JP2001029761A - Gas separation membrane and its preparation - Google Patents

Gas separation membrane and its preparation

Info

Publication number
JP2001029761A
JP2001029761A JP11209815A JP20981599A JP2001029761A JP 2001029761 A JP2001029761 A JP 2001029761A JP 11209815 A JP11209815 A JP 11209815A JP 20981599 A JP20981599 A JP 20981599A JP 2001029761 A JP2001029761 A JP 2001029761A
Authority
JP
Japan
Prior art keywords
separation membrane
membrane
gas
mold
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11209815A
Other languages
Japanese (ja)
Other versions
JP4153623B2 (en
Inventor
Haruo Kobayashi
晴男 小林
Shigeo Hiratsuka
茂雄 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATHENE KK
Original Assignee
ATHENE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATHENE KK filed Critical ATHENE KK
Priority to JP20981599A priority Critical patent/JP4153623B2/en
Publication of JP2001029761A publication Critical patent/JP2001029761A/en
Application granted granted Critical
Publication of JP4153623B2 publication Critical patent/JP4153623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To enlarge surface area of a separation membrane and to improve gas permeation speed by a method wherein an uneven pattern structure is formed by a three-dimensional ultrafine processing means and a substrate of the membrane such as an inorg. porous body with a number of uneven parts by using a mold prepd. by an electric casting method based on this and the separation membrane is formed on this surface. SOLUTION: When a gas separation membrane is prepd., palladium, etc., is used as a raw material and the LIGA process being an example of three- dimensional ultrafine processing means used for preparation of a micromachine, etc., is used. At first, a structure with a specified uneven pattern (a female mold) is prepd. and a male mold 5 made of a metal is prepd. by using this as a casting mold and by means of electrolytic plating using nickel, etc., as a raw material. Then, a raw material such as ceramic is cast into the male mold 5 to mold a porous membrane substrate 7 with an arrangement 6 of a number of cylindrical projections. Successively, the gas separation membrane is formed on the substrate 7. Effective surface area is thereby enlarged by forming a number of uneven three-dimensional patterns on the gas separation membrane and amt. of gas permeation is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、水素その他の被分離
気体の透過速度を早めて処理量を増大させる気体の分離
膜、およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas separation membrane for increasing the throughput by increasing the permeation rate of hydrogen and other gases to be separated, and a method for producing the same.

【0002】[0002]

【従来の技術】高純度の水素は、化学工業におけるアン
モニアやメタノールの合成に、あるいは石油精製過程や
油脂の水素添加などに広く使われてきた。近年になっ
て、半導体製造などの電子工業、冶金工業、光ファイバ
ー製造などの分野での利用が急速な伸びを見せている。
さらに、環境問題の高まりとともに、高純度水素は、実
用化が目前に迫りつつある自動車用燃料電池や水素エン
ジンの燃料とし大きな期待がもたれている。このように
水素の利用は多方面に広がっているが、その用途に応じ
て要求される純度は一定ではなく、要求純度と処理量の
レベルによっていくつかの方法が実用化されている。例
えば、水素以外の物質を吸着除去する事によって純度を
高める方法として深冷吸着法や活性炭、モレキュラーシ
ーブ、活性アルミナなどに加圧下で不純物を吸着させる
方法がある。逆に、水素だけ吸着する水素吸蔵合金に水
素を吸着させ、高純度水素を得る方法も実用化されてい
る。この発明では、水素だけを透過する膜、もしくは水
素と他の物質との透過速度が大幅に異なる膜を用いて高
純度水素を得る膜分離法に関わるものである。膜分離に
使われる膜としては、無機多孔質膜、有機高分子非多孔
質膜、パラジウムあるいはパラジウム合金などの金属膜
などがある。膜分離による水素分離はそのプロセスのシ
ンプルさやメンテナンスの面で多くの利点を持つが、そ
の反面いくつかの問題点を抱えている。たとえば、金属
膜による方法が最も高純度の水素を得ることができる
が、膜を透過する水素の透過速度をあげることが難し
く、また、コストも高いなどの問題がある。これらの問
題は水素分離に限定されるものではなく、その他の被透
過気体の分離においても同様であって、この種の技術者
にとって共通の解決課題となっていた。
2. Description of the Related Art High-purity hydrogen has been widely used in the synthesis of ammonia and methanol in the chemical industry, or in petroleum refining processes and hydrogenation of fats and oils. In recent years, applications in fields such as the electronics industry such as semiconductor manufacturing, metallurgy industry, and optical fiber manufacturing have shown rapid growth.
Further, as environmental issues increase, high-purity hydrogen is expected to be used as a fuel for automotive fuel cells and hydrogen engines, which are about to be put to practical use. As described above, the use of hydrogen has been widespread, but the purity required according to the application is not constant, and several methods have been put into practical use depending on the required purity and the level of the processing amount. For example, methods for increasing the purity by adsorbing and removing substances other than hydrogen include a cryogenic adsorption method and a method of adsorbing impurities under pressure on activated carbon, molecular sieve, activated alumina, or the like. Conversely, a method of obtaining high-purity hydrogen by adsorbing hydrogen on a hydrogen storage alloy that adsorbs only hydrogen has also been put to practical use. The present invention relates to a membrane separation method for obtaining high-purity hydrogen using a membrane that transmits only hydrogen or a membrane that has a significantly different transmission rate between hydrogen and another substance. Examples of the membrane used for membrane separation include an inorganic porous membrane, an organic polymer non-porous membrane, and a metal membrane such as palladium or a palladium alloy. Although hydrogen separation by membrane separation has many advantages in terms of simplicity and maintenance of the process, it has several problems. For example, the method using a metal film can obtain the highest purity hydrogen, but it has problems in that it is difficult to increase the permeation rate of hydrogen permeating the film, and the cost is high. These problems are not limited to hydrogen separation, but also apply to the separation of other permeated gases, and have been a common solution for engineers of this type.

【0003】[0003]

【発明が解決しようとする課題】この発明は上記事情に
鑑みて創案されたものであって、水素その他の被分離気
体の分離膜の気体透過速度を早めて処理量を増大させる
ものである。水素その他の被分離気体の透過速度を上げ
るには、原理的に、透過速度の大きな材質の膜を開発
する、膜厚を薄くする、膜の水素透過面を大きくす
るなどの方法があるが、この発明では、三次元超微細凹
凸構造によって膜の一定垂直断面内の気体透過面を拡大
して、水素その他の被透過気体の透過性を顕著に改善す
ることを課題としたものである。この発明は上記事情に
鑑みて創案したものであって、その主たる課題は、膜表
面積を広くして水素その他の被分離気体の透過量を高め
ることにある。この発明の別の課題は、分離能力の低下
などの他の条件を変えることなく維持しながら、分離膜
の透過性を向上させることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and aims to increase the throughput by increasing the gas permeation rate of hydrogen and other gases to be separated through a separation membrane. To increase the permeation rate of hydrogen and other gases to be separated, in principle, there are methods such as developing a membrane made of a material with a high permeation rate, reducing the film thickness, and increasing the hydrogen permeation surface of the membrane. SUMMARY OF THE INVENTION It is an object of the present invention to enlarge a gas permeable surface in a certain vertical cross section of a membrane by a three-dimensional ultra-fine uneven structure, thereby remarkably improving the permeability of hydrogen and other gas to be permeable. The present invention has been made in view of the above circumstances, and a main problem thereof is to increase the membrane surface area to increase the permeation amount of hydrogen and other gases to be separated. Another object of the present invention is to improve the permeability of a separation membrane while maintaining other conditions such as a decrease in separation ability without changing.

【0004】[0004]

【問題点を解決するための手段】上記課題を達成するた
めに、請求項1の発明では、水素その他の被分離気体を
別の気体から分離するための気体の分離膜において、
マイクロマシン製造または半導体製造に使われる三次元
超微細加工手段として、凹凸パターン構造体(雌型)を
作成し、これを基に電鋳法で作成した金型(雄型)を用
いて多数の凹凸を有する無機多孔質または有機質の膜支
持体を成形し、該膜支持体の表面に分離膜を形成してな
り、該分離膜の表面積を広くすることにより、気体の透
過速度を早めて処理量を増大せしめてなる、という技術
的手段を講じている。また、請求項2の発明では、前記
分離膜が、水素を他の気体から分離する水素分離膜から
なっており、同一の柱形状からなる多数の凸部を規則的
に配列してなる、という技術的手段を講じている。ま
た、請求項3の発明では、前記凸部が、横幅を数ミクロ
ン〜数百ミクロン、高さを数十〜千ミクロンの範囲で設
定されてなる、という技術的手段を講じている。更に、
請求項4の発明では、膜支持体上に形成された分離膜
が、膜支持体なしで保持できる厚みに設定され、上記膜
支持体が溶剤などの除去手段で除去されてなる、という
技術的手段を講じている。請求項5の発明では、水素そ
の他の被分離気体を別の気体から分離するための気体の
分離膜の製造方法において、マイクロマシン製造または
半導体製造に使われる三次元超微細加工手段として凹凸
パターン構造体(雌型)を作成し、これを基に電鋳法で
金型(雄型)を作成し、該金型を用いて多数の凹凸を有
する無機多孔質または有機質の膜支持体を成形し、該膜
支持体の表面に分離膜を形成してなる、という技術的手
段を講じている。また、請求項6の発明では、前記分離
膜が、金属膜からなるときは金属分離膜が膜支持体上に
形成され、無機多孔質膜からなるときは無機多孔質支持
体上にゾル溶液を塗布後にこれを焼成して形成される、
という技術的手段を講じている。
To achieve the above object, according to the first aspect of the present invention, there is provided a gas separation membrane for separating hydrogen or another gas to be separated from another gas.
As a three-dimensional ultra-fine processing means used in micromachine manufacturing or semiconductor manufacturing, a concave / convex pattern structure (female mold) is created, and a large number of irregularities are formed using a mold (male mold) created by electroforming based on this. Forming an inorganic or organic membrane support having a separation membrane on the surface of the membrane support, and increasing the surface area of the separation membrane to increase the gas permeation rate and increase the throughput. Technical measures to increase the number of employees. In the invention of claim 2, the separation membrane is formed of a hydrogen separation membrane that separates hydrogen from another gas, and a large number of protrusions having the same column shape are regularly arranged. Taking technical measures. Further, in the invention according to the third aspect, a technical measure is taken that the convex portion has a horizontal width set in a range of several microns to several hundreds microns and a height set in a range of several tens to 1,000 microns. Furthermore,
According to the fourth aspect of the present invention, the separation membrane formed on the membrane support is set to a thickness that can be held without the membrane support, and the membrane support is removed by removing means such as a solvent. Take steps. According to a fifth aspect of the present invention, there is provided a method for producing a gas separation membrane for separating hydrogen or another gas to be separated from another gas, wherein the three-dimensional ultra-fine processing means used in micromachine production or semiconductor production is provided with an uneven pattern structure. (Female mold), a mold (male mold) is formed by electroforming based on this, and an inorganic porous or organic membrane support having a large number of irregularities is formed using the mold, Technical measures are taken such that a separation membrane is formed on the surface of the membrane support. In the invention of claim 6, when the separation membrane is formed of a metal membrane, the metal separation membrane is formed on a membrane support, and when the separation membrane is formed of an inorganic porous membrane, the sol solution is formed on the inorganic porous support. It is formed by firing this after application,
It has taken the technical measures.

【0005】[0005]

【発明の実施の形態】以下に、本発明の気体の分離膜お
よびその製造方法を水素分離膜に適用した場合の実施例
について図面を参照して説明する。水素分離膜の素材に
はさまざまなものがあるが、実施例の水素分離膜1は、
パラジウムもしくはパラジウム合金(パラジウムと銀な
ど)とする。そして、本実施例では、図1(b)の模式
図に示すように、水素分離膜1は多数の円柱状の凸部2
を有しているので、その表面積は、従来の扁平面の分離
膜1’の場合(図1(a)参照)に較べて大幅に広く形
成されることになる。水素分離膜1の前後の圧力差が同
じ場合には、水素透過速度は、表面積の広さに比例する
ので、水素透過量が大幅に増加することになるまた、凹
凸による表面積の増大は、凸部形状のアスペクト比(縦
横の比率〉に大きく関係するので、できるだけアスペク
ト比が大きいことが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a gas separation membrane and a method for producing the same according to the present invention are applied to a hydrogen separation membrane will be described below with reference to the drawings. There are various materials for the hydrogen separation membrane.
Palladium or a palladium alloy (such as palladium and silver). In the present embodiment, as shown in the schematic diagram of FIG. 1B, the hydrogen separation membrane 1 has a large number of cylindrical projections 2.
Therefore, the surface area is significantly larger than that of the conventional flat separation membrane 1 ′ (see FIG. 1A). When the pressure difference before and after the hydrogen separation membrane 1 is the same, the hydrogen permeation rate is proportional to the area of the surface area, so that the amount of hydrogen permeation increases greatly. Since the aspect ratio is largely related to the aspect ratio (ratio of length and width) of the part shape, it is desirable that the aspect ratio is as large as possible.

【0006】この水素分離膜1を製造するために、マイ
クロマシン製造または半導体製造に使われる三次元超微
細加工技術(手段)の一例としてLIGAプロセスを適
用する実施例を説明する。近年進歩の著しいLIGAプ
ロセスは、X線を用いるディープリソグラフィーと電鋳
及び成形という一連のプロセスからなる公知の超微細加
工手段である。まず、ディープリソグラフィ工程では、
基板上の厚く塗布されたレジストに必要パターンの描か
れたX線マスクを介してX線(SR光)露光を行った
後、現像して雌型を作成する。
In order to manufacture the hydrogen separation membrane 1, an embodiment in which a LIGA process is applied as an example of a three-dimensional ultrafine processing technique (means) used for manufacturing a micromachine or a semiconductor will be described. The LIGA process, which has remarkably progressed in recent years, is a known ultrafine processing means including a series of processes of deep lithography using X-rays and electroforming and molding. First, in the deep lithography process,
An X-ray (SR light) exposure is performed on the thickly applied resist on the substrate through an X-ray mask on which a required pattern is drawn, and then developed to form a female mold.

【0007】次に、このレジスト材雌型を鋳型としてニ
ッケルなどを用いた電解メッキ(電鋳)により金属製の
雄型5を作る(図2参照)。なお、一層の量産化が必要
な場合には、この金属雄型から多数のプラスチック雌型
を作り、上と同様に電鋳によって一度に多数の金属雄型
を造ればよい。
Next, a metal mold 5 is made by electrolytic plating (electroforming) using nickel or the like using the resist material female mold as a mold (see FIG. 2). If further mass production is required, a large number of plastic female dies can be made from this metal male mold, and a large number of metal male dies can be made at once by electroforming as in the above.

【0008】次の成形工程では、金属製の雄型5にセラ
ミックやプラスチックなど任意の材料を注入し成形を行
うことになる。実施例では、成形材料にセラミックを使
い多数の円柱突起配列6を有する多孔質膜支持体7の成
形が行われる(図2参照)。ここで、現状のLIGA技
術レベルでは、高さは数十から600ないしは1000
ミクロンまで、横幅に関しては、最小加工幅は数ミクロ
ンといわれているが、突起形状としての幅は、数ミクロ
ンから数百ミクロンが対象となろう。ただし、加工形状
に関しては、技術進歩の可能性もあり特にこの数値に限
定されない。
In the next molding step, molding is performed by injecting an arbitrary material such as ceramic or plastic into the metallic male mold 5. In the embodiment, a porous membrane support 7 having a large number of columnar projection arrangements 6 is formed using ceramic as a molding material (see FIG. 2). Here, at the current LIGA technology level, the height is from several tens to 600 or 1000.
It is said that the minimum processing width is several microns up to the micron, but the width as the projection shape will be several microns to several hundred microns. However, the processing shape is not particularly limited to this numerical value due to the possibility of technological progress.

【0009】次の工程では、この支持体7上に気体の分
離膜1を形成する。すなわち、本実施例の場合、水素分
離膜1は、前記多孔質セラミック支持体7上にパラジウ
ムを用いる無電解メッキによってパラジウム膜を形成す
る。また、銀とパラジウムの合金膜を形成する場合に
は、無電解メッキによって支持体7上に二層の薄膜を形
成させた後、熱処理することによって合金層を形成させ
ることができる。なお、適当な細孔径を有する多孔質セ
ラミック上に無電解メッキによって数ミクロン厚もしく
はそれ以上の厚みのパラジウムもしくはパラジウム合金
の薄膜を形成し水素分離が可能なことは公知の技術であ
る。また、前記分離膜が無機多孔質膜からなるときは、
無機多孔質支持体上にゾル溶液を塗布後にこれを焼成す
るなどの方法で分離膜形成を行うこともできる。その
他、分離膜形成に当たっては、真空技術を含めて薄膜形
成の様々な方法が対象となる。
In the next step, a gas separation membrane 1 is formed on the support 7. That is, in the case of this embodiment, the hydrogen separation membrane 1 forms a palladium membrane on the porous ceramic support 7 by electroless plating using palladium. In the case of forming an alloy film of silver and palladium, an alloy layer can be formed by forming a two-layer thin film on the support 7 by electroless plating and then performing heat treatment. It is a known technique that a thin film of palladium or a palladium alloy having a thickness of several microns or more can be formed on a porous ceramic having an appropriate pore diameter by electroless plating to separate hydrogen. Further, when the separation membrane is formed of an inorganic porous membrane,
The separation membrane can also be formed by a method such as baking the sol solution after coating it on the inorganic porous support. In addition, in forming a separation film, various methods of forming a thin film, including a vacuum technique, are targeted.

【0010】更に、膜支持体なしでも使用環境に耐える
ほどに膜厚を厚くする場合には、プラスチックなどで支
持体を形成し、膜形成後に溶剤などで前記支持体を除去
すれば良い。
Further, when the film thickness is made thick enough to withstand the use environment without a film support, the support may be formed of plastic or the like, and the film may be removed with a solvent after the film is formed.

【0011】この発明は、上記実施例に限定されるもの
ではなく、分離膜の表面積を拡大しうる立体形状であれ
ば適宜に用いることができる。また、前記実施例では、
膜分離に使用される膜としてパラジウムあるいはパラジ
ウム合金を用いた金属膜の場合を例示したが、用途に応
じて、その他の金属や無機多孔質膜あるいは有機分離膜
などの分離膜を用いることができる。また、上記実施例
では、透過気体の一例として水素の場合を示したが、そ
の他の気体の分離を行うものであってもよい。更に、上
記実施例では三次元超微細手段の一例としてディープリ
ソグラフィを用いた場合を示したが、これに代えて(デ
ィープ)エッチングを用いて凹凸パターンの超微細加工
を施してもよい。
The present invention is not limited to the above embodiment, but may be suitably used as long as it has a three-dimensional shape capable of increasing the surface area of the separation membrane. In the above embodiment,
Although the case of a metal membrane using palladium or a palladium alloy has been exemplified as the membrane used for membrane separation, a separation membrane such as another metal or an inorganic porous membrane or an organic separation membrane can be used depending on the application. . Further, in the above embodiment, the case of hydrogen is shown as an example of the permeated gas, but another gas may be separated. Further, in the above-described embodiment, the case where the deep lithography is used as an example of the three-dimensional ultrafine means is described. However, instead of this, the ultrafine processing of the concavo-convex pattern may be performed by using (deep) etching.

【0012】[0012]

【発明の効果】以上説明したように、この発明では、超
微細加工手段によって気体分離膜に形成した多数の凹凸
立体パターンにより実効表面積を拡大し、気体の透過量
の顕著な増大をはかることができる。ここで、図3は、
前記実施例の分離膜1が、従来の扁平な分離膜に対して
どの程度の表面積の増加が見込まれるかを比較するため
の説明図である。すなわち、分離膜の縦横の一辺aを3
6ミクロンとする正方形の単位面積(従来の分離膜の場
合)に対して、前記実施例の分離膜1ではその中央に配
される1つの凸部2の外径bを22ミクロン、内径cを
14ミクロン、膜厚dを4ミクロン、高さeを300ミ
クロン、隣接する凸部2、2間の長さfを14ミクロン
として計算すると、約10倍の面積増加が見込まれるこ
とになる。したがって、他の条件が同じならば気体の透
過量は約10倍となる。
As described above, according to the present invention, the effective surface area can be increased by a large number of three-dimensional patterns formed on the gas separation membrane by the ultrafine processing means, and the gas permeation amount can be significantly increased. it can. Here, FIG.
It is explanatory drawing for comparing how much the surface area of the separation membrane 1 of the said Example is expected with respect to the conventional flat separation membrane. That is, one side a of the vertical and horizontal sides of the separation membrane is 3
For a square unit area of 6 microns (in the case of a conventional separation membrane), in the separation membrane 1 of the above embodiment, the outer diameter b of one convex portion 2 disposed at the center thereof is 22 microns and the inner diameter c is If the thickness is calculated as 14 microns, the film thickness d is 4 microns, the height e is 300 microns, and the length f between the adjacent protrusions 2 is 14 microns, an area increase of about 10 times is expected. Therefore, if the other conditions are the same, the gas permeation amount becomes about 10 times.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は従来の分離膜の部分断面図、(b)は
本実施例の分離膜の凹凸パターンを模式的に示す部分断
面図である。
FIG. 1A is a partial cross-sectional view of a conventional separation membrane, and FIG. 1B is a partial cross-sectional view schematically showing a concavo-convex pattern of the separation membrane of the present embodiment.

【図2】金型とセラミックスの支持体を示す斜視図であ
る。
FIG. 2 is a perspective view showing a mold and a ceramic support.

【図3】凸部の表面積の拡大を計算するための模式図で
ある。
FIG. 3 is a schematic diagram for calculating expansion of a surface area of a convex portion.

【符号の説明】[Explanation of symbols]

1 分離膜 2 凸部 5 金型 6 多数の円柱突起 7 膜支持体 DESCRIPTION OF SYMBOLS 1 Separation membrane 2 Convex part 5 Die 6 Many columnar protrusions 7 Membrane support

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 3/56 C01B 3/56 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01B 3/56 C01B 3/56 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素その他の被分離気体を別の気体から
分離するための気体の分離膜において、 マイクロマシン製造または半導体製造に使われる三次元
超微細加工手段として、凹凸パターン構造体(雌型)を
作成し、これを基に電鋳法で作成した金型(雄型)を用
いて多数の凹凸を有する無機多孔質または有機質の膜支
持体を成形し、該膜支持体の表面に分離膜を形成してな
り、 該分離膜の表面積を広くすることにより、気体の透過速
度を早めて処理量を増大せしめてなることを特徴とする
気体の分離膜。
1. A concave-convex pattern structure (female mold) as a three-dimensional ultra-fine processing means used in micromachine manufacture or semiconductor manufacture in a gas separation membrane for separating hydrogen or another gas to be separated from another gas. And an inorganic or organic membrane support having a large number of irregularities is formed using a mold (male mold) formed by electroforming based on the above, and a separation membrane is formed on the surface of the membrane support. A gas separation membrane characterized by increasing the surface area of the separation membrane to increase the gas permeation rate and increase the throughput.
【請求項2】 前記分離膜が、水素を他の気体から分離
する水素分離膜からなっており、同一の柱形状からなる
多数の凸部を規則的に配列してなることを特徴とする請
求項1に記載の分離膜。
2. The method according to claim 1, wherein the separation membrane is formed of a hydrogen separation membrane that separates hydrogen from other gases, and is formed by regularly arranging a number of convex portions having the same column shape. Item 7. The separation membrane according to Item 1.
【請求項3】 凹凸パターンの凸部が、横幅を数ミクロ
ン〜数百ミクロン、高さを数十〜千ミクロンの範囲で設
定されてなることを特徴とする請求項1または2に記載
の気体の分離膜。
3. The gas according to claim 1, wherein the convex portion of the concave / convex pattern has a width set in a range of several microns to several hundreds microns and a height set in a range of several tens to 1,000 microns. Separation membrane.
【請求項4】 膜支持体上に形成された分離膜が、その
膜厚を膜支持体なしで使用環境に耐えられる厚みに設定
され、上記膜支持体が溶剤などの除去手段で除去されて
なることを特徴とする請求項1から3に記載の気体の分
離膜。
4. The separation membrane formed on the membrane support is set to a thickness that can withstand the use environment without the membrane support, and the membrane support is removed by a removing means such as a solvent. The gas separation membrane according to claim 1, wherein the gas separation membrane is a gas separation membrane.
【請求項5】 水素その他の被分離気体を別の気体から
分離するための気体の分離膜の製造方法において、 マイクロマシン製造または半導体製造に使われる三次元
超微細加工手段として凹凸パターン構造体(雌型)を作
成し、これを基に電鋳法で金型(雄型)を作成し、 該金型を用いて多数の凹凸を有する無機多孔質または有
機質の膜支持体を成形し、 該膜支持体の表面に分離膜を形成してなることを特徴と
する気体の分離膜の製造方法。
5. A method for producing a gas separation membrane for separating hydrogen or another gas to be separated from another gas, comprising a three-dimensional ultra-fine processing means used in micromachine production or semiconductor production. Mold), a mold (male mold) is formed by electroforming based on the mold, and an inorganic porous or organic membrane support having a large number of irregularities is formed using the mold. A method for producing a gas separation membrane, comprising forming a separation membrane on a surface of a support.
【請求項6】 前記分離膜が、金属膜からなるときは金
属分離膜が膜支持体上に形成され、無機多孔質膜からな
るときは無機多孔質支持体上にゾル溶液を塗布後にこれ
を焼成して形成されることを特徴とする請求項4に記載
の気体の分離膜の製造方法。
6. When the separation membrane is formed of a metal membrane, the metal separation membrane is formed on a membrane support. When the separation membrane is formed of an inorganic porous membrane, the sol solution is coated on the inorganic porous support and then applied. The method for producing a gas separation membrane according to claim 4, wherein the method is formed by firing.
JP20981599A 1999-07-23 1999-07-23 Gas separation membrane and method for producing the same Expired - Fee Related JP4153623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20981599A JP4153623B2 (en) 1999-07-23 1999-07-23 Gas separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20981599A JP4153623B2 (en) 1999-07-23 1999-07-23 Gas separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001029761A true JP2001029761A (en) 2001-02-06
JP4153623B2 JP4153623B2 (en) 2008-09-24

Family

ID=16579083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20981599A Expired - Fee Related JP4153623B2 (en) 1999-07-23 1999-07-23 Gas separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4153623B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681648B1 (en) * 2001-04-04 2004-01-27 The Regents Of The University Of California Meniscus membranes for separations
WO2005063612A1 (en) * 2003-12-26 2005-07-14 Hitachi, Ltd. Fine metal structure, process for producing the same, fine metal mold and device
WO2005079962A1 (en) * 2004-01-21 2005-09-01 Valerio Vernocchi Module with non-deformable support for filter septa and membrane type filter elements
JP2006082039A (en) * 2004-09-17 2006-03-30 Noritake Co Ltd Oxygen separation membrane element, its manufacturing method, oxygen manufacturing method, and reactor
US7049008B2 (en) 2002-02-04 2006-05-23 Toyota Jidosha Kabushiki Kaisha Hydrogen-permeable membrane and manufacturing method of the same
WO2010056034A3 (en) * 2008-11-11 2010-08-19 서울대학교산학협력단 Membrane with a patterned surface, method for manufacturing same, and water treatment process using same
US7862643B2 (en) 2004-04-26 2011-01-04 Toyota Jidosha Kabushiki Kaisha Hydrogen separation membrane and fuel cell, and manufacturing method therefor
JP2012066239A (en) * 2010-08-24 2012-04-05 Toray Ind Inc Separation membrane and separation membrane element
US8226751B2 (en) 2005-09-30 2012-07-24 Nippon Seisen Co., Ltd. Composite membrane material for hydrogen separation and element for hydrogen separation using the same
CN108854590A (en) * 2018-08-09 2018-11-23 常州费曼生物科技有限公司 Infusion apparatus filter membrane and preparation method, infusion apparatus filter membrane structure and preparation process and filter, infusion apparatus
CN114536626A (en) * 2022-02-23 2022-05-27 泰州清润环保科技有限公司 Cross-linked cured polymer film forming die and using method thereof
CN114558451A (en) * 2022-02-23 2022-05-31 泰州清润环保科技有限公司 Three-dimensional trapezoidal concave-convex structured PEG desulfurization film and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681648B1 (en) * 2001-04-04 2004-01-27 The Regents Of The University Of California Meniscus membranes for separations
US7049008B2 (en) 2002-02-04 2006-05-23 Toyota Jidosha Kabushiki Kaisha Hydrogen-permeable membrane and manufacturing method of the same
WO2005063612A1 (en) * 2003-12-26 2005-07-14 Hitachi, Ltd. Fine metal structure, process for producing the same, fine metal mold and device
US8741380B2 (en) 2003-12-26 2014-06-03 Hitachi, Ltd. Fine metal structure, process for producing the same, fine metal mold and device
WO2005079962A1 (en) * 2004-01-21 2005-09-01 Valerio Vernocchi Module with non-deformable support for filter septa and membrane type filter elements
US7862643B2 (en) 2004-04-26 2011-01-04 Toyota Jidosha Kabushiki Kaisha Hydrogen separation membrane and fuel cell, and manufacturing method therefor
JP2006082039A (en) * 2004-09-17 2006-03-30 Noritake Co Ltd Oxygen separation membrane element, its manufacturing method, oxygen manufacturing method, and reactor
US8226751B2 (en) 2005-09-30 2012-07-24 Nippon Seisen Co., Ltd. Composite membrane material for hydrogen separation and element for hydrogen separation using the same
WO2010056034A3 (en) * 2008-11-11 2010-08-19 서울대학교산학협력단 Membrane with a patterned surface, method for manufacturing same, and water treatment process using same
JP2012066239A (en) * 2010-08-24 2012-04-05 Toray Ind Inc Separation membrane and separation membrane element
CN108854590A (en) * 2018-08-09 2018-11-23 常州费曼生物科技有限公司 Infusion apparatus filter membrane and preparation method, infusion apparatus filter membrane structure and preparation process and filter, infusion apparatus
CN114536626A (en) * 2022-02-23 2022-05-27 泰州清润环保科技有限公司 Cross-linked cured polymer film forming die and using method thereof
CN114558451A (en) * 2022-02-23 2022-05-31 泰州清润环保科技有限公司 Three-dimensional trapezoidal concave-convex structured PEG desulfurization film and preparation method thereof

Also Published As

Publication number Publication date
JP4153623B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
US5753014A (en) Membrane filter and a method of manufacturing the same as well as a membrane
JP2001029761A (en) Gas separation membrane and its preparation
US9221684B2 (en) Hierarchical carbon nano and micro structures
JP3020154B2 (en) Method for producing porous diamond body
Mi et al. Vertically aligned carbon nanotube membranes on macroporous alumina supports
EP2627605B1 (en) Process for producing highly ordered nanopillar or nanohole structures on large areas
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
KR20130008033A (en) Method and device for forming a supported gas separation membrane
EP1954367A2 (en) Hydrogen transport membrane fabrication method
KR20100026101A (en) Stamp for superhydrophobic micro/nano hybrid surface based on anodic aluminum oxide, method of manufacturing the same, and product manufactured with the same
US20130112610A1 (en) Microsieve using carbon nanotubes
KR100832302B1 (en) Fabrication method of pd alloy membrane using in-situ dry vacuum process for hydrogen gas separation
JP2014205237A (en) Aerogel-based mold for mems fabrication and formation method thereof
US20170151598A1 (en) Imprinting Metallic Substrates at Hot Working Temperatures
JP2005254191A (en) Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP4429318B2 (en) Hydrogen gas separator having a composite structure for separating hydrogen with high efficiency, and method for producing and using the same
KR20160021047A (en) Fabrication of positive molds, membranes fabricated using the molds, and their fabrication methods
WO2015008141A2 (en) Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes
JP2013031830A (en) Porous body with separation membrane
JP6358839B2 (en) Hydrogen production apparatus and production method thereof
JP2007101979A (en) Method of manufacturing microstructure, method of manufacturing die for molding microstructure, method of manufacturing optical element having microstructure, optical element having microstructure and optical apparatus
TWI480393B (en) The structure and fabrication process of nano steel wire
JP4808234B2 (en) Method for producing porous anodized alumina film and porous anodized alumina film produced by the method
JP6087113B2 (en) Manufacturing method of metal or semiconductor wire
Nakashima et al. Micro-sized Columnar Structures of Ni fabricated by using Negative-type Micromold made of Photocurable Resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees