JP2001050528A - Operation method of electric melting furnace - Google Patents

Operation method of electric melting furnace

Info

Publication number
JP2001050528A
JP2001050528A JP11225902A JP22590299A JP2001050528A JP 2001050528 A JP2001050528 A JP 2001050528A JP 11225902 A JP11225902 A JP 11225902A JP 22590299 A JP22590299 A JP 22590299A JP 2001050528 A JP2001050528 A JP 2001050528A
Authority
JP
Japan
Prior art keywords
molten metal
melting furnace
metal layer
liquid level
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11225902A
Other languages
Japanese (ja)
Other versions
JP3746921B2 (en
Inventor
Kichiji Matsuda
吉司 松田
Koutarou Katou
考太郎 加藤
Yoshihito Kurauchi
良仁 蔵内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP22590299A priority Critical patent/JP3746921B2/en
Publication of JP2001050528A publication Critical patent/JP2001050528A/en
Application granted granted Critical
Publication of JP3746921B2 publication Critical patent/JP3746921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the temperature of a molten slag layer at a set value, by adjusting the setting of supply electric power or voltage and electric current to a melting furnace main body according to the liquid level of a molten metal layer inside a molten bath. SOLUTION: A supply electric power arithmetic and logic unit 23 is provided with a setting part for setting the rising rates of the liquid levels Lm of a plurality of molten metal layers M that can be preset and a setting part for setting supply electric power values corresponding thereto. In the case of the operation of an electric melting furnace, the rising rate of the liquid level Lm of the molten metal layer M and the supply electric power value corresponding thereto are conveniently selected and set according to the properties and the supplying amount of a substance to be melted A. In this way, the increased and decreased values of the supply electric power are operated by comparing the rising rate of the liquid level Lm of the set molten metal layer M with the preset standard rising rate, and the increased and decreased values of the supply power are output to a plasma control panel 24 as a supply electric power command signal Qw.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物等の焼却施設から排出された焼却灰や飛灰を溶融処
理する電気溶融炉の運転方法の改良に関するものであ
り、溶融スラグの温度を一定に保持しつつより少ない電
気エネルギーでもって、焼却灰等を能率よく溶融処理す
るようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an operation method of an electric melting furnace for melting and processing incinerated ash and fly ash discharged from an incineration facility for municipal solid waste and industrial waste. The incineration ash and the like are efficiently melted with less electric energy while keeping the temperature constant.

【0002】[0002]

【従来の技術】近年、都市ごみ等の焼却炉から排出され
る焼却灰や飛灰の減容化及び無害化を図るため、焼却灰
等の溶融固化処理が注目され、実用に供されている。焼
却灰等は溶融固化することにより、その容積が1/2〜
1/3に減少するうえ、重金属等の溶出の防止、溶融ス
ラグの再利用、最終埋立処分場の延命等が可能になるか
らである。
2. Description of the Related Art In recent years, in order to reduce the volume and detoxification of incinerated ash and fly ash discharged from incinerators such as municipal solid waste, melting and solidifying treatment of incinerated ash has attracted attention and has been put to practical use. . The volume of incinerated ash etc. is reduced to 1/2 by melting and solidifying
This is because it is possible to reduce to 1/3, prevent the elution of heavy metals and the like, reuse the molten slag, extend the life of the final landfill site, and the like.

【0003】前記焼却灰等の溶融固化処理には、アーク
溶融炉やプラズマアーク炉、電気抵抗炉等を用い、電気
エネルギーにより被溶融物を溶融固化する方法と、表面
溶融炉や旋回溶融炉、コークスベッド炉等を用い、燃料
の燃焼エネルギーにより被溶融物を溶融固化する方法が
多く利用されており、都市ごみ焼却設備に発電設備が併
置されている場合には前者の電気エネルギーを用いる方
法が、また、発電設備が併置されていない場合には後者
の燃焼エネルギーを用いる方法が、夫々多く採用されて
いる。
[0003] The melting and solidifying treatment of the incinerated ash and the like is performed by using an arc melting furnace, a plasma arc furnace, an electric resistance furnace or the like to melt and solidify the material to be melted by electric energy. A method of using a coke bed furnace or the like to melt and solidify the material to be melted by the combustion energy of the fuel is often used.When the municipal solid waste incineration equipment is equipped with a power generation facility, the former method using electric energy is used. In the case where no power generation facility is provided, the latter method using combustion energy is often adopted.

【0004】図2は、従前のごみ焼却処理設備に併置し
た直流アーク放電型黒鉛電極式プラズマ溶融炉の一例を
示すものであり、図に於いて、1は焼却灰等の被溶融物
Aのコンテナ、2は被溶融物供給装置、3は溶融炉本
体、4は黒鉛主電極、5はスタート電極、6は炉底電
極、7は炉底冷却ファン、8は直流電源装置、9は不活
性ガス供給装置、10は溶融スラグ流出口、11はタッ
プホール、12は燃焼室、13は燃焼空気ファン、13
aは助燃バーナ、14は排ガス冷却ファン、15はスラ
グ水冷槽、16はスラグ搬出コンベア、17はスラグだ
め、18はスラグ冷却水の冷却装置である。
FIG. 2 shows an example of a DC arc discharge type graphite electrode type plasma melting furnace which is juxtaposed with a conventional refuse incineration facility. In the figure, reference numeral 1 denotes a material A to be melted such as incineration ash. Container 2, melt supply device 3, melting furnace body 4, graphite main electrode 5, start electrode 5, furnace bottom electrode 7, furnace bottom cooling fan 8, DC power supply unit 8, 9 inactive Gas supply device, 10: molten slag outlet, 11: tap hole, 12: combustion chamber, 13: combustion air fan, 13
a is an auxiliary burner, 14 is an exhaust gas cooling fan, 15 is a slag water cooling tank, 16 is a slag carry-out conveyor, 17 is a slag reservoir, and 18 is a slag cooling water cooling device.

【0005】被溶融物Aはコンテナ1に貯えられ、供給
装置2により溶融炉本体3内へ連続的に供給される。溶
融炉本体3には、被溶融物Aとの間に一定の距離を設け
た黒鉛主電極4(−極)と、炉底に設置された炉底電極
6(+極)とが設けられており、両電極4、6間に印加
された直流電源装置8(容量約600〜1000KWH
/T・被溶融物)の直流電圧(200〜500V)によ
り、電流が流れプラズマアークが発生する。これによっ
て被溶融物Aが1300℃〜1600℃に加熱され、順
次溶融スラグBとなる。
The material to be melted A is stored in a container 1 and continuously supplied into a melting furnace main body 3 by a supply device 2. The melting furnace main body 3 is provided with a graphite main electrode 4 (− pole) provided at a certain distance from the material A to be melted, and a furnace bottom electrode 6 (+ pole) installed on the furnace bottom. And a DC power supply 8 (capacity of about 600 to 1000 KWH) applied between the electrodes 4 and 6.
/ T. To be melted), a current flows and a plasma arc is generated. As a result, the material to be melted A is heated to 1300 ° C. to 1600 ° C., and sequentially becomes molten slag B.

【0006】尚、溶融前の被溶融物Aは導電性が低いた
め、溶融炉の始動時にはスタート電極5を溶融炉本体3
内へ挿入してこれを+極とし、これと主電極4の間へ通
電することにより被溶融物Aが溶融するのを待つ。そし
て、被溶融物が溶融するとその導電性が上昇するため、
スタート電極5を炉底電極6へ切り換える。
Since the material to be melted A before melting has low conductivity, the starting electrode 5 is connected to the melting furnace body 3 when the melting furnace is started.
This is turned into a positive electrode, and a current is supplied between the positive electrode and the main electrode 4 to wait for the material A to be melted. And, when the material to be melted, its conductivity increases,
The start electrode 5 is switched to the furnace bottom electrode 6.

【0007】溶融炉本体3の内部は、溶融スラグBや主
電極4等の酸化を防止するために還元性雰囲気に保持さ
れており、不活性ガス供給装置9から不活性ガスCが、
中空筒状に形成した主電極4及びスタート電極5の中空
孔を通して、溶融炉本体3内へ連続的に供給されてい
る。
The inside of the melting furnace main body 3 is maintained in a reducing atmosphere in order to prevent oxidation of the molten slag B, the main electrode 4 and the like, and an inert gas C is supplied from an inert gas supply device 9.
It is continuously supplied into the melting furnace main body 3 through the hollow holes of the main electrode 4 and the start electrode 5 formed in a hollow cylindrical shape.

【0008】不活性ガスCを主電極4やスタート電極5
の中空孔を通して炉本体内へ供給するのは、アークの
軸方向にプラズマガスを噴射し、アークを拘束すること
で高密度化する、黒鉛主電極4や黒鉛スタート電極5
を冷却することで電極の消耗がより少なくなる、等の理
由によるものである。
The inert gas C is supplied to the main electrode 4 and the start electrode 5
Is supplied into the furnace main body through the hollow hole of the graphite main electrode 4 and the graphite start electrode 5 by injecting plasma gas in the axial direction of the arc and confining the arc to increase the density.
The reason for this is that cooling of the electrodes reduces the consumption of the electrodes.

【0009】前記溶融炉本体3の炉底は、炉底冷却ファ
ン7からの冷風により空冷され、これによって炉底電極
6近傍の過度な温度上昇が防止されている。また、溶融
炉本体3そのものは高温に耐える耐火材及びそれを覆う
断熱材等により構成されており、必要に応じて断熱材の
外部に空冷あるいは水冷ジャケットが設けられている。
The furnace bottom of the melting furnace body 3 is air-cooled by cool air from a furnace bottom cooling fan 7, thereby preventing an excessive temperature rise near the furnace bottom electrode 6. The melting furnace body 3 itself is made of a refractory material that can withstand high temperatures and a heat insulating material covering the same, and an air-cooling or water-cooling jacket is provided outside the heat insulating material as necessary.

【0010】被溶融物Aの溶融によって、内部に存在し
た揮発成分や発生した一酸化炭素等はガス体Dとなると
共に、金属類やガラス、砂等の不燃性成分は、プラズマ
アーク放電の発生熱を供給されることにより、溶融点
(1100〜1250℃)を越える約1300〜160
0℃の高温度にまで加熱され、流動性を有する液体状の
溶湯となる。
[0010] By the melting of the material to be melted A, volatile components present therein and carbon monoxide generated therein become gaseous substances D, and incombustible components such as metals, glass, and sand generate plasma arc discharge. By supplying heat, about 1300-160 exceeding the melting point (1100-1250 ° C.)
It is heated to a high temperature of 0 ° C. and becomes a liquid molten metal having fluidity.

【0011】炉本体3内に形成された溶湯は、溶融スラ
グ流出口10より連続的に溢出し、スラグ水冷槽15内
へ落下することにより水砕スラグとなり、スラグ搬出コ
ンベア16によってスラグだめ17へ排出される。ま
た、溶融炉を停止する際には、炉本体3内の溶湯が冷
却、固化してしまうのを防止するため、溶湯の底部レベ
ルに取付けられたタップホール11より湯抜きを行い、
炉本体3内を空状態にする。
The molten metal formed in the furnace body 3 continuously overflows from the molten slag outflow port 10 and falls into the slag water cooling tank 15 to become granulated slag, and is transferred to the slag reservoir 17 by the slag unloading conveyor 16. Is discharged. Further, when the melting furnace is stopped, in order to prevent the molten metal in the furnace body 3 from cooling and solidifying, the molten metal is drained from the tap hole 11 attached to the bottom level of the molten metal,
The inside of the furnace body 3 is emptied.

【0012】発生したガス体Dは、溶融スラグ流出口1
0の上部より燃焼室12に入り、ここで燃焼空気ファン
13から助燃バーナ13aを経て加熱された燃焼用空気
が加えられることにより、未燃分が完全に燃焼される。
また、完全燃焼をしたガス体Dは、排ガス冷却ファン1
4からの冷空気によって冷却され、外部へ排出されて行
く。
The generated gas D is supplied to the molten slag outlet 1
The combustion air 12 enters the combustion chamber 12 from the upper part of the combustion chamber 0, and the combustion air heated from the combustion air fan 13 via the auxiliary burner 13a is added, so that the unburned components are completely burned.
The completely burned gas body D is supplied to the exhaust gas cooling fan 1.
Cooled by the cool air from 4, and discharged to the outside.

【0013】而して、電気溶融炉で被溶融物Aを連続的
に溶融すると、溶融炉本体3内に形成された溶湯は、比
重差によって上方に位置する溶融スラグ層Bと下方に位
置する溶融メタル層Mとに分離する。また、上方の溶融
スラグ層Bは溶融スラグ流出口10から連続的に溢出す
るが、下方の溶融メタル層Mは順次炉底に残留・堆積
し、溶融メタル層Mの液面レベルLmが上昇し、層厚さ
Ltが増加する。尚、溶融炉本体3内の溶湯容積はほぼ
一定であるため、溶融メタル層Mの液面レベルLmが上
昇するに伴なって、上方の溶融スラグ層Bの層厚さSt
は薄くなって行く。
When the material to be melted A is continuously melted in the electric melting furnace, the molten metal formed in the melting furnace main body 3 is located below the molten slag layer B located above due to a difference in specific gravity. It is separated from the molten metal layer M. Further, the upper molten slag layer B continuously overflows from the molten slag outlet 10, but the lower molten metal layer M remains and deposits on the furnace bottom sequentially, and the liquid level Lm of the molten metal layer M rises. , The layer thickness Lt increases. Since the volume of the molten metal in the melting furnace main body 3 is substantially constant, as the liquid level Lm of the molten metal layer M increases, the layer thickness St of the upper molten slag layer B increases.
Goes thinner.

【0014】ところで、従来の電気溶融炉の運転に於い
ては、溶融炉本体3への被溶融物Aの供給量と印加電力
とを一定に保って溶融炉を連続運転した場合には、溶融
スラグ層Bの温度はほぼ一定に保持されると云う基本的
な考えの下に、被溶融物Aの供給量に応じて印加電力を
所定値に調整制御することにより、溶融スラグ層Bの温
度は常時設定値の近傍に保持されていると考えられてい
た。
By the way, in the operation of the conventional electric melting furnace, when the melting furnace is continuously operated while the supply amount of the melted material A to the melting furnace main body 3 and the applied electric power are kept constant, the melting operation is not performed. Under the basic idea that the temperature of the slag layer B is kept substantially constant, the temperature of the molten slag layer B is controlled by adjusting the applied power to a predetermined value in accordance with the supply amount of the material A to be melted. Was always held near the set value.

【0015】しかし、現実の電気溶融炉に於いては、運
転時間が経過して溶融スラグ層Bの層厚さStが減少す
ると、溶融炉本体3内の溶融スラグ層Bと溶融メタル層
Mとから成る溶湯全体の電気伝導度や熱伝導度が相当に
変化し、これに伴なってアーク長さ等の電気的な熱発生
条件や溶湯特に溶融メタル層Mからの放熱量が大きく変
化することになる。
However, in the actual electric melting furnace, when the operation time elapses and the thickness St of the molten slag layer B decreases, the molten slag layer B and the molten metal layer M in the melting furnace main body 3 become The electrical conductivity and the thermal conductivity of the entire molten metal composed of the molten metal vary considerably, and the amount of heat generated from the molten metal, especially the molten metal layer M, and the electrical heat generation conditions such as the arc length change significantly. become.

【0016】具体的には、一定の溶湯量の電気溶融炉に
於いて、溶融メタル層Mの層厚さLtが大になれば、溶
湯からの放熱量は増加する傾向にある。そのため、溶融
炉本体3への供給電力及び被溶融物Aの供給量やその物
性を同一に保った状態で溶融炉を連続運転すると、運転
開始初期の溶融メタル層Mの層厚さLtが小で溶融スラ
グ層Bの層厚さStが大の間は、放熱量が少ないために
溶融スラグ層Bの温度が高温となり、逆に運転継続時間
が長くなって、溶融メタル層Mの層厚さLtが大、溶融
スラグ層Bの層厚さStが小になってくると、放熱量が
増加して溶融スラグ層Bの温度が低下することになり、
また、溶融メタル層Mの層厚さLtが大きくなると、メ
タルの電気伝導度が大きいために溶湯部の電気抵抗が低
下し、アーク長が長くなることで放射損失が増えること
になり、これ迄ほぼ一定と考えられていた溶融スラグ層
Bの温度が、現実には上記の如き理由により約1300
〜1700℃の範囲に亘って、大きく変化していること
が判明した。
More specifically, in an electric melting furnace having a constant molten metal amount, when the thickness Lt of the molten metal layer M increases, the amount of heat radiated from the molten metal tends to increase. Therefore, when the melting furnace is continuously operated with the power supplied to the melting furnace main body 3 and the supply amount and the physical properties of the material to be melted A kept the same, the layer thickness Lt of the molten metal layer M at the beginning of the operation is small. When the thickness St of the molten slag layer B is large, the temperature of the molten slag layer B becomes high because the amount of heat radiation is small, and the operation continuation time becomes long. When Lt is large and the layer thickness St of the molten slag layer B becomes small, the amount of heat dissipation increases and the temperature of the molten slag layer B decreases,
When the thickness Lt of the molten metal layer M increases, the electrical resistance of the molten metal decreases due to the high electrical conductivity of the metal, and the radiation length increases due to the increase in the arc length. The temperature of the molten slag layer B, which was considered to be almost constant, actually increased to about 1300 for the above-described reason.
It was found that the temperature greatly changed over the range of 11700 ° C.

【0017】尚、被溶融物Aの供給量に応じて印加電力
を制御する際に、溶湯からの放熱量の変動を把握するこ
とが重要であることは勿論認識されていたことである。
しかし、当該放熱量の変動が、溶融メタル層Mの層厚さ
Ltの変動と大きな相関関係にあるとは考えられていな
かった。そのため、前述の通り、溶融スラグ層Bの温度
が1300〜1700℃もの広範囲に亘って変動すると
云う事態を招く結果となっている。
In controlling the applied electric power in accordance with the supply amount of the material A to be melted, it is of course recognized that it is important to grasp the fluctuation of the heat release amount from the molten metal.
However, it was not considered that the variation in the heat release amount had a large correlation with the variation in the layer thickness Lt of the molten metal layer M. For this reason, as described above, the temperature of the molten slag layer B fluctuates over a wide range of 1300 to 1700 ° C., resulting in a situation.

【0018】また、溶融スラグ層Bの温度は、電気溶融
炉の運転制御に於ける重要な運転指標の一つであり、当
該溶融スラグ層Bの温度を一定に保つと云うことは、水
砕スラグの品質の安定化、溶融原単位(供給電力KWH
/T・被溶融物)の低減、炉壁用耐火材の損耗の抑制等
を図る上で重要な意味を有するものである。
Further, the temperature of the molten slag layer B is one of the important operating indices in the operation control of the electric melting furnace. Slag quality stabilization, melting unit consumption (supply power KWH
/ T / melted material) and the suppression of wear on the refractory material for the furnace wall.

【0019】[0019]

【発明が解決しようとする課題】本発明は、従前の都市
ごみ等の焼却灰や飛灰を被溶融物とする電気溶融炉に於
ける上述の如き問題、即ち運転時間の経過に伴なって、
溶融炉本体内の溶湯を形成する溶融メタル層Mと溶融ス
ラグ層Bの層厚さLt、Stが変ることにより溶融スラ
グ層Bの温度が大きく変動し、結果として水砕スラグの
品質の悪化や溶融原単位の上昇、炉耐火材の損傷等を招
くと云う問題を解決せんとするものであり、溶融メタル
層Mや溶融スラグ層Bの層厚さLt、Stが変っても、
常に溶融スラグ層Bの温度を設定値の近傍に保持するこ
とを可能にした電気溶融炉の運転方法を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention relates to the above-mentioned problem in the conventional electric melting furnace using incinerated ash or fly ash of municipal solid waste or the like as a material to be melted, that is, as the operation time elapses. ,
The temperature of the molten slag layer B greatly fluctuates due to a change in the layer thicknesses Lt and St of the molten metal layer M and the molten slag layer B forming the molten metal in the melting furnace body. It is intended to solve the problem of causing an increase in the unit consumption of melting, damage to the refractory material of the furnace, etc., even if the layer thicknesses Lt and St of the molten metal layer M and the molten slag layer B change.
It is an object of the present invention to provide a method of operating an electric melting furnace which enables the temperature of a molten slag layer B to be constantly maintained near a set value.

【0020】[0020]

【課題を解決するための手段】請求項1の発明は、電気
溶融炉に於いて、溶湯内の溶融メタル層の液面レベルに
応じて溶融炉本体への供給電力あるいは電圧と電流の設
定を調整することにより、溶融スラグ層の温度を設定値
に維持するようにしたことを発明の基本構成とするもの
である。
According to a first aspect of the present invention, there is provided an electric melting furnace, wherein electric power supplied to a melting furnace body or voltage and current are set in accordance with a liquid level of a molten metal layer in a molten metal. The basic configuration of the present invention is to maintain the temperature of the molten slag layer at a set value by adjusting.

【0021】請求項2の発明は、請求項1の発明に於い
て、溶融メタル層の液面レベルを、溶湯内に挿入したレ
ベル検出センサーを用いて検出するようにしたものであ
る。
According to a second aspect of the present invention, in the first aspect of the invention, the liquid level of the molten metal layer is detected using a level detection sensor inserted into the molten metal.

【0022】請求項3の発明は、請求項1の発明に於い
て、溶融メタル層の液面レベルを溶融炉本体の炉側壁に
埋込んだコイルを用いて検出するようにしたものであ
る。
According to a third aspect of the present invention, in the first aspect of the present invention, the liquid level of the molten metal layer is detected using a coil embedded in the furnace side wall of the melting furnace body.

【0023】請求項4の発明は、電気溶融炉に於いて、
溶融メタル層の液面レベルを電圧、電流値と放熱量の相
関から演算し、そのメタルレベルに応じた電圧、電流値
となるよう出力を調整するようにしたものである。
According to a fourth aspect of the present invention, in an electric melting furnace,
The liquid level of the molten metal layer is calculated from the correlation between the voltage and the current value and the amount of heat radiation, and the output is adjusted so that the voltage and the current value correspond to the metal level.

【0024】[0024]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を説明する。図1は本発明の一実施形態の説明
図であり、図に於いてAは被溶融物、Mは溶融メタル
層、Bは溶融スラグ層、2は供給装置、3は溶融炉本
体、4は黒鉛主電極、5はスタート電極、6は炉底電
極、8は直流電源装置、10は溶融スラグ流出口、19
は溶融メタル層の液面レベルLmを検出するメタルレベ
ル検知器、20はメタルレベル検知器の駆動装置、21
はメタルレベル検知器の駆動操作盤、22はメタルレベ
ル演算装置、23は供給電力演算装置、24はプラズマ
制御盤、Ltは溶融メタル層の層厚さ、Stは溶融スラ
グ層の層厚さであり、電気溶融炉そのものの構造は、図
2に示した従前の電気溶融炉と略同一であるため、ここ
ではその詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of one embodiment of the present invention, in which A is a material to be melted, M is a molten metal layer, B is a molten slag layer, 2 is a supply device, 3 is a melting furnace body, and 4 is a melting furnace body. Graphite main electrode, 5 is a start electrode, 6 is a furnace bottom electrode, 8 is a DC power supply, 10 is a molten slag outlet, 19
Is a metal level detector for detecting the liquid level Lm of the molten metal layer, 20 is a drive device for the metal level detector, 21
Is a drive operation panel of a metal level detector, 22 is a metal level operation device, 23 is a supply power operation device, 24 is a plasma control panel, Lt is the layer thickness of the molten metal layer, and St is the layer thickness of the molten slag layer. Since the structure of the electric melting furnace itself is substantially the same as that of the conventional electric melting furnace shown in FIG. 2, its detailed description is omitted here.

【0025】前記メタルレベル検知器19は溶融炉本体
3の天井部を挿通せしめて上・下方向へ昇降動自在に配
設されており、駆動操作盤21を介して駆動装置20に
より昇降動される。即ち、溶融メタル層Mの液面レベル
Lmの検出時には、メタルレベル検知器19の先端部が
溶融メタル層Mの近傍まで下降された時に、先端部に設
けられたコイルが発生する磁場の変化を検出することに
より、溶融メタル層Mの液面レベルLmを検出し、検出
されたレベル検出信号Lmpが供給電源演算装置23へ
入力される。
The metal level detector 19 is provided so as to be able to move up and down by inserting the ceiling of the melting furnace body 3 upward and downward. The metal level detector 19 is moved up and down by a drive unit 20 via a drive operation panel 21. You. That is, when the liquid level Lm of the molten metal layer M is detected, a change in the magnetic field generated by the coil provided at the distal end when the distal end of the metal level detector 19 is lowered to the vicinity of the molten metal layer M is detected. As a result, the liquid level Lm of the molten metal layer M is detected, and the detected level detection signal Lmp is input to the power supply operation device 23.

【0026】尚、本実施形態に於いては、メタルレベル
検知器19の先端部に2対の電極を設け、当該電極間に
ある物質の電気抵抗値を測定する事によって、すなわち
溶融スラグと溶融メタルの電気抵抗値の違いを利用する
事によって溶融メタル層Mの液面レベルLmを検知する
事も可能である。
In the present embodiment, two pairs of electrodes are provided at the tip of the metal level detector 19, and the electrical resistance of the substance between the electrodes is measured, that is, the molten slag and the molten slag are melted. It is also possible to detect the liquid level Lm of the molten metal layer M by utilizing the difference in the electrical resistance value of the metal.

【0027】前記供給電力演算装置23は、メタル層M
の液面レベル検出信号(厚さ検出信号)Lmpを用い
て、電気溶融炉へ供給すべき最適電力値を演算するもの
であり、当該供給電力演算装置23からの供給電力指令
信号Qwによりプラズマ制御盤24を介して直流電源8
の出力電圧を制御してプラズマアーク電流を調整するこ
とにより、電気溶融炉へ供給する電力が前記最適電力値
に制御される。
The power supply calculating device 23 includes a metal layer M
The liquid level detection signal (thickness detection signal) Lmp is used to calculate the optimum power value to be supplied to the electric melting furnace. The plasma power is controlled by the supplied power command signal Qw from the supplied power calculator 23. DC power supply 8 via panel 24
The power supplied to the electric melting furnace is controlled to the above-mentioned optimum power value by controlling the output voltage of the electric furnace and adjusting the plasma arc current.

【0028】具体的には、供給電力演算装置23には、
複数の予かじめ設定可能な溶融メタル層Mの液面レベル
Lmの上昇率の設定部と、これに対応する供給電力値の
設定部とが設けられており、電気溶融炉の運転に際して
は、被溶融物Aの性状や被溶融物Aの供給量に応じて、
前記溶融メタル層Mの液面レベルLmの上昇率と、これ
に対応する供給電力値とが適宜に選択・設定される。
More specifically, the supply power calculator 23 includes:
There are provided a plurality of presettable setting sections for the rise rate of the liquid level Lm of the molten metal layer M and a corresponding setting section for the supply power value. When the electric melting furnace is operated, Depending on the properties of the melt A and the supply amount of the melt A,
The rise rate of the liquid level Lm of the molten metal layer M and the supply power value corresponding thereto are appropriately selected and set.

【0029】そして、電気溶融炉の運転過程に於いて、
溶融メタル層Mの液面レベルの検出信号Lmpから溶融
メタル層Mの液面レベルLmの上昇率を演算すると共
に、当該液面レベルLmの上昇率と予かじめ設定した標
準上昇率とを対比して、両者の差を減少させるのに必要
とする供給電力の増・減値が演算され、供給電力指令信
号Qwとしてプラズマ制御盤24へ出力される。
In the operation of the electric melting furnace,
The rise rate of the liquid level Lm of the molten metal layer M is calculated from the detection signal Lmp of the liquid level of the molten metal layer M, and the rise rate of the liquid level Lm is compared with a preset standard rise rate. Then, the increase / decrease of the supply power required to reduce the difference between the two is calculated and output to the plasma control panel 24 as the supply power command signal Qw.

【0030】都市ごみ等の焼却灰を被溶融物Aとし、プ
ラズマアーク溶融炉(直流電源装置600〜1000K
WH/T・被溶融物、電圧200〜350V)を用いた
溶融試験の結果によれば、本発明の適用によって溶融ス
ラグ層Bの温度を約1400℃〜1450℃の間に維持
することが可能となり、従前の電気溶融炉に於ける溶融
スラグ層Bの温度範囲(1300〜1700℃)に比較
して、溶融スラグ層Bの温度変化が大幅に減少する。ま
た、溶融スラグ層Bの温度の変動が少なくなることによ
り、溶融スラグ層Bが無用の高温になることによる電気
エネルギーのロスが減少し、溶融原単位が従前の場合に
於ける700〜1000KWH/T・被溶融物から60
0〜900KWH/T・被溶融物Tに減少した。
The incinerated ash such as municipal solid waste is used as the material A to be melted, and the plasma arc melting furnace (DC power supply 600 to 1000K) is used.
According to the results of the melting test using WH / T / melted material, voltage 200 to 350 V), it is possible to maintain the temperature of the molten slag layer B between about 1400 ° C. to 1450 ° C. by applying the present invention. Thus, the temperature change of the molten slag layer B is greatly reduced as compared with the temperature range of the molten slag layer B (1300 to 1700 ° C.) in the conventional electric melting furnace. In addition, since the fluctuation of the temperature of the molten slag layer B is reduced, the loss of electric energy due to the unnecessary high temperature of the molten slag layer B is reduced, and 700 to 1000 KWH / T ・ 60 from the melt
0 to 900 KWH / T.

【0031】尚、図1の実施形態に於いては、溶融炉本
体3の内部にメタルレベル検知器19を昇降動自在に配
設すると共に、レベル検出センサーを用いて溶融メタル
層Mの液面レベルLm(即ち溶融メタル層Mの層厚さL
t)を直接的に検知するようにしているが、溶融炉本体
3内へ配設するメタルレベル検知器19に替えて、溶融
炉本体3の側壁外方に磁気方式又は超音波方式のメタル
レベル検知器を設け、炉側壁の外方から溶融メタル層M
の液面レベルLm(溶融メタル層Mの層厚さLt)を直
接検出するようにしてもよい。
In the embodiment shown in FIG. 1, a metal level detector 19 is provided inside the melting furnace main body 3 so as to be able to move up and down, and the liquid level of the molten metal layer M is measured using a level detection sensor. Level Lm (that is, layer thickness L of molten metal layer M)
t) is directly detected, but instead of the metal level detector 19 disposed in the melting furnace main body 3, a magnetic or ultrasonic metal level is provided outside the side wall of the melting furnace main body 3. A detector is provided and the molten metal layer M
The liquid level Lm (the thickness Lt of the molten metal layer M) may be directly detected.

【0032】[0032]

【発明の効果】請求項1〜3の発明に於いては、溶湯内
の溶融メタル層Mの層厚さLt(溶融メタル層Mの液面
レベルLm)に応じて溶融炉本体3への供給電力を調整
することにより、溶融スラグ層Bの温度を設定値近傍に
維持する構成としている。その結果、溶融スラグ層B内
の温度を迅速に、しかも正確にほぼ設定温度近傍に保持
することができ、水滓スラグの品質が安定し、これを骨
材として積極的に再利用することが可能となる。また、
電気溶融炉に於ける電気エネルギーの消費量が減少し、
溶融原単位の大幅な低減が可能になるうえ、溶融炉を形
成する耐火材の寿命が延びて、メンテナンス費の削減を
図ることができる。本発明は上述の通り優れた実用的効
用を奏するものである。
According to the present invention, the molten metal is supplied to the melting furnace main body 3 in accordance with the thickness Lt of the molten metal layer M in the molten metal (the liquid level Lm of the molten metal layer M). By adjusting the power, the temperature of the molten slag layer B is maintained near the set value. As a result, the temperature in the molten slag layer B can be quickly and accurately maintained at approximately the set temperature, the quality of the slag slag is stabilized, and this can be actively reused as aggregate. It becomes possible. Also,
The consumption of electric energy in the electric melting furnace is reduced,
The melting unit consumption can be significantly reduced, and the life of the refractory material forming the melting furnace is extended, so that maintenance costs can be reduced. The present invention has excellent practical utility as described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】従前のごみ焼却処理設備に併置した電気溶融炉
の説明図である。
FIG. 2 is an explanatory view of an electric melting furnace juxtaposed with conventional waste incineration equipment.

【符号の説明】[Explanation of symbols]

Aは被溶融物、Mは溶融メタル層、Bは溶融スラグ層、
Lmは溶融メタル層の液面レベル、Ltは溶融メタル層
の層厚さ、Stは溶融スラグ層の層厚さ、Tbは温度検
出信号、Pmは液面レベルの検出信号(溶融メタル層の
厚さの検出信号)、Qwは供給電力指令信号、1は灰コ
ンテナ、2は供給装置、3は溶融炉本体、4は黒鉛主電
極、8は直流電源装置、10は溶融スラグ流出口、19
はメタルレベル検知器、20はメタルレベル検知器の駆
動装置、21はメタルレベル検知器の駆動操作盤、23
は供給電力演算装置、24はプラズマ制御盤。
A is a material to be melted, M is a molten metal layer, B is a molten slag layer,
Lm is the liquid level of the molten metal layer, Lt is the layer thickness of the molten metal layer, St is the layer thickness of the molten slag layer, Tb is a temperature detection signal, and Pm is a detection signal of the liquid level (the thickness of the molten metal layer). Detection signal), Qw is a supply power command signal, 1 is an ash container, 2 is a supply device, 3 is a melting furnace main body, 4 is a graphite main electrode, 8 is a DC power supply device, 10 is a molten slag outlet, 19
Is a metal level detector, 20 is a drive device of the metal level detector, 21 is a drive operation panel of the metal level detector, 23
Is a power supply computing device, and 24 is a plasma control panel.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 21/00 F27D 21/00 N (72)発明者 蔵内 良仁 兵庫県尼崎市金楽寺町2丁目2番33号 株 式会社タクマ内 Fターム(参考) 3K061 AA18 AB03 AC03 BA03 CA14 DA12 DB06 DB20 NB02 NB21 NB27 NB30 3K062 AA18 AB03 AC03 BA02 CA05 CB03 DA01 DA38 DB14 4K045 AA04 BA10 DA02 DA04 DA07 RB02 4K056 AA05 BB08 CA20 FA04 FA12 FA17 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F27D 21/00 F27D 21/00 N (72) Inventor Yoshihito Kurauchi 2-2-233 Kinrakujimachi, Amagasaki City, Hyogo Prefecture No. F-term in Takuma Co., Ltd. F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気溶融炉に於いて、溶湯内の溶融メタ
ル層の液面レベルに応じて溶融炉本体への供給電力を調
整することにより、溶融スラグ層の温度を設定値近傍に
維持するようにしたことを特徴とする電気溶融炉の運転
方法。
In an electric melting furnace, the temperature of a molten slag layer is maintained near a set value by adjusting electric power supplied to a melting furnace body in accordance with a liquid level of a molten metal layer in a molten metal. A method for operating an electric melting furnace, characterized in that:
【請求項2】 溶融メタル層の液面レベルを、溶湯内に
挿入したレベル検出センサーを用いて検出するようにし
た請求項1に記載の電気溶融炉の運転方法。
2. The method for operating an electric melting furnace according to claim 1, wherein the liquid level of the molten metal layer is detected using a level detection sensor inserted into the molten metal.
【請求項3】 溶融メタル層の液面レベルを溶融炉本体
の炉側壁に埋込んだ磁気コイルを用いて検出するように
した請求項1に記載の電気溶融炉の運転方法。
3. The method for operating an electric melting furnace according to claim 1, wherein the liquid level of the molten metal layer is detected using a magnetic coil embedded in a furnace side wall of the melting furnace body.
【請求項4】 電気溶融炉に於いて、溶融メタル層の液
面レベルを電圧、電流値と放熱量の相関から演算し、そ
のメタルレベルに応じた電圧、電流値となるよう出力を
調整するようにした電気溶融炉の運転方法。
4. In an electric melting furnace, a liquid level of a molten metal layer is calculated from a correlation between a voltage and a current value and a heat radiation amount, and an output is adjusted so as to be a voltage and a current value according to the metal level. Operating method of the electric melting furnace.
JP22590299A 1999-08-10 1999-08-10 Operation method of electric melting furnace Expired - Fee Related JP3746921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22590299A JP3746921B2 (en) 1999-08-10 1999-08-10 Operation method of electric melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22590299A JP3746921B2 (en) 1999-08-10 1999-08-10 Operation method of electric melting furnace

Publications (2)

Publication Number Publication Date
JP2001050528A true JP2001050528A (en) 2001-02-23
JP3746921B2 JP3746921B2 (en) 2006-02-22

Family

ID=16836687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22590299A Expired - Fee Related JP3746921B2 (en) 1999-08-10 1999-08-10 Operation method of electric melting furnace

Country Status (1)

Country Link
JP (1) JP3746921B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292350A (en) * 2006-04-24 2007-11-08 Takuma Co Ltd Operation control method of electric melting furnace
JP2008209040A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Operation control method and device of plasma melting furnace
WO2017195570A1 (en) * 2016-05-13 2017-11-16 節 安斎 Plasma melting method for treating material to be treated, and plasma melting furnace used for same
CN110645575A (en) * 2019-08-23 2020-01-03 泉州台商投资区大千机械科技有限公司 Garbage pyrolysis system with adjustable slag discharge port
CN113587118A (en) * 2021-07-20 2021-11-02 光大环保技术研究院(深圳)有限公司 Arc control system and method for plasma ash melting furnace
CN114646215A (en) * 2022-03-28 2022-06-21 酒泉钢铁(集团)有限责任公司 Method for controlling aluminum liquid temperature of aluminum alloy casting-rolling holding furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112032723B (en) * 2019-10-10 2021-11-16 北京航空航天大学 Vertical intelligent plasma medical waste cracking measurement and control system based on Internet of things

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537359A (en) * 1976-05-20 1978-01-23 Atomenergi Ab Electromagnetic device for measuring quantity on conductive liquid
JPH10172752A (en) * 1996-12-13 1998-06-26 Nkk Corp Position setting method of electrode of melting tank and input electric power control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537359A (en) * 1976-05-20 1978-01-23 Atomenergi Ab Electromagnetic device for measuring quantity on conductive liquid
JPH10172752A (en) * 1996-12-13 1998-06-26 Nkk Corp Position setting method of electrode of melting tank and input electric power control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292350A (en) * 2006-04-24 2007-11-08 Takuma Co Ltd Operation control method of electric melting furnace
JP2008209040A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Operation control method and device of plasma melting furnace
WO2017195570A1 (en) * 2016-05-13 2017-11-16 節 安斎 Plasma melting method for treating material to be treated, and plasma melting furnace used for same
JP2017203605A (en) * 2016-05-13 2017-11-16 節 安斎 Plasma melting method for processing processed product and plasma melting furnace applied for the same
US10717118B2 (en) 2016-05-13 2020-07-21 Setsu Anzai Plasma melting method for processing material to be processed, and plasma melting furnace used therefor
CN110645575A (en) * 2019-08-23 2020-01-03 泉州台商投资区大千机械科技有限公司 Garbage pyrolysis system with adjustable slag discharge port
CN113587118A (en) * 2021-07-20 2021-11-02 光大环保技术研究院(深圳)有限公司 Arc control system and method for plasma ash melting furnace
CN113587118B (en) * 2021-07-20 2023-08-25 光大环保技术研究院(深圳)有限公司 Arc control system and method for plasma ash melting furnace
CN114646215A (en) * 2022-03-28 2022-06-21 酒泉钢铁(集团)有限责任公司 Method for controlling aluminum liquid temperature of aluminum alloy casting-rolling holding furnace
CN114646215B (en) * 2022-03-28 2023-12-15 酒泉钢铁(集团)有限责任公司 Control method for aluminum liquid temperature of aluminum alloy casting and rolling heat preservation furnace

Also Published As

Publication number Publication date
JP3746921B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
JP2001050528A (en) Operation method of electric melting furnace
JP5324832B2 (en) Level measuring method and level measuring apparatus for ash melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JP3970542B2 (en) Furnace wall structure of electric melting furnace and method for suppressing wear of furnace wall refractories
JP5007094B2 (en) Control method of plasma melting furnace
JP4446429B2 (en) Operating method of plasma melting treatment equipment for waste treatment
JP5096797B2 (en) Level measurement method for ash melting furnace
JP2007071509A (en) Bottom electrode structure for electric melting furnace
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP4249086B2 (en) Heating means output control method for melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP3505065B2 (en) Plasma melting furnace and operating method thereof
JP3764641B2 (en) Electric melting furnace operation control method
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP3534693B2 (en) Operating method of plasma ash melting furnace
JP3196918B2 (en) Waste melting method and waste melting equipment
JP2001012722A (en) Heating/melting processing apparatus
JP2001141226A (en) Method and apparatus for tapping melting furnace
JP2004177080A (en) Dc electric resistance type melting furnace and its operation method
JP4563241B2 (en) Incineration ash melting electric furnace
JP2003028411A (en) Plasma type ash melting furnace
KR100563381B1 (en) A waste electric melting incinerator
JPH11237018A (en) Plasma melting furnace, and its operation method
JP2000346559A (en) Control apparatus and method for electrode for electric furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Ref document number: 3746921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees