JP2001033437A - Method for measuring trace quantity of helium in metal - Google Patents

Method for measuring trace quantity of helium in metal

Info

Publication number
JP2001033437A
JP2001033437A JP11211253A JP21125399A JP2001033437A JP 2001033437 A JP2001033437 A JP 2001033437A JP 11211253 A JP11211253 A JP 11211253A JP 21125399 A JP21125399 A JP 21125399A JP 2001033437 A JP2001033437 A JP 2001033437A
Authority
JP
Japan
Prior art keywords
gas
helium
sample
metal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11211253A
Other languages
Japanese (ja)
Other versions
JP3492248B2 (en
Inventor
Hayami Nagano
早実 長野
Yoichiro Yamaguchi
洋一郎 山口
Yasuhiro Takeda
泰弘 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nuclear Development Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nuclear Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nuclear Development Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21125399A priority Critical patent/JP3492248B2/en
Publication of JP2001033437A publication Critical patent/JP2001033437A/en
Application granted granted Critical
Publication of JP3492248B2 publication Critical patent/JP3492248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the obstruction of measurement or dilution action caused by coexisting gas by collecting the sample gas generated by heating a sample metal by a sampling bag and cooling the same by an adsorbing pipe to remove impurities before measuring helium(He). SOLUTION: A sample metal 1 is heated to about 2,000 deg.C or higher in a heating furnace 2 to extract He in the sample metal 1 and Ar gas is sent from a carrier gas cylinder 3 to force out He. He is separated from coexisting gas in a column to be collected by a sampling bag 7 through a TCD cell 5 and sent to the sorption pump 13 in an adsorbing pipe 12. The adsorbing pipe 12 is cooled by a cooling medium to be packed with an adsorbent 14 to trap gas other than low b.p. gas such as hydrogen, He or the like. Thereafter, the He- containing gas is sent to the detector 15 of a mass analyzer for analyzing the mass corresponding to the mass of He to measure the amt. of He to record the same on a recorder 16. This measured value is compared with a calibration curve due to the gas known in the concn. of He of a standard cylinder 17 to calculate an accurate He amt. and the concn. of He in the sample metal 1 is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヘリウムの測定方
法に関し、特に、金属中に含まれる微量のヘリウムを測
定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring helium, and more particularly, to a method for measuring a small amount of helium contained in a metal.

【0002】[0002]

【従来の技術】従来、金属中に含まれる微量のヘリウム
(He)を測定する微量ヘリウム測定方法では、試料金
属を高温にしてヘリウムを固体側から気相に抽出し、ガ
スクロマトグラフの熱伝導検出器(又は、TCDセルと
いう)の原理を用いて、気相(ガス)のヘリウムを測定
していた。
2. Description of the Related Art Conventionally, in a trace helium measurement method for measuring a trace amount of helium (He) contained in a metal, a sample metal is heated to a high temperature, helium is extracted from a solid side into a gas phase, and thermal conduction detection of a gas chromatograph is performed. The helium in the gas phase (gas) was measured using the principle of a vessel (or TCD cell).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の技術では、ヘリウムと共存するキャリアガス
による妨害・希釈作用があるため、正確にヘリウムを測
定するのが困難であった。また、近年では金属中のヘリ
ウムの挙動が解析されてきており、少なくとも従来の測
定精度に対して2桁の感度向上が望まれているが、従来
の技術では、定量下限を向上させるのが困難であるとい
う課題がある。
However, in such a conventional technique, it is difficult to accurately measure helium because of the interference and dilution effect of the carrier gas coexisting with helium. In recent years, the behavior of helium in metals has been analyzed, and it is desired to improve the sensitivity by at least two orders of magnitude with respect to the conventional measurement accuracy. However, it is difficult to improve the lower limit of quantification with the conventional technology. There is a problem that is.

【0004】本発明は、このような課題に鑑み創案され
たもので、ヘリウム(He)以外の共存ガスによる測定
妨害や希釈作用を回避するとともに、定量下限の向上を
図るようにした、金属中の微量ヘリウム測定方法を提供
することを目的とする。
[0004] The present invention has been made in view of the above problems, and it is intended to avoid a measurement interference and a dilution effect due to a coexisting gas other than helium (He) and to improve a lower limit of quantification. It is an object of the present invention to provide a method for measuring a trace amount of helium.

【0005】[0005]

【課題を解決するための手段】このため、本発明の金属
中の微量ヘリウム測定方法は、試料金属を加熱して試料
ガスを発生させ、該試料ガスを採取バッグに捕集した
後、該試料ガスを吸着管に通して該試料ガスを冷却する
ことにより不純物を除去し、ヘリウムリーク検出器に導
入してヘリウムを測定することを特徴としている。
Therefore, the method of the present invention for measuring the amount of helium in a metal according to the present invention comprises the steps of: heating a sample metal to generate a sample gas; collecting the sample gas in a collection bag; The method is characterized in that impurities are removed by passing the gas through an adsorption tube to cool the sample gas, and the sample gas is introduced into a helium leak detector to measure helium.

【0006】これにより、例えば、測定ヘリウム以外の
共存ガスによる測定妨害の回避については、キャリアガ
スによる供給・排気の繰り返し操作を反復して行なうこ
とにより、測定装置内の残存ガスを排除する。さらに、
捕集ビン内に存在し採取バッグを透過して測定ガス中に
混入する空気中のヘリウム、又は測定の繰り返しにより
試料ガス系から捕集ビン内に拡散するヘリウムによる測
定ガス中への妨害を排除するため捕集ビン内のパージを
行なうとともに、試料ガス捕集時に採取バッグの容積変
化、又は吸着管への導入時の採取バッグの容積変化に追
従する際に大気中のヘリウムの微小な影響をも排除する
必要から、捕集ビン内で採取バッグの容積変化が生じて
いる間は外気の混入を防ぐため切り換え弁を経て少量の
キャリアガスを流して空気の逆流を防ぎヘリウムの定量
妨害を防ぐ。
[0006] Thus, for example, in order to avoid measurement interference caused by a coexisting gas other than helium to be measured, the residual gas in the measuring device is eliminated by repeating the supply and exhaust operation with the carrier gas. further,
Eliminates helium in the air that is present in the collection bottle and penetrates the sampling bag and enters the measurement gas, or helium that diffuses into the collection bin from the sample gas system due to repeated measurements and interferes with the measurement gas In addition to purging the inside of the collection bottle, the change in the volume of the sampling bag when collecting the sample gas or the minute effect of helium in the atmosphere when following the change in the volume of the collection bag when introducing the sample gas into the adsorption tube. During the change in the volume of the collection bag in the collection bin, a small amount of carrier gas is passed through a switching valve to prevent back-flow of air and prevent helium quantitative interference while the collection bag volume changes in the collection bin. .

【0007】一方、測定ガスに混在するキャリアガス又
は機器系内,配管内のガスは、測定ガス内のヘリウムを
希釈し、測定下限値を高め、測定感度を悪化させるので
極微量ヘリウム分析においては、分離除去することが必
要である。このため、冷却した吸着剤中を通じてキャリ
アガス、主として酸素,窒素の空気成分,試料の高温加
熱において発生する水分,炭酸ガス等を定量的に除く。
本発明では水素及びヘリウム以外は99%以上の効率で
除去し、見かけ上測定成分のヘリウム測定への干渉を完
全に排除する。
On the other hand, the carrier gas mixed with the measurement gas or the gas in the instrument system or the piping dilutes the helium in the measurement gas, raises the lower limit of measurement, and deteriorates the measurement sensitivity. Need to be separated and removed. For this reason, the carrier gas, mainly the air components of oxygen and nitrogen, moisture, carbon dioxide gas, etc. generated during the high-temperature heating of the sample are quantitatively removed through the cooled adsorbent.
In the present invention, components other than hydrogen and helium are removed at an efficiency of 99% or more, and apparently interference of a measurement component with helium measurement is completely eliminated.

【0008】さらには、加熱炉内の金属から抽出される
ヘリウムの時間変化は、試料金属の加熱温度変化,管路
長さに支配される遅れのため、採取バッグに到達する抽
出ヘリウム含有ガスは一定ではない。このために、熱伝
導検出器によるモニタリングにより試料ガスの採取バッ
グへの捕集タイミングを選定し、可能な限り不必要なキ
ャリアガスの捕集を回避して共存ガスの希釈による濃度
低下(すなわち、検出下限値・感度の悪化)を防ぐため
にプログラムを設定し試料ガスを最適条件で捕集する。
Furthermore, the time change of helium extracted from the metal in the heating furnace is delayed by the change of the heating temperature of the sample metal and the length of the pipe, so that the extracted helium-containing gas reaching the collection bag is not changed. Not constant. For this purpose, the collection timing of the sample gas in the collection bag is selected by monitoring with a heat conduction detector, and the collection of unnecessary carrier gas is avoided as much as possible to reduce the concentration by dilution of the coexisting gas (ie, Set a program to prevent the lower limit of detection and deterioration of sensitivity) and collect the sample gas under optimal conditions.

【0009】[0009]

【発明の実施の形態】以下、図面により、本発明の一実
施形態としての金属中の微量ヘリウム測定方法について
説明すると、図1はそのフローシートを示す模式図であ
る。図1において30は水素分析装置(水素計ともい
う)であって、加熱炉2,カラム4及びTCDセル5等
をそなえている。そして、本願のヘリウム測定方法で
は、この水素分析装置30を用いて試料金属(試料)1
からヘリウムガスを発生させて、採取バッグ7に捕集し
た後、吸着管12にヘリウムガスを通して冷却し、不純
物を除去してから、ヘリウムリーク検出器15に導入し
てヘリウムを測定するようになっている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a flow sheet of a method for measuring a small amount of helium in a metal according to an embodiment of the present invention. In FIG. 1, reference numeral 30 denotes a hydrogen analyzer (also referred to as a hydrogen meter), which includes a heating furnace 2, a column 4, a TCD cell 5, and the like. Then, in the helium measurement method of the present application, the sample metal (sample) 1
After the helium gas is generated from the sample and collected in the collection bag 7, the helium gas is cooled through the adsorption tube 12 to remove impurities and then introduced into the helium leak detector 15 to measure helium. ing.

【0010】試料金属1は、加熱炉2内への搬入前に必
要に応じてアセトン等の溶剤による超音波洗浄,乾燥及
び重量測定が行なわれた後、加熱炉2内の所定位置に載
置される。そして、この状態で、加熱炉2を2000°
C又はそれ以上に加熱して金属1中のヘリウム(He)
を気相に抽出し、キャリアガスボンベ3からアルゴンガ
ス(Arガス)を送出して加熱炉2内からHeを押し出
すようになっている。なお、アルゴンガスの代わりに窒
素を用いてもよい。
The sample metal 1 is subjected to ultrasonic cleaning, drying and weight measurement with a solvent such as acetone as required before being carried into the heating furnace 2 and then placed at a predetermined position in the heating furnace 2. Is done. Then, in this state, the heating furnace 2 is set at 2000 °.
Helium (He) in metal 1 by heating to C or higher
Is extracted into the gas phase, and argon gas (Ar gas) is sent out from the carrier gas cylinder 3 to extrude He from the heating furnace 2. Note that nitrogen may be used instead of argon gas.

【0011】そして、カラム4で共存ガスとHeとが分
離され、TCDセル(検出器)5を経て、Heをガス捕
集ビン内のテドラバッグ(フレキシブルガス採取バッ
グ)7内に採取する。符号19は、ガス流路を排気と試
料ガス採取バッグ7系とに切り替えるためのバイパス排
気弁(三方弁)であり、加熱炉条件から設定されるキャ
リアガス流量、加熱膨張による一時的な変化、さらには
キャリアガスの流通と加熱He抽出との最適時間帯等を
TCDセル5でモニタして、このバイパス排気弁19の
切り替えが制御されるようになっている。ここで、バイ
パス排気弁19は、通電時に閉じ、非通電時(通常時)
に開いているノーマルオープン(NO)の電磁弁であっ
て、開弁時には水素分析装置30と排気経路とが連通す
るようになっている。
Then, the coexisting gas and He are separated in the column 4, and He is collected through the TCD cell (detector) 5 into the Tedra bag (flexible gas collection bag) 7 in the gas collection bottle. Reference numeral 19 denotes a bypass exhaust valve (three-way valve) for switching the gas flow path between the exhaust gas and the sample gas collection bag 7 system, and a carrier gas flow rate set from heating furnace conditions, a temporary change due to heating expansion, Further, the TCD cell 5 monitors the optimum time zone of the flow of the carrier gas and the extraction of the heated He and the like, and the switching of the bypass exhaust valve 19 is controlled. Here, the bypass exhaust valve 19 closes when energized, and when not energized (normal time).
This is a normally open (NO) solenoid valve that is open when the hydrogen analyzer 30 and the exhaust path communicate with each other when the valve is opened.

【0012】試料ガス採取バッグ7内は予めフラッシン
グしておく。また、Heの残存や、大気中のHeの干渉
等を排除するためニードル弁8,三方弁9及び吸引ポン
プ(エアポンプ)10を操作して、系内の残存ガスを完
全にキャリアガスに置換しておく。バッグ7内に捕集さ
れた測定ガスは、吸着管12に内装したソープションポ
ンプ13に送られる。なお、吸着管12は、冷媒11に
より冷却されている。また、吸着管12内には吸着剤1
4又は充填剤が充填されており、ここで、水素,He等
の低沸点ガス以外はトラップ(捕集)され、系から除去
される。
The inside of the sample gas sampling bag 7 is flushed in advance. In addition, the needle valve 8, the three-way valve 9 and the suction pump (air pump) 10 are operated to eliminate residual He and interference of He in the atmosphere, thereby completely replacing the residual gas in the system with the carrier gas. Keep it. The measurement gas collected in the bag 7 is sent to a sorption pump 13 provided inside the adsorption tube 12. Note that the adsorption tube 12 is cooled by the refrigerant 11. Also, the adsorbent 1 is placed in the adsorption tube 12.
No. 4 or a filler is filled therein. Here, gases other than low-boiling gases such as hydrogen and He are trapped (collected) and removed from the system.

【0013】その後、Heは、Heリーク検出器15に
送られてHe質量4に相当する質量を分析する質量分析
装置型検出器によりHeの到達量が測定され、記録計1
6に記録される。この測定値を標準ボンベ17から送ら
れる既知のHe濃度のガスによる較正直線(検量線)と
対比して正確なHe量を求め、試料金属1の量から金属
中のHeの濃度が計算される。
After that, He is sent to a He leak detector 15 and the arrival amount of He is measured by a mass spectrometer type detector that analyzes a mass corresponding to the He mass 4, and the recorder 1
6 is recorded. This measured value is compared with a calibration straight line (calibration curve) using a gas of a known He concentration sent from the standard cylinder 17 to obtain an accurate He amount, and the He concentration in the metal is calculated from the amount of the sample metal 1. .

【0014】上記、分析の操作ステップの設定・作動
は、所定のタイムプログラムを内装した操作盤18の指
令に基づいて段階的に測定操作が進められるようになっ
ている。なお、符号6,20,21,22は、それぞれ
開放弁,遮断弁,微流量ニードル弁(微流量弁),三方
弁であって、これらの弁6,20,21,22及び上述
した各弁8,9,19は、いずれも上記操作盤18から
の制御信号に基づいてその作動が制御されるようになっ
ている。
In the setting and operation of the analysis operation steps described above, the measurement operation is performed in a stepwise manner based on a command from the operation panel 18 having a predetermined time program built therein. Reference numerals 6, 20, 21, 22 denote an open valve, a shutoff valve, a fine flow needle valve (fine flow valve), and a three-way valve, respectively. The operation of each of 8, 9, and 19 is controlled based on a control signal from the operation panel 18.

【0015】分析操作タイムプログラムは、試料金属1
の装着後、系内パージ、炉の加熱、試料ガスの捕集ビン
へのサンプリングタイミング、設定流速に基づいて捕集
ビンからトラップを経てヘリウムリーク検出器15へ導
入する操作等を段階的に、しかも微量分析における最適
な操作条件に適合(マッチ)するようにプログラミング
されている。
The analysis operation time program is as follows:
After installation of the system, purging of the system, heating of the furnace, sampling timing of the sample gas to the collection bin, operation of introducing the sample gas from the collection bin to the helium leak detector 15 through the trap based on the set flow rate, and the like in a stepwise manner. Moreover, it is programmed so as to match (match) the optimal operating conditions in the microanalysis.

【0016】次に、実験例について説明する。実験装置
は、図1を用いて説明したものと同様に構成されてい
る。本発明の重要な技術的要素は、いかに外気中のHe
の干渉を排除するか、測定He以外の共存ガスの影響を
排除するかにある。このため、図1に示すように、この
試験装置ではHeを抽出したガスを捕集する捕集ビン内
にフレキシブルガス採取バッグ7を設けた二重構造とし
ている。そして、外層とバッグ層とのガスの拡散・透過
の影響を極微量のHe定量の障害とならない程度に抑制
するための設定条件、妨害物質の選択的除去効率の設定
条件、及び加熱炉2からHe測定系にいたる一連のタイ
ムプログラムの条件設定について詳細な検討を行ない、
装置・機器の最適操作条件とシステムの機能検討を経て
図2に示すような操作プログラムとステップとを決定し
た。
Next, an experimental example will be described. The experimental apparatus has the same configuration as that described with reference to FIG. An important technical element of the present invention is how He in the open air.
Or the effect of coexisting gas other than the measured He is eliminated. For this reason, as shown in FIG. 1, this test apparatus has a double structure in which a flexible gas collection bag 7 is provided in a collection bin for collecting gas from which He has been extracted. Then, the setting conditions for suppressing the influence of gas diffusion and permeation between the outer layer and the bag layer so as not to hinder the determination of a very small amount of He, the setting conditions for the selective removal efficiency of interfering substances, and the heating furnace 2 A detailed study was conducted on the condition setting of a series of time programs up to the He measurement system.
An operation program and steps as shown in FIG. 2 were determined after examining the optimum operation conditions of the devices and equipment and the functions of the system.

【0017】抽出した操作条件を以下に示す。 加熱炉:誘導加熱方式、加熱温度2200°C、加熱時
間3〜10min 試料金属量:0.1〜5g サンプリングタイム 排気:炉加熱から0.6min バッグ捕集:炉加熱から1.4〜5.1min(サンプ
リングタイムは装置特性に支配される。図7参照) キャリア:高純度窒素ガス(He<0.01ppm)、
流速10〜400ml/min カラム:MS−5A充填、長さ200mm ガス捕集ビン:内容積3000ml フレキシブルバッグ:テドラバッグ、容積:膨張時最大
3000ml パージ回数:キャリアガス供給・排気3回以上 バッグ操作時の捕集ビンキャリアガスパージ量:ガス移
動最大量の130%過剰 吸着管:石英粉充填・液体空気冷却 次に、図2に示すタイムプログラムについて説明する
と、このタイムプログラムは以下の1〜5の各目的を達
成すべく設定されている。
The extracted operating conditions are shown below. Heating furnace: induction heating method, heating temperature 2200 ° C, heating time 3 to 10 min Sample metal amount: 0.1 to 5 g Sampling time Exhaust: 0.6 min from furnace heating Bag collection: 1.4 to 5. 1 min (sampling time is governed by device characteristics; see FIG. 7) Carrier: high-purity nitrogen gas (He <0.01 ppm),
Flow rate: 10 to 400 ml / min Column: MS-5A filling, length: 200 mm Gas collection bottle: 3000 ml internal volume Flexible bag: Tedla bag, volume: up to 3000 ml when inflated Purge frequency: 3 times or more of carrier gas supply / exhaust during bag operation Gathering bin carrier gas purge amount: 130% excess of the maximum amount of gas transfer Adsorption tube: quartz powder filling / liquid air cooling Next, the time program shown in FIG. 2 will be described. Is set to achieve.

【0018】1.分析試料ガスの採取:測定装置管内や
炉内等には、キャリアガスが存在する。試料金属1の加
熱時・Heの抽出時に目的とする試料ガス中にキャリア
ガスが共存すると、測定するHeを希釈して測定感度を
低下させる作用があるので、TCD検出器5の信号をモ
ニタしてHeが含まれる時間帯のガスのみをテドラバッ
グ7に採取するべく三方弁19を操作する。
1. Sampling of analysis sample gas: Carrier gas exists in the measuring device tube, furnace, and the like. When the carrier gas coexists with the target sample gas at the time of heating the sample metal 1 and extracting He, there is an effect of diluting the measured He to lower the measurement sensitivity. Therefore, the signal of the TCD detector 5 is monitored. Then, the three-way valve 19 is operated to collect only the gas in the time zone including He into the tedra bag 7.

【0019】2.試料採取バッグ(テドラバッグ)7内
のパージ:フレキシブルバッグとしてのテドラバッグ7
内を予めキャリアガスでパージする操作で、三方弁9と
吸引ポンプ10により吸排気する。 3.管内排気:三方弁22及び吸引ポンプ(エアポン
プ)10を操作して管内の残存ガスを置換浄化する。
2. Purge inside the sampling bag (Tedra bag) 7: Tedra bag 7 as a flexible bag
By purging the inside with a carrier gas in advance, the three-way valve 9 and the suction pump 10 suck and discharge the air. 3. In-pipe exhaust: The residual gas in the pipe is replaced and purified by operating the three-way valve 22 and the suction pump (air pump) 10.

【0020】4.不純物の脱離排気:ソープションポン
プ13のヒータを作動させて、吸着管12に捕集された
不純物を脱離排気する。 5.Heのサンプリング・分析:微流量弁21及び遮断
弁20を操作してサンプリングを行なう。次に、図2を
用いて、それぞれの操作を具体的に説明すると、例えば
以下のようにしてパージ,試料ガスのサンプリング及び
分析が行なわれる。 パージ サンプルガス採取の準備として流路及びテドラバッグ7
内をパージする。
4. Desorption and exhaustion of impurities: The heater of the sorption pump 13 is operated to desorb and exhaust impurities trapped in the adsorption tube 12. 5. He sampling and analysis: Sampling is performed by operating the micro flow valve 21 and the shutoff valve 20. Next, each operation will be described in detail with reference to FIG. 2. For example, purging, sampling and analysis of a sample gas are performed as follows. Purge Channel and Tedlar bag 7 in preparation for sample gas collection
Purge the inside.

【0021】(1)三方弁19を排気側(NO側)から
切り換えて(NC側)、水素分析装置30内のキャリア
ガスで流路をパージする。なお、水素分析装置30と排
気通路との間に三方弁19をバイパスするバイパス路を
設け、このバイパス路に二方弁を設けてもよく、このよ
うに構成した場合には、流路切り換えショックを低減す
べく、三方弁19をNC側に切り換えた後、所定時間
(例えば3秒)遅れてバイパス路の二方弁を閉じて流路
をパージする。
(1) The three-way valve 19 is switched from the exhaust side (NO side) (NC side), and the flow path is purged with the carrier gas in the hydrogen analyzer 30. It should be noted that a bypass may be provided between the hydrogen analyzer 30 and the exhaust passage to bypass the three-way valve 19, and a two-way valve may be provided in the bypass. After switching the three-way valve 19 to the NC side in order to reduce the flow rate, the two-way valve of the bypass is closed and the flow path is purged after a predetermined time (for example, three seconds).

【0022】(2)そして、所定時間(例えば2分)
後、三方弁19を排気側に切り換える。同時にテドラバ
ッグ7に溜まったガスを排気するために、三方弁22を
開(オン)・エアポンプ10をオンにして、テドラバッ
グ7に溜まったガスを、エアポンプ10の吸引作用によ
り三方弁9,22を介して排気する。なお、上述のよう
に、三方弁19,22をバイパスするバイパス路及びこ
のバイパス路を開閉する二方弁を設けた場合には、三方
弁19を排気側に切り換える直前に二方弁を排気側に切
り換えて、流路切り換えショックを低減する。
(2) Then, for a predetermined time (for example, 2 minutes)
Thereafter, the three-way valve 19 is switched to the exhaust side. At the same time, the three-way valve 22 is opened (on) and the air pump 10 is turned on to exhaust the gas accumulated in the Tedra bag 7, and the gas accumulated in the Tedlar bag 7 is removed through the three-way valves 9 and 22 by the suction action of the air pump 10. Exhaust. In addition, as described above, when a bypass that bypasses the three-way valves 19 and 22 and a two-way valve that opens and closes the bypass are provided, the two-way valve is switched to the exhaust side immediately before switching the three-way valve 19 to the exhaust side. To reduce the flow path switching shock.

【0023】(3)テドラバッグ7内の排気が終了した
ら、三方弁22を閉(オフ)に切り換えるとともにエア
ポンプ10をオフとする。また、これと同時にニードル
弁(二方弁)8を開いてキャリアガスボンベ(Arガス
ボンベ)3よりArガス(検出対象となるヘリウムを含
んでいないのでゼロガスともいう)をテドラバッグ7へ
供給する。
(3) When the exhaust of the Tedlar bag 7 is completed, the three-way valve 22 is closed (off) and the air pump 10 is turned off. At the same time, the needle valve (two-way valve) 8 is opened, and Ar gas (also referred to as zero gas because it does not contain helium to be detected) is supplied from the carrier gas cylinder (Ar gas cylinder) 3 to the tedra bag 7.

【0024】(4)約1分後、ニードル弁(二方弁)8
を閉じて、Arガスの供給を停止する。また、これと略
同時に、三方弁22を開くとともに、エアポンプ10を
オンに切り換えて排気する。 (5)以下、(3),(4)の各操作を繰り返してテド
ラバッグ7内のパージを実行する。 試料ガスサンプリング (1)水素分析装置30の加熱炉2に試料金属1を導入
し、加熱溶融して水素・ヘリウムをガス相に展開する。
モニタにより展開状況を観察し、サンプリングのタイミ
ングを決定する。
(4) After about one minute, the needle valve (two-way valve) 8
Is closed, and the supply of the Ar gas is stopped. At about the same time, the three-way valve 22 is opened and the air pump 10 is turned on to exhaust air. (5) Thereafter, the operations of (3) and (4) are repeated to execute purging of the teddy bag 7. Sample gas sampling (1) The sample metal 1 is introduced into the heating furnace 2 of the hydrogen analyzer 30, heated and melted, and hydrogen / helium is developed into a gas phase.
Observe the deployment status with a monitor and determine the sampling timing.

【0025】(2)試料ガスのサンプリング開始時に
は、まず三方弁19を排気側(NO側)から連通側(N
C側)に切り換える。なお、のパージで説明したよう
に、水素分析装置30と排気通路との間にバイパス路及
びこのバイパス路を開閉する二方弁を設けた場合には、
三方弁19をNC側に切り換えてからやはり所定時間
(3秒程度)遅れて二方弁を閉じて、流路切り換えショ
ックを低減する。
(2) When the sampling of the sample gas is started, first, the three-way valve 19 is moved from the exhaust side (NO side) to the communication side (N side).
(C side). As described in the purging, when a bypass and a two-way valve for opening and closing the bypass are provided between the hydrogen analyzer 30 and the exhaust passage,
After switching the three-way valve 19 to the NC side, the two-way valve is also closed after a predetermined time (about 3 seconds) to reduce the flow path switching shock.

【0026】(3)その後、所定時間経過後(水素+ヘ
リウムの展開状況によるが例えば2分後)サンプリング
が終了したら、三方弁19をNO側に切り換える。ま
た、上述のバイパス路及びこのバイパス路を開閉する二
方弁を設けた場合には、三方弁19をNO側に切り換え
る直前に二方弁を閉に切り換えて流路切り換えショック
を低減する。また、この三方弁19のNO側への切り換
えと同時に遮断弁20を閉じる。 分析 (1)まず、三方弁9をソープションポンプ13側に切
り換えて(NC側)、微流量ニードル弁21を調整開と
して、テドラバッグ7内の試料ガスをHeリーク検出器
(ヘリウムリークディテクタ)15内へ導入する。ま
た、このとき遮断弁20を手動で開く。なお、図2に示
すように、三方弁9はNC側に切り換えられる前は、N
O側(エアポンプ10側)のままであり、NC側に切り
換えられることにより、テドラバッグ7内の試料ガスが
Heリーク検出器15側の管路に流入する。
(3) Thereafter, after a lapse of a predetermined time (depending on the development state of hydrogen and helium, for example, after two minutes), the three-way valve 19 is switched to the NO side when sampling is completed. When the bypass and the two-way valve for opening and closing the bypass are provided, the two-way valve is closed immediately before the three-way valve 19 is switched to the NO side to reduce the flow path switching shock. Further, the shutoff valve 20 is closed simultaneously with the switching of the three-way valve 19 to the NO side. Analysis (1) First, the three-way valve 9 is switched to the sorption pump 13 side (NC side), the fine flow rate needle valve 21 is adjusted and opened, and the sample gas in the tedra bag 7 is passed through the He leak detector (helium leak detector) 15. Introduce inside. At this time, the shutoff valve 20 is manually opened. As shown in FIG. 2, before the three-way valve 9 is switched to the NC side, N
The gas remains in the O side (air pump 10 side) and is switched to the NC side, so that the sample gas in the Tedlar bag 7 flows into the pipeline on the He leak detector 15 side.

【0027】(2)分析が終了したら、三方弁9をNO
側に切り換えるとともに、三方弁22を開、エアポンプ
10をオンに切り換えて、テドラバッグ7内に残留した
試料ガスを排気する。 (3)排気が終了したら、三方弁22を閉じるととも
に、エアポンプ10をオフに切り換える。 ソープションポンプ13の再生 長時間停止後、ソープションポンプ13の排気性能が低
下した場合等には、以下の手順により、再生を行なう。
(2) When the analysis is completed, the three-way valve 9 is turned off.
Side, the three-way valve 22 is opened, and the air pump 10 is turned on to exhaust the sample gas remaining in the teddy bag 7. (3) When the exhaust is completed, the three-way valve 22 is closed and the air pump 10 is turned off. Regeneration of Sorption Pump 13 If the exhaust performance of the sorption pump 13 decreases after a long stoppage, regeneration is performed according to the following procedure.

【0028】(1)遮断弁20を閉じ、ソープションポ
ンプ13を水素分析装置30から分離する。 (2)開放弁6を開き、これと略同時に開放弁6よりも
排気側にある真空ポンプ(図示省略)をオンにする。ま
た、これと略同時に図示しないソープションポンプヒー
タをオンにする。
(1) The shutoff valve 20 is closed, and the sorption pump 13 is separated from the hydrogen analyzer 30. (2) The opening valve 6 is opened, and at the same time, a vacuum pump (not shown) on the exhaust side of the opening valve 6 is turned on. At the same time, a suction pump heater (not shown) is turned on.

【0029】(3)3時間程度、吸着剤14の活性化を
行なう。 (4)開放弁6を閉じ、ともに図示しない真空ポンプ及
びソープションポンプヒータをいずれもオフに切り換え
る。 (5)ソープションポンプ13が室温程度になるまで自
然冷却する。 図3は系内に残留する不純物がHeの定量にどの程度の
影響を及ぼすかを知るために、装置・配管系内をパージ
した回数と系内に残存する大気成分との比で示したもの
である。試験結果から、系内を3回パージすれば、妨害
率は1%以下となり、He測定の妨害にならないことが
確認できた。
(3) The adsorbent 14 is activated for about 3 hours. (4) Close the release valve 6 and switch off both the vacuum pump and the sorption pump heater (not shown). (5) Natural cooling is performed until the sorption pump 13 reaches room temperature. Fig. 3 shows the ratio of the number of purges in the equipment and piping system to the atmospheric components remaining in the system in order to know how much impurities remaining in the system affect the determination of He. It is. From the test results, it was confirmed that if the inside of the system was purged three times, the interference rate was 1% or less, which did not interfere with the He measurement.

【0030】図4は測定試料ガス中のHeを濃縮する
〔即ち、共存不純物ガス(大気成分)を除去する〕ため
の、低温下に保持した吸着管の操作条件を検討したもの
である。吸着剤14の充填層高を35mm,100mm
と変えて管内流速と大気成分の除去率との関連を求めた
ものである。除去率を99%以上とするには、流速30
cm/sec以下にすればよいことを把握した。
FIG. 4 shows the operating conditions of the adsorption tube maintained at a low temperature for concentrating He in the measurement sample gas (ie, removing coexisting impurity gas (atmospheric components)). The height of the packed bed of the adsorbent 14 is 35 mm and 100 mm
The relationship between the in-pipe flow rate and the removal rate of atmospheric components was obtained. To achieve a removal rate of 99% or more, a flow rate of 30%
cm / sec or less.

【0031】図5は本装置を用いて標準ガスによる検量
線を求めたもので、Heの濃度がおよそ0.01〜10
ppmの範囲では直線性(線形)が成り立つことを示し
ている。図6は実ガス測定時のチャートの一例である。
横軸が時間、縦軸がHeの信号強度を示している。グラ
フにおいてピーク高さがHeの濃度に相関がある。図7
はHeを測定するための試料金属1の加熱・溶融時間,
キャリアガス流速と検出器におけるHe到達時間の関連
を示したものであり、炉ガス中のHeを正確に且つ不純
物の混入を少なくして採取する適正時間を示しており、
例えばキャリア200ml/minでは、炉の加熱開始
から1.5〜5.2minの間に採取すれば、捕集率も
99%以上且つ不純物ミニマムで測定に供することがで
きる。
FIG. 5 shows a calibration curve obtained by using this apparatus with a standard gas.
It shows that linearity (linearity) is established in the range of ppm. FIG. 6 is an example of a chart at the time of actual gas measurement.
The horizontal axis represents time, and the vertical axis represents He signal intensity. In the graph, the peak height has a correlation with the He concentration. FIG.
Is the heating and melting time of the sample metal 1 for measuring He,
It shows the relationship between the carrier gas flow rate and the arrival time of He in the detector, and shows the proper time for collecting He in the furnace gas accurately and with less contamination of impurities,
For example, if the carrier is collected at a rate of 200 ml / min from 1.5 to 5.2 min from the start of heating of the furnace, the collection rate can be 99% or more, and the measurement can be performed with the impurity minimum.

【0032】以下に、上記条件に基づいて実施した標準
試料のHe測定結果(上記実験例の結果)を表1に示
す。なお、併せて従来の測定方法で測定した結果も示
す。
Table 1 shows the results of the He measurement of the standard sample performed under the above conditions (the results of the above experimental examples). In addition, the result measured by the conventional measuring method is also shown.

【0033】[0033]

【表1】 [Table 1]

【0034】(注)表の測定結果は試料金属0.370
〜1.628gの粒を秤量し、各7回の分析結果の平均
値又は計算値である。このように、本発明の一実施形態
にかかる金属中の微量ヘリウム測定方法によれば、内部
管路に存在するヘリウム(He)以外の共存ガスの測定
妨害や希釈作用を回避できるとともに、系外からの干渉
を防止することができる利点があるほか、測定下限界の
大幅な改善とデータ変動幅の改善とを図ることができる
という利点がある。また、測定の省力化や簡易化を図る
ことができるという利点がある。
(Note) The measurement result in the table is 0.370 for the sample metal.
11.628 g of the particles are weighed, and the average or calculated value of the results of the analysis performed seven times each. As described above, according to the method for measuring a small amount of helium in a metal according to the embodiment of the present invention, it is possible to avoid a measurement interference or a diluting effect of a coexisting gas other than helium (He) present in the internal conduit, and also to prevent the system from being diluted. In addition to the advantage that interference from data can be prevented, there is an advantage that the lower limit of measurement can be significantly improved and the range of data fluctuation can be improved. In addition, there is an advantage that labor saving and simplification of measurement can be achieved.

【0035】なお、本発明は上述の実施形態に限定され
るものではなく、本発明の趣旨を逸脱しない範囲で種々
の変形が可能である。特に、本発明は、吸着法によって
試験ガス中のHeと大気成分を分離し、Heを濃縮して
測定感度を上昇させて定量下限値を下げたりする点及び
これらの手法を特別なプログラム設定により対処する点
で限定されるものではない。
It should be noted that the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. In particular, the present invention separates He and atmospheric components in the test gas by the adsorption method, concentrates He to increase the measurement sensitivity, and lowers the lower limit of quantification. It is not limited in terms of addressing.

【0036】[0036]

【発明の効果】以上詳述したように、本発明の金属中の
微量ヘリウム測定方法によれば、試料金属を加熱して試
料ガスを発生させ、試料ガスを採取バッグに捕集した
後、該試料ガスを吸着管に通して試料ガスを冷却しする
ことにより不純物を除去して、この試料ガスをヘリウム
リーク検出器に導入してヘリウムを測定するので、以下
のような利点がある。 1.内部管路に存在するヘリウム以外の共存ガスによる
測定妨害や希釈作用を回避することができるとともに系
外からの干渉を防止することができる。 2.測定下限界の大幅な向上とデータ変動幅の改善とを
図ることができる。 3.測定の省力化,簡易化を図ることができる。
As described above in detail, according to the method for measuring trace helium in metal of the present invention, a sample gas is heated to generate a sample gas, and the sample gas is collected in a collection bag. Impurities are removed by passing the sample gas through an adsorption tube to cool the sample gas, and the sample gas is introduced into a helium leak detector to measure helium. Therefore, there are the following advantages. 1. It is possible to avoid measurement interference and dilution effect due to coexisting gas other than helium present in the internal conduit, and to prevent interference from outside the system. 2. It is possible to significantly improve the lower measurement limit and improve the data fluctuation range. 3. Labor saving and simplification of measurement can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかる金属中の微量ヘリ
ウム測定方法のフローシートを示す模式図である。
FIG. 1 is a schematic view showing a flow sheet of a method for measuring a small amount of helium in a metal according to one embodiment of the present invention.

【図2】本発明の一実施形態にかかる金属中の微量ヘリ
ウム測定方法の手順を示すタイムチャートの一例であ
る。
FIG. 2 is an example of a time chart showing a procedure of a method for measuring a trace amount of helium in a metal according to an embodiment of the present invention.

【図3】本発明の一実施形態にかかる金属中の微量ヘリ
ウム測定方法のパージ回数と大気成分妨害率との関係を
示す図である。
FIG. 3 is a diagram showing the relationship between the number of purges and the atmospheric component interference rate in the method for measuring a trace amount of helium in metal according to one embodiment of the present invention.

【図4】本発明の一実施形態にかかる金属中の微量ヘリ
ウム測定方法の吸着管の管内流速と大気成分の除去率と
の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the flow rate in the adsorption tube and the removal rate of atmospheric components in the method for measuring a small amount of helium in metal according to one embodiment of the present invention.

【図5】本発明の一実施形態にかかる金属中の微量ヘリ
ウム測定方法を用いて求めたヘリウムガスの検量線の一
例を示す図である。
FIG. 5 is a diagram showing an example of a calibration curve of helium gas obtained by using the method for measuring a small amount of helium in metal according to one embodiment of the present invention.

【図6】本発明の一実施形態にかかる金属中の微量ヘリ
ウム測定方法のヘリウムガス測定・分析のチャートの一
例である。
FIG. 6 is an example of a chart of helium gas measurement / analysis in the method for measuring trace helium in metal according to one embodiment of the present invention.

【図7】本発明の一実施形態にかかる金属中の微量ヘリ
ウム測定方法の炉加熱時間とヘリウム抽出濃度との関係
を示す図である。
FIG. 7 is a diagram showing the relationship between furnace heating time and helium extraction concentration in the method for measuring trace helium in metal according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 試料金属 2 加熱炉 3 キャリアガスボンベ 4 カラム 5 TCDセル(検出器) 6 開放弁 7 採取バッグ(フレキシブルガス採取バッグ又はテド
ラバッグ) 8 ニードル弁 9 三方弁 13 ソープションポンプ 15 ヘリウムリーク検出器(ヘリウムリークディテク
タ) 19 バイパス排気弁(三方弁) 20 遮断弁 21 微流量弁 22 三方弁 30 水素分析装置
DESCRIPTION OF SYMBOLS 1 Sample metal 2 Heating furnace 3 Carrier gas cylinder 4 Column 5 TCD cell (detector) 6 Opening valve 7 Sampling bag (flexible gas sampling bag or tedra bag) 8 Needle valve 9 Three-way valve 13 Sorption pump 15 Helium leak detector (helium leak Detector) 19 Bypass exhaust valve (three-way valve) 20 Shut-off valve 21 Micro flow valve 22 Three-way valve 30 Hydrogen analyzer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 30/00 G01N 30/00 E (72)発明者 山口 洋一郎 茨城県那珂郡東海村舟石川622番地12 ニ ュークリア・デベロップメント株式会社内 (72)発明者 武田 泰弘 茨城県那珂郡東海村舟石川622番地12 ニ ュークリア・デベロップメント株式会社内 Fターム(参考) 2G055 AA01 BA01 CA30 DA22 EA10 FA05 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) G01N 30/00 G01N 30/00 E (72) Inventor Yoichiro Yamaguchi 622-12, Funashiishikawa, Tokai-mura, Naka-gun, Ibaraki Pref. Within Development Co., Ltd. (72) Inventor Yasuhiro Takeda 622-12, Funashiishikawa, Tokai-mura, Naka-gun, Ibaraki Prefecture F-term within Nukuria Development Co., Ltd. 2G055 AA01 BA01 CA30 DA22 EA10 FA05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料金属を加熱して試料ガスを発生さ
せ、該試料ガスを採取バッグに捕集した後、該試料ガス
を吸着管に通して該試料ガスを冷却することにより不純
物を除去し、ヘリウムリーク検出器に導入してヘリウム
を測定することを特徴とする、金属中の微量ヘリウム測
定方法。
1. A sample metal is heated to generate a sample gas, the sample gas is collected in a sampling bag, and then the sample gas is passed through an adsorption tube to cool the sample gas to remove impurities. A method for measuring helium in a metal, the method comprising measuring helium by introducing the helium into a helium leak detector.
JP21125399A 1999-07-26 1999-07-26 Method for measuring trace helium in metals Expired - Lifetime JP3492248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21125399A JP3492248B2 (en) 1999-07-26 1999-07-26 Method for measuring trace helium in metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21125399A JP3492248B2 (en) 1999-07-26 1999-07-26 Method for measuring trace helium in metals

Publications (2)

Publication Number Publication Date
JP2001033437A true JP2001033437A (en) 2001-02-09
JP3492248B2 JP3492248B2 (en) 2004-02-03

Family

ID=16602856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21125399A Expired - Lifetime JP3492248B2 (en) 1999-07-26 1999-07-26 Method for measuring trace helium in metals

Country Status (1)

Country Link
JP (1) JP3492248B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425978C (en) * 2004-10-10 2008-10-15 中国科学院金属研究所 Device for determining halium in metal using pulse heat conduction method and its application
JP2009019954A (en) * 2007-07-11 2009-01-29 Wakasawan Energ Kenkyu Center Content measurement method of helium in metal material
WO2010116892A1 (en) * 2009-04-08 2010-10-14 株式会社 東芝 Measurement device, measurement method, and carbon dioxide recovery system
WO2015020085A1 (en) * 2013-08-09 2015-02-12 新コスモス電機株式会社 Environment monitoring system
JP2015094641A (en) * 2013-11-11 2015-05-18 新コスモス電機株式会社 Environment monitoring system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425978C (en) * 2004-10-10 2008-10-15 中国科学院金属研究所 Device for determining halium in metal using pulse heat conduction method and its application
JP2009019954A (en) * 2007-07-11 2009-01-29 Wakasawan Energ Kenkyu Center Content measurement method of helium in metal material
JP4584288B2 (en) * 2007-07-11 2010-11-17 財団法人若狭湾エネルギー研究センター Method for measuring helium content in metal materials
WO2010116892A1 (en) * 2009-04-08 2010-10-14 株式会社 東芝 Measurement device, measurement method, and carbon dioxide recovery system
CN102388301A (en) * 2009-04-08 2012-03-21 株式会社东芝 Measurement device, measurement method, and carbon dioxide recovery system
AU2010235596B2 (en) * 2009-04-08 2012-12-13 Kabushiki Kaisha Toshiba Measurement device, measurement method, and carbon dioxide recovery system
WO2015020085A1 (en) * 2013-08-09 2015-02-12 新コスモス電機株式会社 Environment monitoring system
TWI688766B (en) * 2013-08-09 2020-03-21 日商新宇宙電機股份有限公司 Environmental monitoring system
JP2015094641A (en) * 2013-11-11 2015-05-18 新コスモス電機株式会社 Environment monitoring system

Also Published As

Publication number Publication date
JP3492248B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
US4180389A (en) Isolation and concentration of sample prior to analysis thereof
CN106645522A (en) On-line volatile organic compound monitoring system with automatic calibration function
JP2580988B2 (en) Organic matter analyzer and organic matter analysis method
JPH08512409A (en) Instrument for measuring non-methane organic gases in gas samples
JP5957459B2 (en) Analysis of molecular contamination in vacuum environment
CA2522253C (en) System and method for extracting headspace vapor
JP2009257839A (en) Rapid analyzing system of voc and analyzing method of voc
EP1673620A2 (en) Method of introducing standard gas into sample vessel
JP3492248B2 (en) Method for measuring trace helium in metals
US7073403B2 (en) Method and apparatus for the collection of samples
US6819253B2 (en) Method and apparatus for the collection of near real time confirmation samples
CN112731992A (en) Full-automatic low temperature series valve who sweeps entrapment appearance keeps apart water trap
JP2858143B2 (en) Concentration analysis method and apparatus therefor
JP7470624B2 (en) Gas collecting device and gas collecting method
CN109342618A (en) A kind of automation pre-processing device for VOCs in gas chromatographic detection material
EP1004871A2 (en) Sample analysing method and apparatus
JP3651525B2 (en) Gas sampling device
JP4253971B2 (en) Odor identification device
JPH05256842A (en) Method and device for analyzing small amount of organic compound
JP2000028596A (en) Collecting device for semiconductor contaminant and analyzing method therefor
KR101721387B1 (en) Gas extraction apparatus and gas analysis system comprising the same
Hayes et al. Operations of the Automated Radioxenon Sampler/Analyzer—ARSA
JP2987921B2 (en) Gas enrichment measurement method and apparatus
CN219496275U (en) Environment-friendly on-line monitoring and sampling equipment for organic matters in waste gas with fixed pollution sources
JP2590385B2 (en) Sample gas sampling device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031014

R150 Certificate of patent or registration of utility model

Ref document number: 3492248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

EXPY Cancellation because of completion of term