JP2001018122A - Method and device for setting working condition for electric discharge machine - Google Patents

Method and device for setting working condition for electric discharge machine

Info

Publication number
JP2001018122A
JP2001018122A JP11193096A JP19309699A JP2001018122A JP 2001018122 A JP2001018122 A JP 2001018122A JP 11193096 A JP11193096 A JP 11193096A JP 19309699 A JP19309699 A JP 19309699A JP 2001018122 A JP2001018122 A JP 2001018122A
Authority
JP
Japan
Prior art keywords
machining
electrode
work
electric discharge
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11193096A
Other languages
Japanese (ja)
Other versions
JP4017292B2 (en
Inventor
Kyoichi Hamada
恭一 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP19309699A priority Critical patent/JP4017292B2/en
Publication of JP2001018122A publication Critical patent/JP2001018122A/en
Application granted granted Critical
Publication of JP4017292B2 publication Critical patent/JP4017292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the machining accuracy and machining efficiency while eliminating less machining and excessive machining in electric discharge. SOLUTION: In the case of applying the pulse voltage between an electrode 1 and a work 3 in the machining liquid filled in a machining tank 7 while mixing the powder material in the machining liquid, and electrically discharging the work while relatively moving the electrode 1 and the work 3, quantity of the relative movement of the electrode 1 and the work 3, namely, at least one of the quantity of feeding of the electrode 1 in the Z axis direction and the rocking radius of the electrode 1 is set by relative movement quantity setting means 19, 25, 31, 33, 35, 37 in response to at least one of electric discharge area of the electrode 1 and the concentration of the power material mixed in the machining liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放電加工機の加工条
件設定方法および装置に関し、特に、加工槽内に充満し
た加工液中でまたは該加工液中に粉体を混入した加工液
中で、電極とワークとの極間にパルス電圧を印加すると
ともに、これら電極とワークとを相対移動させながらワ
ークを加工する放電加工機の加工条件設定方法および装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for setting machining conditions of an electric discharge machine, and more particularly, to a machining fluid filled in a machining tank or a machining fluid mixed with powder in the machining fluid. The present invention relates to a method and an apparatus for setting a machining condition of an electric discharge machine for machining a work while applying a pulse voltage between an electrode and a work and moving the electrode and the work relatively.

【0002】[0002]

【従来の技術】一般に、放電加工では加工効率および加
工精度の向上を図るため、まず所望の荒加工条件でワー
クの加工を行い、その後、中加工条件および仕上げ加工
条件と数段階に加工エネルギを変えながら(小さくしな
がら)、所望の加工寸法と加工面粗さが得られるように
ワークを仕上げている。この加工エネルギは電極とワー
クとの極間に供給される加工電流のピーク値とパルス幅
との積で決定されるものであるが、加工電流のパルス幅
を小さくすることは難しく、加工電流のピーク値を小さ
くすることにより仕上げ加工における小さいエネルギを
得るようにしている。また、仕上げ加工では小さい加工
エネルギで電極とワークとの極間で安定した放電加工が
得られるように、放電加工中の電極とワークとの極間の
距離、所謂放電ギャップを微小にしている。通常、放電
加工機では、電極とワークとの極間に加工電源からパル
ス電圧が印加され、電極とワークとの相対移動により電
極とワークとの極間の距離が小さくなると、電極とワー
クとの極間で放電が発生し加工が行われる。
2. Description of the Related Art In general, in order to improve machining efficiency and machining accuracy in electric discharge machining, first, a workpiece is machined under desired rough machining conditions, and thereafter, machining energy is divided into several stages under medium machining conditions and finish machining conditions. The workpiece is finished while changing (while making it smaller) so that the desired processing dimensions and processing surface roughness can be obtained. This machining energy is determined by the product of the peak value of the machining current supplied between the electrode and the work and the pulse width. However, it is difficult to reduce the pulse width of the machining current. By reducing the peak value, a small amount of energy in finishing is obtained. In the finishing process, the distance between the electrode and the electrode during the electric discharge machining, that is, the so-called discharge gap, is made small so that stable electric discharge machining between the electrode and the electrode can be obtained with a small machining energy. Normally, in an electric discharge machine, a pulse voltage is applied from a machining power supply to a gap between an electrode and a work, and when the distance between the electrode and the work is reduced due to relative movement between the electrode and the work, the electrode and the work are separated. Electric discharge is generated between the poles and machining is performed.

【0003】このような放電加工機により加工されるワ
ークの加工精度を向上させる技術が種々提案されてい
る。例えば、特許第2667183号公報には、ワーク
に対して電極を所定の位置から所定の深さ方向に送り、
荒加工から仕上げ加工まで一連の加工ステップ順に電極
送りを制御しながらワークの加工を行い、加工中に生じ
る加工誤差を補正することにより加工精度を向上させる
形彫放電加工における加工誤差補正制御方法が開示され
ている。
Various techniques have been proposed for improving the machining accuracy of a workpiece machined by such an electric discharge machine. For example, Japanese Patent No. 2667183 discloses that an electrode is fed to a workpiece from a predetermined position in a predetermined depth direction,
A machining error correction control method in die sinking EDM that improves machining accuracy by performing machining of the workpiece while controlling the electrode feed in the order of a series of machining steps from rough machining to finishing machining and correcting machining errors that occur during machining. It has been disclosed.

【0004】特許第2667183号公報に記載の形彫
放電加工における加工誤差補正制御方法は、加工前の位
置合わせ誤差や加工中の間隙誤差を解消して放電加工の
高精度化を図るものである。上記特許の第1の加工誤差
補正制御方法は、加工開始前に所定の位置に各々設定し
た電極とワークとの間隙が特定値になる間隙検出条件で
所定時間だけ微小放電させて、その位置検出より加工深
さ方向の基準面設定を行った後、所定の加工を開始し、
その後さらに、最初の荒加工から仕上げ加工の終了に至
る加工途中で、電極送りが指定の深さに達した時点での
加工中の電極位置を測定し、その加工条件から、間隙が
特定値になる間隙検出条件に切換え、微小放電を所定時
間生じさせながら間隙を収束させた後、その時の電極位
置を測定し、この両方の測定値の変化量より、加工計画
時の所定値に対する加工間隙の誤差量あるいは加工深さ
の誤差量を算出し、その誤差量を補正するように電極送
り量を制御してその後の加工を再開するものである。
The machining error correction control method in die sinking electric discharge machining described in Japanese Patent No. 2667183 aims at improving the accuracy of electric discharge machining by eliminating an alignment error before machining and a gap error during machining. . The first machining error correction control method of the above-mentioned patent is to perform a minute discharge for a predetermined time under a gap detection condition in which a gap between an electrode and a work set at a predetermined position before starting the processing becomes a specific value, and detect the position. After setting the reference plane in the processing depth direction, start predetermined processing,
Thereafter, during the processing from the initial roughing to the end of the finishing processing, the electrode position during the processing when the electrode feed reaches the specified depth is measured, and the gap is set to a specific value from the processing conditions. After the gap is converged while generating a minute discharge for a predetermined time, the electrode position at that time is measured, and the change amount of both the measured values is used to determine the machining gap with respect to the predetermined value at the time of the machining plan. An error amount or an error amount of the processing depth is calculated, the electrode feed amount is controlled so as to correct the error amount, and the subsequent processing is restarted.

【0005】上記特許の第2の加工誤差補正制御方法
は、上記と同様に基準面設定を行った後、所定の加工を
開始し、その後さらに、最初の荒加工から仕上げ加工の
終了に至るステップの過程で、深さ方向の電極位置が指
定の目標値に達してそのステップの加工を終えた後に、
間隙が特定値になる間隙検出条件に切換え、微小放電を
所定時間生じさせながら間隙を収束させた後、その時の
電極位置を測定して、その測定値より前記ステップの加
工後の深さを求めた後、さらに加工計画時の加工深さの
誤差量を算出し、この算出結果から補正加工が必要と判
断された場合に、その誤差量を補正するように電極送り
量を制御して加工を行うものである。
In the second processing error correction control method of the above-mentioned patent, after setting a reference plane in the same manner as described above, a predetermined processing is started, and thereafter, a step from the first rough processing to the end of the finishing processing is further performed. In the process of, after the electrode position in the depth direction has reached the specified target value and finished processing in that step,
The gap is switched to a gap detection condition at which the gap becomes a specific value, and after the gap is converged while generating a minute discharge for a predetermined time, the electrode position at that time is measured, and the depth after processing in the above step is obtained from the measured value. After that, an error amount of the machining depth at the time of the machining plan is further calculated, and when it is determined from the calculation result that correction machining is necessary, the electrode feed amount is controlled so as to correct the error amount, and the machining is performed. Is what you do.

【0006】一方、放電加工における加工終了判定方法
に関する技術も種々提案されている。例えば、特許第2
717474号公報に記載された放電加工方法は、加工
開始から指定時間が経過したことにより加工終了を判定
するものであり、電極とワークとの極間における放電中
の実加工時間のみをカウントし、指定時間に達したら加
工を終了する時間管理機能により、過不足なく加工を行
うものである。
[0006] On the other hand, various techniques relating to a method of determining the end of machining in electric discharge machining have been proposed. For example, Patent No. 2
The electric discharge machining method described in Japanese Patent No. 717474 is a method for determining the end of machining when a designated time has elapsed from the start of machining, and counts only the actual machining time during electric discharge between the electrode and the work, Processing is performed without any excess or shortage by a time management function that terminates processing when the specified time has been reached.

【0007】[0007]

【発明が解決しようとする課題】一般に、放電加工に用
いられる電極の材質、ワークの材質、電極とワークとの
極間への印加電圧、電極とワークとの相対移動速度およ
びワークの加工面粗さ等の内の少なくとも1つから定ま
る加工条件が同一の放電加工において、電極とワークと
の極間における放電面積が大きい程、電極とワークとの
極間に介在する加工液中の単位体積当たりの加工屑の量
が少なくなり、電極とワークとの間の電気絶縁度が小さ
くなるため、放電ギャップが小さくなり、電極消耗が多
くなる。その結果、加工の取り残しが生じ、加工寸法が
小さくなり再加工を要し、加工時間が長くなるという問
題がある。
In general, the material of the electrode used for electric discharge machining, the material of the work, the voltage applied between the electrode and the work, the relative moving speed between the electrode and the work, and the roughness of the work surface of the work. In electric discharge machining in which machining conditions determined from at least one of the above are the same, the larger the discharge area between the electrode and the electrode, the larger the unit volume in the machining fluid interposed between the electrode and the electrode. In this case, the amount of machining waste is reduced, and the degree of electrical insulation between the electrode and the work is reduced, so that the discharge gap is reduced and the consumption of the electrode is increased. As a result, there is a problem that processing is left behind, the processing size is reduced, reprocessing is required, and the processing time is lengthened.

【0008】また、油等の通常の加工液中に、グラファ
イト等の炭素系物質、クロム等の金属、またはシリコン
等の半金属の導電性の粉体を混入した粉体混入加工液中
で、電極とワークとの極間に上記のような粉体を介在さ
せながら仕上げ加工を行う放電加工方法がある。この場
合、上記加工条件が同一の放電加工において、加工液に
混入させた粉体の濃度が濃い程、電極とワークとの極間
に介在する加工液中の単位体積当たり粉体の量が多くな
り、電極とワークとの間の電気絶縁度が大きくなるの
で、放電ギャップが大きくなり、実際の加工取代は過多
となり、加工寸法が大きくなるため加工不良となるとい
う問題がある。
[0008] Further, in a powder mixed working fluid in which a conductive powder of a carbon-based material such as graphite, a metal such as chromium, or a semimetal such as silicon is mixed in a normal working fluid such as oil, There is an electric discharge machining method for performing finishing while interposing the above powder between the electrode and the work. In this case, in the electric discharge machining under the same machining conditions, as the concentration of the powder mixed in the machining fluid is higher, the amount of the powder per unit volume in the machining fluid interposed between the electrode and the work is larger. In other words, the degree of electrical insulation between the electrode and the workpiece increases, the discharge gap increases, the actual machining allowance becomes excessive, and the machining dimensions increase, leading to a problem of machining failure.

【0009】図7は粉体濃度が濃いときの従来技術によ
るワーク加工不良例を示す図である。粉体の濃度が濃い
とき、加工過多が生じると、図7に示すように、入口部
にダレ701が生じ直角度が悪くなるという問題があ
る。上記特許第2667183号公報に記載された形彫
放電加工における加工誤差補正制御方法は、放電面積が
大きい程加工取り残しが生じ、加工液に混入する粉体の
濃度が濃い程加工過多が生じるという加工精度の問題
と、取り残しの再加工に相当する加工時間の増加による
加工効率の低下の問題とについて何ら開示していない。
FIG. 7 is a diagram showing an example of a defective workpiece processing according to the prior art when the powder concentration is high. If the concentration of the powder is high and excessive processing occurs, as shown in FIG. 7, there is a problem that sagging 701 occurs at the entrance and the squareness deteriorates. The machining error correction control method in the sinking electric discharge machining described in the above-mentioned Japanese Patent No. 2,667,183 discloses a machining method in which the larger the discharge area, the more machining remains, and the higher the concentration of powder mixed in the machining fluid, the more machining occurs. There is no disclosure of the problem of accuracy and the problem of a decrease in processing efficiency due to an increase in processing time corresponding to rework of the remaining material.

【0010】また、上記特許第2717474号公報に
記載された放電加工方法における時間管理機能を用い
て、電極送りを指定の深さに達する前に加工を終了させ
て加工過多をなくし加工時間を短縮する方法では、放電
面積および加工液に混入させた粉体の濃度の少なくとも
一方に応じて、加工条件毎に短縮する加工時間の設定値
をオペレータがその都度設定しなければならず、この設
定にはオペレータの熟練度が要求され、かつ加工精度に
オペレータの個人差が影響してしまうという問題があ
る。
Further, by using a time management function in the electric discharge machining method described in the above-mentioned Japanese Patent No. 2717474, machining is completed before the electrode feed reaches a specified depth, thereby eliminating excessive machining and shortening machining time. In this method, the operator must set a set value of the processing time to be shortened for each processing condition in each case according to at least one of the discharge area and the concentration of the powder mixed in the working fluid. However, there is a problem that the skill of the operator is required and the processing accuracy is affected by the individual difference of the operator.

【0011】それゆえ、本発明は上述した問題をすべて
解決し、上記加工条件が同一の放電加工において、放電
面積または加工液に混入させた粉体の濃度を考慮し、指
定された仕上げ加工に対して再加工を要することなく1
度でその加工を終了させ、加工精度および加工効率を向
上させた放電加工機の加工条件設定方法および装置を提
供することを目的とする。
Therefore, the present invention solves all the above-mentioned problems, and in the electric discharge machining under the same machining conditions, takes into account the electric discharge area or the concentration of the powder mixed in the machining fluid, and performs the specified finishing. 1 without rework
An object of the present invention is to provide a method and an apparatus for setting machining conditions of an electric discharge machine in which the machining is completed at a time and machining accuracy and machining efficiency are improved.

【0012】[0012]

【課題を解決するための手段】前記目的を達成する本発
明による第1形態に係る放電加工機の加工条件設定方法
は、加工槽内に充満した加工液中で、電極とワークとの
極間にパルス電圧を印加するとともに、前記電極とワー
クとを相対移動させながら前記ワークを加工する放電加
工機の加工条件設定方法において、前記電極の放電面積
に応じて前記電極とワークとの相対移動量を設定するこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a method for setting machining conditions for an electric discharge machine, comprising the steps of: providing a gap between an electrode and a workpiece in a machining fluid filled in a machining tank; Applying a pulse voltage to the workpiece, and setting a machining condition of the electric discharge machine for machining the work while relatively moving the electrode and the work, wherein a relative movement amount between the electrode and the work according to a discharge area of the electrode. Is set.

【0013】前記目的を達成する本発明による第1形態
に係る放電加工機の加工条件設定装置は、加工槽内に充
満した加工液中で、電極とワークとの極間にパルス電圧
を印加するとともに、前記電極とワークとを相対移動さ
せながら前記ワークを加工する放電加工機の加工条件設
定装置において、前記電極の放電面積に応じて前記電極
とワークとの相対移動量を設定する相対移動量設定手段
を具備することを特徴とする。
According to a first aspect of the present invention, there is provided a machining condition setting device for an electric discharge machine according to the present invention for applying a pulse voltage between an electrode and a work in a machining fluid filled in a machining tank. In addition, in a machining condition setting device of an electric discharge machine for machining the work while relatively moving the electrode and the work, a relative movement amount for setting a relative movement amount between the electrode and the work according to a discharge area of the electrode It is characterized by comprising setting means.

【0014】前記目的を達成する本発明による第2形態
に係る放電加工機の加工条件設定方法は、加工槽内に充
満した加工液中に粉体を混入し該加工液中で電極とワー
クとの極間にパルス電圧を印加するとともに、前記電極
とワークとを相対移動させながら前記ワークを加工する
放電加工機の加工条件設定方法において、前記加工液中
に混入した粉体の濃度に応じて、前記電極とワークとの
相対移動量を設定することを特徴とする。
According to a second aspect of the present invention, there is provided a method for setting machining conditions of an electric discharge machine according to the present invention, wherein powder is mixed into a machining fluid filled in a machining tank, and an electrode and a work are mixed in the machining fluid. While applying a pulse voltage between the poles, in the method for setting the machining conditions of the electric discharge machine for machining the work while relatively moving the electrode and the work, according to the concentration of the powder mixed into the machining fluid The relative movement amount between the electrode and the work is set.

【0015】前記目的を達成する本発明による第2形態
に係る放電加工機の加工条件設定装置は、加工槽内に充
満した加工液中に粉体を混入し該加工液中で、電極とワ
ークとの極間にパルス電圧を印加するとともに、前記電
極とワークとを相対移動させながら前記ワークを加工す
る放電加工機の加工条件設定装置において、前記加工液
中に混入した粉体の濃度に応じて前記電極とワークとの
相対移動量を設定する相対移動量設定手段を具備するこ
とを特徴とする。
According to a second aspect of the present invention, there is provided a machining condition setting device for an electric discharge machine, comprising: mixing a powder in a machining fluid filled in a machining tank; A pulse voltage is applied between the electrodes and a machining condition setting device of an electric discharge machine for machining the work while relatively moving the electrode and the work. And a relative movement amount setting means for setting a relative movement amount between the electrode and the work.

【0016】上記第2形態に係る放電加工機の加工条件
設定装置において、前記相対移動量が、前記ワークの加
工深さを設定するために前記電極を前記ワークの底面に
向けて送る送り量である。上記第2形態に係る放電加工
機の加工条件設定装置において、前記ワークの電極片側
減寸量を設定するために前記電極を前記ワークの側面に
向けて揺動する揺動半径である。
In the machining condition setting apparatus for an electric discharge machine according to the second aspect, the relative movement amount is a feed amount for sending the electrode toward a bottom surface of the work in order to set a machining depth of the work. is there. In the machining condition setting device for an electric discharge machine according to the second embodiment, a swing radius at which the electrode swings toward a side surface of the work in order to set an electrode one-side reduction amount of the work.

【0017】[0017]

【発明の実施の形態】以下、添付図面を参照しつつ本発
明の実施の形態について詳細に説明する。図1は本発明
による加工条件設定装置を有した放電加工機の一実施形
態を示す概略ブロック構成図である。図1は、電極1と
ワーク3との極間に加工電源5からパルス電圧を印加
し、発生する放電によりワーク3を加工する形彫放電加
工機を示す。ワーク3はXY移動テーブル9上設けられ
た加工槽7内に載置される。ワーク3は、加工槽7内に
充満され導電性物質の粉体が混入した加工液中に浸漬し
ている。加工液は、図示しないが、加工液供給ポンプに
より加工液タンクからホース等の供給管を通って加工槽
7内に供給され、加工槽7内の使用済みの加工液は加工
槽7に設けられた排出口からホース等の排出管を通って
加工液タンク内に回収、収容さるようにして加工槽7と
加工液タンクとの間を循環している。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic block diagram showing one embodiment of an electric discharge machine having a machining condition setting device according to the present invention. FIG. 1 shows a die sinking electric discharge machine in which a pulse voltage is applied from a machining power source 5 between a pole between an electrode 1 and a work 3, and the work 3 is machined by generated electric discharge. The work 3 is placed in a processing tank 7 provided on an XY moving table 9. The workpiece 3 is immersed in a processing liquid filled in a processing tank 7 and mixed with a powder of a conductive substance. Although not shown, the processing liquid is supplied from the processing liquid tank to the processing tank 7 through a supply pipe such as a hose by a processing liquid supply pump, and the used processing liquid in the processing tank 7 is provided in the processing tank 7. The fluid is circulated between the processing tank 7 and the processing liquid tank so as to be collected and stored in the processing liquid tank from a discharge port through a discharge pipe such as a hose.

【0018】加工電源5は、極間に放電を点孤させるた
めに使用されるサーチ電源および放電加工エネルギを供
給するメイン電源を有し、加工条件設定手段19から極
間への印加電圧、τON(放電時間)、τOFF(休止
時間)等の加工電源用パラメータを受け、これらにした
がって電極1とワーク3との極間にパルス電圧を供給す
る。
The machining power supply 5 has a search power supply used for inducing discharge between the poles and a main power supply for supplying electric discharge machining energy, and a voltage applied from the machining condition setting means 19 to the gap, τON. A pulse voltage is supplied between the electrode 1 and the work 3 in accordance with parameters for machining power supply such as (discharge time) and τOFF (pause time).

【0019】XY移動テーブル9は、X軸用サーボモー
タ11とY軸用サーボモータ13の駆動によりそれぞれ
X軸、Y軸方向に移動する。これにより、ワーク3のX
Y軸方向の移動または必要に応じて揺動が行われる。一
方、電極1は、図示しない主軸に把持されており、図示
しないコラムに取付けられたZ軸用サーボモータ15の
駆動によりZ軸方向に主軸とともに移動する。これによ
り、非放電加工中における電極1のZ軸方向の位置決め
と放電加工中における極間距離(放電ギャップ)の制御
とが行われる。X軸用サーボモータ11、Y軸用サーボ
モータ13およびZ軸用サーボモータ15は、図示しな
いエンコーダをそれぞれ有し、サーボ制御手段17に
X、Y、Z軸用モータの回転角度を示す信号、すなわち
電極1のX、Y、Z軸方向の位置信号をそれぞれフィー
ドバックする。
The XY moving table 9 moves in the X-axis and Y-axis directions by driving the X-axis servo motor 11 and the Y-axis servo motor 13, respectively. Thereby, X of work 3
Movement in the Y-axis direction or swinging is performed as necessary. On the other hand, the electrode 1 is held by a main shaft (not shown), and moves with the main shaft in the Z-axis direction by driving a Z-axis servomotor 15 attached to a column (not shown). Thus, the positioning of the electrode 1 in the Z-axis direction during non-discharge machining and the control of the distance between electrodes (discharge gap) during electric discharge machining are performed. The X-axis servo motor 11, the Y-axis servo motor 13, and the Z-axis servo motor 15 each have an encoder (not shown), and provide a signal indicating the rotation angle of the X, Y, Z-axis motor to the servo control means 17, That is, the position signals of the electrode 1 in the X, Y, and Z directions are fed back.

【0020】サーボ制御手段17は、NCプログラムか
らの制御データに基づきX軸用送りモータ11、Y軸用
送りモータ13およびZ軸用送りモータ15にサーボ出
力をそれぞれ送出し、放電加工機の図示しない電極ヘッ
ドおよび電極1を装着した主軸の移動を制御するための
ものである。サーボ制御手段17により制御されるZ軸
用送りモータ15は、電極ヘッド内を移動する主軸に装
着された電極1を加工進行方向へ移動させる。つまり、
ワーク3に対して送り込み、または退避させるサーボモ
ータであり、X軸用送りモータ11およびY軸用送りモ
ータ13は、主軸に装着された電極1を加工進行方向と
垂直な平面内で相互に直行する2軸方向に移動させるサ
ーボモータである。こうして、X軸用送りモータ11お
よびY軸用送りモータ13による移動の合成により電極
1をワーク3に対して相対的な二次元揺動運動をさせる
ことができ、さらに、X軸用送りモータ11、Y軸用送
りモータ13、Z軸用送りモータ15による移動の合成
により電極1をワーク3に対して相対的な三次元揺動運
動をさせることもできる。このように、本発明の放電加
工装置は、加工液中で電極1とワーク3との極間に粉体
を介在させ、電極1とワーク3との間で相対移動を行い
ながら必要に応じて揺動運動を与えてワーク3を放電加
工するものである。
The servo control means 17 sends servo outputs to the X-axis feed motor 11, the Y-axis feed motor 13 and the Z-axis feed motor 15 based on control data from the NC program, respectively. This is for controlling the movement of the main shaft on which the electrode head and the electrode 1 are mounted. The Z-axis feed motor 15 controlled by the servo control means 17 moves the electrode 1 mounted on the main shaft moving in the electrode head in the processing progress direction. That is,
The X-axis feed motor 11 and the Y-axis feed motor 13 move the electrode 1 mounted on the main shaft perpendicular to each other in a plane perpendicular to the processing direction. This is a servomotor that moves in two axial directions. In this manner, the electrode 1 can be caused to perform a two-dimensional oscillating movement relative to the workpiece 3 by combining movements of the X-axis feed motor 11 and the Y-axis feed motor 13. The electrode 1 can be caused to perform a three-dimensional swinging motion relative to the workpiece 3 by combining movements of the Y-axis feed motor 13 and the Z-axis feed motor 15. As described above, the electric discharge machining apparatus of the present invention allows the powder to be interposed between the electrode 1 and the workpiece 3 in the machining fluid and performs relative movement between the electrode 1 and the workpiece 3 as necessary. The workpiece 3 is subjected to electric discharge machining by giving a swinging motion.

【0021】加工条件設定手段19は、XY移動テーブ
ル9をX軸およびY軸方向に移動するためのXY軸制御
パラメータをテーブル送り制御手段21に送り、一方、
電極1をZ軸方向に移動するためのZ軸制御パラメータ
を電極送り制御手段23に送る。データ入力手段25
は、加工条件設定手段19に種々のデータを入力するた
めの手段であり、図示しないキーボード、CRT等から
構成される。
The processing condition setting means 19 sends XY-axis control parameters for moving the XY movement table 9 in the X-axis and Y-axis directions to the table feed control means 21.
A Z-axis control parameter for moving the electrode 1 in the Z-axis direction is sent to the electrode feed control means 23. Data input means 25
Is a means for inputting various data to the processing condition setting means 19, and comprises a keyboard, a CRT and the like (not shown).

【0022】加工条件設定手段19はデータ入力手段2
5による入力データおよび極間状態検出手段27から受
けた極間状態信号に基づき、ワーク3を加工するために
必要な加工電源用パラメータ、各サーボモータへの制御
パラメータを設定する。また、加工条件設定手段19
は、図示しない紙テープリーダやフロッピーディスクド
ライブ(FDD)により読取られた加工プログラムをブ
ロック毎に読取ることもできる。
The processing condition setting means 19 includes the data input means 2
Based on the input data obtained by the step 5 and the gap state signal received from the gap state detecting means 27, parameters for a machining power supply necessary for machining the work 3 and control parameters for each servomotor are set. Processing condition setting means 19
Can read a processing program read by a paper tape reader or a floppy disk drive (FDD) (not shown) for each block.

【0023】極間状態検出手段27は、電極1とワーク
3との極間の状態が、加工電源5から極間にサーチ電圧
を印加した後でまだ放電を開始していない状態かまたは
短絡状態か、あるいは極間にメイン電圧を印加した後の
有効放電状態または異常放電状態か等を検出する機能を
有する。加工条件設定手段19は、極間状態検出手段2
7から極間状態信号を受け、加工に適切な上記加工電源
用パラメータを加工電源5に送る。
The inter-electrode state detecting means 27 determines whether the inter-electrode state between the electrode 1 and the work 3 is a state in which the discharge has not yet started after the search voltage is applied from the machining power source 5 between the electrodes or a short-circuit state. Or an effective discharge state or an abnormal discharge state after the main voltage is applied between the poles. The processing condition setting means 19 includes the gap state detecting means 2
7 and sends the machining power parameter suitable for machining to the machining power supply 5.

【0024】極間状態検出手段27は、電極1とワーク
3との極間に印加されたパルス電圧を検出して極間の状
態を検出し、例えば極間の平均電圧を演算器29に送
る。演算器29は、極間状態検出手段27から受けた検
出量と加工条件設定手段19から受けた目標基準値との
差分である偏差量を示す信号を電極送り制御手段23に
送る。電極送り制御手段23は、加工条件設定手段19
から送られたZ軸制御パラメータと演算器29から送ら
れた誤差量とに基づいて電極1の前進・後退量をサーボ
制御手段17に出力する。
The gap state detecting means 27 detects the state of the gap by detecting the pulse voltage applied between the electrode 1 and the work 3, and sends, for example, the average voltage between the gaps to the calculator 29. . The calculator 29 sends a signal indicating a difference between the detection amount received from the gap state detection unit 27 and the target reference value received from the processing condition setting unit 19 to the electrode feed control unit 23. The electrode feed control means 23 includes a processing condition setting means 19
The forward / retreat amounts of the electrode 1 are output to the servo control means 17 based on the Z-axis control parameters sent from the controller and the error amounts sent from the calculator 29.

【0025】加工深さ補正値演算手段31は、所定のワ
ーク3の放電加工開始前にデータ入力手段25から入力
された今回加工を行う電極1の放電(加工)面積のデー
タを受け、かつ予め加工深さ補正値格納手段33に格納
された後述する図2に示すテーブルから、加工条件に応
じた加工深さの設定値、すなわちZ軸方向の送り量を算
出するためのデータ(底面残し量)を読取り、その加工
深さの設定値を算出し、加工条件設定手段19から演算
器29に送る目標基準値を上記算出した加工深さの設定
値に置き換える。ここで、目標基準値とは、加工深さ補
正値格納手段33に格納された図2に示すテーブルに基
づき、加工条件設定手段19により加工条件に応じて算
出される加工深さの設定値のことである。
The machining depth correction value calculating means 31 receives the data of the discharge (machining) area of the electrode 1 to be machined this time inputted from the data input means 25 before the start of the electric discharge machining of the predetermined work 3, and From the table shown in FIG. 2 described later stored in the machining depth correction value storage means 33, a set value of the machining depth according to the machining conditions, that is, data for calculating the feed amount in the Z-axis direction (the bottom surface remaining amount) ) Is read, the set value of the machining depth is calculated, and the target reference value sent from the machining condition setting means 19 to the calculator 29 is replaced with the calculated set value of the machining depth. Here, the target reference value is a set value of the processing depth calculated according to the processing condition by the processing condition setting means 19 based on the table shown in FIG. 2 stored in the processing depth correction value storage means 33. That is.

【0026】揺動半径補正値演算手段35は、所定のワ
ーク3の放電加工開始前にデータ入力手段25から入力
された今回加工を行う電極1の放電(加工)面積のデー
タを受け、かつ予め揺動半径補正値格納手段37に格納
された図2に示すテーブルから、加工条件に応じた揺動
半径の設定値、すなわちX軸およびY軸方向の揺動半径
を算出するためのデータ(側面残し量)を読取り、その
揺動半径の設定値を算出し、加工条件設定手段19から
テーブル送り制御手段21に送るXY軸制御パラメータ
を上記算出した揺動半径の設定値で補正する。ここで、
XY軸制御パラメータとは、揺動半径補正値格納手段3
7に格納された図2に示すテーブルに基づき、加工条件
設定手段19により加工条件に応じて算出された揺動半
径の設定値から求まるXY移動テーブル9をX軸および
Y軸方向に移動するための制御パラメータである。
The oscillating radius correction value calculating means 35 receives the data of the discharge (machining) area of the electrode 1 to be machined this time, which is input from the data input means 25 before the start of the electrical discharge machining of the predetermined work 3, and From the table shown in FIG. 2 stored in the oscillating radius correction value storage means 37, data for calculating the setting value of the oscillating radius according to the processing conditions, ie, the oscillating radii in the X-axis and Y-axis directions (side The remaining amount is read, the set value of the swing radius is calculated, and the XY axis control parameters sent from the processing condition setting means 19 to the table feed control means 21 are corrected with the calculated set value of the swing radius. here,
The XY axis control parameter is the swing radius correction value storage means 3
7 to move the XY movement table 9 in the X-axis and Y-axis directions, which is obtained from the setting value of the swing radius calculated according to the processing conditions by the processing condition setting means 19 based on the table shown in FIG. Are the control parameters.

【0027】以上説明した各手段の機能を遂行する放電
加工制御装置100は、例えば図示しない双方向バスに
より相互に接続されたCPU、ROM、RAM、B(バ
ッテリバックアップ)RAM、各種入力インタフェース
および各種出力インタフェースを備えたマイクロコンピ
ュータシステムとして構成される。入力インタフェース
には、キーボードおよびA/Dコンバータ等が接続され
る。A/Dコンバータには、例えば極間のアナログ電圧
がアッテネータを介してローレベルで入力され、デジタ
ルデータに変換される。出力インタフェースには、CR
T等の表示装置、プリンタおよびD/Aコンバータ等が
接続される。
The electric discharge machining control device 100 for performing the functions of the above-described means includes, for example, a CPU, a ROM, a RAM, a B (battery backup) RAM, various input interfaces and various It is configured as a microcomputer system having an output interface. A keyboard and an A / D converter are connected to the input interface. For example, an analog voltage between the poles is input to the A / D converter at a low level via an attenuator, and is converted into digital data. The output interface is CR
A display device such as T, a printer, a D / A converter, and the like are connected.

【0028】次に、前述した加工深さおよび揺動半径の
設定値の算出方法について以下に説明する。図2は加工
深さおよび揺動半径の設定値を算出するため予め加工条
件に応じて設定されるデータのテーブルを示す図であ
る。加工条件は、電極の材質、ワークの材質、電極とワ
ークとの極間への印加電圧、電極とワークとの相対移動
量およびワークの加工面粗さ等の内の少なくとも1つか
ら選択される。図2に示す例では、加工条件としてワー
クの加工面の面粗さが選択され、テーブルには番号1〜
4の加工条件に対するデータが格納されている。各加工
条件における面粗さは、加工条件番号1のときは60μ
mRmax 、加工条件番号2のときは40μmRmax 、加
工条件番号3のときは20μmRmax 、加工条件番号4
のときは10μmRmax である。図2に示すテーブル
は、4つの加工条件下で加工条件番号1〜4の順で合計
4回の仕上げ加工が行われることを示している。図2に
示すテーブルには、加工条件番号1〜4に対応した底面
残し量および側面残し量が格納されている。次に、これ
ら底面残し量および側面残し量について以下に説明す
る。
Next, a method of calculating the set values of the machining depth and the swing radius described above will be described below. FIG. 2 is a diagram showing a table of data set in advance according to the processing conditions for calculating the set values of the processing depth and the swing radius. The processing condition is selected from at least one of a material of the electrode, a material of the work, a voltage applied between the electrode and the work, a relative movement amount between the electrode and the work, a work surface roughness of the work, and the like. . In the example shown in FIG. 2, the surface roughness of the work surface of the work is selected as the processing condition,
4 for the processing conditions. The surface roughness under each processing condition is 60 μm for processing condition number 1.
mRmax, 40 μmRmax for processing condition number 2, 20 μmRmax for processing condition number 3, processing condition number 4
In this case, it is 10 μm Rmax. The table shown in FIG. 2 shows that a total of four finishing processes are performed in the order of the processing condition numbers 1 to 4 under the four processing conditions. The table illustrated in FIG. 2 stores the bottom surface remaining amount and the side surface remaining amount corresponding to the processing condition numbers 1 to 4. Next, the remaining amount of the bottom surface and the remaining amount of the side surface will be described below.

【0029】図3は仕上げ加工の一例を示す図である。
加工深さDは、ワークの上面301からこの仕上げ加工
終了後のワークの加工面302までの電極の送り軸(Z
軸)方向の距離である。加工深さDから底面残し量G1
を減算したものがこの仕上げ加工における加工深さの設
定値となる。例えば、加工深さが5mmで図2に示す加
工条件番号1の場合、放電面積および加工液中に混入し
た粉体の濃度を無視したとき、加工深さの設定値は、5
−0.28=4.72mmとなり、同加工条件番号2の
場合、加工深さの設定値は、5−0.19=4.81m
mとなる。
FIG. 3 is a diagram showing an example of the finishing process.
The machining depth D is determined by the feed axis (Z) of the electrode from the upper surface 301 of the work to the machined surface 302 of the work after finishing the work.
The distance in the (axis) direction. G1 from the machining depth D
Is the set value of the processing depth in this finishing processing. For example, when the machining depth is 5 mm and machining condition number 1 shown in FIG. 2 is used, the set value of the machining depth is 5 when the discharge area and the concentration of the powder mixed in the machining fluid are ignored.
−0.28 = 4.72 mm, and in the case of the same processing condition number 2, the set value of the processing depth is 5−0.19 = 4.81 m
m.

【0030】一方、揺動半径は、Z軸に垂直なXY軸方
向への移動量である。電極片側減寸量G2から側面残し
量を減算したものが揺動半径の設定値となる。例えば、
電極片側減寸量が0.25mmで図2に示す加工条件番
号1の場合、放電面積および加工液中に混入した粉体の
濃度を無視したとき、揺動半径の設定値は、0.25−
0.18=0.07mmとなり、同加工条件番号2の場
合、揺動半径の設定値は、0.25−0.13=0.1
2mmとなる。
On the other hand, the swing radius is the amount of movement in the XY axis directions perpendicular to the Z axis. The value obtained by subtracting the side surface remaining amount from the electrode one-side reduction amount G2 is the set value of the swing radius. For example,
In the case of the machining condition number 1 shown in FIG. 2 in which the electrode single-side reduction amount is 0.25 mm, when the discharge area and the concentration of powder mixed in the machining fluid are ignored, the set value of the swing radius is 0.25 mm. −
0.18 = 0.07 mm, and in the case of the same processing condition No. 2, the set value of the swing radius is 0.25-0.13 = 0.1
2 mm.

【0031】次に、放電面積を考慮し、加工液中に混入
した粉体の濃度を無視した場合の加工深さおよび揺動半
径の設定値の算出方法について以下に説明する。図4は
放電面積と加工の取り残し量との関係を示す図である。
図4において、横軸は放電面積、縦軸は加工の取り残し
量を示す。電極1とワーク3との間における放電面積を
無視して仕上げ加工を行うと、放電面積が大きくなる
程、放電ギャップが小さくなり、電極消耗が多くなるの
で、加工の取り残しが生じ、加工寸法が小さくなること
については先に説明した。図4は、放電面積が大きくな
る程加工の取り残し量が大きくなり、これらが比例関係
にあることを示す実験結果から得られた図である。この
実験結果から放電面積に応じた加工の取り残し量を増量
補正とすれば、その仕上げ加工における加工の取り残し
をほぼ無くすことができる。
Next, a method of calculating the set values of the machining depth and the oscillating radius when the concentration of the powder mixed in the machining fluid is ignored in consideration of the discharge area will be described below. FIG. 4 is a diagram showing the relationship between the discharge area and the unprocessed amount.
In FIG. 4, the horizontal axis indicates the discharge area, and the vertical axis indicates the remaining amount of machining. When finishing is performed ignoring the discharge area between the electrode 1 and the workpiece 3, the larger the discharge area, the smaller the discharge gap and the greater the consumption of the electrode, so that the machining is left behind. The reduction is described above. FIG. 4 is a diagram obtained from experimental results showing that the larger the discharge area is, the larger the unprocessed amount becomes, and these are in a proportional relationship. From this experimental result, if the remaining amount of machining corresponding to the discharge area is set as the increase correction, the remaining machining in the finishing machining can be almost eliminated.

【0032】それゆえ、放電面積を考慮し、加工液中に
混入した粉体の濃度を無視した場合の加工深さの設定値
は、例えば、放電面積が200mm2 、加工深さが5m
mで図2に示す加工条件番号1の場合、放電面積が20
0mm2 に対する加工の取り残し量は図4から0.07
8mmであるので、加工深さの設定値は、5−0.28
+0.078=4.798mmとなり、同加工条件番号
2の場合、加工深さの設定値は、5−0.19+0.0
78=4.888mmとなる。
Therefore, considering the discharge area and ignoring the concentration of the powder mixed in the working fluid, the set values of the processing depth are, for example, 200 mm 2 for the discharge area and 5 m for the processing depth.
In the case of machining condition number 1 shown in FIG.
The unprocessed amount for 0 mm 2 is 0.07 from FIG.
Since it is 8 mm, the set value of the processing depth is 5−0.28
+ 0.078 = 4.798 mm, and in the case of the same processing condition number 2, the set value of the processing depth is 5−0.19 + 0.0
78 = 4.888 mm.

【0033】一方、放電面積を考慮し、加工液中に混入
した粉体の濃度を無視した場合の揺動半径の設定値は、
例えば、電極片側減寸量が0.25mmで図2に示す加
工条件番号1の場合、揺動半径の設定値は、0.25−
0.18+0.078=0.148mmとなり、同加工
条件番号2の場合、揺動半径の設定値は、0.25−
0.13+0.078=0.198mmとなる。
On the other hand, in consideration of the discharge area and ignoring the concentration of the powder mixed in the working fluid, the set value of the swing radius is as follows:
For example, in the case of the machining condition number 1 shown in FIG. 2 where the electrode single-side reduction amount is 0.25 mm, the set value of the swing radius is 0.25-
0.18 + 0.078 = 0.148 mm, and in the case of the same processing condition No. 2, the set value of the swing radius is 0.25-
0.13 + 0.078 = 0.198 mm.

【0034】次に、加工液中に混入した粉体の濃度を考
慮し、放電面積を無視した場合の加工深さおよび揺動半
径の設定値の算出方法について以下に説明する。図5は
粉体濃度と放電ギャップ増加率との関係を示す図であ
る。図5において、横軸は加工液中に混入させた粉体の
濃度、縦軸は放電ギャップ増加率を示す。加工液に混入
させた粉体の濃度を無視して仕上げ加工を行うと、加工
液に混入させた粉体の濃度が濃い程、放電ギャップが大
きくなり、加工の取代は過多となり、加工寸法が大きく
なることについては先に説明した。図5は、粉体濃度が
濃い程放電ギャップ増加率は増大し、これらが比例関係
にあることを示す実験結果から得られた図である。この
実験結果から粉体の濃度に応じて加工取代量が過多とな
ることが判る。そこで、粉体の濃度に応じて底面残し量
および側面残し量を減量補正すれば、その仕上げ加工に
おける加工の過多をほぼ無くすことができる。図5から
粉体濃度1g/l(グラム/リットル)のとき放電ギャ
ップ増加率は10%、粉体濃度2g/l(グラム/リッ
トル)のとき放電ギャップ増加率は20%、…、である
ので、底面残し量および側面残し量の補正係数を図6に
示すテーブルのように、それぞれ0.9、0.8、…の
ように設定する。
Next, a method of calculating the set values of the machining depth and the oscillating radius when the discharge area is neglected in consideration of the concentration of the powder mixed in the machining fluid will be described below. FIG. 5 is a diagram showing the relationship between the powder concentration and the discharge gap increase rate. In FIG. 5, the horizontal axis indicates the concentration of the powder mixed in the working fluid, and the vertical axis indicates the discharge gap increase rate. If finishing is performed ignoring the concentration of powder mixed in the working fluid, the higher the concentration of powder mixed in the working fluid, the larger the discharge gap will be, the larger the machining allowance will be, and the larger the machining dimensions will be. The increase is described above. FIG. 5 is a diagram obtained from experimental results showing that the higher the powder concentration, the higher the discharge gap increase rate, and that these are in a proportional relationship. From this experimental result, it can be seen that the machining allowance becomes excessive depending on the powder concentration. Therefore, if the amount of the bottom surface and the amount of the side surface remaining are reduced and corrected in accordance with the concentration of the powder, it is possible to substantially eliminate excessive processing in the finishing processing. From FIG. 5, when the powder concentration is 1 g / l (gram / liter), the discharge gap increase rate is 10%, and when the powder concentration is 2 g / l (gram / liter), the discharge gap increase rate is 20%. , And the correction coefficients of the bottom surface remaining amount and the side surface remaining amount are set as 0.9, 0.8,..., Respectively, as shown in the table of FIG.

【0035】それゆえ、加工液中に混入した粉体の濃度
を考慮し、放電面積を無視した場合の加工深さの設定値
は、例えば、粉体の濃度が1g/l、加工深さが5mm
で図2に示す加工条件番号1の場合、粉体の濃度が1g
/lに対する補正係数が0.9であるので、加工深さの
設定値は、5−0.28×0.9=4.748mmとな
り、粉体の濃度が1g/l、加工深さが5mmで図2に
示す加工条件番号2の場合、加工深さの設定値は、5−
0.19×0.9=4.829mmとなり、粉体の濃度
が2g/l、加工深さが5mmで図2に示す加工条件番
号1の場合、粉体の濃度が2g/lに対する補正係数が
0.8であるので、加工深さの設定値は、5−0.28
×0.8=4.776mmとなり、粉体の濃度が2g/
l、加工深さが5mmで図2に示す加工条件番号2の場
合、加工深さの設定値は、5−0.19×0.8=4.
848mmとなる。
Therefore, in consideration of the concentration of the powder mixed into the working fluid, the set value of the working depth when the discharge area is ignored and the concentration of the powder is 1 g / l and the working depth is, for example, 5mm
In the case of processing condition number 1 shown in FIG.
Since the correction coefficient for / l is 0.9, the set value of the processing depth is 5-0.28 x 0.9 = 4.748 mm, the powder concentration is 1 g / l, and the processing depth is 5 mm. In the case of machining condition number 2 shown in FIG.
When 0.19 × 0.9 = 4.829 mm, the powder concentration is 2 g / l, the processing depth is 5 mm, and the processing condition number 1 shown in FIG. 2 is the correction coefficient for the powder concentration of 2 g / l. Is 0.8, the set value of the machining depth is 5−0.28
× 0.8 = 4.776 mm, and the powder concentration is 2 g /
1, when the processing depth is 5 mm and the processing condition number 2 shown in FIG. 2, the set value of the processing depth is 5−0.19 × 0.8 = 4.
848 mm.

【0036】一方、放電面積を考慮し、加工液中に混入
した粉体の濃度を無視した場合の揺動半径の設定値は、
例えば、粉体の濃度が1g/l、電極片側減寸量が0.
25mmで図2に示す加工条件番号1の場合、揺動半径
の設定値は、0.25−0.18×0.9=0.148
mmとなり、粉体の濃度が1g/l、電極片側減寸量が
0.25mmで図2に示す加工条件番号2の場合、揺動
半径の設定値は、0.25−0.13×0.9=0.1
98mmとなり、粉体の濃度が2g/l、電極片側減寸
量が0.25mmで図2に示す加工条件番号1の場合、
揺動半径の設定値は、0.25−0.18×0.8=
0.106mmとなり、粉体の濃度が2g/l、加工深
さが5mmで図2に示す加工条件番号2の場合、揺動半
径の設定値は、0.25−0.13×0.8=0.14
6mmとなる。
On the other hand, when the discharge area is taken into account and the concentration of the powder mixed in the working fluid is ignored, the set value of the swing radius is as follows:
For example, the concentration of the powder is 1 g / l, and the amount of reduction on one side of the electrode is 0.
In the case of 25 mm and the machining condition number 1 shown in FIG. 2, the set value of the swing radius is 0.25-0.18 × 0.9 = 0.148.
mm, the powder concentration is 1 g / l, the reduction amount on one side of the electrode is 0.25 mm, and in the case of the processing condition number 2 shown in FIG. 2, the set value of the swing radius is 0.25 to 0.13 × 0. .9 = 0.1
In the case of the processing condition number 1 shown in FIG. 2 where the powder concentration is 2 g / l,
The set value of the swing radius is 0.25-0.18 × 0.8 =
In the case of the machining condition number 2 shown in FIG. 2 with the powder concentration of 2 g / l and the machining depth of 5 mm, the set value of the swing radius is 0.25 to 0.13 × 0.8. = 0.14
6 mm.

【0037】次に、放電面積および加工液中に混入した
粉体の濃度を考慮した場合の加工深さおよび揺動半径の
設定値の算出方法について以下に説明する。放電面積お
よび加工液中に混入した粉体の濃度を考慮した場合の加
工深さの設定値は、例えば、放電面積が20000mm
2 (100mm×200mm)、粉体の濃度が1g/
l、加工深さが5mmで図2に示す加工条件番号1の場
合、放電面積が20000mm2 に対する加工の取り残
し量は図4から0.078mmであり、かつ粉体の濃度
が1g/lに対する補正係数が0.9であるので、加工
深さの設定値は、5−0.28×0.9+0.078=
4.826mmとなり、粉体の濃度が1g/l、加工深
さが5mmで図2に示す加工条件番号2の場合、加工深
さの設定値は、5−0.19×0.9+0.078=
4.907mmとなり、放電面積が20000mm2
粉体の濃度が2g/l、加工深さが5mmで図2に示す
加工条件番号1の場合、放電面積が20000mm2
対する加工の取り残し量は図4から0.078mmであ
り、粉体の濃度が2g/lに対する補正係数は0.8で
あるので、加工深さの設定値は、5−0.28×0.8
+0.078=4.854mmとなり、粉体の濃度が2
g/l、加工深さが5mmで図2に示す加工条件番号2
の場合、加工深さの設定値は、5−0.19×0.8+
0.078=4.926mmとなる。
Next, a method of calculating the set values of the machining depth and the swing radius in consideration of the discharge area and the concentration of the powder mixed in the machining fluid will be described below. The set value of the machining depth in consideration of the discharge area and the concentration of the powder mixed in the working fluid is, for example, a discharge area of 20,000 mm
2 (100 mm x 200 mm), powder concentration 1 g /
1, when the machining depth is 5 mm and machining condition No. 1 shown in FIG. 2, the unprocessed amount for the discharge area of 20,000 mm 2 is 0.078 mm from FIG. 4 and the correction is for the powder concentration of 1 g / l. Since the coefficient is 0.9, the set value of the machining depth is 5−0.28 × 0.9 + 0.078 =
2.826 mm, the powder concentration is 1 g / l, the processing depth is 5 mm, and in the case of the processing condition number 2 shown in FIG. 2, the setting value of the processing depth is 5−0.19 × 0.9 + 0.078. =
4.907 mm, the discharge area is 20,000 mm 2 ,
In the case where the powder concentration is 2 g / l, the processing depth is 5 mm, and the processing condition number 1 shown in FIG. 2 is, the unprocessed amount for the discharge area of 20,000 mm 2 is 0.078 mm from FIG. Since the correction coefficient for 2 g / l is 0.8, the set value of the machining depth is 5−0.28 × 0.8
+ 0.078 = 4.854 mm, and the powder concentration is 2
g / l, machining depth 5 mm, machining condition number 2 shown in FIG.
In the case of, the set value of the machining depth is 5-0.19 x 0.8 +
0.078 = 4.926 mm.

【0038】一方、放電面積および加工液中に混入した
粉体の濃度を考慮した場合の揺動半径の設定値は、例え
ば、放電面積が20000mm2 、粉体の濃度が1g/
l、電極片側減寸量が0.25mmで図2に示す加工条
件番号1の場合、揺動半径の設定値は、0.25−0.
18×0.9+0.078=0.226mmとなり、放
電面積が20000mm2 、粉体の濃度が1g/l、電
極片側減寸量が0.25mmで図2に示す加工条件番号
2の場合、揺動半径の設定値は、0.25−0.13×
0.9+0.078=0.276mmとなり、放電面積
が20000mm2 、粉体の濃度が2g/l、電極片側
減寸量が0.25mmで図2に示す加工条件番号1の場
合、揺動半径の設定値は、0.25−0.18×0.8
+0.078=0.184mmとなり、放電面積が20
000mm2 、粉体の濃度が2g/l、加工深さが5m
mで図2に示す加工条件番号2の場合、揺動半径の設定
値は、0.25−0.13×0.8+0.078=0.
224mmとなる。
On the other hand, considering the discharge area and the concentration of the powder mixed in the machining fluid, the set value of the oscillating radius is, for example, a discharge area of 20,000 mm 2 and a powder concentration of 1 g / g.
In the case of the machining condition No. 1 shown in FIG. 2 where the electrode single-side reduction amount is 0.25 mm, the set value of the swing radius is 0.25-0.
18 × 0.9 + 0.078 = 0.226 mm, the discharge area was 20000 mm 2 , the powder concentration was 1 g / l, the reduction amount of one electrode was 0.25 mm, and the machining condition No. 2 shown in FIG. The set value of the moving radius is 0.25-0.13 ×
0.9 + 0.078 = 0.276 mm, the discharge area is 20000 mm 2 , the concentration of the powder is 2 g / l, the reduction amount on one side of the electrode is 0.25 mm, and in the case of the machining condition number 1 shown in FIG. Set value is 0.25-0.18 × 0.8
+ 0.078 = 0.184 mm, and the discharge area is 20
000mm 2 , powder concentration 2g / l, processing depth 5m
In the case of machining condition number 2 shown in FIG. 2 with m, the set value of the swing radius is 0.25-0.13 × 0.8 + 0.078 = 0.
224 mm.

【0039】以上、油等の通常の加工液中に導電性の粉
体を混入した粉体混入加工液中における放電加工を行う
場合に、放電面積または加工液中に混入した粉体の濃度
を考慮した加工深さまたは揺動半径の設定方法および該
方法を実施する装置について説明した。これは、粉体を
混入しない油等の通常の加工液中における放電加工にも
適用できることは言うまでもない。
As described above, when performing electric discharge machining in a powder-mixed machining fluid in which conductive powder is mixed in a normal machining fluid such as oil, the discharge area or the concentration of the powder mixed in the machining fluid is determined. The method of setting the processing depth or the swing radius in consideration of the above and the apparatus for performing the method have been described. It goes without saying that this can be applied to electric discharge machining in a normal machining fluid such as oil in which powder is not mixed.

【0040】[0040]

【発明の効果】以上説明したように、本発明の放電加工
機の加工条件設定方法および装置によれば、放電面積お
よび加工液に混入させた粉体の濃度の少なくとも一方を
考慮し、指定された仕上げ加工に対して再加工を要する
ことなく1度でその加工を終了させ、加工精度および加
工効率を向上させることができる。
As described above, according to the method and apparatus for setting machining conditions of an electric discharge machine according to the present invention, a designated area is specified by considering at least one of an electric discharge area and a concentration of powder mixed in a machining fluid. It is possible to complete the processing at once without requiring reprocessing for the finished processing, thereby improving processing accuracy and processing efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加工条件設定装置を有した放電加
工機の一実施形態を示す概略ブロック構成図である。
FIG. 1 is a schematic block diagram showing an embodiment of an electric discharge machine having a machining condition setting device according to the present invention.

【図2】加工深さおよび揺動半径の設定値を算出するた
め予め加工条件に応じて設定されるデータのテーブルを
示す図である。
FIG. 2 is a diagram showing a table of data set in advance according to machining conditions for calculating set values of a machining depth and a swing radius.

【図3】仕上げ加工の一例を示す図である。FIG. 3 is a diagram illustrating an example of finishing processing.

【図4】放電面積と加工の取り残し量との関係を示す図
である。
FIG. 4 is a diagram showing a relationship between a discharge area and an unprocessed amount.

【図5】粉体濃度と放電ギャップ増加率との関係を示す
図である。
FIG. 5 is a diagram showing a relationship between a powder concentration and a discharge gap increase rate.

【図6】粉体濃度に対する底面残し量および側面残し量
の補正係数のデータのテーブルを示す図である。
FIG. 6 is a view showing a table of data of correction coefficients for the amount of the bottom surface and the amount of the side surface left with respect to the powder concentration;

【図7】粉体濃度が濃いときの従来技術によるワーク加
工不良例を示す図である。
FIG. 7 is a diagram showing an example of a defective workpiece processing according to the related art when the powder concentration is high.

【符号の説明】[Explanation of symbols]

1…電極 3…ワーク 5…加工電源 7…加工槽 19…加工条件設定手段 25…データ入力手段 31…加工深さ補正値演算手段 33…加工深さ補正値格納手段 35…揺動半径補正値演算手段 37…揺動半径補正値格納手段 DESCRIPTION OF SYMBOLS 1 ... Electrode 3 ... Work 5 ... Processing power supply 7 ... Processing tank 19 ... Processing condition setting means 25 ... Data input means 31 ... Processing depth correction value calculation means 33 ... Processing depth correction value storage means 35 ... Oscillating radius correction value Calculation means 37: swing radius correction value storage means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 加工槽内に充満した加工液中で、電極と
ワークとの極間にパルス電圧を印加するとともに、前記
電極とワークとを相対移動させながら前記ワークを加工
する放電加工機の加工条件設定方法において、 前記電極の放電面積に応じて前記電極とワークとの相対
移動量を設定することを特徴とした放電加工機の加工条
件設定方法。
1. An electric discharge machine for applying a pulse voltage between an electrode and a work in a working fluid filled in a working tank and processing the work while relatively moving the electrode and the work. In the machining condition setting method, a relative movement amount between the electrode and the workpiece is set according to a discharge area of the electrode.
【請求項2】 加工槽内に充満した加工液中に粉体を混
入し該加工液中で電極とワークとの極間にパルス電圧を
印加するとともに、前記電極とワークとを相対移動させ
ながら前記ワークを加工する放電加工機の加工条件設定
方法において、 前記加工液中に混入した粉体の濃度に応じて、前記電極
とワークとの相対移動量を設定することを特徴とした放
電加工機の加工条件設定方法。
2. A method for mixing a powder into a working fluid filled in a working tank, applying a pulse voltage between an electrode and a work in the working fluid, and moving the electrode and the work relative to each other. In a method for setting machining conditions of an electric discharge machine for processing the work, the electric discharge machine characterized by setting a relative movement amount between the electrode and the work according to a concentration of powder mixed in the working fluid. How to set processing conditions.
【請求項3】 加工槽内に充満した加工液中で、電極と
ワークとの極間にパルス電圧を印加するとともに、前記
電極とワークとを相対移動させながら前記ワークを加工
する放電加工機の加工条件設定装置において、 前記電極の放電面積に応じて前記電極とワークとの相対
移動量を設定する相対移動量設定手段を具備することを
特徴とした放電加工機の加工条件設定装置。
3. An electric discharge machine for machining a work while applying a pulse voltage between an electrode and a work in a working fluid filled in a work tank and relatively moving the electrode and the work. A machining condition setting device for an electric discharge machine, comprising: a relative movement amount setting means for setting a relative movement amount between the electrode and the workpiece according to a discharge area of the electrode.
【請求項4】 加工槽内に充満した加工液中に粉体を混
入し該加工液中で、電極とワークとの極間にパルス電圧
を印加するとともに、前記電極とワークとを相対移動さ
せながら前記ワークを加工する放電加工機の加工条件設
定装置において、 前記加工液中に混入した粉体の濃度に応じて前記電極と
ワークとの相対移動量を設定する相対移動量設定手段を
具備することを特徴とした放電加工機の加工条件設定装
置。
4. A method in which a powder is mixed into a working fluid filled in a working tank, a pulse voltage is applied between an electrode and a work in the working fluid, and the electrode and the work are relatively moved. A machining condition setting device of the electric discharge machine for machining the work, further comprising a relative movement amount setting means for setting a relative movement amount between the electrode and the work according to a concentration of powder mixed in the working fluid. A machining condition setting device for an electric discharge machine characterized by the above.
【請求項5】 前記相対移動量が、前記ワークの加工深
さを設定するために前記電極を前記ワークの底面に向け
て送る送り量である請求項3または4に記載の放電加工
機の加工条件設定装置。
5. The machining of an electric discharge machine according to claim 3, wherein the relative movement amount is a feed amount for sending the electrode toward a bottom surface of the work to set a machining depth of the work. Condition setting device.
【請求項6】 前記相対移動量が、前記ワークの電極片
側減寸量を設定するために前記電極を前記ワークの側面
に向けて揺動する揺動半径である請求項3または4に記
載の放電加工機の加工条件設定装置。
6. The swing radius according to claim 3, wherein the relative movement amount is a swing radius at which the electrode swings toward a side surface of the work in order to set an electrode one-side reduction amount of the work. Machining condition setting device for electric discharge machine.
JP19309699A 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine Expired - Lifetime JP4017292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19309699A JP4017292B2 (en) 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19309699A JP4017292B2 (en) 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine

Publications (2)

Publication Number Publication Date
JP2001018122A true JP2001018122A (en) 2001-01-23
JP4017292B2 JP4017292B2 (en) 2007-12-05

Family

ID=16302179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19309699A Expired - Lifetime JP4017292B2 (en) 1999-07-07 1999-07-07 Machining condition setting method and apparatus for electric discharge machine

Country Status (1)

Country Link
JP (1) JP4017292B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947039B (en) * 2010-06-22 2015-07-29 三菱电机株式会社 Electric discharge Working control device

Also Published As

Publication number Publication date
JP4017292B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
US8236162B2 (en) Electroerosion machining system and method for electrode wear compensation
KR910008244B1 (en) Wire cut electrical discharge machine
JP3575087B2 (en) Electric discharge machine
US4837415A (en) Wire electrode type electric discharge machining apparatus
Kaneko et al. Three-dimensional numerically controlled contouring by electric discharge machining with compensation for the deformation of cylindrical tool electrodes
JP2001018122A (en) Method and device for setting working condition for electric discharge machine
JPH1043948A (en) Method of finish working by electrochemical machining
JP4678711B2 (en) Die-sinker EDM
JPH10296538A (en) Electrical discharge machining device
JP2003094290A (en) Machine tool and thermal displacement correction method thereof
JP3902713B2 (en) Electric discharge machine and jump control method for electric discharge machine
JP3882810B2 (en) EDM machine
JP2667183B2 (en) Machining error correction control method in Die-sinker EDM
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP3103675B2 (en) Electric discharge machining method and apparatus
JP2002254247A (en) High efficient hole forming method by diesinking micro electrical discharge machining
JP2559789B2 (en) Method of detecting machining error in die-sinking electric discharge machining
JP3805139B2 (en) Electric discharge machining method and apparatus
JP2584969B2 (en) Processing fluid supply device for electric machining
JP2003094250A (en) Electric discharge machining apparatus
JP2650771B2 (en) Electric discharge machining method and equipment
JPH0138615B2 (en)
JP3851332B2 (en) EDM machine
JP3980625B2 (en) EDM machine
JP2001009639A (en) Diesinking electric discharge machining method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4017292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

EXPY Cancellation because of completion of term