JP2001019549A - Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same - Google Patents

Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same

Info

Publication number
JP2001019549A
JP2001019549A JP11184425A JP18442599A JP2001019549A JP 2001019549 A JP2001019549 A JP 2001019549A JP 11184425 A JP11184425 A JP 11184425A JP 18442599 A JP18442599 A JP 18442599A JP 2001019549 A JP2001019549 A JP 2001019549A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon nitride
carbon
porosity
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11184425A
Other languages
Japanese (ja)
Inventor
Masahiro Nakahara
正博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11184425A priority Critical patent/JP2001019549A/en
Publication of JP2001019549A publication Critical patent/JP2001019549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a member having high corrosion resistance, giving reduced amount of particles by forming a composite sintered compact from silicon carbide, silicon nitride and carbon. SOLUTION: This anticorrosive member comprises a composite sintered compact of silicon carbide, silicon nitride and carbon. Preferably the member has a porous structure of three-dimensionally connected silicon carbide, the void part of the porous structure occupied by silicon nitride and carbon and <=3% porosity of the sintered compact. Silicon carbide powder having 0.1-2 μm average particle diameter is mixed with a binder, molded and calcined in an inert atmosphere to give a porous body having a high porosity. The porous body is fired in an atmosphere comprising a nitrogen gas as an essential component at >=1,000 deg.C under a nitrogen gas pressure of >=500 atmospheric pressure to give a complex sintered compact. The porosity before the firing is preferably 5-25%. The composition of the composite sintered compact is preferably 50-90 wt.% of silicon carbide, 10-40 wt.% of silicon nitride and 1-10 wt.% of free carbon. The anticorrosive member is suitable as a constructional member for a semiconductor/liquid crystal production apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体・液晶製造
装置において、内壁材(チャンバー)、マイクロ波導入
窓、シャワーヘッド、フォーカスリング、シールドリン
グ等、特に腐食性ガス又はそのプラズマに曝される部材
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor / liquid crystal manufacturing apparatus, in which an inner wall material (chamber), a microwave introduction window, a shower head, a focus ring, a shield ring, etc., are exposed to corrosive gas or its plasma. It relates to members.

【0002】[0002]

【従来の技術】半導体・液晶製造におけるドライエッチ
ングプロセスや成膜プロセスなどの各プロセスにおい
て、プラズマを利用した技術が盛んに使われている。半
導体の製造時におけるプラズマプロセスでは、特にエッ
チング、クリーニング用として、反応性の高いフッ素
系、塩素系等のハロゲン系腐食性ガスが多用されてい
る。これら腐食性ガス及びプラズマに接触する部材に
は、耐食性が高いこととパーティクルの発生が少ないこ
とが要求される。従来より、被処理物以外でこれらの腐
食性ガス及びプラズマに接触する部材は、一般に石英ガ
ラスやステンレス、アルミニウム等の耐食性金属が利用
されていた。さらには、アルミナ焼結体や窒化アルミニ
ウム焼結体、及び炭化珪素焼結体や窒化珪素焼結体等が
耐食性に優れるとして使用されていた(特公平5−53
872号、特開平3−217016号、特開平8−91
932号参照)。
2. Description of the Related Art In each process such as a dry etching process and a film forming process in the production of semiconductors and liquid crystals, a technique utilizing plasma is actively used. In a plasma process at the time of manufacturing a semiconductor, a highly reactive halogen-based corrosive gas such as a fluorine-based gas and a chlorine-based gas is frequently used particularly for etching and cleaning. The members that come into contact with the corrosive gas and the plasma are required to have high corrosion resistance and to generate few particles. Heretofore, members that come into contact with these corrosive gases and plasmas other than the object to be treated have generally been made of corrosion-resistant metals such as quartz glass, stainless steel, and aluminum. Further, alumina sintered bodies, aluminum nitride sintered bodies, silicon carbide sintered bodies, silicon nitride sintered bodies, and the like have been used as having excellent corrosion resistance (Japanese Patent Publication No. 5-53).
No. 872, JP-A-3-217016, JP-A-8-91
No. 932).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来か
ら用いられている石英ガラスやステンレスなどの耐食性
金属を使用した部材ではプラズマ中の耐食性が不充分で
消耗が激しく、特にフッ素系や塩素系プラズマに接する
と接触面が腐食され、表面性状が変化したり、光透過性
が必要とされる石英部材では、表面が次第に白く曇って
透光性が低下する等の問題を生じていた。
However, members using corrosion-resistant metals, such as quartz glass and stainless steel, which have been conventionally used, have insufficient corrosion resistance in plasma and are intensely consumed. If it comes into contact, the contact surface is corroded, the surface properties are changed, and a quartz member requiring light transmissivity has a problem that the surface gradually becomes cloudy and the light transmissivity is reduced.

【0004】また、ドライエッチングプロセスでは、最
近のデバイスのデザインルールの細線化に伴い、前述の
耐食性だけでなくパーティクルの発生が大きな問題とな
っている。これは、発生したパーティクルがメタル配線
の断線や短絡等を発生させ、デバイス特性の劣化を引き
起こすためである。このパーティクルは、チャンバー内
を構成する内壁材やクランプリング等の部材がハロゲン
系腐食性ガスやプラズマにより腐食されることで発生す
る。即ち、腐食が結晶粒あるいは結晶粒界等に進行する
ことで粒子あるいは粒界の脱落が生じパーティクルとな
ったり、蒸発したハロゲン化物が、チャンバー内壁等に
堆積を繰り返し、これが落下することでパーティクルと
なったりする。
In the dry etching process, not only the above-described corrosion resistance but also the generation of particles has become a serious problem as the design rules of devices have recently become thinner. This is because the generated particles cause disconnection or short circuit of the metal wiring and cause deterioration of device characteristics. These particles are generated when members such as an inner wall material and a clamp ring constituting the inside of the chamber are corroded by a halogen-based corrosive gas or plasma. That is, as the corrosion proceeds to the crystal grains or the grain boundaries, the particles or the grain boundaries fall off and become particles, or the evaporated halide repeatedly deposits on the inner walls of the chamber and the like. Or become.

【0005】これらの上記問題を解決するために、アル
ミナ焼結体や窒化アルミニウム焼結体、あるいは、炭化
珪素焼結体や窒化珪素焼結体等を上記半導体・液晶製造
装置用構成部材として用いることが考案されている。し
かしながら、これらのセラミックスは石英ガラスや耐食
性金属と比較するとハロゲン系腐食性ガスに対する耐食
性は優れるものの、やはりプラズマと接すると腐食が徐
々に進行して、パーティクルが発生する。
In order to solve these problems, an alumina sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or the like is used as a component for the semiconductor / liquid crystal manufacturing apparatus. It has been devised. However, although these ceramics have better corrosion resistance to halogen-based corrosive gases than quartz glass and corrosion-resistant metals, corrosion also gradually progresses upon contact with plasma to generate particles.

【0006】例えば、アルミナ焼結体や窒化アルミニウ
ム焼結体の場合、プラズマで生成されるアルミニウム成
分とハロゲン系ガス、特にフッ素系ガスとのハロゲン化
物の融点が高いために、チャンバー内壁にフッ化アルミ
ニウムが堆積し、パーティクルとなる。また、炭化珪素
焼結体や窒化珪素焼結体の場合、本来これらの材料は難
焼結材として知られており、単体では緻密な焼結体が得
られず、通常、焼結助剤としてイットリアやイッテルビ
ア等の希土類元素を添加している。シリコン成分とハロ
ゲン系ガスとのハロゲン化物の融点に対し、これらの希
土類元素のハロゲン化物の融点ははるかに高く腐食を受
けにくい。この為、プラズマに曝されると、シリコン成
分からなる主結晶相が選択的に腐食され、焼結助剤の希
土類元素が存在する結晶粒界のみが残ってしまう。この
ため、この結晶粒界が脱落し、パーティクルとなること
が懸念されている。
For example, in the case of an alumina sintered body or an aluminum nitride sintered body, since the melting point of a halide of an aluminum component generated by plasma and a halogen-based gas, particularly a fluorine-based gas, is high, fluoride on the inner wall of the chamber is required. Aluminum deposits and becomes particles. Also, in the case of a silicon carbide sintered body or a silicon nitride sintered body, these materials are originally known as difficult-to-sinter materials, and a dense sintered body cannot be obtained by itself, and are usually used as sintering aids. Rare earth elements such as yttria and ytterbia are added. The melting points of the halides of these rare earth elements are much higher than the melting points of the halides of the silicon component and the halogen-based gas and are less susceptible to corrosion. For this reason, when exposed to plasma, the main crystal phase composed of the silicon component is selectively corroded, leaving only the crystal grain boundaries where the rare earth element of the sintering aid exists. Therefore, there is a concern that the crystal grain boundaries may fall off and become particles.

【0007】この為、耐食性が高く、パーティクルの発
生を少なくできる部材が望まれていた。
For this reason, there has been a demand for a member having high corrosion resistance and capable of reducing generation of particles.

【0008】[0008]

【課題を解決するための手段】本発明者らは、ハロゲン
系腐食性ガス及びそのプラズマに対する耐食性を具備
し、パーティクルの発生を少なくできる部材の構成につ
いて検討を重ねた結果、Si,C,N,Oの元素がハロ
ゲン系腐食性ガスに対し融点の低いハロゲン化物を生成
しパーティクルが発生しにくいこと、さらに窒化珪素、
炭化珪素は共有結合性が高く優れた耐食性能を有するこ
とに着目し、炭化珪素、窒化珪素のいずれかから構成
し、かつ希土類等の焼結助剤を含まなくすることで耐食
性が高く、パーティクルの発生を少なくできることを見
出した。
Means for Solving the Problems The present inventors have repeatedly studied the structure of a member having a corrosion resistance to a halogen-based corrosive gas and its plasma and capable of reducing the generation of particles. As a result, Si, C, N , O elements generate halides having a low melting point with respect to the halogen-based corrosive gas, so that particles are not easily generated.
Focusing on the fact that silicon carbide has a high covalent bond and excellent corrosion resistance, it is composed of either silicon carbide or silicon nitride, and has no corrosion sintering agents such as rare earths. Was found to be able to reduce the occurrence.

【0009】また、焼結体に多数の気孔があると腐食を
受けやすく、耐食性が大きく低下することを見出した。
Further, it has been found that if the sintered body has a large number of pores, it is susceptible to corrosion and the corrosion resistance is greatly reduced.

【0010】即ち、本発明の耐食性部材は、炭化珪素、
窒化珪素及び炭素の複合焼結体からなり、前記炭化珪素
が3次元的に繋がった多孔組織をなし、且つ該多孔組織
の空隙部を窒化珪素および炭素により占有せしめた部材
で構成することを特徴とする。さらに、本発明は上記複
合焼結体の気孔率を3%以下としたことを特徴とする。
That is, the corrosion-resistant member of the present invention comprises silicon carbide,
It is characterized by comprising a composite sintered body of silicon nitride and carbon, wherein the silicon carbide forms a porous structure connected three-dimensionally, and a void portion of the porous structure is occupied by silicon nitride and carbon. And Further, the present invention is characterized in that the porosity of the composite sintered body is 3% or less.

【0011】[0011]

【発明の実施の形態】図1にエッチング装置内部の略図
を示す。1はチャンバーを、2はクランプリングを、3
は下部電極を、4はウェハーを、5は誘導コイルを示
す。本装置では、チャンバー1の中にハロゲン系腐食性
ガスを注入し、周りに巻かれている誘導コイル5にRF
電力を印可して、ガスのプラズマを発生させる。また、
下部電極3にもRF電力を与え、プラズマにバイアスを
与え、ウェハー4に所望のエッチング加工を行う。
FIG. 1 is a schematic diagram showing the inside of an etching apparatus. 1 is a chamber, 2 is a clamp ring, 3
Indicates a lower electrode, 4 indicates a wafer, and 5 indicates an induction coil. In this apparatus, a halogen-based corrosive gas is injected into the chamber 1 and RF is applied to the induction coil 5 wound therearound.
Electric power is applied to generate gas plasma. Also,
RF power is also applied to the lower electrode 3, a bias is applied to the plasma, and a desired etching process is performed on the wafer 4.

【0012】この装置にて、発生したプラズマはチャン
バー1やウェハー4を固定しているクランプリング2に
接触するために、これらの部品は特に腐食を受けやす
く、またパーティクルの発生要因ともなっており、詳細
を後述する本発明の耐食性部材が適用できる。この他、
例えばプラズマフォーカスリング、ハロゲン系腐食性ガ
ス用のノズルやシャワーヘッド等の半導体・液晶製造装
置用構成部材としても本発明の耐食性部材を適用するこ
とができる。
In this apparatus, the generated plasma comes into contact with the chamber 1 and the clamp ring 2 which fixes the wafer 4, so that these parts are particularly susceptible to corrosion and also cause the generation of particles. The corrosion-resistant member of the present invention described in detail below can be applied. In addition,
For example, the corrosion-resistant member of the present invention can be applied to components for a semiconductor / liquid crystal manufacturing apparatus such as a plasma focus ring, a nozzle for a halogen-based corrosive gas, and a shower head.

【0013】本発明の耐食性部材は、上記の半導体又は
液晶製造装置用構成部材をはじめ、ハロゲン系腐食性ガ
スあるいはそのプラズマに曝される部位に好適に用いら
れる。ハロゲン系腐食性ガスとしては、SF6 、C
4 、C4 8 、CHF3 、ClF3 、NF3 、HF等
のフッ素系ガス、Cl2 、HCl、BCl3 、CCl4
等の塩素系ガス、あるいはBr2 、HBr、BBr3
の臭素系ガスなどがある。
The corrosion-resistant member of the present invention is suitably used for the above-mentioned components for semiconductor or liquid crystal manufacturing equipment, and for parts exposed to a halogen-based corrosive gas or its plasma. As the halogen-based corrosive gas, SF 6 , C
Fluorine-based gas such as F 4 , C 4 F 8 , CHF 3 , ClF 3 , NF 3 , HF, Cl 2 , HCl, BCl 3 , CCl 4
Or a bromine-based gas such as Br 2 , HBr and BBr 3 .

【0014】また、エッチング効果をより高めるため
に、ハロゲン系腐食性ガスとともに、Arなどの不活性
ガスを導入してプラズマを発生させることもある。さら
に、最近では、層間絶縁膜として有機膜が開発され、上
記ガスに加えO2 等も使用されてきている。
In order to further enhance the etching effect, plasma may be generated by introducing an inert gas such as Ar together with a halogen-based corrosive gas. Further, recently, an organic film has been developed as an interlayer insulating film, and O 2 and the like have been used in addition to the above gases.

【0015】本発明は、これらのハロゲン系腐食性ガス
又はそのプラズマに曝される耐食性部材を炭化珪素、窒
化珪素及び炭素の複合焼結体で形成したものであり、好
ましくは前記炭化珪素が3次元的に繋がった多孔組織を
なし、且つ該多孔組織の空隙部が窒化珪素および炭素に
より占められた焼結体であり、さらに好ましくは気孔率
を3%以下としたものである。
According to the present invention, the corrosion-resistant member exposed to the halogen-based corrosive gas or its plasma is formed of a composite sintered body of silicon carbide, silicon nitride and carbon. It is a sintered body having a porous structure that is dimensionally connected, and the voids of the porous structure are occupied by silicon nitride and carbon, and more preferably have a porosity of 3% or less.

【0016】即ち、セラミック焼結体の結晶相を構成す
る炭化珪素、窒化珪素、炭素は、フッ素系ガスと反応す
ると主にSiF4 、CF4 を生成し、また、塩素系ガス
と反応 するとSiCl4 、CCl4 を生成するが、こ
れらのハロゲン化物の融点(SiF4 :−90℃、CF
4 :−184℃、SiCl4 :−70℃、CCl4 :−
23℃)は、アルミナ焼結体や窒化アルミニウム焼結
体、または炭化珪素焼結体や窒化珪素焼結体の焼結助剤
であるイットリアとの反応により生成されるハロゲン化
物の融点(AlF3 :1040℃、AlCl3 :178
℃、YF3 :1152℃、YCl3 :680℃)と比較
してはるかに低く、腐食が進行してもベーパーし、パー
ティクルの発生を少なくすることができるのである。
That is, silicon carbide, silicon nitride, and carbon constituting the crystal phase of the ceramic sintered body mainly produce SiF 4 and CF 4 when reacted with a fluorine-based gas, and generate SiCl 4 when reacted with a chlorine-based gas. 4 and CCl 4 , but the melting points of these halides (SiF 4 : -90 ° C., CF
4: -184 ℃, SiCl 4: -70 ℃, CCl 4: -
(23 ° C.) is the melting point (AlF 3) of a halide produced by the reaction of yttria, which is a sintering aid for an alumina sintered body, an aluminum nitride sintered body, or a silicon carbide sintered body or a silicon nitride sintered body. : 1040 ° C, AlCl 3 : 178
C., YF 3 : 1152 ° C., YCl 3 : 680 ° C.), so that even if corrosion progresses, it vaporizes and the generation of particles can be reduced.

【0017】また、本発明より構成される部材は、いず
れも共有結合性が高く、従来の石英ガラスよりも優れた
耐食性を具備している。
Further, the members constituted according to the present invention all have high covalent bonding properties and have better corrosion resistance than conventional quartz glass.

【0018】即ち、前述したとおり、ハロゲン系腐食性
ガスやプラズマとの反応により形成されるハロゲン化物
の融点が低くなる成分のみで構成することが、パーティ
クル発生の減少につながるのである。
That is, as described above, the use of only a component that lowers the melting point of a halide formed by reaction with a halogen-based corrosive gas or plasma leads to a reduction in particle generation.

【0019】そこで、本発明者らは、炭化珪素と窒化珪
素と炭素の複合焼結体とすることにより、他の焼結助剤
を必要とせずに耐食性に優れた成分のみで焼結体を構成
し、ハロゲン系腐食性ガスやプラズマとの反応により形
成されるハロゲン化物の融点を低くし、また、気孔率も
3%以下に緻密化をはかり、耐食性を具備させパーティ
クルの発生も減少させた。
Therefore, the present inventors made a composite sintered body of silicon carbide, silicon nitride, and carbon, and required only a component having excellent corrosion resistance without requiring any other sintering aid. It has a low melting point of a halide formed by reaction with a halogen-based corrosive gas or plasma, and has a porosity of 3% or less, and has a high corrosion resistance and a reduced generation of particles. .

【0020】セラミック焼結体の気孔率を3%以下とす
るのは気孔が存在すると、気孔のエッジが腐食を受けや
すく、気孔率が3%を越えると、腐食の進行が加速され
るためである。
The reason why the porosity of the ceramic sintered body is set to 3% or less is that the presence of the porosity causes the edge of the porosity to be easily corroded, and the porosity exceeding 3% accelerates the progress of corrosion. is there.

【0021】次に、本発明にかかわる部材の製造方法を
説明する。
Next, a method for manufacturing a member according to the present invention will be described.

【0022】まず、原料粉末として炭化珪素粉末を準備
する。用いる炭化珪素粉末としてはα−SiC、β−S
iCのいずれか、またはこれらを混合して使用すること
もできる。炭化珪素粉末の平均粒径は0.1〜2μmが
適当である。上記炭化珪素粉末に対しては焼結助剤を使
用しても良い。但し、硼素、炭化硼素、炭素等のハロゲ
ン系腐食性ガス及びそのプラズマとの反応により形成さ
れるハロゲン化物の融点が低くなる物に限られる。上記
粉末にバインダー等を添加し、周知の成形法、たとえば
プレス成形、押し出し成形、鋳込み成形、冷間静水圧成
形等により所望の形状に成形する。成形体は、不活性雰
囲気、真空中で仮焼し気孔率の高い多孔質体とする。こ
の多孔質体が、炭化珪素結晶が3次元的に繋がった網目
構造からなる。
First, silicon carbide powder is prepared as a raw material powder. As the silicon carbide powder to be used, α-SiC, β-S
Any of iC or a mixture thereof can be used. The average particle size of the silicon carbide powder is suitably from 0.1 to 2 μm. A sintering aid may be used for the silicon carbide powder. However, it is limited to a halogen-based corrosive gas such as boron, boron carbide, carbon, and the like, and a halide having a low melting point formed by reaction with the plasma. A binder or the like is added to the powder, and the powder is formed into a desired shape by a known molding method, for example, press molding, extrusion molding, casting molding, cold isostatic pressing, or the like. The compact is calcined in an inert atmosphere and in vacuum to form a porous body having a high porosity. This porous body has a network structure in which silicon carbide crystals are three-dimensionally connected.

【0023】次に上記のようにして得られた多孔質体
を、炭化珪素と窒素の反応により窒化珪素および炭素が
生成可能な雰囲気中で焼成する。具体的には、1000
℃以上、特に1500℃以上の温度にて、雰囲気中に窒
素ガスを必須成分として含むとともに該窒素ガス圧力が
500気圧以上、特に1000気圧以上の加圧下で焼成
する。この製法によれば、希土類元素等の焼結助剤無し
に、内部及び表層部ともに高緻密化が達成される。
Next, the porous body obtained as described above is fired in an atmosphere in which silicon nitride and carbon can be produced by a reaction between silicon carbide and nitrogen. Specifically, 1000
The sintering is carried out at a temperature of not less than 1 ° C., particularly not less than 1500 ° C., under a pressure containing nitrogen gas as an essential component in the atmosphere and a pressure of not less than 500 atm, especially not less than 1000 atm. According to this manufacturing method, high densification is achieved in both the inside and the surface layer without a sintering aid such as a rare earth element.

【0024】また焼結体の構造について解析を行ったと
ころ、骨材となる炭化珪素が3次元的に繋がった多孔質
組織を有しており、該多孔質組織の空隙部が窒化珪素及
び炭素で占められていた。
When the structure of the sintered body was analyzed, it was found that the sintered body had a porous structure in which silicon carbide as an aggregate was three-dimensionally connected, and the voids of the porous structure were formed of silicon nitride and carbon. Was occupied by.

【0025】上記のようにして得られる本発明の部材の
組成は、主に焼成前の多孔質体の気孔率により制御され
る。気孔率が小さすぎると窒化珪素及び炭素の生成が少
なくなり、緻密化が十分に行われない。また、気孔率が
大きすぎると、骨材としての炭化珪素の強度が低く焼結
体の機械的特性が低下し、また窒化珪素と炭素の生成に
よる気孔の充填が十分に行われず緻密化が十分に行われ
ない。この為、焼結体気孔率を3%以下とするために
は、焼成前の多孔質体の気孔率としては、5〜25%が
好ましい。この様にして得られる焼結体の組成は、炭化
珪素が50〜90重量%、窒化珪素が10〜40重量
%、遊離炭素が1〜10重量%の範囲が好ましい。
The composition of the member of the present invention obtained as described above is controlled mainly by the porosity of the porous body before firing. If the porosity is too small, the production of silicon nitride and carbon will decrease, and densification will not be performed sufficiently. On the other hand, if the porosity is too large, the strength of the silicon carbide as the aggregate is low and the mechanical properties of the sintered body are reduced, and the pores are not sufficiently filled due to the formation of silicon nitride and carbon, and the densification is insufficient. Is not done. Therefore, in order to reduce the porosity of the sintered body to 3% or less, the porosity of the porous body before firing is preferably 5 to 25%. The composition of the sintered body thus obtained is preferably in the range of 50 to 90% by weight of silicon carbide, 10 to 40% by weight of silicon nitride, and 1 to 10% by weight of free carbon.

【0026】本発明の耐食性部材は、上述した半導体・
液晶製造装置用構成部材として好適に用いることができ
るほか、腐食性雰囲気中で使用されるさまざまな分野に
好適に使用することができる。
The corrosion-resistant member of the present invention comprises the above-described semiconductor
In addition to being suitably used as a component for a liquid crystal manufacturing apparatus, it can be suitably used in various fields used in a corrosive atmosphere.

【0027】[0027]

【実施例】実施例1 本発明の耐食性部材として、気孔率を変化させた炭化珪
素、窒化珪素及び炭素の複合焼結体(組成は炭化珪素7
5重量%、窒化珪素20重量%、炭素5重量%)と、従
来の部材として、石英ガラス、アルミナ、炭化珪素(焼
結助剤Y2 3添加)、窒化珪素(焼結助剤Y2 3
加)をそれぞれ用意し、フッ素系及び塩素系腐食性ガス
下でプラズマに曝したときの耐食性及びパーティクルの
発生について実験を行った。
Example 1 As a corrosion-resistant member of the present invention, a composite sintered body of silicon carbide, silicon nitride and carbon having a changed porosity (composition: silicon carbide 7
5% by weight, 20% by weight of silicon nitride, 5% by weight of carbon) and, as conventional members, quartz glass, alumina, silicon carbide (with sintering aid Y 2 O 3 added), silicon nitride (with sintering aid Y 2) (O 3 added) were prepared, and an experiment was conducted on the corrosion resistance and particle generation when exposed to plasma under a fluorine-based and chlorine-based corrosive gas.

【0028】本実験では、本発明及び従来の部材を直径
30mm×厚み3mmに製作した後、表面にラップ加工
を施して鏡面にしたものを試料とし、この試料を8イン
チのシリコンウェハー上にのせた状態でRIE(Rea
ctive Ion Etching)装置にセット
し、CF4 +CHF3 +Arガス雰囲気下及びCl2
ス雰囲気下でプラズマ中に3時間曝した後、処理前後の
試料重量の減少量から1分間当たりのエッチングレート
を算出し、またCF4 +CHF3 +Arガス雰囲気下の
ものについてはシリコンウェハー上のパーティクルの個
数を計測した。エッチングレートの数値は、石英ガラス
のエッチングレートを1としたときの相対比較で示す。
パーティクルの計測は、エッチング後、レーザーの散乱
を用いてシリコンウエハー表面の凹凸を検出し、凹凸の
形状と数をカウントできるシリコンウエハ用のパーティ
クルカウンタを用い、0.17μm以上のパーティクル
の8インチウェハー1枚当たりの個数を計測した。
In this experiment, the present invention and the conventional member were manufactured to have a diameter of 30 mm × thickness of 3 mm, and then lapping was performed on the surface to make a mirror surface, and the sample was placed on an 8-inch silicon wafer. RIE (Rea)
set to ctive Ion Etching) apparatus, calculated etching rate per CF 4 + CHF 3 + Ar after exposure for 3 hours in a plasma in a gas atmosphere and Cl under 2 gas atmosphere, for 1 minute from a decrease amount of the sample weights before and after processing The number of particles on a silicon wafer was measured in a gas atmosphere of CF 4 + CHF 3 + Ar gas. The numerical value of the etching rate is shown by a relative comparison when the etching rate of quartz glass is 1.
Particles are measured after etching by using laser scattering to detect irregularities on the surface of the silicon wafer, and using a particle counter for silicon wafers that can count the shape and number of irregularities on an 8-inch wafer of particles of 0.17 μm or more. The number per sheet was measured.

【0029】各試料の結果は表1に示すとおりである。The results for each sample are as shown in Table 1.

【0030】この結果、本発明実施例であるNo.1〜
3についてはいずれの腐食性ガスに対しても、従来の石
英ガラスと比較して優れた耐食性を有していた。しかし
ながら、気孔率が3%を越えるNo4は、耐食性が石英
ガラスと同等であった。これは、ボイドのエッジから腐
食が進行しているためである。また、パーティクルにつ
いても、本発明の部材No1〜3は10個以下と非常に
少なくなっていた。走査型電子顕微鏡にて、試料表面の
観察を行ったが表面に反応生成物等の堆積などはみられ
なかった。
As a result, in the embodiment of the present invention, No. 1 to
Sample No. 3 had excellent corrosion resistance to any corrosive gas as compared with conventional quartz glass. However, No. 4 having a porosity exceeding 3% had corrosion resistance equivalent to that of quartz glass. This is because corrosion has progressed from the edge of the void. Also, with respect to particles, the number of the members No. 1 to 3 of the present invention was as very small as 10 or less. The surface of the sample was observed with a scanning electron microscope, but no deposition of reaction products or the like was observed on the surface.

【0031】これに対し、No5〜8の部材は20個以
上のパーティクルが発生していた。これらの試料表面の
観察を行ったところ、No6:アルミナについては、C
4+CHF3 +Arガスに曝されたものにフッ化アル
ミニウムが検出された。No7:炭化珪素、No8:窒
化珪素については、いずれも焼結助剤として添加してい
るイットリアのハロゲン化物が検出された。しかも、表
面状態は主結晶相のシリコン成分は腐食され、結晶粒界
のイットリウム成分が残存し、粒界脱落が引き起こされ
るような状態にまでなっていた。
On the other hand, the No. 5 to No. 8 members generated 20 or more particles. Observation of the surface of these samples revealed that No. 6: alumina
Aluminum fluoride was detected in those exposed to F 4 + CHF 3 + Ar gas. For No. 7: silicon carbide and No. 8: silicon nitride, yttria halide added as a sintering aid was detected. In addition, the surface condition is such that the silicon component of the main crystal phase is corroded, the yttrium component at the crystal grain boundaries remains, and the grain boundaries fall off.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上詳述したとおり、本発明の耐食性部
材は、炭化珪素、窒化珪素及び炭素の複合焼結体より形
成し、さらには気孔率を3%以下とすることで、プラズ
マに対する耐食性を向上させ、パーティクルの発生を少
なくすることができる。
As described in detail above, the corrosion-resistant member of the present invention is formed of a composite sintered body of silicon carbide, silicon nitride and carbon, and further has a porosity of 3% or less, thereby achieving a corrosion resistance to plasma. And the generation of particles can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐食性部材を用いた半導体・液晶製造
装置用構成部材の一例であるエッチング装置内部の概略
図である。
FIG. 1 is a schematic view of the inside of an etching apparatus which is an example of a component for a semiconductor / liquid crystal manufacturing apparatus using a corrosion-resistant member of the present invention.

【符号の説明】[Explanation of symbols]

1.チャンバー 2.クランプリング 3.下部電極 4.ウェハー 5.誘導コイル 1. Chamber 2. Clamp ring 3. Lower electrode 4. Wafer 5. Induction coil

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素、窒化珪素及び炭素の複合焼結体
からなることを特徴とする耐食性部材。
1. A corrosion-resistant member comprising a composite sintered body of silicon carbide, silicon nitride and carbon.
【請求項2】炭化珪素、窒化珪素及び炭素からなり、前
記炭化珪素が3次元的に繋がった多孔組織をなし、且つ
該多孔組織の空隙部が窒化珪素および炭素により占めら
れている焼結体からなることを特徴とする請求項1記載
の耐食性部材。
2. A sintered body comprising silicon carbide, silicon nitride and carbon, wherein said silicon carbide forms a porous structure connected three-dimensionally, and a void portion of said porous structure is occupied by silicon nitride and carbon. The corrosion-resistant member according to claim 1, comprising:
【請求項3】気孔率が3%以下であることを特徴とする
請求項1又は2記載の耐食性部材。
3. The corrosion-resistant member according to claim 1, wherein the porosity is 3% or less.
【請求項4】請求項1〜3記載の耐食性部材からなるこ
とを特徴とする半導体・液晶製造装置用構成部材。
4. A component for a semiconductor / liquid crystal manufacturing apparatus comprising the corrosion resistant member according to claim 1.
JP11184425A 1999-06-29 1999-06-29 Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same Pending JP2001019549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11184425A JP2001019549A (en) 1999-06-29 1999-06-29 Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11184425A JP2001019549A (en) 1999-06-29 1999-06-29 Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same

Publications (1)

Publication Number Publication Date
JP2001019549A true JP2001019549A (en) 2001-01-23

Family

ID=16152940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11184425A Pending JP2001019549A (en) 1999-06-29 1999-06-29 Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same

Country Status (1)

Country Link
JP (1) JP2001019549A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067312A1 (en) * 2001-02-21 2002-08-29 Tokyo Electron Limited Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment
JP2002252213A (en) * 2001-02-23 2002-09-06 Tokyo Electron Ltd Plasma etching method
WO2017038555A1 (en) * 2015-09-03 2017-03-09 住友大阪セメント株式会社 Focus ring and method for producing focus ring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067312A1 (en) * 2001-02-21 2002-08-29 Tokyo Electron Limited Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment
JPWO2002067312A1 (en) * 2001-02-21 2004-06-24 東京エレクトロン株式会社 Parts for plasma processing apparatus, method for manufacturing the same, and plasma processing apparatus
JP2002252213A (en) * 2001-02-23 2002-09-06 Tokyo Electron Ltd Plasma etching method
WO2017038555A1 (en) * 2015-09-03 2017-03-09 住友大阪セメント株式会社 Focus ring and method for producing focus ring
US10273190B2 (en) 2015-09-03 2019-04-30 Sumitomo Osaka Cement Co., Ltd. Focus ring and method for producing focus ring

Similar Documents

Publication Publication Date Title
KR102501039B1 (en) Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating
JP3619330B2 (en) Components for plasma process equipment
KR101304082B1 (en) Corrosion resistant multilayer member
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JP2019069891A (en) Method and apparatus for reducing erosion rate of surface exposed to halogen-containing plasma
JP2003146751A (en) Plasma-resistant member and method of producing the same
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP3559426B2 (en) Corrosion resistant materials
JP4160224B2 (en) Oxyhalide components
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP3623054B2 (en) Components for plasma process equipment
JP3706488B2 (en) Corrosion-resistant ceramic material
JP2001019549A (en) Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP2001151559A (en) Corrosion-resistant member
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2002293630A (en) Plasma resistant member and method of producing the same
JP3784180B2 (en) Corrosion resistant material
JPH11279761A (en) Corrosion resistant member
JP3971539B2 (en) Alumina plasma corrosion resistant material
JP2001148370A (en) Anti-corrosion and anti-plasma ceramic member
JP2005022971A (en) Member for plasma processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403