JP2001010861A - Lanthanum chromite ceramics containing magnesium added thereto and their production - Google Patents

Lanthanum chromite ceramics containing magnesium added thereto and their production

Info

Publication number
JP2001010861A
JP2001010861A JP11221018A JP22101899A JP2001010861A JP 2001010861 A JP2001010861 A JP 2001010861A JP 11221018 A JP11221018 A JP 11221018A JP 22101899 A JP22101899 A JP 22101899A JP 2001010861 A JP2001010861 A JP 2001010861A
Authority
JP
Japan
Prior art keywords
lanthanum chromite
ceramics
powder
temperature
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11221018A
Other languages
Japanese (ja)
Inventor
Hajime Mizutani
肇 水谷
Akio Kawabata
章夫 川端
Seiji Sakurai
星児 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOKO CO Ltd
Original Assignee
TAIYO KOKO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOKO CO Ltd filed Critical TAIYO KOKO CO Ltd
Priority to JP11221018A priority Critical patent/JP2001010861A/en
Publication of JP2001010861A publication Critical patent/JP2001010861A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce dense lanthanum chromite ceramics usable as a part of solid electrolyte type fuel cells, ceramics heating elements, etc., and to provide a method for producing the dense lanthanum chromite ceramics. SOLUTION: The lanthanum chromite ceramics are represented by the formula LaCr1-XMgXO3. Furthermore, the lanthanum chromite ceramics contain Mg in an amount of X within the range 0.05-0.40 and have >=94% relative density and >=400 S.m-1 electroconductivity σ at 1,000 deg.C in the atmosphere in the lanthanum chromite ceramics. The lanthanum chromite ceramics are produced by heat-treating a raw material powder prepared by a wet synthetic method at <=1,000 deg.C temperature, preferably 800-1,000 deg.C, providing a powder having 0.01-0.3 μm average particle diameter in a single phase of perovskite and then sintering the resultant powder at <=1,800 deg.C temperature, preferably 1,500-1,800 deg.C in the atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池(SOFC)セルのセパレーター、インターコネクター等
の集電材料、セラミックス発熱体等として良好な特性を
有するランタンクロマイトセラミックスに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lanthanum chromite ceramic having good characteristics as a current collector material for a solid oxide fuel cell (SOFC) cell, such as a separator and an interconnector, and as a ceramic heating element.

【0002】[0002]

【従来の技術】ランタンクロマイト(LaCrO3)はペロブス
カイト型の複合酸化物であり、高い電気伝導性を有し、
かつ高温において酸化性および還元性雰囲気下で化学
的、物理的に安定であり、MHD 発電用電極、発熱体、SO
FCのセパレーター(平板型)、あるいはインターコネク
ター(円筒型)用の材料として注目されている。
2. Description of the Related Art Lanthanum chromite (LaCrO 3 ) is a perovskite-type composite oxide having high electrical conductivity.
It is chemically and physically stable under oxidizing and reducing atmospheres at high temperatures, and is used for MHD power generation electrodes, heating elements, SO
It is receiving attention as a material for FC separators (flat type) or interconnectors (cylindrical type).

【0003】しかしながら、一般にランタンクロマイト
系酸化物の焼結に関しては、陽イオンの拡散速度が遅い
ことに加えて、焼結過程において材料中からCrが高温で
蒸発し、粒子の接触部(ネック部)にCr2O3 として凝縮
堆積して(表面拡散または蒸発凝縮機構)焼結を阻害す
る。このため、大気中では 2000 ℃以上の高温下で焼結
させるか、あるいは還元性雰囲気下でこのCr成分の蒸発
凝縮を抑制しながら焼結させる必要がある。Crの蒸発凝
縮を抑制し得る雰囲気下で焼結する場合においても、18
00℃以上の高温での焼結が必要である。
However, in general, regarding the sintering of lanthanum chromite-based oxides, in addition to the slow diffusion rate of cations, Cr evaporates from the material at a high temperature during the sintering process, and the contact portion of the particles (neck portion). ) Is condensed and deposited as Cr 2 O 3 (surface diffusion or evaporative condensation mechanism) to inhibit sintering. Therefore, it is necessary to perform sintering in the atmosphere at a high temperature of 2000 ° C. or higher, or to perform sintering in a reducing atmosphere while suppressing the evaporation and condensation of the Cr component. Even when sintering in an atmosphere that can suppress the evaporation and condensation of Cr, 18
Sintering at a high temperature of 00 ° C. or more is required.

【0004】この様な高温でのセラミックスの製造は、
経済的観点からSOFCセルの量産やセラミックス発熱素子
への応用を著しく困難にさせるとともに、製品コストを
高める大きな要因となっている。また、1800℃以下の温
度で焼結させて得られたランタンクロマイトセラミック
スは、低密度であり開気孔が残留するためガスを十分に
遮断(ガスタイト)できないという問題点があり、SOFC
セルのセパレーターやインターコネクターとして用いよ
うとした場合、燃料ガスと空気を完全に分離することが
不可能であり、この目的に用いることが困難である。
[0004] The production of ceramics at such high temperatures involves:
From an economic point of view, it makes the mass production of SOFC cells and the application to ceramic heating elements extremely difficult, and is a major factor in increasing the product cost. In addition, lanthanum chromite ceramics obtained by sintering at a temperature of 1800 ° C or less have a problem that the gas cannot be shut off sufficiently (gas tight) due to low density and residual open pores.
When it is intended to use as a cell separator or interconnector, it is impossible to completely separate fuel gas and air, and it is difficult to use for this purpose.

【0005】そこでCrの蒸発を抑制し、緻密化するため
に低酸素分圧下の焼結が提案されている(L. Groupp and
H. U. Anderson, "Densification of La1-xSrxCrO3,"
J .Am. Ceram. Soc., Vol. 59, p.449 (1976))。しか
しながら、低酸素分圧下の焼結は実用的ではなく大気中
で焼結する事が望ましい。また、Ca成分の添加 (特開平
4-50162 号,特開平4-119924号)、Zn、Cu成分の添加
(S. Hayashi, K. Fukuya and H. Saito, "Sintering of
Lanthanum Chromite Doped with Zinc or Copper," J.
Mater. Sci. Lett., Vol. 7, p.457 (1988) )、Li成
分の添加(S. Hayashi, K. Fukuya and H. Saito, "Li-D
oped LaCrO3 Ceramics," J. Ceram. Soc.Jpn., Vol. 10
0, p.1078 (1992)) などによる緻密化の試みがなされて
いる。しかしながら、これらの添加成分は導電性の劣化
など特性低下が問題であり、さらに燃料電池の電極用途
では高温作動温度下(約1000℃)において電極を構成す
る他の部品構成物とこれらの材料間で反応が起り、長期
的には特性が劣化する原因となり問題となっている。
Therefore, sintering under a low oxygen partial pressure has been proposed in order to suppress the evaporation of Cr and to densify it (L. Groupp and
HU Anderson, "Densification of La 1-x Sr x CrO 3 ,"
J. Am. Ceram. Soc., Vol. 59, p. 449 (1976)). However, sintering under a low oxygen partial pressure is not practical, and sintering in air is desirable. Further, addition of a Ca component (Japanese Unexamined Patent Application Publication
4-50162, JP-A-4-119924), addition of Zn and Cu components
(S. Hayashi, K. Fukuya and H. Saito, "Sintering of
Lanthanum Chromite Doped with Zinc or Copper, "J.
Mater. Sci. Lett., Vol. 7, p.457 (1988)), addition of Li component (S. Hayashi, K. Fukuya and H. Saito, "Li-D
oped LaCrO3 Ceramics, "J. Ceram. Soc. Jpn., Vol. 10
0, p.1078 (1992)). However, these added components are problematic in that their properties deteriorate, such as deterioration of conductivity. In addition, in the case of fuel cell electrodes, at the high operating temperature (approximately 1000 ° C), the components between these components and other materials constituting the electrodes may not be used. This causes a problem in that characteristics are deteriorated in the long term.

【0006】また、Laサイト過剰組成(Cr サイト不足)
とすることにより緻密化を達成する方法も提案されてい
る(M. Mori, N. Sakai, T. Kawada, H. Yokokawa and
M. Dokiya, "Low-Temperature Air-Sinterable Lanthan
um Calcium Chromite with Chromium Deficient for SO
FC Separator," DENKI KAGAKU, Vol. 59, p.314 (199
0))。しかしながら、このLa過剰組成ではセラミック
ス中に過剰のLa2O3 が存在し、このLa2O3 が空気中の水
分と反応して水酸化物を形成し、崩壊あるいは特性劣化
の原因となるという問題点がある。
In addition, La site excess composition (Cr site shortage)
A method has been proposed to achieve densification by using (M. Mori, N. Sakai, T. Kawada, H. Yokokawa and
M. Dokiya, "Low-Temperature Air-Sinterable Lanthan
um Calcium Chromite with Chromium Deficient for SO
FC Separator, "DENKI KAGAKU, Vol. 59, p.314 (199
0)). However, with this La excess composition, excess La 2 O 3 is present in the ceramics, and this La 2 O 3 reacts with the moisture in the air to form a hydroxide, which causes collapse or property deterioration There is a problem.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記事情に
鑑み、燒結性と耐久性を同時に向上した緻密なランタン
クロマイトセラミックス及びその製法を提供することを
課題としている。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a dense lanthanum chromite ceramic having improved sinterability and durability at the same time, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者等は、LaCrO3
各種の酸化物を添加したセラミックスを作製し、その特
性を評価して、焼結性と耐侯性の向上を同時に達成させ
るために鋭意研究した結果、Cr成分の一部をMgで置換す
ることにより、大気中で 1800 ℃以下の温度で相対密度
93 %以上の緻密なセラミックスが得られることを見い
出し、本発明を完成させた。すなわち本発明は、その組
成が化学式LaCr1-xMgxO3で表わされるランタンクロマイ
トセラミックスにおいて、X が 0.05 から 0.40 の範囲
のMgを含み、相対密度が 93 %以上、好ましくは94%以
上で、かつその電気伝導度σが、大気中 1000 ℃で 400
S・m-1 以上であることを特徴とするものである。
Means for Solving the Problems The present inventors have prepared ceramics in which various oxides have been added to LaCrO 3 , evaluated the characteristics thereof, and simultaneously improved the sinterability and weather resistance. As a result of intensive research, it was found that by substituting part of the Cr component with Mg, the relative density was reduced to 1800 ° C or less in air.
The present inventors have found that dense ceramics of 93% or more can be obtained, and have completed the present invention. That is, the present invention relates to a lanthanum chromite ceramic whose composition is represented by the chemical formula LaCr 1-x MgxO 3 , wherein X contains Mg in the range of 0.05 to 0.40, the relative density is 93% or more, preferably 94% or more, and Its electrical conductivity σ is 400 at 1000 ° C in the atmosphere.
S · m −1 or more.

【0009】また、本発明にかかるセラミックスの製造
方法は、湿式合成法により調製した原料粉体を 1000 ℃
以下の温度、望ましくは800 ℃〜1000℃の温度範囲で仮
焼し、ペロブスカイト単一相でかつその平均粒径が 0.0
1 〜0.3 μm の粉体とし、この粉体を大気中1800℃以下
の温度、望ましくは1600℃±30℃で焼結することを特徴
とするものである。
Further, the method for producing ceramics according to the present invention comprises the steps of:
Calcination at the following temperature, desirably in the temperature range of 800 ° C. to 1000 ° C., a perovskite single phase having an average particle size of 0.0
It is characterized in that it is made into a powder of 1 to 0.3 μm and this powder is sintered in the atmosphere at a temperature of 1800 ° C. or less, preferably 1600 ° C. ± 30 ° C.

【0010】[0010]

【発明の実施の形態】以下、本発明について具体例を挙
げつつさらに詳細に説明する。本発明において、Crの一
部を置換する金属元素として各種の金属元素の中からMg
を選定した理由は、表1 (実験番号1 〜6)に示すよう
に、Mgを添加しないもの(実験番号1 )の相対密度が9
1.2%であるのに対し、実験番号2 〜6 に示すように、
0.05 〜0.40のMgを添加することによって焼結性(相対
密度)が向上し、開気孔の存在しない緻密なセラミック
ス(相対密度 93 %以上)が得られることを膨大な実験
結果から見い出したからである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to specific examples. In the present invention, as a metal element that replaces a part of Cr, Mg is selected from various metal elements.
As shown in Table 1 (Experiment Nos. 1 to 6), the relative density of the sample without Mg added (Experiment No. 1) was 9
While 1.2%, as shown in Experiment Nos. 2 to 6,
It was found from enormous experimental results that the sinterability (relative density) was improved by adding Mg of 0.05 to 0.40, and dense ceramics (relative density of 93% or more) without open pores could be obtained. .

【0011】ランタンクロマイトのCrの一部をMgに置換
した本発明のランタンクロマイトセラミックスでは、Mg
の添加量に限界があり、X=0.45のMgを添加して焼結させ
たセラミックスではX 線回折の結果La2CrO3 とMgO の析
出が認められ、ペロブスカイト単一相のセラミックスは
得られなかった。この異相が析出したセラミックスで
は、水分などに対する耐侯性に難点が生じた。よって本
発明ではMgの添加量を 0.05 〜0.40に限定するものであ
る。
In the lanthanum chromite ceramics of the present invention in which a part of Cr of lanthanum chromite is replaced by Mg, Mg
There is a limit to the amount of addition, and in ceramics sintered by adding Mg with X = 0.45, precipitation of La 2 CrO 3 and MgO is observed as a result of X-ray diffraction, and a single-phase perovskite ceramic is not obtained. Was. In the ceramics in which the foreign phase is precipitated, there is a problem in weather resistance against moisture and the like. Therefore, in the present invention, the added amount of Mg is limited to 0.05 to 0.40.

【0012】本発明にかかるマグネシウムを添加したラ
ンタンクロマイトセラミックス製作用の粉体の製造法に
ついては、固相法、湿式法、気相法等が考えられる。上
述の実験結果は最も一般的な粉体合成法である固相法に
よって製造した場合について述べたが、さらに高密度で
高い電気伝導率を示すランタンクロマイトセラミックス
を得るには、湿式合成法によって調製した粉体を 1000
℃以下、望ましくは 800℃〜1000℃の温度範囲で仮焼
し、粒径 0.01 〜0.3 μm の微粒子粉体を作製する。こ
の粉体を大気中 1800 ℃以下、望ましくは 1600 ℃( 1
600 ℃が最も望ましいが、 1600 ℃±30℃でもよい)で
焼結する。これにより相対密度 94 %以上の緻密なセラ
ミックスが得られ、その電気伝導度は 1000 ℃において
400〜3150S・m-1 に達する。湿式合成法としては共沈
法、化合物沈殿法、アルコキシド法、クエン酸法、ヒド
ラジン法などが挙げられ、組成の制御性、粉体の結晶
相、粒径、粒径分布制御性、コスト、量産性等にそれぞ
れ特徴があり、量産規模、純度、セラミックスの特性等
を考慮して適宜選択する必要がある。
[0012] As a method for producing a powder for producing lanthanum chromite ceramics to which magnesium is added according to the present invention, a solid phase method, a wet method, a gas phase method and the like can be considered. The above experimental results are based on the case where the lanthanum chromite ceramics are manufactured by the solid phase method, which is the most common powder synthesis method. 1000 powder
Calcination is carried out at a temperature of not more than ℃, preferably 800 to 1000 ℃ to produce fine particle powder having a particle size of 0.01 to 0.3 μm. This powder is heated to 1800 ° C or less, preferably 1600 ° C (1
600 ° C is most desirable, but it may be 1600 ° C ± 30 ° C). As a result, a dense ceramic with a relative density of 94% or more is obtained, and its electrical conductivity is 1000 ° C.
It reaches 400-3150Sm- 1 . Examples of the wet synthesis method include a coprecipitation method, a compound precipitation method, an alkoxide method, a citric acid method, a hydrazine method, and the like, controllability of composition, crystal phase of powder, particle diameter, particle diameter distribution controllability, cost, mass production. Each of them has its own characteristics, and it is necessary to appropriately select them in consideration of mass production scale, purity, ceramic characteristics, and the like.

【0013】本発明のランタンクロマイト系セラミック
スの主な特徴は、Cr3+の一部をMg2+で置換することによ
り、酸素欠陥を導入し、拡散を促進することによって焼
結性(相対密度)を向上させ、併せて電気伝導度を向上
させる点にある。さらに湿式法で合成した均質な微粒子
の粉体を採用し、異常粒成長が生じない 1800 ℃以下の
温度で焼結させることにより、緻密で均質な微細構造を
示すセラミックスが得られる。
The main feature of the lanthanum chromite ceramics of the present invention is that, by substituting a part of Cr 3+ with Mg 2+ , oxygen vacancies are introduced and diffusion is promoted, whereby sinterability (relative density ) And electrical conductivity. Furthermore, by adopting a powder of homogeneous fine particles synthesized by a wet method and sintering at a temperature of 1800 ° C. or less at which abnormal grain growth does not occur, a ceramic having a dense and uniform microstructure can be obtained.

【0014】[0014]

【実施例】以下、本発明の実施例と比較例について具体
的に説明する。La2O3 、Cr2O3 、MgCO3 の各原料粉体
を、最終製品が表1に示す組成(x の値で決まる)とな
るように秤量し、エタノールを分散媒として遊星ボール
ミルにて30 分混合した後、大気中で温度 1400 ℃で1
時間仮焼した。
EXAMPLES Examples of the present invention and comparative examples will be specifically described below. Each raw material powder of La 2 O 3 , Cr 2 O 3 , and MgCO 3 is weighed so that the final product has the composition shown in Table 1 (determined by the value of x), and a planetary ball mill using ethanol as a dispersion medium After mixing for 30 minutes, in air at 1400 ° C
It was calcined for hours.

【0015】[0015]

【表1】 [Table 1]

【0016】得られた仮焼粉体を乳鉢で粉砕後、エタノ
ールを分散媒、ジルコニアボールを粉砕媒体とする媒体
撹拌ミルにて30分高速粉砕した。粉砕して得られた粉体
の粒径は 0.3〜0.35μm であった。得られた粉体に純水
をバインダーとして加え、金型成形後 350 MPa(3500 kg
/cm2)の圧力で冷間静水圧プレスして成形体を作製し
た。これらの成形体を大気中 1700 ℃-2h の条件で焼結
した。焼結体の相対密度は、Mgを 0.05 加えた実験番号
2 (表1)のセラミックスで 93.1 %と閉気孔のみから
なる緻密なセラミックスとなった。
The obtained calcined powder was pulverized in a mortar and then pulverized at a high speed for 30 minutes in a medium stirring mill using ethanol as a dispersion medium and zirconia balls as a pulverization medium. The particle size of the powder obtained by pulverization was 0.3 to 0.35 μm. Pure water is added as a binder to the obtained powder, and after molding, 350 MPa (3500 kg
/ cm 2 ) at a pressure of cold isostatic pressure to produce a compact. These compacts were sintered in air at 1700 ° C for 2 hours. The relative density of the sintered body is the experiment number with 0.05 added Mg
2 93.1% of the ceramics shown in Table 1 were dense ceramics consisting only of closed pores.

【0017】一方、Mgを添加しなかった実験番号1(表
1)に示すセラミックスでは相対密度が 91.2 %であ
り、開気孔を有し所謂ガスタイトなセラミックスは得ら
れなかった。なお通常固相反応で調製されたLaCrO3の粉
体を焼結した場合、91.2%の相対密度も得ることが困難
であり、本発明の実験番号1(表1)で示した焼結密度
は、媒体撹拌ミルを採用することで初めて達成できたと
いうことも注目される。表1の実験番号1-6からMgの添
加効果が確認された。しかしながらMgを 0.45 添加した
セラミックスではペロブスカイト単一相ではなく、LaCr
O3、La2CrO6 、MgO の三相からなるコンポジットセラミ
ックスとなり、相対密度は低下し、かつLa 2CrO6 及びMg
O 析出による水分に対する耐侯性の低下が認められた。
この実験番号1-6の結果は本発明の特許請求の範囲の有
効性を裏づけるものである。
On the other hand, Experiment No. 1 in which Mg was not added (Table 1)
In the ceramics shown in 1), the relative density is 91.2%.
So-called gas-tight ceramics with open pores
Was not. LaCrO usually prepared by solid-phase reactionThreePowder
It is difficult to obtain 91.2% relative density when the body is sintered
And the sintered density shown in Experiment No. 1 (Table 1) of the present invention.
Was achieved for the first time by using a medium stirring mill.
It is also noted. Add Mg from Experiment No. 1-6 in Table 1.
Additive effect was confirmed. However, 0.45 Mg was added
In ceramics, instead of perovskite single phase, LaCr
OThree, LaTwoCrO6 , MgO composite phase ceramic
And the relative density decreases, and La TwoCrO6 And Mg
A decrease in weather resistance to moisture due to O precipitation was observed.
The results of Experiment Nos. 1 to 6 have the scope of the claims of the present invention.
This confirms the efficacy.

【0018】湿式合成法として、ここでは量産性、コス
ト、粉体合成の容易性等の観点から最近注目されている
ヒドラジン法による粉体合成の例を示す。組成が表2に
示す組成(x の値で決まる)となるようにLaCl3 ・7H
2O,CrCl3 ・6H2O,MgCl2 ・6H 2Oの水溶液を秤量混合
し、30分間撹拌した。混合溶液をヒドラジン一水和物
((NH 2)2 ・H2O)の溶液中に滴下し、pHが11.5になるよう
に調製した。滴下終了後、溶液を撹拌しながら加熱し80
℃で 2h 撹拌した。サスペンジョンから原料粉体を遠心
分離し、温水で繰り返し洗浄した後、150 ℃で8h 乾燥
し、原料粉体を調製した。X 線回折と熱分析の結果、得
られた原料粉体は非晶質であり、加熱すると 510℃〜55
0 ℃で結晶化し、LaCrO4相の粉体が得られた。さらに77
0 ℃〜810 ℃でペロブスカイト単一相のLaCr1-xMgxO3
相転移した。
As the wet synthesis method, here, mass production, cost
Has recently attracted attention from the viewpoint of ease of powder synthesis, etc.
An example of powder synthesis by the hydrazine method will be described. Table 2 shows the composition
LaCl so that it has the composition shown (determined by the value of x)Three ・ 7H
TwoO, CrClThree ・ 6HTwoO, MgClTwo ・ 6H TwoWeigh and mix O aqueous solution
And stirred for 30 minutes. Hydrazine monohydrate
((NH Two)Two ・ HTwoO), so that the pH becomes 11.5.
Was prepared. After the completion of the dropwise addition, the solution is heated with stirring to 80
The mixture was stirred at C for 2 h. Centrifuge the raw material powder from the suspension
Separate, wash repeatedly with warm water, and dry at 150 ° C for 8 hours
Then, a raw material powder was prepared. X-ray diffraction and thermal analysis results
The raw material powder is amorphous, and when heated, 510 ℃ ~ 55
Crystallized at 0 ° C, LaCrOFourA phase powder was obtained. Further 77
Perovskite single phase LaCr at 0 ℃ ~ 810 ℃1-xMgxOThreeTo
Phase transition.

【0019】そこで、原料粉体を 800℃-1h(表2の実施
例 9)、900 ℃-1h(表2の実施例10)、1000℃-1h(表2
における実施例2-8 、13、比較例1,14)、1100℃-1h(表
2の比較例11)と4種類の加熱条件下で仮焼し、LaCr
1-XMgxO3粉体を作製した。これらの粉体は固相反応で作
製した仮焼粉体とは異なり粒子間同志が焼結していない
ため、粉砕能力の高い媒体撹拌ミルを使用しなくても乳
鉢で十分粉砕可能であった。仮焼粉体の粒子径は表2に
示すように 0.01 〜0.33μm であり、表2には記載して
いないが、800 ℃で 10 分という短時間加熱して得られ
たLaCr1-XMgxO3粉体の粒子径は 0.005μm であった。
Therefore, the raw material powder was used at 800 ° C.-1h (Example 9 in Table 2), 900 ° C.-1h (Example 10 in Table 2), and 1000 ° C.-1h (Table 2).
2-8, 13, Comparative Examples 1 and 14), 1100 ° C.-1h (Comparative Example 11 in Table 2), and calcined under four kinds of heating conditions.
1-X MgxO 3 powder was prepared. Unlike the calcined powder produced by the solid-state reaction, these powders did not sinter between particles, so they could be sufficiently pulverized in a mortar without using a medium stirring mill with high pulverizing ability. . The particle size of the calcined powder is 0.01 to 0.33 μm as shown in Table 2. Although not listed in Table 2, LaCr 1-X MgxO obtained by heating at 800 ° C. for a short time of 10 minutes. The particle diameter of the three powders was 0.005 μm.

【0020】[0020]

【表2】 [Table 2]

【0021】得られた粉体を実験番号1-6 (表1)と同
様に金型成形および冷間静水圧プレス成形した。これら
の成形体を 1600 ℃-2h(表2の実施例2-10, 比較例11)
で焼結した。焼結体の相対密度は仮焼温度が 1000 ℃以
下の粉体を用いた場合、94.1〜98.5%であり,1100℃-1
h 仮焼した粉体を用いると 91.0 %に低下した(比較例
11)。これは、仮焼粉体の粒子径が 0.33 μm と大きく
なったため粉体の表面エネルギーが低下し、焼結性が劣
下するためである。なお、0.005 μm の仮焼粉体を用い
ると、成形が困難となり、かつ焼結体にクラックが生じ
た。
The obtained powder was subjected to molding and cold isostatic pressing in the same manner as in Experiment No. 1-6 (Table 1). These compacts were heated at 1600 ° C. for 2 hours (Example 2-10 in Table 2, Comparative Example 11).
Sintered. The relative density of the sintered body is 94.1 to 98.5% when the calcining temperature is less than 1000 ° C, and 1100 ° C-1
h Reduced to 91.0% by using calcined powder (Comparative Example
11). This is because the particle diameter of the calcined powder was increased to 0.33 μm, so that the surface energy of the powder was lowered and the sinterability was deteriorated. When the calcined powder of 0.005 μm was used, molding became difficult, and cracks occurred in the sintered body.

【0022】また、1000℃で仮焼した粉体を 1900 ℃で
焼結した場合(比較例14)、セラミックスの相対密度は
91.3 %と低下することがわかった。これはセラミック
スの製造過程におけるオーバーファイアリング(Over fi
ring)と呼ばれる現象で、高温における急激な粒成長と
それに伴う粒内の残留気孔の生成が原因である。また、
白金を電極としてセラミックスの電気伝導度σをファン
デルポー法を用いて測定すると、表2に示す通り X=0.0
5 〜0.40の添加範囲では無添加のセラミックスのσと比
べて 4〜30倍の高い値(412〜3167 S・m-1)が得られた。
さらに、室温から1000℃までの熱膨張係数を測定したと
ころ、X =0.25におけるセラミックスで10.1x10-6(K-1)
であった。これは、固体電解質型燃料電池の代表的な固
体電解質である安定化ジルコニアのそれと非常に近い値
である。表2における実施例と比較例の番号1 〜 14 で
はヒドラジン法によって調製した粉体を用いた例につい
て述べたが、アルコキシド法、均一沈殿法等湿式合成法
を用いた場合も、同様な結果が得られた。
When the powder calcined at 1000 ° C. was sintered at 1900 ° C. (Comparative Example 14), the relative density of the ceramic was
It was found to be as low as 91.3%. This is called overfiring in the ceramics manufacturing process.
This is a phenomenon called ring, which is caused by rapid grain growth at high temperature and accompanying formation of residual pores in grains. Also,
When the electrical conductivity σ of the ceramics was measured by the van der Pauw method using platinum as an electrode, as shown in Table 2, X = 0.0
In the range of addition of 5 to 0.40, a value (412 to 3167 S · m −1 ) that is 4 to 30 times higher than the σ of the ceramic without addition was obtained.
Further, when the coefficient of thermal expansion from room temperature to 1000 ° C. was measured, the ceramic at X = 0.25 was 10.1 × 10 −6 (K −1 ).
Met. This value is very close to that of stabilized zirconia, which is a typical solid electrolyte of a solid oxide fuel cell. In Examples and Comparative Examples Nos. 1 to 14 in Table 2, examples using powders prepared by the hydrazine method were described. Similar results were obtained when wet synthesis methods such as the alkoxide method and the uniform precipitation method were used. Obtained.

【0023】図1は、得られた製品の上記X の値と相対
密度との関係を表すグラフであり、X の値が0.20-0.30
の間に相対密度のピークがあることがわかる。また、図
2は、上記X の値と電気伝導度との関係を、図3は仮焼
温度と仮焼粉体の粒径との関係を、図4は燒結温度と相
対密度との関係を、さらに図5は相対密度と電気伝導度
との関係をそれぞれ表すものである。
FIG. 1 is a graph showing the relationship between the value of X and the relative density of the obtained product, where the value of X is 0.20-0.30.
It can be seen that there is a peak of relative density between. 2 shows the relationship between the value of X and the electric conductivity, FIG. 3 shows the relationship between the calcining temperature and the particle size of the calcined powder, and FIG. 4 shows the relationship between the sintering temperature and the relative density. FIG. 5 shows the relationship between the relative density and the electric conductivity.

【0024】以上のことから本発明者等は、湿式合成法
により調製した原料粉体を 1000 ℃以下の温度、望まし
くは800 ℃〜1000℃の温度範囲で仮焼し、ペロブスカイ
ト単一相でかつその平均粒径が 0.01 〜0.3 μm の粉体
とし、この粉体を大気中 1800 ℃以下、望ましくは1600
℃で焼結することが本発明のセラミックスの製造方法と
してきわめて効果的であると判断した。
From the above, the present inventors have calcined the raw material powder prepared by the wet synthesis method at a temperature of 1000 ° C. or less, preferably 800 ° C. to 1000 ° C., to obtain a perovskite single phase and The powder has an average particle size of 0.01 to 0.3 μm, and the powder is 1800 ° C or less in the atmosphere, preferably 1600 ° C.
It has been determined that sintering at ℃ is extremely effective as a method for producing the ceramic of the present invention.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
のランタンクロマイトセラミックスは耐侯性に優れ、安
定化ジルコニアとの熱膨張係数がほぼ等しいものであ
る。なおかつ、緻密で電気的特性の優れたセラミックス
であり、例えばMHD 発電用電極、発熱体、SOFCセルのセ
パレーター(平板型)、あるいはインターコネクター
(円筒型)用の材料等に応用することができ、その工業
的価値は高い。
As is apparent from the above description, the lanthanum chromite ceramics of the present invention have excellent weather resistance and have substantially the same thermal expansion coefficient as that of stabilized zirconia. In addition, it is a dense ceramic with excellent electrical properties, and can be applied to materials for MHD power generation electrodes, heating elements, SOFC cell separators (flat type), interconnectors (cylindrical type), etc. Its industrial value is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】LaCr1-XMgXO3におけるX の値と相対密度との関
係を表すグラフである。
FIG. 1 is a graph showing the relationship between the value of X and the relative density in LaCr 1-X Mg X O 3 .

【図2】LaCr1-XMgXO3におけるX の値と電気伝導度との
関係を表すグラフである。
FIG. 2 is a graph showing the relationship between the value of X in LaCr 1-X Mg X O 3 and electric conductivity.

【図3】仮焼温度と仮焼粉体の粒径との関係を表すグラ
フである。
FIG. 3 is a graph showing a relationship between a calcining temperature and a particle size of a calcined powder.

【図4】LaCr1-XMgXO3におけるX =0.25の場合の燒結温
度と相対密度との関係を表すグラフである。
FIG. 4 is a graph showing the relationship between the sintering temperature and the relative density when La = 0.25 in LaCr 1-X Mg X O 3 .

【図5】相対密度と電気伝導度との関係を表すグラフで
ある。
FIG. 5 is a graph showing a relationship between relative density and electric conductivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 星児 兵庫県赤穂市中広字東沖1603−1 太陽鉱 工株式会社赤穂研究所内 Fターム(参考) 4G030 AA07 AA13 AA22 BA03 CA01 GA08 GA11 GA27  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seiji Sakurai 1603-1 Higashi-oki, Aki-shi, Ako-shi

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 化学式LaCr1-XMgXO3で表わされるランタ
ンクロマイトセラミックスにおいて、X が 0.05 から
0.40 の範囲のMgを含み、相対密度が 94 %以上で、か
つその電気伝導度σが、大気中 1000 ℃で 400 S・m-1
以上であることを特徴とするランタンクロマイトセラミ
ックス。
1. A lanthanum chromite ceramic represented by the chemical formula LaCr 1-X Mg X O 3 , wherein X is from 0.05 to
It contains Mg in the range of 0.40, has a relative density of 94% or more, and has an electric conductivity σ of 400 S · m -1 at 1000 ° C in the atmosphere.
Lanthanum chromite ceramics characterized by the above.
【請求項2】 化学式LaCr1-XMgXO3で表わされ、X が
0.05 から 0.40 の範囲のMgを含み、相対密度が 94 %
以上で、かつその電気伝導度σが、大気中 1000 ℃で 4
00 S・m-1 以上であるランタンクロマイトセラミックス
の製造方法であって、湿式合成法により調製した原料粉
体を1000℃以下の温度で仮焼し、ペロブスカイト単一相
で、かつその平均粒径が 0. 01〜0.3 μm の粉体とし、
この粉体を大気中で1800℃以下の温度で焼結することを
特徴とするランタンクロマイトセラミックスの製造方
法。
2. The compound represented by the chemical formula LaCr 1-X Mg X O 3 wherein X is
Contains Mg in the range of 0.05 to 0.40 with a relative density of 94%
Above, and its electrical conductivity σ is 4
A method for producing a lanthanum chromite ceramic having a value of not less than 00 S · m −1 , wherein the raw material powder prepared by a wet synthesis method is calcined at a temperature of 1000 ° C. or less to form a perovskite single phase and an average particle size thereof. Is 0.01 to 0.3 μm powder,
A method for producing lanthanum chromite ceramics, comprising sintering the powder in the atmosphere at a temperature of 1800 ° C. or lower.
【請求項3】 仮焼温度が800 〜1000℃である請求項2
に記載のランタンクロマイトセラミックスの製造方法。
3. The calcination temperature is from 800 to 1000 ° C.
2. A method for producing a lanthanum chromite ceramic according to item 1.
【請求項4】 焼結温度が1600±30℃である請求項2又
は3に記載のランタンクロマイトセラミックスの製造方
法。
4. The method for producing lanthanum chromite ceramics according to claim 2, wherein the sintering temperature is 1600 ± 30 ° C.
JP11221018A 1998-08-25 1999-08-04 Lanthanum chromite ceramics containing magnesium added thereto and their production Pending JP2001010861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11221018A JP2001010861A (en) 1998-08-25 1999-08-04 Lanthanum chromite ceramics containing magnesium added thereto and their production

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP25600398 1998-08-25
JP11-122248 1999-04-28
JP10-256003 1999-04-28
JP12224899 1999-04-28
JP11221018A JP2001010861A (en) 1998-08-25 1999-08-04 Lanthanum chromite ceramics containing magnesium added thereto and their production

Publications (1)

Publication Number Publication Date
JP2001010861A true JP2001010861A (en) 2001-01-16

Family

ID=27314427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11221018A Pending JP2001010861A (en) 1998-08-25 1999-08-04 Lanthanum chromite ceramics containing magnesium added thereto and their production

Country Status (1)

Country Link
JP (1) JP2001010861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098491B1 (en) * 2008-02-25 2013-07-31 Noritake Co., Ltd Ceramic product and ceramic member bonding method.
CN114243046A (en) * 2021-12-14 2022-03-25 中国科学院大连化学物理研究所 Metal surface coating and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098491B1 (en) * 2008-02-25 2013-07-31 Noritake Co., Ltd Ceramic product and ceramic member bonding method.
CN114243046A (en) * 2021-12-14 2022-03-25 中国科学院大连化学物理研究所 Metal surface coating and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Park et al. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells
Mori et al. Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells
KR101300157B1 (en) Composite ceramic contact material for solid oxide fuel cell and method of preparing ceramic contact material
Toprak et al. Synthesis of nanostructured BSCF by oxalate co-precipitation–As potential cathode material for solid oxide fuels cells
Mori et al. Control of the thermal expansion of strontium‐doped lanthanum chromite perovskites by B‐site doping for high‐temperature solid oxide fuel cell separators
JP2001307546A (en) Ionic conductor
EP1362831A2 (en) Ion conductor
AU2006280812A1 (en) Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
Sharma et al. Synthesis and characterization of nanocrystalline MnCo2O4-δ spinel for protective coating application in SOFC
Aruna et al. Studies on combustion synthesized LaMnO3–LaCoO3 solid solutions
JP4191821B2 (en) Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte
JP3121993B2 (en) Method for producing conductive ceramics
Colomer et al. Processing and electrical conductivity of non-stoichiometric lanthanum strontium manganite perovskites prepared from powders synthesized by a polymerizable-complexation route
Norman et al. Influence of transition or lanthanide metal doping on the properties of Sr0. 6Ba0. 4Ce0. 9M0. 1O3-δ (M= In, Pr or Ga) electrolytes for proton-conducting solid oxide fuel cells
JP2001010861A (en) Lanthanum chromite ceramics containing magnesium added thereto and their production
JPH04219364A (en) Lanthanum chromite-based oxide and its use
Kumar et al. Effect of metal ion concentration on synthesis and properties of La0. 84Sr0. 16MnO3 cathode material
JP6717331B2 (en) Solid oxide fuel cell
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
KR101666713B1 (en) High ionic conductive and easily sinterable perovskite-type solid electrode for solid oxide fuel cell
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP2003007309A (en) Electrode material, solid electrolyte fuel cell and gas sensor
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell
JP4644326B2 (en) Lanthanum gallate sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104