JP2001039777A - Heat radiating plate - Google Patents

Heat radiating plate

Info

Publication number
JP2001039777A
JP2001039777A JP11230357A JP23035799A JP2001039777A JP 2001039777 A JP2001039777 A JP 2001039777A JP 11230357 A JP11230357 A JP 11230357A JP 23035799 A JP23035799 A JP 23035799A JP 2001039777 A JP2001039777 A JP 2001039777A
Authority
JP
Japan
Prior art keywords
axis
heat
densification
heat treatment
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11230357A
Other languages
Japanese (ja)
Inventor
Akira Obara
昭 小原
Takumi Naoi
拓巳 直井
Mika Muroi
美香 室井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11230357A priority Critical patent/JP2001039777A/en
Publication of JP2001039777A publication Critical patent/JP2001039777A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight and thin heat radiating plate having high heat conductivity. SOLUTION: The heat radiating plate is composed of a carbon short fiber reinforced carbon composite and has <=1 mm thickness >=8 kg/mm2 tensile strength and >=10 W/mK heat conductivity in each direction of x-axis, y-axis and z-axis when the thickness direction is defined as the z-axis, the direction of the most high heat conductivity in a plane vertical to the z-axis is defined as the x-axis and the direction in the same plane as the x-axis and vertical to the x-axis is defined as the y-axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放熱板に関するもの
であり、詳しくは電子機器に用いられる軽量で薄く、且
つ熱伝導率の高い放熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating plate, and more particularly, to a lightweight, thin, and high heat conductive radiating plate used for electronic equipment.

【0002】[0002]

【従来の技術】近年、パソコン・ビデオ等のOA機器や
電化製品等に使用される電子部品の高性能化に伴い、電
子部品等から発生する熱も増加し、この熱をどのように
処理するかが問題となっている。通常、このOA機器や
電化製品の内部で発生する熱は、発熱部の固定板等に放
熱性が良く、熱伝導率が高い放熱板を使用して、効率よ
く外部へ放熱している。
2. Description of the Related Art In recent years, as electronic components used in OA equipment such as personal computers and video, electric appliances and the like have become more sophisticated, heat generated from the electronic components and the like has increased, and how this heat is processed. Is a problem. Normally, heat generated inside the OA equipment or the electric appliance is efficiently radiated to the outside by using a heat radiating plate having a high heat conductivity and a high heat conductivity to a fixing plate of a heat generating portion.

【0003】しかしながら、近年、電子部品等からの発
熱量は増加しつつあるのに対し、電化製品の軽量小型
化、軽薄化に伴う電子部品の収納スペースの縮小により
放熱のためのスペースも小さくなっている。従って、電
子部品等から発生した熱をできるだけ効率よく放熱する
ためには、放熱板の熱伝導率を高くする必要がある。そ
こで、例えば、パソコンのICチップを固定するCSP
(Chip Sized Package)等の放熱板には、主に熱伝導率
を高くするためには銅が使用され、また、主に軽量化の
ためにはアルミが使用されている。
However, in recent years, while the amount of heat generated from electronic components and the like has been increasing, the space for dissipating heat has also become smaller due to the reduction in the storage space for electronic components due to the reduction in the size and weight of electronic products and the reduction in weight. ing. Therefore, in order to radiate the heat generated from the electronic components and the like as efficiently as possible, it is necessary to increase the thermal conductivity of the radiator plate. Therefore, for example, a CSP for fixing an IC chip of a personal computer
For a heat radiating plate such as a (Chip Sized Package) or the like, copper is mainly used to increase the thermal conductivity, and aluminum is mainly used to reduce the weight.

【0004】[0004]

【発明が解決しようとする課題】上記のCSPは薄い方
が望ましく、銅、アルミをできるだけ薄く加工している
が、あまり薄すぎるとCSPの板の強度が低下し、変形
しやすいものとなる。その結果、生産時の歩留まりが低
下し、また、検査する人件費等にも大きなコストが生じ
る。
The above-mentioned CSP is desirably thin, and copper and aluminum are processed as thin as possible. However, if the CSP is too thin, the strength of the CSP plate is reduced and the CSP is easily deformed. As a result, the yield at the time of production is reduced, and labor costs for inspection are also high.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は電
化製品の軽量小型化、軽薄化が可能となる、特にノート
型パソコンをより軽薄化することが可能となる放熱板を
提供すべく鋭意検討した結果、放熱板として特定の炭素
繊維強化炭素複合材を用いることにより、上記課題が解
決できることを見出し、本発明に到達した。即ち、本発
明は、炭素短繊維強化炭素複合材からなり、厚さが1m
m以下であって、該厚さ方向をz軸とし、z軸に垂直な
平面内で最も熱伝導率が高い方向をx軸、x軸と同一平
面内で且つ垂直な方向をy軸としたとき、x軸、y軸及
びz軸の各方向の熱伝導率が10W/mK以上であり、
且つ引張強度が8Kg/mm2以上であることを特徴と
する放熱板に存する。
SUMMARY OF THE INVENTION Accordingly, the present inventors have aimed to provide a radiator plate which can reduce the weight and size and weight of electric appliances, and in particular, can further reduce the weight of notebook type personal computers. As a result of intensive studies, they have found that the above problems can be solved by using a specific carbon fiber reinforced carbon composite material as a heat sink, and have reached the present invention. That is, the present invention is made of a short carbon fiber reinforced carbon composite material and has a thickness of 1 m.
m or less, the thickness direction is the z-axis, the direction having the highest thermal conductivity in the plane perpendicular to the z-axis is the x-axis, and the direction perpendicular to the x-axis and the direction perpendicular to the x-axis is the y-axis. When the thermal conductivity in each direction of the x-axis, y-axis and z-axis is 10 W / mK or more,
And a heat sink having a tensile strength of 8 kg / mm 2 or more.

【0006】[0006]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の放熱板は、特定の炭素短繊維強化炭素複合
材(以下「C/C複合材」という)からなることを特徴
とする。該C/C複合材に用いる炭素繊維としては、ピ
ッチ系、PAN系、レーヨン系等の公知のものが使用で
きるが、特に高熱容量且つ高熱伝導であるピッチ系炭素
繊維が好ましい。また、該C/C複合材には、炭素繊維
ともに、必要に応じてSiC、Al2O3、カーボンブ
ラック等の無機繊維、無機物等を添加してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The heat radiating plate of the present invention is characterized by being made of a specific short carbon fiber reinforced carbon composite material (hereinafter referred to as “C / C composite material”). Known carbon fibers such as pitch-based, PAN-based, and rayon-based carbon fibers can be used as the carbon fiber for the C / C composite material, and pitch-based carbon fibers having high heat capacity and high heat conductivity are particularly preferable. Further, to the C / C composite material, together with carbon fibers, inorganic fibers such as SiC, Al2O3, carbon black, inorganic substances, and the like may be added as necessary.

【0007】炭素繊維の形態としては、複数の短繊維か
らなるトウ、ストランド、ロービング、ヤーン等の形態
であり、これらをカッティングすることにより得られる
短繊維を用いるのが好ましい。これらの短繊維は複数の
短繊維の束が、通常1000〜12000本、好ましく
は2000〜6000本から形成され、また、通常0.
3〜100mm、好ましくは5〜50mm程度の短繊維
束を使用する。炭素繊維自体の径や弾性率は、一般に複
合材として用いられる範囲であれば特に限定はない。
The form of the carbon fiber is a form of a tow, a strand, a roving, a yarn or the like comprising a plurality of short fibers, and it is preferable to use a short fiber obtained by cutting these. These staple fibers are usually formed of a bundle of a plurality of staple fibers of 1,000 to 12,000, preferably 2,000 to 6,000.
A short fiber bundle of 3 to 100 mm, preferably about 5 to 50 mm is used. The diameter and elastic modulus of the carbon fiber itself are not particularly limited as long as they are in a range generally used as a composite material.

【0008】以上の炭素繊維を、C/C複合材とする際
には、該短繊維束を解繊、分散し、二次元ランダムのシ
ートを作製し、マトリックス物質をその間に充てんする
ことが特性向上のために重要である。このため、上記短
繊維束を乾式または湿式解繊し、二次元ランダムのシー
トを作製する。乾式解繊して二次元ランダムに配向した
シートの製造する方法としては、例えば、紡績において
一般的な機械的に炭素繊維をモノフィラメント化し、シ
ートを作製するランダムウェバーを使用して製造した
り、またはエアーにより解繊し、シートを製造する方法
等が挙げられる。また、湿式解繊し、二次元ランダムに
配向したシートを製造する方法としては、例えばパルプ
等の叩解処理に通常使用されているビーターや解繊処理
に用いられるパルパーを使用し、溶媒中で短繊維状炭素
繊維を解繊後、例えば底部にスクリーンを有す型枠等に
少量ずつ供給したり、解繊後撹拌等の手段で均一に分散
させ、金網等で抄紙後、乾燥させて作製する方法があ
る。短繊維状の炭素繊維を均一に分散させる溶媒として
は、好ましくは水、或いはアセトン、炭素数1〜5のア
ルコール、アントラセン油等を用いるが、その他の有機
溶剤を用いてもよい。また、該溶媒中にフェノール樹
脂、フラン樹脂或いはピッチ等を分散もしくは溶解させ
ておくと、炭素繊維同士が接着させた状態となり、次工
程での取り扱いをより容易にするので好ましい。更に、
繊維素グリコール酸ナトリウム、ポリビニルアルコー
ル、ヒドロキシセルロース等の増粘剤を溶媒中に加えて
おくと、その効果が更に増大するので特に好ましい。
When the above carbon fibers are used as a C / C composite material, the short fiber bundle is defibrated and dispersed, a two-dimensional random sheet is prepared, and a matrix material is filled therebetween. It is important for improvement. For this reason, the short fiber bundle is dry or wet defibrated to produce a two-dimensional random sheet. Examples of a method of producing a two-dimensionally randomly oriented sheet by dry defibration include, for example, mechanically forming carbon fibers into monofilaments commonly used in spinning, or using a random webber to produce a sheet, or A method of defibrating with air to produce a sheet, and the like. Further, as a method of producing a sheet which is wet-fibrillated and two-dimensionally randomly oriented, for example, a beater usually used for beating processing of pulp or the like or a pulper used for fibrillation processing is used, and a short time is used in a solvent. After fibrillating the fibrous carbon fiber, for example, it is supplied little by little to a mold having a screen at the bottom or the like, or is uniformly dispersed by means of stirring or the like after fibrillation, paper-made with a wire mesh or the like, and dried. There is a way. As a solvent for uniformly dispersing the short fibrous carbon fibers, water, acetone, an alcohol having 1 to 5 carbon atoms, anthracene oil, or the like is preferably used, but other organic solvents may be used. Further, it is preferable to disperse or dissolve a phenol resin, a furan resin, a pitch, or the like in the solvent, since the carbon fibers are in a state of being adhered to each other and the handling in the next step is more facilitated. Furthermore,
It is particularly preferable to add a thickener such as sodium cellulose glycolate, polyvinyl alcohol, or hydroxycellulose to the solvent because the effect is further increased.

【0009】以上の炭素繊維が二次元ランダムに配向し
たシートの目付(1m2あたりの重量)としては特に制
限はないが、取り扱い性、含浸性、均一性を考えると通
常10〜500g/m2が好ましい。かかるシートは、
通常、フェノール樹脂、フラン樹脂、或いは石油系、石
炭系ピッチのマトリックスを含浸させた後、乾燥する。
その際、マトリックスはアルコール、アセトン、アント
ラセン油等の溶媒に溶解して適正な粘度に調整したもの
を使用するのが好ましい。そして、次いで、この乾燥し
たシートを積層して金型へ充てんし、通常100〜50
0℃の温度で加圧成形してVf(繊維体積含有量)が通
常5〜65%、好ましくは10〜55%程度の成形体を
得る。その後、窒素ガス等の不活性ガス雰囲気中で通常
1〜200℃/hの昇温速度で1600℃以上3500
℃以下、好ましくは1800℃以上、3200℃以下、
特に好ましくは2000℃以上2800℃以下の温度ま
で焼成し、初期黒鉛化する。
The basis weight (weight per 1 m 2) of the sheet in which the carbon fibers are two-dimensionally randomly oriented is not particularly limited, but is usually preferably 10 to 500 g / m 2 in consideration of handleability, impregnation and uniformity. . Such a sheet
Usually, a phenol resin, a furan resin, or a petroleum-based or coal-based pitch matrix is impregnated and then dried.
At this time, it is preferable to use a matrix which is dissolved in a solvent such as alcohol, acetone, anthracene oil or the like and adjusted to an appropriate viscosity. Then, the dried sheets are laminated and filled in a mold, usually 100 to 50.
Press molding at a temperature of 0 ° C. gives a molded product having a Vf (fiber volume content) of usually 5 to 65%, preferably about 10 to 55%. Thereafter, in an atmosphere of an inert gas such as nitrogen gas, the temperature is usually 1600 ° C.
° C or less, preferably 1800 ° C or more and 3200 ° C or less,
Particularly preferably, it is fired to a temperature of 2,000 ° C. or more and 2800 ° C. or less, and is initially graphitized.

【0010】更に、上記初期黒鉛化した焼成物を緻密化
する。その方法としては、緻密化マトリックスとしてピ
ッチを含浸する方法、樹脂を含浸する方法あるいはCV
I(Chemical Vapor Infiltration)を用いる方法が挙げ
られるが、高熱容量且つ高熱伝導性が得られるピッチを
含浸する方法が特に好ましい。このとき使用するピッチ
としては、種々のピッチを用いることができるが、軟化
点が通常70〜150℃、好ましくは80〜90℃であ
り、トルエン不溶分が通常10〜30%、好ましくは1
3〜20%であり実質上キノリン不溶分を含まず、固定
炭素が通常40%以上、好ましくは50%以上のものを
用いる。そして、含浸後は、通常600℃以上、好まし
くは700℃以上で焼成する緻密化処理を複数回繰り返
すことにより、嵩密度が通常1.80g/cm3以上、
好ましくは1.90g/cm3以上であって、気孔率が
通常10%以下のものを得る。また、緻密化熱処理の後
には、更に別途熱処理を行ってもよい。そして、この緻
密化熱処理と緻密化後の熱処理での最高温度を好ましく
は1800℃以上、特に好ましくは2000℃以上とす
る。この最高温度にするのは、特に制限はないが、通常
は、緻密化熱処理と緻密化後の熱処理の中でも最終の熱
処理工程である。なお、特に初期黒鉛化温度が2000
℃未満の場合は、最高熱処理温度は2000℃以上が好
ましい。なお、最高熱処理温度の上限は通常、3500
℃以下、好ましくは3200℃以下、より好ましくは2
800℃以下である。
[0010] Further, the fired product which has been initially graphitized is densified. As the method, a method of impregnating pitch as a densification matrix, a method of impregnating resin, or a method of impregnating CV
A method using I (Chemical Vapor Infiltration) may be mentioned, but a method of impregnating a pitch with high heat capacity and high heat conductivity is particularly preferable. As the pitch used at this time, various pitches can be used, but the softening point is usually 70 to 150 ° C, preferably 80 to 90 ° C, and the toluene insoluble content is usually 10 to 30%, preferably 1 to 30%.
It is 3 to 20%, contains substantially no quinoline-insoluble matter, and usually has a fixed carbon of 40% or more, preferably 50% or more. Then, after the impregnation, the bulk density is usually 1.80 g / cm 3 or more by repeating the densification treatment of baking at usually 600 ° C. or more, preferably 700 ° C. or more a plurality of times.
It is preferably at least 1.90 g / cm3 and usually has a porosity of 10% or less. After the densification heat treatment, a separate heat treatment may be performed. The maximum temperature in the densification heat treatment and the heat treatment after the densification is preferably 1800 ° C. or more, particularly preferably 2000 ° C. or more. The maximum temperature is not particularly limited, but is usually a final heat treatment step among densification heat treatment and heat treatment after densification. In particular, the initial graphitization temperature is 2000
When the temperature is lower than ℃, the maximum heat treatment temperature is preferably at least 2,000 ℃. The upper limit of the maximum heat treatment temperature is usually 3500
° C or lower, preferably 3200 ° C or lower, more preferably 2 ° C or lower.
800 ° C. or less.

【0011】このようにして得られたC/C複合材は、
緻密化されており、通常、嵩密度1.8g/cm3以上
であり、引張強度が8kg/mm2以上、好ましくは9
kg/mm2以上である。二次元ランダムに炭素繊維が
配向したシートの積層面と平行方向の熱伝導率が50W
/mK以上、垂直方向の熱伝導率が10W/mK以上と
なる。このC/C複合材を二次元ランダムに炭素繊維が
配向した積層シートの積層面とほぼ平行に切断し、切削
加工することにより、厚み1mm以下、好ましくは0.
5mm以下、より好ましくは0.1mm以下であり、且
つ面方向(x軸方向及びy軸方向)の熱伝導率が50W
/mK以上、好ましくは60W/mK以上、垂直方向
(z軸方向)の熱伝導率が10W/mK以上、好ましく
は15W/mK以上の放熱板を得られる。
[0011] The C / C composite material thus obtained is
It is dense, usually has a bulk density of 1.8 g / cm 3 or more, and has a tensile strength of 8 kg / mm 2 or more, preferably 9 kg / mm 2 or more.
kg / mm 2 or more. Thermal conductivity in the direction parallel to the laminated surface of the sheet in which carbon fibers are oriented two-dimensionally randomly is 50 W
/ MK or more, and the thermal conductivity in the vertical direction is 10 W / mK or more. The C / C composite material is cut two-dimensionally in a direction substantially parallel to the laminating surface of the laminated sheet in which the carbon fibers are oriented, and is cut to a thickness of 1 mm or less, preferably 0.1 mm or less.
5 mm or less, more preferably 0.1 mm or less, and a thermal conductivity of 50 W in the plane direction (x-axis direction and y-axis direction)
/ MK or more, preferably 60 W / mK or more, and a heat sink having a thermal conductivity in the vertical direction (z-axis direction) of 10 W / mK or more, preferably 15 W / mK or more.

【0012】また、このC/C複合材を二次元ランダム
に炭素繊維が配向した積層シートの積層面とほぼ垂直に
切断し、切削加工することにより、厚み1mm以下、好
ましくは0.5mm以下、より好ましくは0.1mm以
下であり、且つx軸方向とz軸方向の熱伝導率が50W
/mK以上、好ましくは60W/mK以上、z軸方向の
熱伝導率が10W/mK以上、好ましくは15W/mK
以上の放熱板を得られる。以上のような本発明の薄いC
/C複合材よりなる放熱板は、同じ大きさのアルミ板よ
りも軽く、また、多少の応力では変形することがないた
めハンドリング性に優れている。
Further, the C / C composite material is cut almost perpendicularly to the laminating surface of the laminated sheet in which carbon fibers are oriented two-dimensionally at random, and cut to obtain a thickness of 1 mm or less, preferably 0.5 mm or less. More preferably 0.1 mm or less, and the thermal conductivity in the x-axis direction and z-axis direction is 50 W
/ MK or more, preferably 60 W / mK or more, and the thermal conductivity in the z-axis direction is 10 W / mK or more, preferably 15 W / mK.
The above-mentioned heat sink can be obtained. The thin C of the present invention as described above
The heat radiating plate made of the / C composite material is lighter than the aluminum plate of the same size, and is excellent in handling properties because it is not deformed by a slight stress.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はその要旨を越えない限り、下記実施例に
限定されるものではない。なお、実施例での各物性値の
測定にあたっては、放熱板の厚みはマイクロメーターを
用い、気孔率は水銀ポロシメーターを用い、熱伝導率は
レーザーフラッシュ法を用い、更に、引張強度はJIS
K−6911に準拠して測定した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. In the measurement of each physical property value in the examples, the thickness of the heat sink was measured using a micrometer, the porosity was measured using a mercury porosimeter, the thermal conductivity was measured using a laser flash method, and the tensile strength was measured according to JIS.
It measured according to K-6911.

【0014】実施例1 フィラメント数5000のピッチ系炭素繊維を30mm
長に切断したものをランダムウェバーにて解繊し、二次
元ランダムに配向した目付200g/m2のシートを得
た。このシートへエタノールで希釈したフェノール樹脂
を含浸させた後乾燥し、200g/m2の炭素繊維に対
し130g/m2のフェノール樹脂を含浸したシートを
作製した。このシートを金型内へ積層し、250℃にて
加圧成形し、Vfが約50%の成形体を得た。この成形
体を2400℃で1時間焼成し、初期黒鉛化を行った。
更に、焼成した成形体にピッチを含浸し900℃で1時
間焼成し、かかる含浸−焼成の操作を7回繰り返した。
その後、最終熱処理として、2000℃の熱処理を1時
間行い、C/C複合材を得た。更に、このC/C複合材
を二次元ランダムに炭素繊維が配向したシートの積層面
とほぼ平行に厚さ2mmに切断後、研削加工により、大
きさ30mm×30mm、厚さ0.10mmのC/C複
合材板を得た。このC/C複合材板は多少の応力では変
形することなく、ハンドリング性に優れていた。このC
/C複合材の特性を表−1に示す。
Example 1 A pitch-based carbon fiber having 5,000 filaments was sized at 30 mm.
The sheet cut into lengths was defibrated with a random webber to obtain a two-dimensionally randomly oriented sheet having a basis weight of 200 g / m 2 . The sheet was impregnated with a phenol resin diluted with ethanol and then dried to prepare a sheet in which 200 g / m 2 of carbon fiber was impregnated with 130 g / m 2 of a phenol resin. This sheet was laminated in a mold and pressed at 250 ° C. to obtain a molded product having a Vf of about 50%. This molded body was fired at 2400 ° C. for 1 hour to perform initial graphitization.
The pitch was impregnated in the fired molded body, fired at 900 ° C. for 1 hour, and the operation of impregnation and firing was repeated seven times.
Thereafter, as a final heat treatment, heat treatment at 2000 ° C. was performed for 1 hour to obtain a C / C composite material. Further, this C / C composite material is cut into a thickness of 2 mm almost in parallel with the lamination surface of the sheet in which carbon fibers are oriented two-dimensionally at random, and then ground by grinding to obtain a 30 mm × 30 mm, 0.10 mm thick C / C composite plate was obtained. This C / C composite material plate was excellent in handleability without being deformed by some stress. This C
Table 1 shows the properties of the / C composite material.

【0015】実施例2 実施例1と同様な方法で成形して、Vfが約50%の成
形体を得た。この成形体を2000℃で焼成する初期黒
鉛化を行った後に、実施例1と同様の緻密化処理を行
い、C/C複合材を得た。更に、このC/C複合材を実
施例1と同様に加工して大きさ30mm×30mm、厚
さ0.10mmのC/C複合材板を得た。このC/C複
合材板は多少の応力では変形することなく、ハンドリン
グ性に優れていた。このC/C複合材の特性を表−1に
示す。
Example 2 A molded product having a Vf of about 50% was obtained by molding in the same manner as in Example 1. After performing initial graphitization by firing the molded body at 2000 ° C., the same densification treatment as in Example 1 was performed to obtain a C / C composite material. Further, this C / C composite material was processed in the same manner as in Example 1 to obtain a C / C composite plate having a size of 30 mm × 30 mm and a thickness of 0.10 mm. This C / C composite material plate was excellent in handleability without being deformed by some stress. Table 1 shows the characteristics of the C / C composite material.

【0016】比較例1 実施例1と同様な方法で成形して、Vfが約50%の成
形体を得た。この成形体を2000℃で焼成する初期黒
鉛化を行った後に、CVI及び、ピッチを含浸し900
℃で1時間焼成するピッチ含浸−焼成の操作を7回繰り
返し、その後、最終熱処理として1600℃で1時間の
熱処理を行った。更に、このC/C複合材を実施例1と
同様に加工して大きさ30mm×30mm、厚さ0.1
0mmのC/C複合材板を得た。このC/C複合材の特
性を表−1に示す。
Comparative Example 1 A compact having a Vf of about 50% was obtained in the same manner as in Example 1. After performing initial graphitization in which the molded body is fired at 2000 ° C., it is impregnated with CVI and pitch to obtain
The operation of pitch impregnation and firing at 1 ° C. for 1 hour was repeated seven times, and then a heat treatment at 1600 ° C. for 1 hour was performed as a final heat treatment. Further, this C / C composite was processed in the same manner as in Example 1 to have a size of 30 mm × 30 mm and a thickness of 0.1 mm.
A 0 mm C / C composite plate was obtained. Table 1 shows the characteristics of the C / C composite material.

【0017】比較例2 フィラメント数4000のピッチ系炭素繊維100重量
部にフェノール樹脂65重量含浸し、乾燥した後30m
m長に切断した、いわゆるトウプリプレグを作製した。
このものを金型内へ充てんし、250℃にて加圧成形
し、Vfが約50%の成形体を得た。このものを、実施
例1と同様な方法で初期黒鉛化、及び緻密化処理を行っ
た。このC/C複合材の特性を表−1に示す。更に、こ
のC/C複合材を実施例1と同様に加工して大きさ30
mm×30mm、厚さ0.10mmのC/C複合材板が
得た。このC/C複合材板は多少の応力では変形が顕著
であった。
Comparative Example 2 100 parts by weight of pitch-based carbon fibers having 4000 filaments were impregnated with 65 parts by weight of a phenol resin, dried, and then dried to 30 m.
A so-called tow prepreg cut to m length was produced.
This was filled in a mold and pressed at 250 ° C. to obtain a molded product having a Vf of about 50%. This was subjected to initial graphitization and densification in the same manner as in Example 1. Table 1 shows the characteristics of the C / C composite material. Further, this C / C composite material was processed in the same manner as in Example 1 to have a size of 30%.
A C / C composite plate having a size of 30 mm and a thickness of 0.10 mm was obtained. This C / C composite plate was significantly deformed by some stress.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例3 実施例1と同様な方法で得たC/C複合材のシートの積
層面とほぼ垂直に厚さ2mmに切断後、研削加工によ
り、大きさ30mm×30mm、厚さ0.10mmで表
−2のような熱伝導率の物性を示すのC/C複合材板を
得た。このC/C複合材板は多少の応力では変形するこ
となく、ハンドリング性に優れていた。
Example 3 A C / C composite sheet obtained in the same manner as in Example 1 was cut to a thickness of 2 mm almost perpendicular to the lamination surface, and then ground by grinding to a size of 30 mm × 30 mm and a thickness of 0 mm. A C / C composite plate having physical properties of thermal conductivity as shown in Table 2 at .10 mm was obtained. This C / C composite material plate was excellent in handleability without being deformed by some stress.

【0020】実施例4 実施例2と同様な方法で得たC/C複合材のシートの積
層面とほぼ垂直に厚さ2mmに切断後、研削加工によ
り、大きさ30mm×30mm、厚さ0.10mmで表
−2のような熱伝導率の物性を示すのC/C複合材板を
得た。このC/C複合材板は多少の応力では変形するこ
となく、ハンドリング性に優れていた。
Example 4 A sheet of the C / C composite material obtained in the same manner as in Example 2 was cut into a thickness of 2 mm almost perpendicular to the lamination surface, and then ground by grinding to a size of 30 mm × 30 mm and a thickness of 0 mm. A C / C composite plate having physical properties of thermal conductivity as shown in Table 2 at .10 mm was obtained. This C / C composite material plate was excellent in handleability without being deformed by some stress.

【0021】比較例3 比較例1と同様な方法で得たC/C複合材のシートの積
層面とほぼ垂直に厚さ2mmに切断後、研削加工によ
り、大きさ30mm×30mm、厚さ0.10mmで表
−2のような熱伝導率の物性を示すのC/C複合材板を
得た。
Comparative Example 3 A sheet of the C / C composite material obtained in the same manner as in Comparative Example 1 was cut into a thickness of 2 mm almost perpendicular to the lamination surface, and then ground by grinding to a size of 30 mm × 30 mm and a thickness of 0 mm. A C / C composite plate having physical properties of thermal conductivity as shown in Table 2 at .10 mm was obtained.

【0022】比較例4 比較例2と同様な方法で得たC/C複合材のシートの積
層面とほぼ垂直に厚さ2mmに切断後、研削加工によ
り、大きさ30mm×30mm、厚さ0.10mmで表
−2のような熱伝導率の物性を示すのC/C複合材板を
得た。このC/C複合材板は強度が低く、0.1mmに
加工する途中で割れてしまった。
Comparative Example 4 A sheet of the C / C composite material obtained in the same manner as in Comparative Example 2 was cut into a thickness of 2 mm almost perpendicularly to the lamination surface, and then ground to a size of 30 mm × 30 mm and a thickness of 0 mm. A C / C composite plate having physical properties of thermal conductivity as shown in Table 2 at .10 mm was obtained. This C / C composite plate had low strength and broke during processing to 0.1 mm.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明によれば、軽量で薄く、熱伝導率
の高いC/C複合材よりなる放熱板が提供されるので、
工業的に非常に有用である。
According to the present invention, there is provided a heat sink made of a C / C composite material which is lightweight, thin and has high thermal conductivity.
Very useful industrially.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室井 美香 香川県坂出市番の州町1番地 三菱化学株 式会社坂出事業所内 Fターム(参考) 4F072 AA02 AA07 AB10 AD11 AD13 AH02 AJ11 AK05 AL09 AL17 4G032 AA09 AA52 BA04 GA06 GA11 GA20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Mika Muroi Inventor Mika 1 Sakaide-shi, Kagawa Pref. Sakaide Works Mitsubishi Chemical Corporation F-term (reference) 4F072 AA02 AA07 AB10 AD11 AD13 AH02 AJ11 AK05 AL09 AL17 4G032 AA09 AA52 BA04 GA06 GA11 GA20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炭素短繊維強化炭素複合材からなり、厚
さが1mm以下であって、該厚さ方向をz軸とし、z軸
に垂直な平面内で最も熱伝導率が高い方向をx軸、x軸
と同一平面内で且つ垂直な方向をy軸としたとき、x
軸、y軸及びz軸の各方向の熱伝導率が10W/mK以
上であり、且つ引張強度が8Kg/mm2以上であるこ
とを特徴とする放熱板。
1. A short carbon fiber reinforced carbon composite material having a thickness of 1 mm or less, the thickness direction being the z-axis, and the direction having the highest thermal conductivity in a plane perpendicular to the z-axis being x. When the direction perpendicular to the same plane as the x-axis and the x-axis is taken as the y-axis, x
A heat radiating plate having a thermal conductivity of 10 W / mK or more in each of the axis, the y-axis, and the z-axis and a tensile strength of 8 kg / mm 2 or more.
【請求項2】 x軸方向の熱伝導率が50W/mK以
上、y軸方向の熱伝導率が50W/mK以上、z軸方向
の熱伝導率が10W/mK以上である請求項1の放熱
板。
2. The heat radiation according to claim 1, wherein the heat conductivity in the x-axis direction is 50 W / mK or more, the heat conductivity in the y-axis direction is 50 W / mK or more, and the heat conductivity in the z-axis direction is 10 W / mK or more. Board.
【請求項3】 x軸方向の熱伝導率が50W/mK以
上、y軸方向の熱伝導率が10W/mK以上、z軸方向
の熱伝導率が50W/mK以上である請求項1の放熱
板。
3. The heat radiation according to claim 1, wherein the heat conductivity in the x-axis direction is 50 W / mK or more, the heat conductivity in the y-axis direction is 10 W / mK or more, and the heat conductivity in the z-axis direction is 50 W / mK or more. Board.
【請求項4】 嵩密度が1.80g/cm3以上である
請求項1〜3のいずれかの放熱板。
4. The heat sink according to claim 1, which has a bulk density of 1.80 g / cm 3 or more.
【請求項5】 気孔率が10%以下である請求項1〜4
のいずれかの放熱板。
5. The method according to claim 1, wherein the porosity is 10% or less.
Any of the heat sinks.
【請求項6】 解繊した炭素短繊維より二次元ランダム
シートを作成し、該二次元ランダムシートを積層、成形
後、1600℃以上で焼成し、得られた焼成物に緻密化
マトリックスとしてピッチを含浸し、これを600℃以
上で緻密化熱処理を複数回繰り返し、更に、必要に応じ
て緻密化後の熱処理を行い、且つ、前記緻密化熱処理及
び緻密化後の熱処理での最高温度を1800℃以上とし
て得られた炭素短繊維強化炭素複合材からなる積層シー
トを、該積層シートに対してほぼ平行に切断し、切削加
工することを特徴とする請求項2の放熱板の製造方法。
6. A two-dimensional random sheet is prepared from the defibrated carbon short fibers, and the two-dimensional random sheet is laminated and molded, and then fired at 1600 ° C. or higher. Impregnation, and repeating the densification heat treatment at 600 ° C. or more a plurality of times, further performing heat treatment after densification as necessary, and setting the maximum temperature in the densification heat treatment and the heat treatment after densification to 1800 ° C. 3. The method for manufacturing a radiator plate according to claim 2, wherein the laminated sheet made of the short carbon fiber reinforced carbon composite material obtained as described above is cut substantially parallel to the laminated sheet and cut.
【請求項7】 解繊した炭素短繊維より二次元ランダム
シートを作成し、該二次元ランダムシートを積層、成形
後、1600℃以上で焼成し、得られた焼成物に緻密化
マトリックスとしてピッチを含浸し、これを600℃以
上で緻密化熱処理を複数回繰り返し、更に、必要に応じ
て緻密化後の熱処理を行い、且つ、前記緻密化熱処理及
び緻密化後の熱処理での最高温度を1800℃以上とし
て得られた炭素短繊維強化炭素複合材からなる積層シー
トを、該積層シートに対してほぼ垂直に切断し、切削加
工することを特徴とする請求項3の放熱板の製造方法。
7. A two-dimensional random sheet is prepared from the defibrated carbon short fibers, and the two-dimensional random sheet is laminated and molded, and then fired at 1600 ° C. or more. Impregnation, and repeating the densification heat treatment at 600 ° C. or more a plurality of times, further performing heat treatment after densification as necessary, and setting the maximum temperature in the densification heat treatment and the heat treatment after densification to 1800 ° C. 4. The method for manufacturing a heat sink according to claim 3, wherein the laminated sheet made of the short carbon fiber reinforced carbon composite material obtained as described above is cut substantially perpendicularly to the laminated sheet and cut.
JP11230357A 1999-05-26 1999-08-17 Heat radiating plate Pending JP2001039777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11230357A JP2001039777A (en) 1999-05-26 1999-08-17 Heat radiating plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-146441 1999-05-26
JP14644199 1999-05-26
JP11230357A JP2001039777A (en) 1999-05-26 1999-08-17 Heat radiating plate

Publications (1)

Publication Number Publication Date
JP2001039777A true JP2001039777A (en) 2001-02-13

Family

ID=26477281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11230357A Pending JP2001039777A (en) 1999-05-26 1999-08-17 Heat radiating plate

Country Status (1)

Country Link
JP (1) JP2001039777A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038313B2 (en) 2003-05-06 2006-05-02 Fuji Electric Device Technology Co., Ltd. Semiconductor device and method of manufacturing the same
JP2009256117A (en) * 2008-04-14 2009-11-05 Toyo Tanso Kk Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038313B2 (en) 2003-05-06 2006-05-02 Fuji Electric Device Technology Co., Ltd. Semiconductor device and method of manufacturing the same
DE102004021075B4 (en) * 2003-05-06 2011-05-05 Fuji Electric Systems Co., Ltd. Semiconductor device with anisotropically thermally conductive radiator base and method for its production
JP2009256117A (en) * 2008-04-14 2009-11-05 Toyo Tanso Kk Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and its manufacturing method

Similar Documents

Publication Publication Date Title
US5578255A (en) Method of making carbon fiber reinforced carbon composites
EP1908740B1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
JP3943123B2 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
JP2001039777A (en) Heat radiating plate
JP7153688B2 (en) Carbon/carbon composites using anisotropic nonwovens
JP6916706B2 (en) Manufacturing method of molded insulation
JP3433473B2 (en) Carbon fiber reinforced carbon composite, method for producing the same and sliding material using the same
JP2004075527A (en) Carbon fiber reinforced carbon composite material and sliding material using the same
JP3395261B2 (en) Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JP3625486B2 (en) Molded insulation
JP2906484B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP3484711B2 (en) Method for producing carbon fiber reinforced carbon composite
JP7320578B2 (en) Screw part made of two-dimensional carbon/carbon composite material laminated with anisotropic nonwoven fabric
JP3218829B2 (en) Brake sliding part
JP2006027973A (en) Reflecting mirror and production method therefor
JP3339075B2 (en) Carbon fiber reinforced carbon composite, method for producing the same, and sliding material using the same
CN115323825B (en) Preparation method of high-electric-conductivity and high-heat-conductivity graphite fiber paper
JP3383989B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH05345670A (en) Carbon fiber-reinforced carbon composite material and sliding material produced therewith
JPH08120600A (en) Sheet and its production
JP4014237B2 (en) Brake sliding part
JP4185355B2 (en) Carbon sheet and manufacturing method thereof
JP3383991B2 (en) Carbon fiber reinforced carbon composite and sliding material using it
JP3859748B2 (en) Aircraft brake materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105