JP3196918B2 - Waste melting method and waste melting equipment - Google Patents

Waste melting method and waste melting equipment

Info

Publication number
JP3196918B2
JP3196918B2 JP24327394A JP24327394A JP3196918B2 JP 3196918 B2 JP3196918 B2 JP 3196918B2 JP 24327394 A JP24327394 A JP 24327394A JP 24327394 A JP24327394 A JP 24327394A JP 3196918 B2 JP3196918 B2 JP 3196918B2
Authority
JP
Japan
Prior art keywords
heating
melting
melting chamber
waste
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24327394A
Other languages
Japanese (ja)
Other versions
JPH0882408A (en
Inventor
宏一 根本
宏憲 田中
祐吉 浜津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP24327394A priority Critical patent/JP3196918B2/en
Publication of JPH0882408A publication Critical patent/JPH0882408A/en
Application granted granted Critical
Publication of JP3196918B2 publication Critical patent/JP3196918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は焼却灰や金属小片などの
廃棄物を誘導加熱により溶融する方法と、これに使用す
る溶融設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting waste such as incinerated ash and small metal pieces by induction heating and a melting facility used for the method.

【0002】[0002]

【従来の技術】一般に可燃性のゴミは、焼却や埋め立て
によって処分されているが、ゴミの増大と共に処分場が
不足してきている。このため多くの地方自治体や事業所
では、焼却炉でゴミを焼却してその容積を減量させ、残
渣物として残った焼却灰を埋立地に運んで最終処分して
いる。しかしながらこの焼却灰は減容率が1/10程度に
はなるが、焼却炉の構造上、完全な焼却が困難なため、
焼却灰の中には多量の不燃物や末燃物が含まれており再
利用できるものではなかった。
2. Description of the Related Art In general, combustible waste is disposed of by incineration or landfill. For this reason, many municipalities and business establishments incinerate garbage in incinerators to reduce their volume and transport the remaining incinerated ash to landfills for final disposal. However, although the volume reduction rate of this incinerated ash is about 1/10, it is difficult to completely incinerate it due to the structure of the incinerator.
The incineration ash contained a large amount of incombustibles and end-combustion, and was not reusable.

【0003】このため大都市ではこの減容した焼却灰で
すらその廃棄処分が困難となってきており、更に減容固
化処理をする必要性が高まってきている。このような焼
却灰を更に処理する方式としては、現在アーク炉方式
と、キューポラ型の燃焼方式とがある。
[0003] For this reason, it is becoming difficult to dispose of even the reduced volume of incinerated ash in large cities, and the need for volume reduction and solidification is increasing. As a method of further processing such incineration ash, there are a current arc furnace method and a cupola type combustion method.

【0004】アーク炉方式は図2に示すようにレンガで
築炉された溶解室1の天井面に黒鉛電極棒2を可動自在
に取付け、溶解室1内に金属3を投入して、黒鉛電極棒
2と金属3との間に高温のアーク4を発生させて金属3
を溶融させた状態で、溶解室1の上部から焼却灰5を炉
内に投入する。投入された焼却灰5は溶融した金属3の
表面に浮いた状態で1400℃程度に加熱溶融されてスラグ
状となり、排出口6から流出したスラグ7は水噴射スプ
レー8により急冷され、更に水砕水槽9に落下して砂状
スラグ11となる。一方、アーク放電により激しく燃焼す
る焼却灰5から発生したダストやガスは、集塵機10に送
られてここで捕集されるようになっている。
In the arc furnace method, as shown in FIG. 2, a graphite electrode rod 2 is movably mounted on a ceiling surface of a melting chamber 1 constructed of bricks, a metal 3 is charged into the melting chamber 1, and a graphite electrode is placed. A high-temperature arc 4 is generated between the rod 2 and the metal 3 to
Is melted, the incineration ash 5 is put into the furnace from the upper part of the melting chamber 1. The injected incineration ash 5 is heated and melted at about 1400 ° C. while floating on the surface of the molten metal 3 to form a slag, and the slag 7 flowing out of the discharge port 6 is rapidly cooled by a water spray 8 and further granulated. It falls into the water tank 9 and becomes sandy slag 11. On the other hand, dust and gas generated from the incinerated ash 5 that burn violently by the arc discharge are sent to the dust collector 10 where they are collected.

【0005】しかしながらこのアーク炉方式では、設備
費が高く、激しいアーク放電音の発生や、黒鉛電極棒2
の消耗が早く、アーク燃焼に伴う排煙公害の問題があり
大型の集塵機10を設備するなど付帯設備にも大掛かりな
費用がかかる問題がある。
However, in this arc furnace system, the equipment cost is high, and intense arc discharge noise is generated and the graphite electrode rod 2
There is a problem of rapid exhaustion, and there is a problem of smoke pollution due to arc combustion, and a large cost is required for incidental facilities such as installing a large dust collector 10.

【0006】またキューポラ型の燃焼方式は図3に示す
ようにレンガで築炉された縦型の溶解室12の上部から焼
却灰5と共にコークス13と石灰石14を連続的に投入し、
溶解室12の下部側に設けた羽口15から熱風と共に酸素を
吹き込むと、コークス13が高温で燃焼してこの熱によっ
て、焼却灰5と石灰石14は加熱溶融されてスラグ状とな
り、底部に設けた排出口6から流出したスラグ7は水砕
水槽9に落下して砂状スラグ11になる。
In the cupola type combustion system, as shown in FIG. 3, coke 13 and limestone 14 are continuously introduced together with incineration ash 5 from the upper part of a vertical melting chamber 12 constructed of bricks.
When oxygen is blown together with hot air from the tuyere 15 provided at the lower side of the melting chamber 12, the coke 13 burns at a high temperature, and the heat causes the incineration ash 5 and the limestone 14 to be heated and melted into a slag shape, and provided at the bottom. The slag 7 flowing out of the discharged outlet 6 falls into the granulated water tank 9 and becomes sandy slag 11.

【0007】しかしながら、このキューポラ型の燃焼方
式はコークス13や石灰石14を同時に投入しなければなら
ず、このコークスや石灰石の保管スペースや管理が面倒
であり、また排出されるスラグ7の量も多くなるので減
容効果はアーク炉方式に比べて悪い。しかも従来のアー
ク炉方式やキューポラ型の燃焼方式は、何れも操業中に
は炉を停止することができないので昼夜連続運転とな
り、このための運転員の確保が難しく、また定期的な炉
材レンガの張り替え作業を専門の業者に依頼して行なわ
なければならずその保守も面倒で、長期間操業を停止し
なければならなかった。
However, in this cupola-type combustion system, coke 13 and limestone 14 must be supplied at the same time, and the storage space and management of the coke and limestone are troublesome, and the amount of discharged slag 7 is large. Therefore, the volume reduction effect is worse than that of the arc furnace method. In addition, the conventional arc furnace system and cupola-type combustion system cannot be shut down during operation, so they are operated continuously day and night, and it is difficult to secure operators for this purpose. The replacement work had to be performed by a specialized contractor, and the maintenance was troublesome, and the operation had to be stopped for a long time.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記欠点を除
去し、安価な黒鉛質発熱体ブロックを発熱体として、こ
れを誘導加熱することにより廃棄物を溶融するので、小
形で設備費が安く、ダストや排ガスの発生量も少なく、
その上、任意に操業できるので連続運転する必要がなく
管理する運転員の確保が容易で、しかも電気的に誘導加
熱するので融解温度の制御も容易で、黒鉛質発熱体ブロ
ックの消耗が少なく保守も容易な廃棄物溶融方法および
これに使用する廃棄物溶融設備を提供することを目的と
するものである。
SUMMARY OF THE INVENTION The present invention eliminates the above-mentioned drawbacks, and uses a low-cost graphite heating element block as a heating element and heats it by induction heating to melt the waste. , The amount of generated dust and exhaust gas is small,
In addition, since it can be operated arbitrarily, it is not necessary to perform continuous operation, and it is easy to secure operators to manage.In addition, since induction heating is performed electrically, the melting temperature can be easily controlled, and there is little consumption of the graphite heating block and maintenance. Another object of the present invention is to provide an easy-to-use waste melting method and a waste melting facility used for the method.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1記載の
産業廃棄物溶融方法は、溶解室の内部に黒鉛質発熱体ブ
ロックを挿入すると共に、溶解室の外周の上部側と下部
側に上下2段に巻回した加熱コイルにそれぞれ交番電流
を通電して、前記黒鉛質発熱体ブロックを誘導加熱した
状態で、溶解室の上部に形成した廃棄物投入口から、溶
融する廃棄物を連続的に投入して、上部に巻回した前記
加熱コイルにより誘導加熱されて発熱した黒鉛質発熱体
ブロックに接触させて溶融し、この溶融物スラグを黒鉛
質発熱体ブロックの間に流下させ、溶解室の下部側で、
ここに巻回した前記加熱コイルにより誘導加熱されて発
熱した黒鉛質発熱体ブロックにより更に加熱温度を上げ
て溶融物スラグを昇温して流動性を高めた状態で、溶解
室の底部に設けた溶融物排出口から排出した後、直ちに
水冷して砂状化させることを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for melting industrial waste, comprising inserting a graphitic heating element block inside a melting chamber and forming the block on the upper and lower sides of the outer periphery of the melting chamber. An alternating current is applied to each of the heating coils wound in two upper and lower stages, and while the graphite heating element block is induction-heated, molten waste is continuously fed from a waste inlet formed in the upper part of the melting chamber. And then melted by contacting the graphite heating element block that has been heated by induction heating by the heating coil wound on the top, and the molten slag flows down between the graphite heating element blocks to melt. At the bottom of the room,
The graphite heating element block, which was heated by induction heating by the heating coil wound here, was provided at the bottom of the melting chamber in a state where the heating temperature was further increased to raise the temperature of the molten slag to increase the fluidity. It is characterized in that, after being discharged from the melt discharge port, it is immediately cooled with water to be sandy.

【0010】また請求項2記載の産業廃棄物溶融設備
は、黒鉛質発熱体ブロックを挿入する、るつぼ形の溶解
室を耐火材で形成し、この溶解室上部を開口して廃棄物
投入口を形成すると共に、溶解室の底部に溶融物排出口
を設け、前記溶解室の廃棄物投入口を形成した上部側の
内径を、溶融物排出口を形成した下部側の内径より大き
く形成し、内径の大きい溶解室上部側の外周に誘導加熱
コイルを巻回して加熱・溶融ゾーンを形成すると共に、
内径の小さい溶解室下部側の外周に、前記加熱・溶融ゾ
ーンより加熱温度が高い誘導加熱コイルを別個に巻回し
て昇温ゾーンを形成し、前記溶融物排出口の下方に、開
放した冷却装置を配置したことを特徴とするものであ
る。
According to a second aspect of the present invention, there is provided an industrial waste melting facility, wherein a crucible-shaped melting chamber into which a graphite heating element block is inserted is formed of a refractory material, and an upper portion of the melting chamber is opened to form a waste inlet. While forming, a melt outlet is provided at the bottom of the melting chamber, and the inner diameter of the upper side where the waste inlet of the melting chamber is formed is formed larger than the inner diameter of the lower side where the melt outlet is formed. A heating and melting zone is formed by winding an induction heating coil around the upper side of the melting chamber
An induction heating coil having a heating temperature higher than that of the heating / melting zone is separately wound on the outer periphery of the lower side of the melting chamber having a small inner diameter to form a heating zone, and a cooling device opened below the melt outlet. Are arranged.

【0011】更に請求項3記載の産業廃棄物溶融設備
は、溶解室内壁が予め焼成した焼成スリーブを組み合わ
せて円筒状に形成したことを特徴とするものである。
Further, the industrial waste melting equipment according to claim 3 is characterized in that the inner wall of the melting chamber is formed in a cylindrical shape by combining a firing sleeve pre-fired.

【0012】[0012]

【作用】本発明の廃棄物溶融方法は、黒鉛質発熱体ブロ
ックを溶解室内に挿入した状態で、溶解室の外周の上部
側と下部側に上下2段に巻回した加熱コイルに高周波電
源からそれぞれ交番電流を通電して、加熱コイルに高周
波電流を通電すると、黒鉛質発熱体ブロックが誘導加熱
される。溶解室の黒鉛質発熱体ブロックが高温に誘導加
熱された状態で、廃棄物を廃棄物投入口から溶解室内に
投入すると、廃棄物は上部側に巻回した加熱コイルで高
温に誘導加熱された黒鉛質発熱体ブロックに接触して加
熱され、廃棄物中の可燃物は燃焼し、水分は蒸発し、残
った無機質は溶融される。更に温度が上昇しながら黒鉛
質発熱体ブロックの間を流下していく間にスラグ状とな
る。また溶解室の上部側内径を下部側に比べて大きく形
成したので、投入された廃棄物と黒鉛質発熱体ブロック
との接触面積が広く効率よく加熱・溶融して処理能力を
高めることができる。
According to the waste melting method of the present invention, a high-frequency power supply is applied to a heating coil wound up and down in two stages on the upper side and the lower side of the outer periphery of the melting chamber with the graphite heating element block inserted into the melting chamber. When an alternating current is applied and a high-frequency current is applied to the heating coil, the graphite heating block is induction-heated. When waste was introduced into the melting chamber through the waste inlet with the graphite heating block in the melting chamber heated to high temperature, the waste was heated to high temperature by the heating coil wound on the upper side. When heated by contacting the graphite heating element block, combustibles in the waste are burned, moisture is evaporated, and the remaining inorganic substance is melted. The slag is formed while flowing down between the graphitic heating element blocks while the temperature rises. Further, since the inner diameter of the upper part of the melting chamber is made larger than that of the lower part, the contact area between the input waste and the graphite-based heating element block is large, so that the heating and melting can be efficiently performed and the processing capacity can be increased.

【0013】上部側の黒鉛質発熱体ブロックの間を流下
したスラグは、昇温ゾーンで下部側に巻回した加熱コイ
ルで誘導加熱された黒鉛質発熱体ブロックにより更に加
熱されて高温になり流動性を増して、溶解室の底部に設
けた溶融物排出口から出湯させる。出湯されたスラグ
は、水冷却装置で急速に水冷されて砂状スラグになる。
この後、砂状スラグと冷却水を分離して土木建築用のコ
ンクリート細骨材や埋め戻し材として有効利用すること
ができる。
The slag that has flowed down between the upper graphitic heating blocks is further heated by the graphite heating block that is induction-heated by the heating coil wound in the lower part in the temperature-raising zone and becomes hot and flows. The hot water is discharged from the melt outlet provided at the bottom of the melting chamber. The discharged slag is rapidly cooled by a water cooling device to be sandy slag.
Thereafter, the sandy slag and the cooling water can be separated and effectively used as fine aggregate or backfill material for civil engineering.

【0014】[0014]

【実施例】以下本発明の一実施例を図1を参照して詳細
に説明する。図において17は溶解室で、この溶解室17
は、上部側の内径が大きく下部側の内径が小さい、るつ
ぼ形状に耐火断熱材18で形成され、この上部内側に焼成
した大径の焼成スリーブ19aが設けられ、下部内側に小
径の焼成スリーブ19bが設けられている。また溶解室17
の上部外周には加熱コイル20aが巻回されて、これは高
周波電源21aに接続されている。更に溶解室17の下部外
周には加熱コイル20bが巻回されて、これは高周波電源
21bに接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to FIG. In the figure, reference numeral 17 denotes a melting chamber.
Is formed of a refractory heat insulating material 18 in the form of a crucible having a large inner diameter on the upper side and a smaller inner diameter on the lower side. Is provided. Dissolution chamber 17
A heating coil 20a is wound around the upper outer periphery of the heating coil 20a, which is connected to a high-frequency power supply 21a. Further, a heating coil 20b is wound around the lower periphery of the melting chamber 17, which is a high frequency power supply.
21b.

【0015】また溶解室17の上部は開口して、ここを廃
棄物投入口22とし、底部に溶融物排出口23が設けられて
いる。更に溶解室17の内部には黒鉛質発熱体ブロック24
が挿入されている。この黒鉛質発熱体ブロック24として
は、炭素を基本としたもので黒鉛(カーボン)や炭化け
い素等で形成され、電気的固有抵抗が数百〜数千ηΩー
cmで誘導加熱が可能であり、他の物質と化学反応を起こ
しにくい物性を持ったものを選択し、通常は安価で入手
し易い、電気炉用電極カーボンの端材を塊状にしたもの
が良い。
The upper part of the melting chamber 17 is opened, and this is used as a waste inlet 22, and a melt outlet 23 is provided at the bottom. Further, a graphite heating element block 24 is provided inside the melting chamber 17.
Is inserted. The graphite heating element block 24 is based on carbon and is formed of graphite (carbon), silicon carbide, or the like, and has an electrical resistivity of several hundred to several thousand ηΩ.
Induction heating is possible in cm.Select a material that has physical properties that are unlikely to cause a chemical reaction with other substances. .

【0016】また廃棄物投入口22の上方には、焼却灰5
を搬入するベルトコンベアー26が設置され、溶融物排出
口23の下方には水砕水槽9が設置されている。更にこの
水砕水槽9の排出口27の下方にはメッシュコンベアー28
が水平に配置され、この下方に水槽29が設けられている
と共に、メッシュコンベアー28の一端側には砂状スラグ
11を搬出する運搬台車30が設けられている。
Above the waste inlet 22, incineration ash 5
A belt conveyor 26 for carrying in is installed, and a granulated water tank 9 is installed below the melt outlet 23. Further, a mesh conveyor 28 is provided below the outlet 27 of the granulated water tank 9.
Are arranged horizontally, a water tank 29 is provided below this, and a sandy slag is provided on one end side of the mesh conveyor 28.
A transport trolley 30 for unloading 11 is provided.

【0017】上記構成の廃棄物溶融設備では、黒鉛質発
熱体ブロック24を溶解室17内に挿入した状態で、高周波
電源21a、21bから加熱コイル20a、20bに高周波電流
を通電すると、黒鉛質発熱体ブロック24が誘導加熱され
る。誘導加熱の原理は黒鉛質発熱体ブロック24に流れる
誘導電流と黒鉛質発熱体ブロック24の固有抵抗により発
生するジュール熱によって加熱昇温される。この場合、
黒鉛質発熱体ブロック24を流れる誘導電流は、固有抵抗
と電源周波数によって定まる電流浸透深さで表面に集中
する性質があるので、効率よく加熱できるためには、黒
鉛質発熱体ブロック24の材質や寸法、形状によって高周
波電源21a、21bの電源周波数を適切に選択する必要が
ある。
In the waste melting facility having the above-described configuration, when a high-frequency current is supplied from the high-frequency power sources 21a and 21b to the heating coils 20a and 20b in a state where the graphite heating element block 24 is inserted into the melting chamber 17, the graphite-based heat is generated. The body block 24 is induction heated. The principle of the induction heating is that the temperature is raised by induction current flowing through the graphite heating element block 24 and Joule heat generated by the specific resistance of the graphite heating element block 24. in this case,
The induced current flowing through the graphite heating element block 24 tends to concentrate on the surface at a current penetration depth determined by the specific resistance and the power supply frequency. It is necessary to appropriately select the power supply frequency of the high frequency power supplies 21a and 21b according to the size and shape.

【0018】このように溶解室17の上部側は加熱・溶融
ゾーン32として、黒鉛質発熱体ブロック24が約1500℃程
度まで加熱された状態で、ベルトコンベアー26で焼却灰
5を廃棄物投入口22から溶解室17内に投入する。投入さ
れた焼却灰5は高温に加熱された黒鉛質発熱体ブロック
24に接触して加熱され、焼却灰5中の可燃物は燃焼し、
水分は蒸発し、残った無機質は溶融してスラグ7とな
る。更にスラグ7の温度が上昇しながら黒鉛質発熱体ブ
ロック24の間を流下していく。
As described above, the upper side of the melting chamber 17 serves as a heating / melting zone 32, and the incinerated ash 5 is fed to the waste inlet by the belt conveyor 26 while the graphite heating element block 24 is heated to about 1500 ° C. It is thrown into the dissolution chamber 17 from 22. The incinerated ash 5 is a graphite heating block heated to high temperature
Heated by contact with 24, combustibles in the incineration ash 5 burn,
The water evaporates, and the remaining inorganic material is melted to form the slag 7. Further, the slag 7 flows down between the graphite heating element blocks 24 while the temperature of the slag 7 increases.

【0019】この場合、焼却灰5は誘導加熱された黒鉛
質発熱体ブロック24からの熱伝達と熱伝導により加熱さ
れる間接加熱方式であるので、上部側の加熱・溶融ゾー
ン32の内径を大きく形成して、投入された焼却灰5との
接触面積を広くとることにより効率よく加熱・溶融して
処理能力を高めることができる。また焼却灰5の主成分
は、砂やガラス等の無機質で、これに金属と有機物が若
干含まれている。このため、焼却灰5と低融点化合物を
形成する炭酸ナトリウムやカルシュウムなどの添加剤を
同時に添加すれば、更に溶融温度が下がって溶融を促進
することができる。
In this case, since the incineration ash 5 is of an indirect heating type in which the incineration ash 5 is heated by heat transfer and heat conduction from the induction-heated graphite heating element block 24, the inner diameter of the upper heating / melting zone 32 is increased. By increasing the contact area with the incinerated ash 5 that has been formed and put therein, it is possible to efficiently heat and melt to increase the processing capacity. The main component of the incineration ash 5 is an inorganic substance such as sand or glass, which slightly contains metals and organic substances. Therefore, if the incineration ash 5 and additives such as sodium carbonate and calcium which form a low melting point compound are added at the same time, the melting temperature can be further lowered and the melting can be promoted.

【0020】溶融した焼却灰5は更に温度が上昇しなが
ら黒鉛質発熱体ブロック24の間を流下していくが、加熱
・溶融ゾーン32では、外部からの空気流入が極めて少な
くなるため、黒鉛質発熱体ブロック24の酸化消耗が抑制
され、黒鉛質発熱体ブロック24の追加補充は一定期間過
ぎてからで良い。
The melted incinerated ash 5 flows down between the graphite heating blocks 24 while the temperature is further increased. However, in the heating / melting zone 32, the inflow of air from the outside becomes extremely small. Oxidation consumption of the heating element block 24 is suppressed, and additional replenishment of the graphite heating element block 24 may be performed after a certain period of time.

【0021】加熱・溶融ゾーン32を流下したスラグ7
は、溶解室17の下部外周に巻回された加熱コイル20bに
より更に高温に誘導加熱された下段の昇温ゾーン33の黒
鉛質発熱体ブロック24に接触して温度が上昇し、流動性
を増して溶解室17の底部に設けた溶融物排出口23からス
ラグ7を流出させる。このように高周波電源21a、21b
は各々独自に電力印加レベルを調整し、昇温ゾーン33で
は加熱・溶融ゾーン32より高温にして、スラグ7が溶融
物排出口23から速やかに出湯できるように必要な温度に
保持する。
The slag 7 flowing down the heating / melting zone 32
Is in contact with the graphite heating element block 24 of the lower heating zone 33, which is further induction-heated to a higher temperature by the heating coil 20b wound around the lower periphery of the melting chamber 17, so that the temperature rises and the fluidity increases. The slag 7 is caused to flow out from the melt outlet 23 provided at the bottom of the melting chamber 17. Thus, the high frequency power supplies 21a, 21b
Individually adjusts the power application level, makes the temperature in the heating zone 33 higher than that in the heating / melting zone 32, and keeps the slag 7 at a necessary temperature so that the slag 7 can be quickly discharged from the melt outlet 23.

【0022】溶融物排出口23から出湯されたスラグ7
は、水砕水槽9に落下してここで急速に水冷されて砂状
スラグ11になる。この砂状スラグ11は冷却水34と共に、
排出口27からメッシュコンベアー28の上に供給され、冷
却水34はここを通過して水槽29に溜められる。また砂状
スラグ11はメッシュコンベアー28に搬送されて、その一
端側から運搬台車30に落下して集められる。
Slag 7 discharged from molten material outlet 23
Falls into the granulated water tank 9 and is rapidly cooled with water to become sandy slag 11. This sandy slag 11 together with the cooling water 34
The cooling water 34 is supplied from the discharge port 27 onto the mesh conveyor 28, passes therethrough, and is stored in the water tank 29. Further, the sandy slag 11 is conveyed to the mesh conveyor 28, and is dropped and collected from one end side of the trolley 30.

【0023】この砂状スラグ11は、焼却灰5に含まれて
いた多量の末燃物が完全に燃焼すると共に、金属は溶解
して細かい砂状となり、焼却灰5の1/3以下に減容す
ることができ、しかも廃棄物として無害なので埋め立て
る場合にはどこにでも捨てることができる。またこのよ
うに処理された砂状スラグ11は、土木建築用の原料とし
て、例えばコンクリート用の細骨材や埋め戻し材、土壤
改良材として広く利用することができる。
In the sandy slag 11, a large amount of the end combusted matter contained in the incineration ash 5 is completely burned, and the metal is dissolved to form a fine sand, which is reduced to 1/3 or less of the incineration ash 5. It is harmless as waste and can be disposed of anywhere when it is landfilled. Further, the sandy slag 11 thus treated can be widely used as a raw material for civil engineering, for example, as a fine aggregate for concrete, a backfill material, and a soil improvement material.

【0024】従って本発明では、黒鉛質発熱体ブロック
24を誘導加熱して、間接加熱により焼却灰5を溶融する
ので、必要な時にだけ電源を投入して任意に操業でき、
従来のように昼夜連続運転する必要がなく、管理する運
転員の確保も容易であり、特に処理量の少ない焼却場に
好適である。
Accordingly, in the present invention, the graphite heating element block is used.
24 is heated by induction and the incineration ash 5 is melted by indirect heating, so it can be operated arbitrarily by turning on the power only when necessary.
It is not necessary to operate continuously day and night as in the related art, and it is easy to secure operators to manage, and it is particularly suitable for an incineration plant with a small throughput.

【0025】また溶解室17は、耐火断熱材18でるつぼ状
に形成された炉体の内側に、耐熱性に優れた焼成スリー
ブ19a、19bを組み合わせた構造であり、炉壁が消耗し
た場合には、予め製造しておいた焼成スリーブ19a、19
bだけを交換すれば良いので、従来のアーク炉やキュー
ポラ型の燃焼炉のように、長期間かかって耐火レンガの
張り替え作業を行なう必要がなく、操業停止時間や補修
コストを大幅に低減することができる。
Further, the melting chamber 17 has a structure in which fired sleeves 19a and 19b having excellent heat resistance are combined inside a furnace body formed in a crucible shape with a refractory heat insulating material 18, so that the furnace wall is depleted. Are the fired sleeves 19a, 19
Since only b needs to be replaced, there is no need to replace refractory bricks over a long period of time unlike conventional arc furnaces and cupola-type combustion furnaces, greatly reducing downtime and repair costs. Can be.

【0026】また本発明は静かに誘導加熱されるのでダ
ストや排ガスの発生量も少ないが、必要に応じて溶解室
17の上方にダストやガスを吸収する集塵機を取付けても
良い。また上記実施例では焼却灰5を溶融する場合につ
いて示したが、ガラスファイバーやガラスウールなど他
の鉱物材や、金属切削粉、シュレッダー材、電線コード
などの金属小片の溶解にも広く適用することができる。
In the present invention, the amount of dust and exhaust gas generated is small because induction heating is performed gently.
A dust collector that absorbs dust and gas may be mounted above 17. In the above embodiment, the case where the incineration ash 5 is melted is shown. However, the present invention can be widely applied to melting of other mineral materials such as glass fiber and glass wool, and metal chips such as metal cutting powder, shredder materials, and electric wire cords. Can be.

【0027】[0027]

【発明の効果】以上説明した如く本発明の請求項1およ
び2記載の発明によれば、安価な黒鉛質発熱体ブロック
を発熱体として、これを誘導加熱してこれと接触させる
ことにより間接的に廃棄物を加熱溶融するので、小形で
設備費が安く、ダストや排ガスの発生量も少ない。その
上、任意に操業できるので連続運転する必要がなく管理
する運転員の確保が容易で、しかも電気的に誘導加熱す
るので融解温度の制御も容易で、ダストの発生や黒鉛質
発熱体ブロックの消耗が少なく保守も容易な廃棄物溶融
方法およびこれに使用する廃棄物溶融設備を得ることが
できる。
As described above, according to the first and second aspects of the present invention, an inexpensive graphitic heating element block is used as a heating element, and the heating element is inductively heated and brought into contact with the heating element. Since the waste is heated and melted, the equipment cost is small and the amount of dust and exhaust gas generated is small. In addition, since it can be operated arbitrarily, it is not necessary to perform continuous operation and it is easy to secure operators to manage, and because it is electrically induction-heated, it is easy to control the melting temperature, and it is easy to generate dust and produce graphite-based heating element blocks. It is possible to obtain a waste melting method that is less consumed and easy to maintain, and a waste melting facility used for the method.

【0028】更に請求項3記載の廃棄物溶融設備によれ
ば、耐火断熱材で、るつぼ形に形成された炉体の内側
に、耐熱性に優れた焼成スリーブを組み合わせた構造で
あり、炉壁が消耗した場合には、予め製造しておいた焼
成スリーブだけを交換すれば良いので、作業が容易で、
操業停止時間や補修コストを大幅に低減することができ
る。
According to a third aspect of the present invention, there is provided a waste melting facility having a structure in which a refractory heat insulating material and a crucible-shaped furnace body are combined with a fired sleeve having excellent heat resistance. When is consumed, it is only necessary to replace the pre-manufactured firing sleeve, so the work is easy,
Downtime and repair costs can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による廃棄物溶融設備を示す
断面図である。
FIG. 1 is a sectional view showing a waste melting facility according to one embodiment of the present invention.

【図2】従来のアーク炉方式による溶融設備を示す断面
図である。
FIG. 2 is a cross-sectional view showing a conventional melting facility using an arc furnace method.

【図3】従来の示すキューポラ型の溶融設備を示す断面
図である。
FIG. 3 is a sectional view showing a conventional cupola-type melting facility.

【符号の説明】[Explanation of symbols]

1 溶解室 2 黒鉛電極棒 3 金属 4 アーク 5 焼却灰 6 排出口 7 スラグ 8 水噴射スプレー 9 水砕水槽 10 集塵機 11 砂状スラグ 12 縦型の溶解室 13 コークス 14 石灰石 15 羽口 17 溶解室 18 耐火断熱材 19a 焼成スリーブ 20a 加熱コイル 21a 高周波電源 22 廃棄物投入口 23 溶融物排出口 24 黒鉛質発熱体ブロック 28 メッシュコンベアー 30 運搬台車 32 加熱・溶融ゾーン 33 昇温ゾーン DESCRIPTION OF SYMBOLS 1 Melting room 2 Graphite electrode rod 3 Metal 4 Arc 5 Incineration ash 6 Outlet 7 Slag 8 Water spray spray 9 Granulated water tank 10 Dust collector 11 Sandy slag 12 Vertical melting room 13 Coke 14 Limestone 15 Tuyere 17 Melting room 18 Fireproof insulation material 19a Sintering sleeve 20a Heating coil 21a High frequency power supply 22 Waste inlet 23 Melt outlet 24 Graphite heating element block 28 Mesh conveyor 30 Transport truck 32 Heating / melting zone 33 Heating zone

フロントページの続き (56)参考文献 特開 平5−74558(JP,A) 特開 平6−159640(JP,A) 特開 昭49−121375(JP,A) 特開 昭59−158909(JP,A) 特開 昭57−95834(JP,A) 特開 昭48−57231(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/00 F23G 5/24 H05B 6/44 F27D 7/00 - 15/02 Continuation of front page (56) References JP-A-5-74558 (JP, A) JP-A-6-159640 (JP, A) JP-A-49-121375 (JP, A) JP-A-59-158909 (JP) JP-A-57-95834 (JP, A) JP-A-48-57231 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) F23G 5/00 F23G 5/24 H05B 6/44 F27D 7/00-15/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶解室の内部に黒鉛質発熱体ブロックを
挿入すると共に、溶解室の外周の上部側と下部側に上下
2段に巻回した加熱コイルにそれぞれ交番電流を通電し
て、前記黒鉛質発熱体ブロックを誘導加熱した状態で、
溶解室の上部に形成した廃棄物投入口から、溶融する廃
棄物を連続的に投入して、上部に巻回した前記加熱コイ
ルにより誘導加熱されて発熱した黒鉛質発熱体ブロック
に接触させて溶融し、この溶融物スラグを黒鉛質発熱体
ブロックの間に流下させ、溶解室の下部側で、ここに巻
回した前記加熱コイルにより誘導加熱されて発熱した黒
鉛質発熱体ブロックにより更に加熱温度を上げて溶融物
スラグを昇温して流動性を高めた状態で、溶解室の底部
に設けた溶融物排出口から排出した後、直ちに水冷して
砂状化させることを特徴とする産業廃棄物溶融方法。
1. A graphitic heating element block is inserted into a melting chamber, and an alternating current is applied to heating coils wound in two stages in upper and lower sides of an outer periphery of the melting chamber. With the graphite heating block heated by induction,
Melting waste is continuously fed from a waste inlet formed in the upper part of the melting chamber, and is brought into contact with the graphite heating element block that is heated by induction heating by the heating coil wound around the upper part. Then, the molten slag is caused to flow down between the graphite heating blocks, and the heating temperature is further reduced by the graphite heating block which is heated by induction heating by the heating coil wound around the lower portion of the melting chamber. Industrial waste characterized by raising the temperature of the molten slag to raise the fluidity, discharging the molten slag from the melt outlet provided at the bottom of the melting chamber, and immediately cooling it with water to form a sand. Melting method.
【請求項2】 黒鉛質発熱体ブロックを挿入する、るつ
ぼ形の溶解室を耐火材で形成し、この溶解室上部を開口
して廃棄物投入口を形成すると共に、溶解室の底部に溶
融物排出口を設け、前記溶解室の廃棄物投入口を形成し
た上部側の内径を、溶融物排出口を形成した下部側の内
径より大きく形成し、内径の大きい溶解室上部側の外周
に誘導加熱コイルを巻回して加熱・溶融ゾーンを形成す
ると共に、内径の小さい溶解室下部側の外周に、前記加
熱・溶融ゾーンより加熱温度が高い誘導加熱コイルを別
個に巻回して昇温ゾーンを形成し、前記溶融物排出口の
下方に、開放した冷却装置を配置したことを特徴とする
産業廃棄物溶融設備。
2. A crucible-shaped melting chamber into which a graphite heating element block is inserted is formed of a refractory material, an upper portion of the melting chamber is opened to form a waste inlet, and a molten material is formed at the bottom of the melting chamber. A discharge port is provided, and the inner diameter of the upper part of the melting chamber where the waste inlet is formed is larger than the inner diameter of the lower part where the melt discharge port is formed. A coil is wound to form a heating / melting zone, and an induction heating coil having a heating temperature higher than the heating / melting zone is separately wound around the outer periphery of the lower side of the melting chamber having a small inner diameter to form a heating zone. An industrial waste melting facility, wherein an open cooling device is arranged below the melt outlet.
【請求項3】 溶解室内壁が、予め焼成した焼成スリー
ブを組み合わせて円筒状に形成したことを特徴とする請
求項2記載の産業廃棄物溶融設備。
3. The industrial waste melting facility according to claim 2, wherein a wall of the melting chamber is formed in a cylindrical shape by combining a firing sleeve previously fired.
JP24327394A 1994-09-12 1994-09-12 Waste melting method and waste melting equipment Expired - Fee Related JP3196918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24327394A JP3196918B2 (en) 1994-09-12 1994-09-12 Waste melting method and waste melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24327394A JP3196918B2 (en) 1994-09-12 1994-09-12 Waste melting method and waste melting equipment

Publications (2)

Publication Number Publication Date
JPH0882408A JPH0882408A (en) 1996-03-26
JP3196918B2 true JP3196918B2 (en) 2001-08-06

Family

ID=17101420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24327394A Expired - Fee Related JP3196918B2 (en) 1994-09-12 1994-09-12 Waste melting method and waste melting equipment

Country Status (1)

Country Link
JP (1) JP3196918B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423686B1 (en) * 1998-01-30 2004-03-18 가부시키가이샤 히타치세이사쿠쇼 Solid material melting apparatus
KR100386989B1 (en) * 2000-10-18 2003-06-18 천지득 A treatment device for waste matter using low freguency and high freguerey

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121375A (en) * 1973-03-27 1974-11-20
JPS59158909A (en) * 1983-02-28 1984-09-08 Osaka Gas Co Ltd Melting furnace for industrial waste
JP3088515B2 (en) * 1991-09-13 2000-09-18 北芝電機株式会社 Induction heating residue melting furnace
JPH06159640A (en) * 1992-11-26 1994-06-07 Ebara Infilco Co Ltd Basicity adjusting apparatus and adjusting method therefor

Also Published As

Publication number Publication date
JPH0882408A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
KR100549789B1 (en) Method for the vitrification of a powder substance and device therefor
JPH0771733A (en) Method and device for melting, burning and incinerating material
KR0139189B1 (en) Method and apparatus for using hazardous waste to form non-hazardous aggregate
US6620092B2 (en) Process and apparatus for vitrification of hazardous waste materials
JP3196918B2 (en) Waste melting method and waste melting equipment
JP2008096098A (en) Waste asbestos melting furnace
JP3483054B2 (en) DC electric melting furnace for the production of reduced molten slag.
JP2005270874A (en) Treatment method of polluted soil and apparatus thereof
JP3088515B2 (en) Induction heating residue melting furnace
JPH0355410A (en) Melting and disposing method for incinerated ash
JPH0355411A (en) Melting disposing device for incinerated ash
JP3534679B2 (en) Plasma arc ash melting furnace
JP2009063286A (en) Waste treatment method, metal manufacturing method and metal
JPH05237468A (en) Incineration ash heating and melting treatment method and apparatus
JP3912717B2 (en) Radioactive waste incineration melting processing apparatus and incineration melting processing method
JPH0519277B2 (en)
JPS60103215A (en) Disposal of waste
JP2003148716A (en) Discharging method for waste melting furnace and device thereof
JPS60152813A (en) Method for processing burnt ash of waste material
JP2002048322A (en) Melting processing method and melting processing furnace for waste
JP2000297921A (en) Slag discharging device and slag discharging method from waste melting furnace
JP3027287B2 (en) Electric resistance type melting furnace and its operation method
JP3350169B2 (en) Waste melting method and apparatus
JP4972458B2 (en) Ash melting furnace combustion chamber
JP3921784B2 (en) Ash melting furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees