JP5773827B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP5773827B2
JP5773827B2 JP2011217404A JP2011217404A JP5773827B2 JP 5773827 B2 JP5773827 B2 JP 5773827B2 JP 2011217404 A JP2011217404 A JP 2011217404A JP 2011217404 A JP2011217404 A JP 2011217404A JP 5773827 B2 JP5773827 B2 JP 5773827B2
Authority
JP
Japan
Prior art keywords
positive electrode
metal foil
secondary battery
power generation
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011217404A
Other languages
Japanese (ja)
Other versions
JP2013077486A (en
Inventor
孝明 福島
孝明 福島
史人 古内
史人 古内
佐郷 文昭
文昭 佐郷
三島 洋光
洋光 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011217404A priority Critical patent/JP5773827B2/en
Publication of JP2013077486A publication Critical patent/JP2013077486A/en
Application granted granted Critical
Publication of JP5773827B2 publication Critical patent/JP5773827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、二次電池に関するものである。   The present invention relates to a secondary battery.

近年、携帯電話やノートPC等、機器のバックアップ電源として、表面実装可能な二次電池への要求が高まっている。このような二次電池には小型化やリフローハンダ付けへの対応が求められており、従来から使われている金属缶を樹脂製ガスケットにより封止するコイン型等パッケージや、アルミシートを重ね合わせて封止するラミネート型パッケージにかえて、厚膜法での形成が可能な金属材料を含む接続端子を備えたセラミックあるいはガラス製の耐熱性容器をパッケージとして用い、リフローハンダ付けにより基板に直接表面実装可能な低背型の二次電池が提案されている。(特許文献1を参照)   In recent years, there is an increasing demand for a secondary battery that can be surface-mounted as a backup power source for devices such as mobile phones and notebook PCs. Such secondary batteries are required to be compact and compatible with reflow soldering. The conventional metal cans are sealed with resin gaskets, and coin-type packages and aluminum sheets are stacked. Instead of a laminate-type package that is sealed, a ceramic or glass heat-resistant container with a connection terminal containing a metal material that can be formed by a thick film method is used as the package, and the substrate is directly surfaced by reflow soldering. A low-profile secondary battery that can be mounted has been proposed. (See Patent Document 1)

特許第3959220号公報Japanese Patent No. 3959220

ところで、特許文献1に記載の耐熱性容器をパッケージに用いた二次電池では、非水溶媒を用いた電解質が使用され、集電体や接続端子が電極や電解質成分と接触している。そのため、正極への電圧負荷により正極集電体や接続端子が溶解することから、耐食性に優れた金属膜で正極集電体や接続端子を被覆する必要があった。しかしながら、金属膜にはピンホールなどの欠陥が生じやすく、その欠陥を起点として正極集電体や接続端子の溶解が進行してしまうという課題があった。   By the way, in the secondary battery using the heat-resistant container described in Patent Document 1, an electrolyte using a nonaqueous solvent is used, and the current collector and the connection terminal are in contact with the electrode and the electrolyte component. For this reason, since the positive electrode current collector and the connection terminal are dissolved by the voltage load on the positive electrode, it is necessary to cover the positive electrode current collector and the connection terminal with a metal film having excellent corrosion resistance. However, defects such as pinholes are likely to occur in the metal film, and there has been a problem that dissolution of the positive electrode current collector and the connection terminal proceeds from the defect.

本発明は、表面実装可能で、信頼性が高い二次電池を提供することを目的とする。   An object of the present invention is to provide a secondary battery that can be surface-mounted and has high reliability.

本発明の二次電池は、正極と固体電解質層と負極とを積層してなる発電要素と、該発電要素を収納してなる容器と、該容器の内表面に設けられ、または該容器の一部を構成し、前記発電要素の正極および負極とそれぞれ接続される正極端子および負極端子と、前記容器の外表面に設けられ、前記正極端子および前記負極端子とそれぞれ電気的に接続される一対の外部電極とを備え、少なくとも、前記発電要素の前記正極と前記正極端子とが金属箔を介して接続され、前記正極と前記金属箔とが直接貼り付けられていることを特徴とする。
A secondary battery according to the present invention includes a power generation element formed by laminating a positive electrode, a solid electrolyte layer, and a negative electrode, a container containing the power generation element, an inner surface of the container, or one of the containers. part constitute a positive terminal and a negative terminal respectively connected with the positive electrode and the negative electrode of the power generating element, provided on an outer surface of said container, said positive terminal and said negative terminal and a pair of electrically connected An external electrode, and at least the positive electrode and the positive electrode terminal of the power generation element are connected via a metal foil, and the positive electrode and the metal foil are directly attached to each other.

本発明によれば、表面実装可能で、信頼性が高い二次電池を得ることができる。   According to the present invention, a secondary battery that can be surface-mounted and has high reliability can be obtained.

次電池の斜視図(a)、および斜視図のA−A断面図(b)である。 It is the perspective view (a) of a secondary battery, and AA sectional drawing (b) of a perspective view. 別の二次電池の断面図(a)、および断面図のA部拡大図(b)である。 It is sectional drawing (a) of another secondary battery, and the A section enlarged view (b) of sectional drawing. 別の二次電池の斜視図(a)、および斜視図のA’−A’断面図(b)である。 It is the perspective view (a) of another secondary battery, and A'-A 'sectional drawing (b) of a perspective view.

次電池を、図1に基づき説明する。二次電池は、正極1と固体電解質層2と負極3とがこの順に積層された発電要素4が、外表面に外部電極5Pおよび5Nを備えた絶縁性の筺体6に収納され、筺体6の開口部を覆うように金属製の蓋体7が取り付けられ、蓋体7は外部電極5Nと配線導体10を介して電気的に接続されている。つまり、筺体6と蓋体7とで容器を構成し、発電要素4が容器内に収納されるようになっている。筺体6の底板の上面には正極端子5P’が設けられており、底板に設けられたスルーホール導体を介して外部電極5Pと正極端子5P’とが電気的に接続されている。発電要素4の正極1側の面と負極3側の面には、導電性接着剤9によりそれぞれ金属箔8Pおよび8Nが接合され、各金属箔8P、8Nは、それぞれ正極1および正極端子5P’、負極3および負極端子を兼ねる蓋体7が直接接触しないように配されている。
The secondary battery will be described with reference to FIG . In the secondary battery, a power generation element 4 in which a positive electrode 1, a solid electrolyte layer 2, and a negative electrode 3 are laminated in this order is housed in an insulating casing 6 having external electrodes 5P and 5N on the outer surface. A metal lid 7 is attached so as to cover the opening, and the lid 7 is electrically connected to the external electrode 5N via the wiring conductor 10. That is, the housing 6 and the lid body 7 constitute a container, and the power generation element 4 is accommodated in the container. A positive electrode terminal 5P ′ is provided on the upper surface of the bottom plate of the housing 6, and the external electrode 5P and the positive electrode terminal 5P ′ are electrically connected via a through-hole conductor provided on the bottom plate. Metal foils 8P and 8N are bonded to the surface on the positive electrode 1 side and the surface on the negative electrode 3 side of the power generation element 4 by a conductive adhesive 9, respectively. The metal foils 8P and 8N are respectively connected to the positive electrode 1 and the positive electrode terminal 5P ′. The lid 7 serving also as the negative electrode 3 and the negative electrode terminal is arranged so as not to be in direct contact.

このように、正極端子5P’および蓋体7が、正極1や負極3と直接接触しないように、正極1および負極3と、正極端子5P’および蓋体7との間に、金属箔8Pおよび8Nを設けることで、従来のCVDや蒸着、メッキ等により形成された金属膜と比較してピンホール等の欠陥が低減され、電圧印加による正極端子5P’の溶解や、蓋体7と負極3中のLiとの合金化などの副反応を抑制して、信頼性の高い二次電池とすることができる。   As described above, the metal foil 8P and the positive electrode 1 and the negative electrode 3, and the positive electrode terminal 5P ′ and the lid 7 are disposed between the positive electrode 1 and the negative electrode 3 so that the positive electrode terminal 5P ′ and the lid 7 are not in direct contact with the positive electrode 1 and the negative electrode 3. By providing 8N, defects such as pinholes are reduced as compared with conventional metal films formed by CVD, vapor deposition, plating, etc., dissolution of the positive electrode terminal 5P ′ due to voltage application, and the lid 7 and the negative electrode 3 By suppressing side reactions such as alloying with Li therein, a highly reliable secondary battery can be obtained.

また、固体電解質層2を用いることで、有機電解液のように電解質成分が電池内部全体に広がることがないため、正極端子5P’および蓋体7が電解質成分と直接接触して溶解しないように、正極端子5P’および蓋体7を耐食性に優れた金属膜で被覆する必要がなく、工程を簡略化することができる。   Further, by using the solid electrolyte layer 2, the electrolyte component does not spread throughout the battery as in the case of the organic electrolyte, so that the positive electrode terminal 5P ′ and the lid 7 are not in direct contact with the electrolyte component and dissolved. It is not necessary to coat the positive electrode terminal 5P ′ and the lid body 7 with a metal film having excellent corrosion resistance, and the process can be simplified.

金属箔8Pは、発電要素4の正極1側の面に貼り付けられていることが好ましい。これにより、金属箔8Pが発電要素4の正極1側の面からずれて、正極1が正極端子5P’に接触することを防ぐことができる。また、正極1が活物質の焼結体や圧粉体からなり、何らかの影響で正極1にクラックが発生しても、金属箔8Pが貼り付けられていることにより、発電要素4からの正極1の部分的な剥離や脱落を防止する効果も期待できる。なお、本実施形態では、導電性接着剤9を介して金属箔8Pを正極1に貼り付けているが、たとえば加圧圧着等の方法により、金属箔8Pを正極1に直接貼り付けてもよい。この場合、発電要素4の正極1側の面に凹凸を有し、その凸部が金属箔8Pに入り込んでいることが好ましい。これにより、正極1の表面の凹凸に起因するアンカー効果で、正極1と金属箔8Pとをより強固に接合することができる。正極1の表面の凸部を金属箔8Pに入り込ませるためには、たとえば加圧圧着等の方法で接合することにより、金属箔8Pの表面を正極1の表面の凹凸に合わせて変形させればよい。また、このような形態をとることで、正極1と金属箔8Pとの接触面積が増えることにより、正極1と金属箔8P間の電気伝導性が向上するという効果も期待できる。   The metal foil 8P is preferably attached to the surface of the power generation element 4 on the positive electrode 1 side. Thereby, it can prevent that the metal foil 8P slip | deviates from the surface by the side of the positive electrode 1 of the electric power generation element 4, and the positive electrode 1 contacts the positive electrode terminal 5P '. Moreover, even if the positive electrode 1 is made of an active material sintered body or a green compact, and the crack is generated in the positive electrode 1 due to some influence, the positive electrode 1 from the power generation element 4 can be obtained by being attached with the metal foil 8P. The effect of preventing partial peeling and falling off can also be expected. In this embodiment, the metal foil 8P is attached to the positive electrode 1 via the conductive adhesive 9. However, the metal foil 8P may be directly attached to the positive electrode 1 by a method such as pressure bonding. . In this case, it is preferable that the surface of the power generation element 4 on the positive electrode 1 side has irregularities, and the convex portions enter the metal foil 8P. Thereby, the positive electrode 1 and the metal foil 8P can be more firmly joined by the anchor effect resulting from the unevenness | corrugation of the surface of the positive electrode 1. FIG. In order to allow the convex portion on the surface of the positive electrode 1 to enter the metal foil 8P, for example, by bonding by a method such as pressure bonding, the surface of the metal foil 8P is deformed according to the unevenness of the surface of the positive electrode 1 Good. Moreover, by taking such a form, the effect that the electrical conductivity between the positive electrode 1 and the metal foil 8P improves can be expected by increasing the contact area between the positive electrode 1 and the metal foil 8P.

また、金属箔8Pは、正極1の面(発電要素4の積層方向に交差する面)以外に、この面に隣接する側面にまで延びる延出部を有することが好ましい。このような構成により、正極1と正極端子5P’との接触をより確実に防ぐことができる。なお、金属箔8Pの延出部は、より確実に正極1と正極端子5P’との接触を防ぐという点から、正極1の面の周縁すべてにわたって設けられている、すなわち全ての側面に設けられている方が好ましいが、部分的に設けられていても構わない。また、金属箔8Pの延出部は、負極3と接触しない範囲で正極1の側面を覆うように設けてもよい。また、この場合、正極1の側面に凹凸を有し、その凹部に金属箔8Pの延出部の一部を入り込ませた場合は、アンカー効果により正極1と金属箔8Pとをより一層強固に接合することができる。なお、金属箔8Pがこのような延出部を有する場合、正極1が焼結体や圧粉体からなり、何らかの影響で正極1にクラックが発生した場合においても、金属箔8Pの延出部により正極1の形状が保たれ、発電要素4からの正極1の部分的な剥離や脱落をより一層防止する効果も期待でき
る。
In addition to the surface of the positive electrode 1 (the surface intersecting the stacking direction of the power generation elements 4), the metal foil 8P preferably has an extending portion that extends to a side surface adjacent to this surface. With such a configuration, contact between the positive electrode 1 and the positive electrode terminal 5P ′ can be more reliably prevented. The extending portion of the metal foil 8P is provided over the entire periphery of the surface of the positive electrode 1 from the viewpoint of more reliably preventing the contact between the positive electrode 1 and the positive electrode terminal 5P ′, that is, provided on all side surfaces. However, it may be partially provided. Moreover, you may provide the extension part of metal foil 8P so that the side surface of the positive electrode 1 may be covered in the range which does not contact the negative electrode 3. FIG. Further, in this case, when the side surface of the positive electrode 1 has irregularities and a part of the extending portion of the metal foil 8P is inserted into the concave portion, the positive electrode 1 and the metal foil 8P are made stronger by the anchor effect. Can be joined. In addition, when the metal foil 8P has such an extension part, even when the positive electrode 1 is made of a sintered body or a green compact and a crack occurs in the positive electrode 1 due to some influence, the extension part of the metal foil 8P. As a result, the shape of the positive electrode 1 is maintained, and the effect of further preventing partial peeling or dropping of the positive electrode 1 from the power generation element 4 can be expected.

このような金属箔8Pの延出部は、発電要素4の正極1側の面に金属箔8を接合した後、金属箔8P側から発電要素4を切断したり、発電要素4と金属箔8Pとを静水圧プレス等の手法により加圧圧着することで形成できる。   Such an extended portion of the metal foil 8P is formed by joining the metal foil 8 to the surface of the power generation element 4 on the positive electrode 1 side, and then cutting the power generation element 4 from the metal foil 8P side, or generating the power generation element 4 and the metal foil 8P. Can be formed by pressure and pressure bonding by a method such as isostatic pressing.

以上、金属箔8Pと正極1との接合について述べたが、金属箔8Nについても同様に発電要素4の負極3側の面に接合されていることが好ましい。   As mentioned above, although joining of metal foil 8P and positive electrode 1 was described, it is preferable that metal foil 8N is also joined to the surface of power generating element 4 on the negative electrode 3 side.

固体電解質層2を形成する電解質には、有機溶媒を含まないドライポリマー電解質、無機固体電解質が好適に用いられる。また、電解質成分が流出しない程度に保形性を有する準固体の材料を用いることもできる。このような準固体電解質としては、液体電解質を有機ポリマーに含浸させたゲルポリマー電解質が挙げられる。   As the electrolyte that forms the solid electrolyte layer 2, a dry polymer electrolyte or an inorganic solid electrolyte that does not contain an organic solvent is preferably used. Further, a quasi-solid material having a shape retaining property to such an extent that the electrolyte component does not flow out can be used. Examples of such a quasi-solid electrolyte include a gel polymer electrolyte obtained by impregnating a liquid electrolyte with an organic polymer.

ゲルポリマー電解質およびドライポリマー電解質は、セパレータにこれらの前駆体溶液を含浸させた後、加熱により前駆体溶液をゲル化または硬化させて使用してもよい。セパレータとしては、耐熱性の高い樹脂フィルム、あるいは、ガラスフィルター、セラミックスフィルターなどを用いることができる。   The gel polymer electrolyte and the dry polymer electrolyte may be used after impregnating the precursor solution in a separator and then gelling or curing the precursor solution by heating. As the separator, a resin film with high heat resistance, a glass filter, a ceramic filter, or the like can be used.

無機固体電解質は、イオン伝導パスがランダムに存在することで電極の体積変化に伴う界面の形態変化に追従し、界面抵抗の増加を抑制することができると考えられるリチウムを含むガラス系固体電解質が好ましく、例えばLi1+xZrSi3−x12、Li1+xZr2−x/3Si3−x12−2x/3(1.5<x<2.2)、Li1+xTi2−x(PO(M=Al、Sc、Y、またはLa、0<x<2)、Li0.5−3x0.5+xTiO(M=La、Pr、Nd、またはSm、0<x<1/6)、LiSO、LiSiO、LiPO、LiGeO、LiVO、LiMoO、LiZrO、LiCO、LiO、LiPON、SiO、ZrO、V、P、B、Al、TiO、ZnGeO、LiS、SiS、LiSe、SiSe、B、P、GeS、LiI、LiW、LiNbO等が挙げられる。なかでもリン酸リチウムオキシナイトライド(以下、LIPONともいう)は室温で1×10−6S/cm程度の高いイオン伝導度を持ち、電気化学的に広い電位範囲にわたって安定であることが知られており好適である。 An inorganic solid electrolyte is a glass-based solid electrolyte containing lithium, which is thought to be capable of following the change in the interface morphology accompanying the volume change of the electrode and suppressing the increase in interface resistance by the presence of random ion conduction paths. Preferably, for example, Li 1 + x Zr 2 Si x P 3-x O 12 , Li 1 + x Zr 2-x / 3 Si x P 3-x O 12-2x / 3 (1.5 <x <2.2), Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, or La, 0 <x <2), Li 0.5-3x M 0.5 + x TiO 3 (M = La, Pr, Nd Or Sm, 0 <x <1/6), Li 2 SO 4 , Li 4 SiO 4 , Li 3 PO 4 , Li 4 GeO 4 , Li 3 VO 4 , Li 2 MoO 4 , Li 4 ZrO 4 , Li 2 CO 3 , Li 2 O, LiPON, SiO 2, ZrO 2, V 2 O 5, P 2 O 5, B 2 O 3, Al 2 O 3, TiO 2, Zn 2 GeO 4, Li 2 S, SiS 2, Li 2 Se, SiSe 2, B 2 S 3, P 2 S 5, GeS 2, LiI, LiW 2 O 7, LiNbO 3 and the like. Among them, lithium phosphate oxynitride (hereinafter also referred to as LIPON) has a high ionic conductivity of about 1 × 10 −6 S / cm at room temperature and is known to be electrochemically stable over a wide potential range. It is suitable.

無機固体電解質を用いる場合は、イオンの通り道としてその移動距離を短くするために固体電解質層2の厚みは薄ければ薄いほどよく、具体的には、固体電解質層2全体の厚みを10μm以下とすることが好ましく、さらには3μm以下、より好ましくは1μm以下とするのがよい。固体電解質層2の厚みを薄くすることで、無機固体電解質に起因する内部抵抗が減少し、出力特性などの電池性能が向上する。また、固体電解質層2の厚みを薄くすることができれば、同一体積の二次電池と比較して活物質をより多く詰め込めるため、高容量化が進み、結果としてエネルギー密度の向上にも寄与する。ただし、短絡を防止するために、絶縁破壊やピンホールによる短絡を起こさない必要最低限の厚みを確保する必要がある。   In the case of using an inorganic solid electrolyte, the thickness of the solid electrolyte layer 2 is preferably as thin as possible in order to shorten the moving distance as a path for ions, and specifically, the total thickness of the solid electrolyte layer 2 is 10 μm or less. Preferably, it is 3 μm or less, more preferably 1 μm or less. By reducing the thickness of the solid electrolyte layer 2, internal resistance due to the inorganic solid electrolyte is reduced, and battery performance such as output characteristics is improved. Moreover, if the thickness of the solid electrolyte layer 2 can be reduced, more active material can be packed as compared with a secondary battery having the same volume, so that the capacity is increased and, as a result, the energy density is also improved. However, in order to prevent a short circuit, it is necessary to secure a minimum thickness that does not cause a short circuit due to dielectric breakdown or pinholes.

無機固体電解質を用いる場合は、例えば正極1上に設けられた正極側の第1固体電解質と、負極3上に設けられた負極3側の第2固体電解質を接合することで固体電解質層2を形成することができる。   When an inorganic solid electrolyte is used, for example, the first solid electrolyte on the positive electrode side provided on the positive electrode 1 and the second solid electrolyte on the negative electrode 3 side provided on the negative electrode 3 are joined to form the solid electrolyte layer 2. Can be formed.

発電要素4の正極1側に配する金属箔8Pの材料としては、正極1の電位において溶解などの反応が発生しない耐食性を有する金属、たとえばアルミニウム、タンタル、ニオブ
、チタン、金、白金等を含む材料を用いることができる。特にアルミニウム、金、白金は耐食性に優れ、容易に入手できることから好ましい。
The material of the metal foil 8P disposed on the positive electrode 1 side of the power generation element 4 includes a metal having corrosion resistance that does not cause a reaction such as dissolution at the potential of the positive electrode 1, such as aluminum, tantalum, niobium, titanium, gold, platinum, and the like. Materials can be used. In particular, aluminum, gold, and platinum are preferable because they have excellent corrosion resistance and are easily available.

また、負極3側に配する金属箔8Nの材料としては、負極3の電位においてLiとの合金化などの副反応が発生しない金属、たとえば、ニッケル、銅、真鍮、亜鉛、アルミニウム、ステンレス、タングステン、金、白金等を含む材料を用いればよい。   The material of the metal foil 8N disposed on the negative electrode 3 side is a metal that does not cause side reactions such as alloying with Li at the potential of the negative electrode 3, such as nickel, copper, brass, zinc, aluminum, stainless steel, tungsten. A material containing gold, platinum, or the like may be used.

金属箔8P、8Nの厚さは、電池作製工程において損傷なくハンドリングが可能で、かつ電池として充分なエネルギー密度を得られるだけの発電要素4の厚さを確保できればよく、たとえば5μm〜15μmの範囲とすればよい。   The thicknesses of the metal foils 8P and 8N are only required to ensure the thickness of the power generating element 4 that can be handled without damage in the battery manufacturing process and can obtain a sufficient energy density as a battery, for example, in the range of 5 μm to 15 μm. And it is sufficient.

導電性接着剤9としては、たとえば、金、銀、ニッケル、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン、チタン酸化カリム等の導電性フィラーと、アクリル系樹脂、エポキシ樹脂、シリコン系樹脂、ポリアミド系樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド系樹脂等の高分子粘着材とからなる混合物を用いることができる。導電性接着剤9の厚さは、二次電池として充分なエネルギー密度を得られるだけの発電要素4の厚さを確保し、電性接着剤9による電気抵抗を最小限に抑えるために、10μm以下とすることが望ましい。   Examples of the conductive adhesive 9 include conductive fillers such as gold, silver, nickel, zinc oxide, tin oxide, indium oxide, titanium oxide, and titanium oxide, acrylic resin, epoxy resin, silicon resin, and polyamide. It is possible to use a mixture composed of a polymer adhesive material such as a resin, a phenol resin, a polyester resin, or a polyimide resin. The thickness of the conductive adhesive 9 is 10 μm in order to secure the thickness of the power generation element 4 sufficient to obtain a sufficient energy density as a secondary battery and to minimize the electric resistance due to the conductive adhesive 9. The following is desirable.

正極1、負極3としては、正極活物質または負極活物質の粒子を結着材で固めたものや、正極活物質または負極活物質からなる圧粉体および焼結体を用いることができる。特に、発電に直接かかわらない導電助剤や結着材、固体電解質などを含まず、正極活物質および負極活物質の充填率をより高めることができ、よりエネルギー密度の高い二次電池が得られることから、焼結体を使用することが好ましい。正極1および負極3として用いる焼結体の相対密度は、85%以上が好ましく、90%以上がより好ましい。   As the positive electrode 1 and the negative electrode 3, a positive electrode active material or negative electrode active material particles solidified with a binder, or a green compact and a sintered body made of a positive electrode active material or a negative electrode active material can be used. In particular, it does not contain conductive additives, binders, solid electrolytes, etc. that are not directly related to power generation, and can further increase the filling ratio of the positive electrode active material and the negative electrode active material, thereby obtaining a secondary battery with higher energy density. Therefore, it is preferable to use a sintered body. The relative density of the sintered bodies used as the positive electrode 1 and the negative electrode 3 is preferably 85% or more, and more preferably 90% or more.

正極1に用いる活物質としては、例えば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物、酸化バナジウムなどが挙げられる。このうち、リチウムコバルト複合酸化物は電子伝導性が高く、出力特性に優れた二次電池とすることができる。また、リチウムニッケルマンガン複合酸化物(LiNiMn(x=0.1〜0.5、y=1.5〜1.9))は、他の材料に比べ電位が高く、起電力の高い二次電池とすることが出来る。 Examples of the active material used for the positive electrode 1 include lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, and vanadium oxide. It is done. Among these, the lithium cobalt composite oxide has a high electron conductivity and can be a secondary battery excellent in output characteristics. Further, lithium nickel manganese composite oxide (LiNi x Mn y O 4 (x = 0.1 to 0.5, y = 1.5 to 1.9)) has a higher potential than other materials, and an electromotive force. High secondary battery.

負極3に用いる活物質としては、例えば、炭素、酸化チタン、酸化ニオブ、リチウムチタン複合酸化物などが挙げられるが、このうち、酸化チタン、酸化ニオブ、リチウムチタン複合酸化物などの酸化物は、焼結体化が容易なため好ましい。特に、リチウムチタン複合酸化物を負極活物質として用いることにより、負極3を焼結体とした場合でも、充放電における負極3の体積変化を小さくすることができ、サイクル特性の良い二次電池とすることが出来る。   Examples of the active material used for the negative electrode 3 include carbon, titanium oxide, niobium oxide, and lithium titanium composite oxide. Among these, oxides such as titanium oxide, niobium oxide, and lithium titanium composite oxide include This is preferable because it can be easily formed into a sintered body. In particular, by using lithium titanium composite oxide as the negative electrode active material, even when the negative electrode 3 is a sintered body, the volume change of the negative electrode 3 during charge and discharge can be reduced, and a secondary battery with good cycle characteristics can be obtained. I can do it.

正極1および負極3の厚さはそれぞれ20μm〜200μmとすることが好ましい。これにより、電池容量を得るために必要な活物質の絶対量が確保できるとともに、良好な充放電特性の二次電池が得られる。また、正極1および負極3として焼結体を用いる場合も、上記厚みとすることで、ハンドリング性がよく取り扱いが容易な正極1および負極2となる。   The thickness of each of the positive electrode 1 and the negative electrode 3 is preferably 20 μm to 200 μm. Thereby, the absolute amount of the active material necessary for obtaining the battery capacity can be secured, and a secondary battery having good charge / discharge characteristics can be obtained. Moreover, also when using a sintered compact as the positive electrode 1 and the negative electrode 3, by setting it as the said thickness, it becomes the positive electrode 1 and the negative electrode 2 with easy handling and easy handling.

発電要素4を収納する筺体6は、底板と側壁とを有し、底板の下面には、例えばタングステン金属を主成分とし、基板にハンダ付けするために表面にニッケル、金、スズ、ハンダの層を形成した外部電極5Pおよび5Nが設けられている。底板の上面には底板に設け
られたスルーホール導体を介して外部電極5Pと電気的に接続された正極端子5P’が形成されており、発電要素4の正極1側に配された金属箔8Pと電気的に接合される。
The housing 6 for housing the power generation element 4 has a bottom plate and a side wall. The bottom surface of the bottom plate is mainly composed of, for example, tungsten metal, and a nickel, gold, tin, or solder layer on the surface for soldering to the substrate. External electrodes 5P and 5N are provided. A positive electrode terminal 5P ′ electrically connected to the external electrode 5P through a through-hole conductor provided on the bottom plate is formed on the upper surface of the bottom plate, and a metal foil 8P disposed on the positive electrode 1 side of the power generation element 4 is formed. And is electrically joined.

外部電極5Nは、底板の下面から例えば側壁の外面に形成された配線導体10により側壁の上端部に形成された導電層を通じて、蓋体7と電気的に接続されている。なお、導電層と外部電極5Nとを接続する配線導体10は、図3に示すように側壁の内部に設けてもよい。   The external electrode 5N is electrically connected to the lid 7 from the lower surface of the bottom plate through a conductive layer formed on the upper end portion of the side wall by a wiring conductor 10 formed on the outer surface of the side wall, for example. The wiring conductor 10 connecting the conductive layer and the external electrode 5N may be provided inside the side wall as shown in FIG.

筺体6の材料には、アルミナ質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、ガラスセラミックスなどが好適に用いられる。筺体6は周知の方法、たとえば、原料粉末のグリーンシートにタングステン金属等を主成分とするペーストを印刷して、グリーンシートを積層し、焼成した後、導体層部分にニッケル層、金層をメッキすることにより作製できる。   As the material of the casing 6, an alumina sintered body, a mullite sintered body, an aluminum nitride sintered body, a glass ceramic, or the like is preferably used. The casing 6 is a well-known method, for example, printing a paste containing tungsten metal as a main component on a green sheet of raw material powder, laminating and firing the green sheet, and then plating a nickel layer and a gold layer on the conductor layer portion It can produce by doing.

なお、本実施形態では、金属箔8Pおよび8Nと、正極端子5P’および蓋体7とをそれぞれ直接接触させているが、図3に示すように、各金属箔8Pおよび8Nと、正極端子5P’および蓋体7との間に、金属を集電体11として設けたり、導電性接着剤を介して接着固定することもできる。金属を集電体11として用いる場合も、集電体11が正極1および負極3と直接接触しないように金属箔8P、8Nを配すればよく、また、集電体11及び導電性接着剤の厚さは10μm以下とすることが望ましい。この場合、集電体11や導電性接着剤と、外部電極5Nとを、蓋体7に配線導体を形成して接続することにより、蓋体7の材料として絶縁性の材料を用いることもできる。   In this embodiment, the metal foils 8P and 8N are directly in contact with the positive electrode terminal 5P ′ and the lid 7, respectively. However, as shown in FIG. 3, the metal foils 8P and 8N and the positive electrode terminal 5P are contacted. A metal may be provided as a current collector 11 between 'and the lid 7 or may be bonded and fixed via a conductive adhesive. Even when a metal is used as the current collector 11, the metal foils 8 </ b> P and 8 </ b> N may be arranged so that the current collector 11 does not directly contact the positive electrode 1 and the negative electrode 3, and the current collector 11 and the conductive adhesive The thickness is desirably 10 μm or less. In this case, an insulating material can also be used as a material of the lid body 7 by connecting the current collector 11 and the conductive adhesive to the external electrode 5N by forming a wiring conductor on the lid body 7. .

なお、金属箔8Pおよび8Nと、正極端子5P’および蓋体7とを直接接触させる場合には、発電要素4と蓋体7の間に、たとえば、電解質層2や導電性接着剤9の弾性で圧力をかける手法や、蓋体7に板バネのような構造を取り付け加圧する手法等を用いて、例えば0.05〜0.5MPa程度の圧力を付与することで、良好な接続を保つことができる。また、蓋体7をニッケル、銅、アルミニウム、金、白金等を含む材料により形成することで、負極3側に金属箔8Nを設けず、負極3と蓋体7とを導電性接着剤9を介して接合することもでき、さらには、負極3と蓋体7とを直接接触させることもできる。   When the metal foils 8P and 8N are directly in contact with the positive electrode terminal 5P ′ and the lid 7, for example, the elasticity of the electrolyte layer 2 or the conductive adhesive 9 is provided between the power generation element 4 and the lid 7. Maintaining good connection by applying a pressure of about 0.05 to 0.5 MPa, for example, using a method of applying pressure with a method of applying pressure by attaching a structure such as a leaf spring to the lid body 7 and applying pressure. Can do. Further, by forming the lid body 7 from a material containing nickel, copper, aluminum, gold, platinum, etc., the conductive foil 9 is bonded to the negative electrode 3 and the lid body 7 without providing the metal foil 8N on the negative electrode 3 side. Further, the negative electrode 3 and the lid 7 can be brought into direct contact with each other.

本実施形態の二次電池の製法について詳細を説明する。   Details of the manufacturing method of the secondary battery of the present embodiment will be described.

正極1及び負極3として、活物質粒子を結着材で固めたものを用いる場合は、たとえば、金属箔8Pあるいは8N上に、活物質と導電材とバインダーとを混練したスラリーを塗布した後、乾燥硬化させることにより正極1および負極3を作製する。   When using positive electrode 1 and negative electrode 3 in which active material particles are hardened with a binder, for example, after applying a slurry obtained by kneading an active material, a conductive material and a binder onto metal foil 8P or 8N, The positive electrode 1 and the negative electrode 3 are produced by drying and curing.

正極1および負極3として、焼結体を用いる場合には、その製法として、下記の(1)から(3)のいずれを用いてもよい。
(1)活物質を、成形助剤、必要に応じて分散剤、可塑剤を加えた水もしくは溶剤と混合してスラリーを調整し、このスラリーを基材フィルムに塗布、乾燥した後、基材フィルムから剥離させ、焼結させる。
(2)活物質を直接もしくは造粒したものを金型に投入し、プレス機で加圧成形した後、焼結させる。
(3)造粒した活物質をロールプレス機で加圧成形してシート状に加工し、焼結させる。(2)及び(3)の造粒については、(1)の方法で述べたスラリーから造粒する湿式造粒であっても乾式造粒であってもよい。また、(1)〜(3)において、焼結される活物質は、焼結後の活物質自体であっても良いし、焼結過程における反応により焼結後の活物質を形成する材料であっても構わない。
When a sintered body is used as the positive electrode 1 and the negative electrode 3, any one of the following (1) to (3) may be used as the production method.
(1) A slurry is prepared by mixing an active material with a molding aid, water or a solvent to which a dispersant and a plasticizer are added if necessary, and this slurry is applied to a substrate film, dried, and then dried. Peel from the film and sinter.
(2) A material obtained by directly or granulating an active material is put into a mold, pressed with a press machine, and then sintered.
(3) The granulated active material is pressure-formed with a roll press machine, processed into a sheet shape, and sintered. The granulation of (2) and (3) may be either wet granulation or dry granulation from the slurry described in the method (1). In (1) to (3), the active material to be sintered may be the active material itself after sintering, or a material that forms the active material after sintering by a reaction in the sintering process. It does not matter.

成形助剤としては、例えばポリアクリル酸、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリビニルアルコール、ジアセチルセルロース、ヒドロキシプロピルセルロース、ポリビニルクロライド、ポリビニルピロリドン、ブチラールなどの1種もしくは2種以上の混合物が挙げられる。   Examples of the molding aid include one or a mixture of two or more of polyacrylic acid, carboxymethyl cellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, butyral, and the like.

また、(1)の製法で用いる基材フィルムとしては、たとえばポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、テトラフルオロエチレン等の樹脂フィルムを用いることができる。   Moreover, as a base film used by the manufacturing method of (1), resin films, such as a polyethylene terephthalate, a polypropylene, polyethylene, tetrafluoroethylene, can be used, for example.

このようにして作製した焼結体電極の一方の主面に、導電性接着剤9を用いて金属箔8Pまたは8Nを接着し、金属箔付きの正極1および負極3を作製する。   The metal foil 8P or 8N is adhered to one main surface of the sintered body electrode thus produced using the conductive adhesive 9 to produce the positive electrode 1 and the negative electrode 3 with the metal foil.

つぎに、正極1の金属箔8Pを接着していない側の面と、負極3の金属箔8Nを接着していない側の面とを、電解質層2を挟んで相対させるようにして積層し、たとえば加熱圧着することにより、金属箔付き発電要素4を作製する。このとき、加熱温度は、用いる電解質層の種類に適した温度を選べばよく、金属箔8P、8Nの材料としては、この加熱温度よりも融点の高い材料を選べばよい。   Next, the surface of the positive electrode 1 on the side to which the metal foil 8P is not bonded and the surface of the negative electrode 3 on the side to which the metal foil 8N is not bonded are laminated so as to face each other with the electrolyte layer 2 interposed therebetween, For example, the power generation element 4 with metal foil is produced by thermocompression bonding. At this time, as the heating temperature, a temperature suitable for the type of the electrolyte layer to be used may be selected, and a material having a melting point higher than the heating temperature may be selected as the material of the metal foils 8P and 8N.

このようにして作製した金属箔付き発電要素4は、金属箔8P、8Nを接着することにより、切断等の機械的加工に耐えうる高い強度を有する。そのため、例えば100mm×100mm程度の大きなサイズで作製した後、所定のサイズに切断することができ、端子電極や集電体に金属膜を被覆する製法と比較して、簡便な工程で生産性を向上することができる。また、金属箔8P側、すなわち正極1側を起点に切断することで、正極1の側面に金属箔8Pの延出部を形成することもできる。   The power generation element 4 with metal foil thus produced has high strength that can withstand mechanical processing such as cutting by bonding the metal foils 8P and 8N. Therefore, for example, it can be cut into a predetermined size after being manufactured in a large size of about 100 mm × 100 mm, and productivity can be improved by a simple process compared to a manufacturing method in which a terminal electrode or a current collector is coated with a metal film. Can be improved. Moreover, the extending part of the metal foil 8P can also be formed on the side surface of the positive electrode 1 by cutting the metal foil 8P side, that is, the positive electrode 1 side.

所定のサイズに切断した金属箔付き発電要素4を、金属箔8Pが筺体6の底板上面に露出した正極端子5P’と直接接触するように筺体6に収納することで、金属箔8Pを介して正極1と正極端子5P’とが電気的に接続される。次に、金属製の蓋体7を、導電性接着剤や抵抗溶接などの手法を用いて筺体6に接合することにより、金属箔8N、蓋体7、筺体6の側壁の上端部および側壁外面に形成された配線導体10を介して、負極3と外部電極5Nとが電気的に接続される。   The power generation element 4 with metal foil cut into a predetermined size is accommodated in the housing 6 so that the metal foil 8P is in direct contact with the positive electrode terminal 5P ′ exposed on the upper surface of the bottom plate of the housing 6, so that the metal foil 8P is interposed through the metal foil 8P. The positive electrode 1 and the positive electrode terminal 5P ′ are electrically connected. Next, the metallic lid 7 is joined to the casing 6 using a technique such as conductive adhesive or resistance welding, so that the metal foil 8N, the lid 7, the upper end of the side wall of the casing 6 and the outer surface of the side wall The negative electrode 3 and the external electrode 5N are electrically connected to each other through the wiring conductor 10 formed in the above.

このとき、たとえば、金属箔付き発電要素4の積層方向の厚さを、筺体6の側壁の高さよりもわずかに大きくすることで、金属箔8Pおよび8Nと、正極端子5P’および蓋体7との電気的接続を確実なものとすることができる。   At this time, for example, by making the thickness in the stacking direction of the power generation element 4 with metal foil slightly larger than the height of the side wall of the housing 6, the metal foils 8P and 8N, the positive terminal 5P ′ and the lid 7 The electrical connection can be ensured.

また、金属箔8Pおよび8Nと、正極端子5P’および蓋体7とを、必要に応じて、たとえばカーボンフィラーを含む導電性接着剤で接着固定しても構わない。   Further, the metal foils 8P and 8N, the positive electrode terminal 5P 'and the lid body 7 may be bonded and fixed with a conductive adhesive containing a carbon filler, for example, as necessary.

以上、本発明の一実施形態である二次電池について説明したが、本発明はこの実施形態に限定されるものではなく、発電要素4の負極3側の金属箔8Nを、筺体6の底板上面に形成した端子電極と接続し、正極1側の金属箔8Pを蓋体7と接続する組合せはもちろんのこと、本発明を逸脱しない範囲で種々変更したものにも適用することができる。   As mentioned above, although the secondary battery which is one embodiment of the present invention has been described, the present invention is not limited to this embodiment, and the metal foil 8N on the negative electrode 3 side of the power generation element 4 is attached to the upper surface of the bottom plate of the casing 6. The present invention can be applied to various modifications without departing from the present invention as well as the combination of connecting the terminal foil formed in the above and the metal foil 8P on the positive electrode 1 side to the lid 7.

参考例として、まず、正極および負極を以下のようにして作製した。正極活物質としてコバルト酸リチウム、負極活物質としてチタン酸リチウムを用い、これらの原料に、成形助剤、可塑剤、分散剤、溶剤を加えて混合し、スラリーを調整した。このスラリーを、ポ
リエチレンテレフタレート(PET)フィルム上にドクターブレード法にて塗布した後乾燥させて、グリーンシートを作製した。の正極用グリーンシートの厚さは50μm、負極用のグリーンシートの厚さは50μmとした。これらのグリーンシートを、焼成後の寸法が20mm角の正方形になるように打ち抜き、大気中にて、正極用グリーンシートは1000℃、負極用グリーンシートは900℃で焼成し、相対密度がいずれも85%の焼結体である正極および負極を作製した。
As a reference example, first, a positive electrode and a negative electrode were produced as follows. Using lithium cobaltate as a positive electrode active material and lithium titanate as a negative electrode active material, a molding aid, a plasticizer, a dispersant, and a solvent were added to these raw materials and mixed to prepare a slurry. This slurry was applied on a polyethylene terephthalate (PET) film by a doctor blade method and then dried to prepare a green sheet. The thickness of the positive electrode green sheet was 50 μm, and the thickness of the negative electrode green sheet was 50 μm. These green sheets are punched out so that the size after firing becomes a square of 20 mm square. In the atmosphere, the green sheet for positive electrode is fired at 1000 ° C., the green sheet for negative electrode is fired at 900 ° C., and the relative densities are both A positive electrode and a negative electrode which were 85% sintered bodies were produced.

作製した正極および負極の一方の主面に、カーボン系導電性接着材を用いて、厚さ10μmのアルミニウム箔をそれぞれ接着した。   An aluminum foil having a thickness of 10 μm was bonded to one main surface of the produced positive electrode and negative electrode using a carbon-based conductive adhesive.

電解質にはゲルポリマー材料を用いた。電解液とポリマーとを重量比9:1で混合し、
この混合液に0.2質量%の有機過酸化物を重合開始剤として添加してゲルポリマー前駆体を作製し、セラミックフィルタに含浸させた。電解液にはプロピレンカーボネート、ポリマーにはポリエチレンオキサイドを用い、セラミックフィルタとしては、繊維状のアルミナとシリカを1:1の質量比で混合したものを結着剤で結合し、厚さ50μmのシート状にしたものを用いた。
A gel polymer material was used as the electrolyte. Mix the electrolyte and polymer in a 9: 1 weight ratio,
A gel polymer precursor was prepared by adding 0.2% by mass of organic peroxide as a polymerization initiator to this mixed solution, and impregnated in a ceramic filter. Propylene carbonate is used for the electrolyte, polyethylene oxide is used for the polymer, and the ceramic filter is a mixture of fibrous alumina and silica mixed at a mass ratio of 1: 1 with a binder, and a sheet having a thickness of 50 μm. What was made into the shape was used.

アルミニウム箔を接着した正極と負極の、アルミニウム箔を接着した面に対向する面を相対させ、ゲルポリマー前駆体を含浸したセラミックフィルタを介して積層し、0.03MPaの荷重をかけながら80℃で20分間加熱してゲルポリマーを硬化させるとともに、正極側の金属箔、正極、電解質、負極、負極側の金属箔の5層が一体化した厚さ180μmの金属箔付き発電要素を得た。   The surfaces of the positive electrode and negative electrode bonded with aluminum foil facing the surface bonded with aluminum foil are opposed to each other, laminated through a ceramic filter impregnated with a gel polymer precursor, and applied at 80 ° C. while applying a load of 0.03 MPa. The gel polymer was cured by heating for 20 minutes, and a power generation element with a metal foil having a thickness of 180 μm was obtained, in which five layers of the metal foil on the positive electrode side, the positive electrode, the electrolyte, the negative electrode, and the metal foil on the negative electrode side were integrated.

これを、2mm×1.5mmに切断し、正極側の金属箔が筺体の底板上面の正極端子に接するようにアルミナ製の筺体に収納した後、銀ろうクラッド材の蓋体を取り付けてダイレクトシーム溶接により封止し、二次電池を作製した。なお、筺体としては、底板の下面に、ニッケル層および金層がメッキされた一対の外部電極が配され、外部電極の一方が底板のスルーホール導体を介して底板上面の正極端子に接続され、他方が側壁の外面に形成された配線導体を通じて側壁上端の導電層に接続されたものを用いた。   This was cut into 2 mm x 1.5 mm, housed in an alumina casing so that the metal foil on the positive electrode side was in contact with the positive electrode terminal on the upper surface of the bottom plate of the casing, and then attached with a lid of a silver brazing clad material to make a direct seam Sealing was performed by welding to produce a secondary battery. As the housing, a pair of external electrodes plated with a nickel layer and a gold layer are arranged on the bottom surface of the bottom plate, and one of the external electrodes is connected to the positive electrode terminal on the top surface of the bottom plate through a through-hole conductor on the bottom plate, The other was connected to the conductive layer at the upper end of the side wall through a wiring conductor formed on the outer surface of the side wall.

一方、比較例として、正極および負極に金属箔を接着せずに作製した発電要素と、筺体の底板上面の正極端子および蓋体の発電要素と接する側に、蒸着により厚さ10μmのアルミニウム膜を被覆したものを準備し、それ以外は実施例と同様にして二次電池を作製した。   On the other hand, as a comparative example, a power generation element produced without adhering a metal foil to the positive electrode and the negative electrode, and an aluminum film having a thickness of 10 μm by vapor deposition on the side in contact with the positive electrode terminal on the upper surface of the bottom plate and the power generation element of the lid A coated battery was prepared, and a secondary battery was fabricated in the same manner as in the example except for the above.

得られた参考例および比較例の二次電池について、以下の条件にて充放電試験をそれぞれ10個ずつ実施した。
About the obtained secondary battery of the reference example and the comparative example, 10 charging / discharging tests were respectively carried out under the following conditions.

充放電レート:0.1C
充放電電圧 :3.1V−1.5V
測定温度 :30℃
作製した二次電池は、参考例、比較例ともに、負極を基準とした理論容量(175mAh/g)に対し、充電容量は100%、放電容量は90%であった。
Charge / discharge rate: 0.1C
Charging / discharging voltage: 3.1V-1.5V
Measurement temperature: 30 ° C
The produced secondary battery had a charge capacity of 100% and a discharge capacity of 90% with respect to the theoretical capacity (175 mAh / g) based on the negative electrode in both the reference example and the comparative example.

また、DOD(放電深度)10%の500サイクルの充放電サイクル試験を行った。その結果、参考例の二次電池では、10個中10個すべてが500サイクルの試験が可能であった。一方、比較例の二次電池では、10個中3個が試験途中で劣化が進行し、10%の容量を維持できなくなった。以上の結果から、参考例の二次電池は良好な特性を発揮し、高い信頼性を有することが確認された。
In addition, a charge / discharge cycle test of 500 cycles with a DOD (discharge depth) of 10% was performed. As a result, in the secondary battery of the reference example, all 10 out of 10 batteries could be tested for 500 cycles. On the other hand, in the secondary battery of the comparative example, 3 of 10 batteries deteriorated during the test, and the capacity of 10% could not be maintained. From the above results, it was confirmed that the secondary battery of the reference example exhibited good characteristics and had high reliability.

1 :正極、
2 :電解質層
3 :負極
4 :発電要素
5P :外部電極(正極側)
5P’:正極端子
5N :外部電極(負極側)
6 :筺体
7 :蓋体
8P :正極側の金属箔
8N :負極側の金属箔
9 :導電性接着剤
10 :配線導体
11 :集電体
1: Positive electrode,
2: Electrolyte layer 3: Negative electrode 4: Power generation element 5P: External electrode (positive electrode side)
5P ': Positive electrode terminal 5N: External electrode (negative electrode side)
6: Housing 7: Lid 8P: Metal foil on the positive electrode side 8N: Metal foil on the negative electrode side 9: Conductive adhesive 10: Wiring conductor 11: Current collector

Claims (8)

正極と固体電解質層と負極とを積層してなる発電要素と、
該発電要素を収納してなる容器と、
該容器の内表面に設けられ、または該容器の一部を構成し、前記発電要素の正極および負極とそれぞれ接続される正極端子および負極端子と、
前記容器の外表面に設けられ、前記正極端子および前記負極端子とそれぞれ電気的に接続される一対の外部電極とを備え、
少なくとも、前記発電要素の前記正極と前記正極端子とが金属箔を介して接続され、前記正極と前記金属箔とが直接貼り付けられていることを特徴とする二次電池。
A power generation element formed by laminating a positive electrode, a solid electrolyte layer, and a negative electrode;
A container containing the power generation element;
A positive electrode terminal and a negative electrode terminal provided on the inner surface of the container or constituting a part of the container and connected to the positive electrode and the negative electrode of the power generation element, respectively;
A pair of external electrodes provided on the outer surface of the container and electrically connected to the positive terminal and the negative terminal, respectively.
At least the positive electrode and the positive electrode terminal of the power generation element are connected via a metal foil, and the positive electrode and the metal foil are directly attached to each other.
前記正極の前記金属箔との当接面上に凹凸を有し、該凸が前記金属箔に入り込んでいることを特徴とする請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the positive electrode has irregularities on a contact surface with the metal foil, and the irregularities enter the metal foil. 前記金属箔が、前記正極の、前記発電要素の積層方向に交差する面上に設けられているとともに、前記正極の前記積層方向に沿う側面にまで延びる延出部を有することを特徴とする請求項1または2に記載の二次電池。 The metal foil is provided on a surface of the positive electrode that intersects the stacking direction of the power generation elements, and has an extending portion that extends to a side surface along the stacking direction of the positive electrode. Item 3. The secondary battery according to Item 1 or 2 . 前記正極の前記側面に凹凸を有し、前記金属箔の前記延出部の一部が前記側面の前記凹に入り込んでいることを特徴とする請求項に記載の二次電池。 The secondary battery according to claim 3 , wherein the side surface of the positive electrode has irregularities, and a part of the extending portion of the metal foil enters the recess of the side surface. 前記正極が、活物質の圧粉体または焼結体からなることを特徴とする請求項1乃至のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 4 , wherein the positive electrode is made of a green compact or a sintered body of an active material. 前記固体電解質層が、ポリマー電解質、ゲルポリマー電解質および無機固体電解質のいずれかを含むことを特徴とする請求項1乃至のいずれかに記載の二次電池。 The solid electrolyte layer, the secondary battery according to any one of claims 1 to 5, characterized in that it comprises a polymer electrolyte, one of the gel polymer electrolyte and an inorganic solid electrolyte. 前記金属箔が、アルミニウム、金、白金からなる群のうち少なくとも一種の金属を含有することを特徴とする請求項1乃至のいずれかに記載の二次電池。 Wherein the metal foil is aluminum, gold, secondary battery according to any one of claims 1 to 6, characterized in that it contains at least one metal selected from the group consisting of platinum. 前記正極を構成する活物質が、コバルト酸リチウムまたはニッケルマンガン酸リチウムのいずれかであることを特徴とする請求項1乃至のいずれかに記載の二次電池。 The active material constituting the positive electrode, a secondary battery according to any one of claims 1 to 7, characterized in that either a lithium cobalt oxide or lithium nickel manganese oxide.
JP2011217404A 2011-09-30 2011-09-30 Secondary battery Expired - Fee Related JP5773827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217404A JP5773827B2 (en) 2011-09-30 2011-09-30 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217404A JP5773827B2 (en) 2011-09-30 2011-09-30 Secondary battery

Publications (2)

Publication Number Publication Date
JP2013077486A JP2013077486A (en) 2013-04-25
JP5773827B2 true JP5773827B2 (en) 2015-09-02

Family

ID=48480805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217404A Expired - Fee Related JP5773827B2 (en) 2011-09-30 2011-09-30 Secondary battery

Country Status (1)

Country Link
JP (1) JP5773827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021214946A1 (en) * 2020-04-23 2021-10-28 日本碍子株式会社 Lithium-ion secondary battery and method for manufacturing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123319A1 (en) * 2016-12-29 2018-07-05 株式会社 村田製作所 All-solid battery, electronic device, electronic card, wearable device, and electric vehicle
JP7130920B2 (en) * 2017-03-31 2022-09-06 Tdk株式会社 Non-aqueous electrolyte secondary battery, method for designing non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
US20200381774A1 (en) * 2018-03-19 2020-12-03 Tdk Corporation All-solid-state battery
JP7382189B2 (en) 2019-09-19 2023-11-16 日鉄テックスエンジ株式会社 Charge/discharge inspection device for small secondary batteries and its charge/discharge inspection method
EP4044297A1 (en) 2019-10-11 2022-08-17 Murata Manufacturing Co., Ltd. Solid-state battery
CN114788086A (en) * 2019-12-11 2022-07-22 株式会社村田制作所 Solid-state battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234880A (en) * 2003-01-28 2004-08-19 Kyocera Corp Laminated battery
JP5099964B2 (en) * 2003-12-25 2012-12-19 セイコーインスツル株式会社 Electrochemical cell and method for producing the same
JP2007273349A (en) * 2006-03-31 2007-10-18 Toyota Motor Corp Stacked battery and manufacturing method therefor
WO2010092944A1 (en) * 2009-02-10 2010-08-19 セイコーインスツル株式会社 Electrochemical cell, portable electronic device and method for manufacturing electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021214946A1 (en) * 2020-04-23 2021-10-28 日本碍子株式会社 Lithium-ion secondary battery and method for manufacturing same
JP7423760B2 (en) 2020-04-23 2024-01-29 日本碍子株式会社 Lithium ion secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP2013077486A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5773827B2 (en) Secondary battery
JP4817778B2 (en) Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
US20080274412A1 (en) Chip battery
JP5804053B2 (en) Solid battery
JP2006049289A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
JP7066719B2 (en) Electrode sheet manufacturing method, all-solid-state battery and all-solid-state battery manufacturing method
CN115347227A (en) All-solid-state battery
JP2013182677A (en) Laminate type power storage device
JP2012204160A (en) Secondary battery
US20220140400A1 (en) Laminated all-solid secondary cell and method for manufacturing same
JP7182159B2 (en) All-solid battery
KR20180097084A (en) Secondary Battery
JP2005122951A (en) Secondary battery and manufacturing method thereof
US20210384549A1 (en) All-solid-state battery
JP2020115450A (en) All-solid battery
JP2004095200A (en) Stacked battery
CN112514106A (en) Positive electrode for solid-state battery, method for producing positive electrode for solid-state battery, and solid-state battery
JP5812884B2 (en) Secondary battery
US10236477B2 (en) Electrochemical cells construction and packaging for high temperature applications
JP2004234880A (en) Laminated battery
JP7180685B2 (en) solid state battery
JP2018073518A (en) Secondary battery module
JP5829564B2 (en) Electrode structure and power storage device using the same
JP2003242958A (en) Lithium cell
JP4671652B2 (en) Battery case and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees