLYVINYL ALCOHOL FIBERS FOR REINFORCING CEMENT PRODUCTS AND PROCESS FOR THEIR MANUFACTURE
JPH08239253A (en) Cement-reinforcing assembled fiber
JP4744676B2 (en) Cement reinforcing composite fiber
JP6122296B2 (en) Fiber for reinforcing hydraulic material, method for producing the same, and hydraulic cured body using the same
JP4009372B2 (en) Hydrophilic polyolefin fiber and non-woven fabric using the same
JPH06192912A (en) Cement-reinforcing fiber
JP3032075B2 (en) Hydrophilic polyolefin fiber
EP1362937A1 (en) Process for the production of shaped fibrous cement products and reinforcement fibres for such products
JP2000290880A (en) Production of rubber hose reinforcing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R151 Written notification of patent or utility model registration

Ref document number: 4558859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees