JP2001006676A - Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery - Google Patents

Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery

Info

Publication number
JP2001006676A
JP2001006676A JP2000079929A JP2000079929A JP2001006676A JP 2001006676 A JP2001006676 A JP 2001006676A JP 2000079929 A JP2000079929 A JP 2000079929A JP 2000079929 A JP2000079929 A JP 2000079929A JP 2001006676 A JP2001006676 A JP 2001006676A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
lithium secondary
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000079929A
Other languages
Japanese (ja)
Other versions
JP2001006676A5 (en
JP4706090B2 (en
Inventor
Takeshi Sueyoshi
剛 末吉
Masayoshi Murayama
正義 村山
Yasushi Tsurita
寧 釣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000079929A priority Critical patent/JP4706090B2/en
Publication of JP2001006676A publication Critical patent/JP2001006676A/en
Publication of JP2001006676A5 publication Critical patent/JP2001006676A5/ja
Application granted granted Critical
Publication of JP4706090B2 publication Critical patent/JP4706090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the elution of Mn and provide a material having excellent battery characteristics at high temperatures by covering the particle surface of a lithium-manganese composite oxide with one kind selected from a group of a metallic compound and a metallic oxide having electric and lithium conductivities. SOLUTION: A metallic oxide or metallic sulphide having electric and lithium conductivities is carried in a lithium-manganese composite oxide for use in an electrode of a lithium secondary battery. Specifically, a transition metal oxide or sulphide such as Ti, Sn, V, Nb, Mo and W is named. That is, by covering the surface of the lithium-manganese composite oxide with the metallic oxide or metallic sulphide, the elution of Mn out of the lithium-manganese composite oxide can be suppressed and battery characteristics such as cycle characteristics at high temperatures can be enhanced. In view of easy covering and productivity, the metallic oxide is desirable for use in covering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池の
改良、特に正極活物質に関し、さらには電池の充放電容
量及び熱安定性が向上したリチウム二次電池用正極材料
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a lithium secondary battery, particularly to a positive electrode active material, and more particularly to a positive electrode material for a lithium secondary battery having improved charge / discharge capacity and thermal stability of the battery.

【0002】[0002]

【従来の技術】近年、携帯用電子機器の小型化、軽量化
に伴い、その電源として高出力、高エネルギー密度であ
る二次電池が求められている。特にリチウム二次電池は
上記の要件を満たすため、さかんに開発が行われてい
る。リチウム二次電池の正極活物質としては、LiCo
2 、LiNiO2 、LiMn2 4 等のリチウム複合
酸化物が提案され、研究が盛んに行われている。その中
でもリチウムとマンガンとを主成分とする複合酸化物
(以下、「リチウムマンガン複合酸化物」と表記するこ
とがある)は、MnがCoやNiと比較して埋蔵量が多
く安価であることから注目を集めている。リチウムマン
ガン複合酸化物を用いた活物質の改良として各種の検討
が行われている。
2. Description of the Related Art In recent years, as portable electronic devices have become smaller and lighter, a secondary battery having a high output and a high energy density has been demanded as a power source thereof. In particular, lithium secondary batteries are being actively developed to satisfy the above requirements. As a positive electrode active material of a lithium secondary battery, LiCo
Lithium composite oxides such as O 2 , LiNiO 2 , and LiMn 2 O 4 have been proposed and are being actively studied. Among them, complex oxides containing lithium and manganese as main components (hereinafter sometimes referred to as “lithium-manganese complex oxide”) have a large reserve of Mn compared to Co or Ni and are inexpensive. Attracts attention from. Various studies have been made to improve active materials using lithium manganese composite oxides.

【0003】特開平8−264183号公報には、非水
電解液中の有機溶媒の正極での分解を抑制するために、
リチウムマンガン複合酸化物の表面に金属フッ化物の被
膜を設けることが記載されている。また、特開平10−
116615号公報には、サイクル特性等の向上のた
め、リチウムマンガン複合酸化物の表面にニッケル等を
沈析させることが記載されている。
Japanese Patent Application Laid-Open No. Hei 8-264183 discloses that in order to suppress decomposition of an organic solvent in a non-aqueous electrolyte at a positive electrode,
It is described that a film of a metal fluoride is provided on the surface of the lithium manganese composite oxide. In addition, Japanese Patent Application Laid-Open
No. 116615 describes that nickel or the like is precipitated on the surface of a lithium manganese composite oxide in order to improve cycle characteristics and the like.

【0004】さらに、特開平4−14757号公報に
は、正極活物質の充填密度を高めるらめに、リチウムマ
ンガン複合酸化物に酸化チタンを配合し焼結させること
が記載されている。またさらに、特開平10−1442
92号公報には、正極活物質粒子をリチウムイオン伝導
性非晶質化合物により接合させ、活物質粒子間のリチウ
ム移動を促進させることが記載されている。しかしなが
ら、上記のいずれの方法も未だに満足のいくものではな
かった。例えば、特開平8−264183号公報に記載
の方法の場合、金属フッ化物被膜は電気伝導性が低く内
部抵抗の上昇をもたらすだけでなく、さらにに作成過程
でフッ素ガス、フッ化窒素ガスを用いる必要があるため
経済的でないという問題点がある。
Further, JP-A-4-14757 discloses that titanium oxide is blended with lithium manganese composite oxide and sintered to increase the packing density of the positive electrode active material. Further, Japanese Patent Application Laid-Open No. H10-1442
No. 92 describes that positive electrode active material particles are joined by a lithium ion conductive amorphous compound to promote lithium transfer between the active material particles. However, none of the above methods has been satisfactory. For example, in the case of the method described in JP-A-8-264183, the metal fluoride film not only has a low electric conductivity and causes an increase in internal resistance, but also uses a fluorine gas and a nitrogen fluoride gas in the preparation process. There is a problem that it is not economical because it is necessary.

【0005】[0005]

【発明が解決しようとする課題】一方、一般にリチウム
マンガン複合酸化物を正極活物質として用いた場合に
は、高温条件下での充放電サイクル及び保存に伴う容量
低下が大きいという問題があるため、特に高温環境下に
おいて使用される用途で問題がある。高温での性能低下
の原因の1つとして、リチウムマンガン複合酸化物から
のMnの溶出が考えられている。本発明の目的は、リチ
ウムマンガン酸化物を用いた際に特有の問題であるMn
の溶出を抑制し、しいては高温下での電池特性の優れた
リチウム二次電池用の材料及びリチウム二次電池を提供
することにある。また、本発明の他の目的は、上記のよ
うな材料を提供できるその製造方法を提供することにあ
る。
On the other hand, in general, when a lithium manganese composite oxide is used as a positive electrode active material, there is a problem that the capacity is greatly reduced due to charge / discharge cycles and storage under high temperature conditions. In particular, there is a problem in applications used in a high-temperature environment. As one of the causes of performance degradation at high temperatures, elution of Mn from lithium manganese composite oxide is considered. An object of the present invention is to solve the problem of Mn which is a particular problem when using lithium manganese oxide.
It is an object of the present invention to provide a material for a lithium secondary battery and a lithium secondary battery which are excellent in battery characteristics at a high temperature by suppressing elution of the lithium secondary battery. Another object of the present invention is to provide a method for manufacturing the same, which can provide the above-mentioned materials.

【0006】[0006]

【課題を解決するための手段】本発明者らは、リチウム
マンガン複合酸化物の表面をリチウム伝導性及び電子伝
導性を有する金属酸化物又は金属硫化物で被覆すること
によって、上記目的が達成されることを見出し本発明を
完成した。即ち、本発明の要旨は、リチウムマンガン複
合酸化物の粒子表面を、電気伝導性及びリチウム伝導性
を有する金属酸化物及び金属硫化物からなる群から選ば
れる少なくとも一種で被覆してなるリチウム二次電池用
正極材料、並びにこれを用いたリチウム二次電池用正極
及びリチウム二次電池に存する。
The present inventors have achieved the above object by coating the surface of a lithium manganese composite oxide with a metal oxide or a metal sulfide having lithium conductivity and electron conductivity. The present invention has been completed and the present invention has been completed. That is, the gist of the present invention is to provide a lithium secondary material obtained by coating the surfaces of lithium manganese composite oxide particles with at least one selected from the group consisting of metal oxides and metal sulfides having electrical conductivity and lithium conductivity. A positive electrode material for a battery, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same.

【0007】また、本発明の他の要旨は、リチウムマン
ガン複合酸化物と金属を含有する被覆層原料とを含有し
たスラリーを噴霧乾燥後、焼成することを特徴とするリ
チウム二次電池用正極材料の製造法に存する。なお、上
記公知文献の中で、特開平10−116615号公報に
おいては、形成する層の材料が異なる点で本願発明とは
異なる。また、特開平4−14757号公報及び特開平
10−144292号公報においては、前者が、通常の
リチウムマンガン複合酸化物の粒径に比べて粒径が大き
い粒径の酸化チタンを使用して、これをリチウムマンガ
ン複合酸化物中に配合させてから焼結させることから考
えて、リチウムマンガン複合酸化物の表面が被覆されて
いない点で本願発明と異なる。また同様に、後者の場合
も、リチウムイオン伝導性非晶質化合物をリチウムマン
ガン複合酸化物に混合して加熱・混合して表面に形成し
ていることから考えて、リチウムマンガン複合酸化物の
表面が被覆されていない点で本願発明と異なる。
Another aspect of the present invention is to provide a positive electrode material for a lithium secondary battery, comprising spray-drying a slurry containing a lithium-manganese composite oxide and a coating material containing a metal, followed by firing. In the production method. Among the above known documents, Japanese Patent Application Laid-Open No. Hei 10-116615 differs from the present invention in that the material of the layer to be formed is different. In JP-A-4-14757 and JP-A-10-144292, the former uses titanium oxide having a particle size larger than that of a normal lithium manganese composite oxide, Considering that this is blended in the lithium manganese composite oxide and then sintered, it differs from the present invention in that the surface of the lithium manganese composite oxide is not coated. Similarly, in the latter case, it is considered that the lithium ion conductive amorphous compound is mixed with the lithium manganese composite oxide and heated and mixed to form on the surface. Differs from the present invention in that it is not coated.

【0008】[0008]

【発明の実施の形態】以下、本発明をより詳細に説明す
る。本発明の特徴の1つは、リチウム二次電池の電極に
使用するリチウムマンガン複合酸化物に電気伝導性とリ
チウム伝導性を持つ金属酸化物や金属硫化物を担持させ
たことにある。即ち、リチウムマンガン酸化物表面を上
記金属酸化物や金属硫化物で被覆することによって、リ
チウムマンガン複合酸化物からのマンガンの溶出を抑え
ることができ、高温でのサイクル特性等の電池性能を向
上させることができる。被覆の容易さや工業的な生産の
面から、好ましくは金属酸化物にて被覆する。表面を被
覆する被覆層の材料としては、リチウムを負極とした場
合に正極として作用することができ、その電位が4V未
満であり、リチウムマンガン複合酸化物を正極活物質と
した場合に起きる活物質表面上での副反応を抑制するこ
とのできる物質が、容量の低下抑制や高温でのサイクル
特性の面から好ましい。具体的には、Ti、Sn、V、
Nb、Mo及びW等の遷移金属の酸化物又は硫化物が挙
げられる。特に、TiOa (ただし、1 ≦a≦2 )、S
nOb (ただし、1 ≦b≦2 )、VOc (ただし1 ≦c
≦2 .5 )、NbOd (ただし1 ≦d≦2.5 )、WO
e (ただし2 ≦e≦3 )、MoOf (ただし2 ≦f≦3
)のような、TiO2 、SnO2 、V2 5 、Nb2
5 、WO3 、MoO3 、及び、これらの化合物に少量
の酸素欠陥が生じた不定比化合物は好ましく用いられ
る。好ましくは、Ti及び/又はSnの酸化物・硫化物
である。上記の材料を複数使用することもでき、また固
溶体を使用することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. One of the features of the present invention is that a metal oxide or metal sulfide having electric conductivity and lithium conductivity is supported on a lithium manganese composite oxide used for an electrode of a lithium secondary battery. That is, by coating the surface of the lithium manganese oxide with the metal oxide or the metal sulfide, elution of manganese from the lithium manganese composite oxide can be suppressed, and battery performance such as cycle characteristics at high temperatures is improved. be able to. From the viewpoint of ease of coating and industrial production, coating with a metal oxide is preferred. As a material of the coating layer covering the surface, when lithium is used as a negative electrode, it can act as a positive electrode, its potential is less than 4 V, and an active material generated when a lithium manganese composite oxide is used as a positive electrode active material A substance capable of suppressing a side reaction on the surface is preferable from the viewpoint of suppressing a decrease in capacity and cycling characteristics at a high temperature. Specifically, Ti, Sn, V,
Examples include oxides or sulfides of transition metals such as Nb, Mo and W. In particular, TiO a (where 1 ≦ a ≦ 2), S
nO b (1 ≦ b ≦ 2), VO c (1 ≦ c
≦ 2. 5), NbO d (1 ≦ d ≦ 2.5), WO
e (provided that 2 ≦ e ≦ 3), MoO f ( although 2 ≦ f ≦ 3
), TiO 2 , SnO 2 , V 2 O 5 , Nb 2
O 5 , WO 3 , MoO 3 , and nonstoichiometric compounds having a small amount of oxygen deficiency in these compounds are preferably used. Preferably, it is an oxide / sulfide of Ti and / or Sn. A plurality of the above materials can be used, and a solid solution can also be used.

【0009】また、被覆層には、電気伝導性およびリチ
ウム伝導性を高めるため、上記金属元素とは価数の異な
る価数の金属元素を存在させてもよい。例えば、TiO
2 を含有する被覆層に少量のTa5+を存在させたり、S
nO2 を有する被覆層にSb 2 3 を存在させることに
より電気伝導度を向上させることができる。なお、この
ような金属元素は、被覆層の主成分の金属元素の種類と
異なるのが通常であるが、同じ種類の異なる価数の金属
元素でもよい。
In addition, the coating layer has electrical conductivity and lithium.
To increase the conductivity of the metal element,
A valence metal element may be present. For example, TiO
TwoA small amount of Ta in the coating layer containing5+Or S
nOTwoSb on the coating layer having TwoOThreeTo exist
The electric conductivity can be further improved. Note that this
Such a metal element depends on the type of the metal element as the main component of the coating layer.
Usually different, but different valence metals of the same kind
It may be an element.

【0010】被覆層の厚みの実測は困難であるが、リチ
ウムマンガン複合酸化物の表面積と被覆層の密度、添加
量より計算される平均厚みは、通常3Å以上、好ましく
は10Å以上であり、また通常10000Å以下であ
る。平均厚みが小さすぎると被覆層としての役割を十分
果たすことができないことがあり、あまりに大きいと電
池容量が低下するばかりではなく、リチウムが通過しに
くくなる傾向にある。また、被覆層の材料の使用量は、
通常被覆されるリチウムマンガン複合酸化物に対して、
通常0.1mol%以上、好ましくは0.2mol%以
上であり、また通常10mol%以下、好ましくは5m
ol%以下である。使用量が少なすぎると、十分な被覆
が困難になることがあり、多すぎると電池容量が低下す
るばかりではなく、リチウムが通過しにくくなる傾向に
ある。
Although it is difficult to measure the thickness of the coating layer, the average thickness calculated from the surface area of the lithium-manganese composite oxide, the density of the coating layer, and the amount of addition is usually 3 mm or more, preferably 10 mm or more. It is usually less than 10,000 °. If the average thickness is too small, it may not be able to sufficiently fulfill the role of a coating layer. If the average thickness is too large, not only does the battery capacity decrease, but also lithium tends to be difficult to pass. The amount of material used for the coating layer is
For lithium manganese composite oxide which is usually coated,
Usually 0.1 mol% or more, preferably 0.2 mol% or more, and usually 10 mol% or less, preferably 5 m
ol% or less. If the amount is too small, sufficient coating may be difficult, and if it is too large, not only does the battery capacity decrease, but also lithium tends to be difficult to pass.

【0011】被覆層によって被覆される割合(被覆率)
は、通常50%以上、好ましくは80%以上、さらに好
ましくは90%以上、最も好ましくは95%以上であ
る。被覆率が小さすぎると、本発明の効果が不十分とな
る。被覆層の形成方法には特に制限はないが、予め作成
したリチウムマンガン複合酸化物に被覆層となる材料の
原料を気相あるいは液相で供給し、被覆層を沈積させる
のが好ましい。特に、工業的な生産性の点から好ましい
のは後者の方法である。被覆層原料を気相で供給する場
合、CVDなどの方法を採用することができる。具体的
には、被覆すべき金属酸化物や金属硫化物を構成する金
属を含む有機金属化合物を用いてCVDによって被覆層
を形成する。また、プラズマCVDによって被覆層を形
成してもよい。
[0011] Proportion covered by the coating layer (coverage)
Is usually at least 50%, preferably at least 80%, more preferably at least 90%, most preferably at least 95%. If the coverage is too small, the effect of the present invention will be insufficient. The method for forming the coating layer is not particularly limited, but it is preferable to supply a raw material of a material to be a coating layer to a lithium manganese composite oxide prepared in advance in a gas phase or a liquid phase to deposit the coating layer. Particularly, the latter method is preferable from the viewpoint of industrial productivity. When the coating layer raw material is supplied in a gas phase, a method such as CVD can be adopted. Specifically, a coating layer is formed by CVD using an organometallic compound containing a metal constituting a metal oxide or metal sulfide to be coated. Further, the coating layer may be formed by plasma CVD.

【0012】液相で供給する場合には、リチウムマンガ
ン複合酸化物と被覆層原料を含むスラリーを調製し、こ
れを乾燥後、焼成する方法を採用することができる。こ
の場合、使用する被覆層原料としては、用いられるスラ
リー溶媒に溶解あるいは懸濁するものが好ましく、被覆
層を構成する金属元素の水溶性塩、酸化物ゾル等が挙げ
られる。スラリー溶媒としては、通常水が使用される
が、その他各種の無機溶媒や有機溶媒が使用できる。乾
燥方法に特に制限はないが、均一な被覆層を作ることが
容易である点で噴霧乾燥法が好ましい。乾燥時の乾燥温
度は通常20℃以上、好ましくは40℃以上であり、ま
た通常300℃以下、好ましくは200℃以下である。
乾燥温度があまりに低すぎると乾燥時間に時間がかかり
すぎ、あまりに高すぎるとリチウムマンガン複合酸化物
の形状を保つのが困難になる。乾燥後の焼成の際の焼成
温度は、被覆層物質が十分に形成され、かつリチウムマ
ンガン酸複合酸化物中に固溶しない温度が望ましく、通
常200℃以上、好ましくは400℃以上であり、また
通常1000℃以下、好ましくは600℃以下である。
焼成温度が低すぎると金属酸化物や金属硫化物の層が形
成しにくくなり、高すぎるとリチウムマンガン複合酸化
物が分解しやすくなる。焼成は、通常空気雰囲気などの
酸素存在下で行う。
In the case of supplying in a liquid phase, it is possible to adopt a method of preparing a slurry containing the lithium manganese composite oxide and the coating layer raw material, drying the slurry and firing the slurry. In this case, the coating layer raw material to be used is preferably one that is dissolved or suspended in the slurry solvent used, and examples thereof include a water-soluble salt of a metal element constituting the coating layer and an oxide sol. Water is usually used as the slurry solvent, but other various inorganic solvents and organic solvents can be used. The drying method is not particularly limited, but a spray drying method is preferred because it is easy to form a uniform coating layer. The drying temperature during drying is usually 20 ° C. or higher, preferably 40 ° C. or higher, and is usually 300 ° C. or lower, preferably 200 ° C. or lower.
If the drying temperature is too low, the drying time takes too long. If the drying temperature is too high, it is difficult to maintain the shape of the lithium manganese composite oxide. The firing temperature at the time of firing after drying is preferably a temperature at which the coating layer material is sufficiently formed and does not form a solid solution in the lithium manganate composite oxide, and is usually 200 ° C. or higher, preferably 400 ° C. or higher, It is usually 1000 ° C. or lower, preferably 600 ° C. or lower.
If the firing temperature is too low, it is difficult to form a metal oxide or metal sulfide layer, and if it is too high, the lithium manganese composite oxide is easily decomposed. The firing is usually performed in the presence of oxygen such as an air atmosphere.

【0013】本発明において、被覆されるリチウムマン
ガン複合酸化物には特に制限はなく、常法に従って作製
された各種のものを使用することができる。代表的に
は、LiMn2 4 なる組成で示されるスピネル型のリ
チウムマンガン複合酸化物が挙げられるが、マンガンサ
イトの一部がAl、Ti、V、Cr、Fe、Co、N
i、Cu、Zn、Mg等の他の金属で置換されていた
り、酸素サイトの一部が硫黄やハロゲン元素で置換され
ていてもよい。また、酸素量に多少の不定比性があって
もよい。具体的には、例えば、
In the present invention, the lithium manganese composite oxide to be coated is not particularly limited, and various ones prepared according to a conventional method can be used. Typically, a spinel-type lithium manganese composite oxide represented by a composition of LiMn 2 O 4 can be mentioned, and a part of the manganese site is Al, Ti, V, Cr, Fe, Co, N
It may be substituted with another metal such as i, Cu, Zn, Mg, or a part of the oxygen site may be substituted with sulfur or a halogen element. Further, the oxygen content may have some non-stoichiometric property. Specifically, for example,

【0014】[0014]

【化1】Lix Mny Z 4 [Formula 1] Li x Mn y M Z O 4

【0015】(ただし0<x<2.5、1.5<y<
2.5、0<z<1、MはAl、Ti、V、Cr、F
e、Co、Ni、Cu、Zn、Mgから選ばれる1種以
上の元素)で表されるリチウム含有複合酸化物が挙げら
れる。被覆されるべきリチウムマンガン複合酸化物の形
状に特に制限はないが、通常一次粒子の粒径が5μm以
下であり、好ましくは2μm以下である。また、一次粒
子の粒径は通常0.1μm以上であり、好ましくは0.
5μm以上である。粒径が大きすぎるとリチウムの通過
に時間がかかりすぎる傾向にあり、粒径が小さすぎると
比表面積が大きくなり、被覆が困難になる傾向にある。
また、リチウムマンガン複合酸化物の比表面積として
は、あまりに大きすぎると被覆が困難になるので通常5
0m2 /g以下、好ましくは10m2 /g以下である
が、あまりに小さいとリチウムの通過が困難になるので
一般的には0.1m2 /g以上である。
(Where 0 <x <2.5, 1.5 <y <
2.5, 0 <z <1, M is Al, Ti, V, Cr, F
e, one or more elements selected from Co, Ni, Cu, Zn, and Mg). The shape of the lithium manganese composite oxide to be coated is not particularly limited, but the primary particles usually have a particle size of 5 μm or less, preferably 2 μm or less. The particle size of the primary particles is usually 0.1 μm or more, preferably 0.1 μm.
5 μm or more. If the particle size is too large, the passage of lithium tends to take too long, and if the particle size is too small, the specific surface area tends to be large and coating tends to be difficult.
If the specific surface area of the lithium-manganese composite oxide is too large, it becomes difficult to coat the lithium-manganese composite oxide.
It is at most 0 m 2 / g, preferably at most 10 m 2 / g, but if it is too small, it will be difficult for lithium to pass therethrough, so it is generally at least 0.1 m 2 / g.

【0016】被覆されるべきリチウムマンガン複合酸化
物は、従来公知の各種の方法にて製造することができ、
例えば、リチウム、マンガン及び必要に応じてその他の
材料を含有する出発原料を混合後、酸素存在下で焼成・
冷却することによって製造することができる。出発原料
として用いられるリチウム化合物としては、Li2 CO
3 、LiNO 3 、LiOH、LiOH・H2 O、LiC
l、CH3 COOLi、Li2 O、ジカルボン酸Li、
脂肪酸Li等が挙げられる。出発原料として用いられる
マンガン化合物としては、Mn2 3 ,MnO2 等のマ
ンガン酸化物、MnCO3 、Mn(NO3 2 、ジカル
ボン酸マンガン、脂肪酸マンガン等のマンガン塩等が挙
げられるが、中でもMn2 3 を用いることが好まし
く、この場合のMn2 3 はMnCO3 やMnO2 など
の化合物を熱処理して作製したものを用いてもよい。
Lithium manganese composite oxidation to be coated
The product can be manufactured by various conventionally known methods,
For example, lithium, manganese and other
After mixing the starting materials containing the materials, firing in the presence of oxygen
It can be manufactured by cooling. Starting material
Lithium compounds used asTwoCO
Three, LiNO Three, LiOH, LiOH.HTwoO, LiC
l, CHThreeCOOLi, LiTwoO, Li dicarboxylic acid,
Fatty acid Li etc. are mentioned. Used as starting material
As a manganese compound, MnTwoOThree, MnOTwoEtc.
Manganese oxide, MnCOThree, Mn (NOThree)Two, Zikal
Manganese salts such as manganese borate and fatty acid manganese are listed.
But MnTwoOThreeIt is preferable to use
In this case, MnTwoOThreeIs MnCOThreeAnd MnOTwoSuch
A compound prepared by heat-treating the above compound may be used.

【0017】また、他金属元素により置換されたリチウ
ムマンガン酸化物を製造する場合、出発原料として用い
られる他金属元素の化合物としては、酸化物、水酸化
物、硝酸塩、炭酸塩、ジカルボン酸塩、脂肪酸塩、アン
モニウム塩等が挙げられる。これらの出発原料は、通常
湿式混合、乾式混合、ボールミル粉砕、共沈等の方法に
よって混合される。混合の前後、および混合中において
粉砕の工程を加えてもよい。
In the case of producing a lithium manganese oxide substituted by another metal element, the compound of the other metal element used as a starting material includes oxides, hydroxides, nitrates, carbonates, dicarboxylates, and the like. Fatty acid salts, ammonium salts and the like. These starting materials are usually mixed by a method such as wet mixing, dry mixing, ball mill pulverization, and coprecipitation. A pulverizing step may be added before, during and after mixing.

【0018】焼成・冷却の方法としては、例えば、仮焼
後600〜850℃程度の温度で酸素雰囲気下で本焼を
行い、次いで500℃以下程度まで10℃/min以下
の速度で徐冷する方法や、仮焼後600〜850℃程度
の温度で空気又は酸素雰囲気下で本焼し、次いで400
℃程度の温度で酸素雰囲気下アニールする方法を挙げる
ことができる。焼成・冷却の条件については、特開平9
−306490号公報、特開平9−306493号公
報、特開平9−259880号公報等に詳しく記載され
ている。
As a method of firing and cooling, for example, after calcination, main firing is performed at a temperature of about 600 to 850 ° C. in an oxygen atmosphere, and then gradually cooled to about 500 ° C. or less at a rate of 10 ° C./min or less. After the calcination, firing is performed at a temperature of about 600 to 850 ° C. in an air or oxygen atmosphere.
A method of annealing at a temperature of about ° C. in an oxygen atmosphere can be used. The firing and cooling conditions are described in
These are described in detail in JP-A-306490, JP-A-9-306493, JP-A-9-259880, and the like.

【0019】本発明のリチウム二次電池用正極材料は、
活物質としてリチウム二次電池の正極に用いられるが、
このような正極は、通常上記活物質、結着剤及び導電剤
を含有する正極合剤として用いられる。結着剤( バイン
ダー) としては、例えばポリフッ化ビニリデン、ポリテ
トラフルオロエチレン、EPDM( エチレン−プロピレ
ン−ジエン三元共重合体) 、SBR( スチレン−ブタジ
エンゴム) 、NBR(アクリロニトリル−ブタジエンゴ
ム) 、フッ素ゴム等が挙げられる。また、導電剤として
は、黒鉛の微粒子、アセチレンブラック等のカーボンブ
ラック、ニードルコークス等の無定形炭素の微粒子等が
挙げられる。正極中における、活物質、結着剤及び導電
剤の含有量は、それぞれ通常20〜90重量%、10〜
50重量%、及び1〜20重量%程度である。正極は、
上記の材料を含むスラリーを塗布、乾燥することによっ
て得ることができる。
The positive electrode material for a lithium secondary battery of the present invention comprises:
Used as the active material in the positive electrode of a lithium secondary battery,
Such a positive electrode is usually used as a positive electrode mixture containing the above-mentioned active material, binder and conductive agent. Examples of the binding agent (binder) include polyvinylidene fluoride, polytetrafluoroethylene, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), and fluorine. Rubber and the like. Examples of the conductive agent include fine particles of graphite, carbon black such as acetylene black, and fine particles of amorphous carbon such as needle coke. The content of the active material, the binder, and the conductive agent in the positive electrode is usually 20 to 90% by weight,
It is about 50% by weight and 1 to 20% by weight. The positive electrode is
It can be obtained by applying and drying a slurry containing the above materials.

【0020】正極は、負極及び電解質層と組み合わせて
リチウム二次電池とされる。負極に使用される活物質と
しては、通常、この種のリチウム二次電池に用いられる
材料がいずれも使用可能である。例えば、リチウムやリ
チウム合金であってもよいが、より安全性の高いリチウ
ムを挿入・放出できる炭素材料が好ましい。この炭素材
料は特に限定されないが、黒鉛及び、石炭系コークス、
石油系コークス、石炭系ピッチの炭化物、石油系ピッチ
の炭化物、ニードルコークス、ピッチコークス、フェノ
ール樹脂、結晶セルロース等の炭化物等及びこれらを一
部黒鉛化した炭素材、ファーネスブラック、アセチレン
ブラック、ピッチ系炭素繊維等が挙げられる。
The positive electrode is a lithium secondary battery in combination with the negative electrode and the electrolyte layer. As the active material used for the negative electrode, any of the materials usually used for this type of lithium secondary battery can be used. For example, lithium or a lithium alloy may be used, but a carbon material that can insert and release lithium with higher safety is preferable. Although this carbon material is not particularly limited, graphite and coal-based coke,
Petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, pitch coke, phenolic resin, carbide such as crystalline cellulose, etc. and carbon materials partially graphitized from these, furnace black, acetylene black, pitch-based And carbon fibers.

【0021】負極は、通常上記活物質と結着剤( バイン
ダー) と含有する。結着剤としては、正極と同様の材料
を使用することができる。また、その製造も正極と同様
の方法を採用することができる。電解質層は、通常電解
質からなるイオン伝導体とセパレータとから構成され
る。セパレーターを使用する場合は、通常微多孔性の高
分子フィルムが用いられ、ナイロン、セルロースアセテ
ート、ニトロセルロース、ポリスルホン、ポリアクリロ
ニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポ
リエチレン、ポリブテン等のポリオレフィン高分子より
なるものが用いられる。セパレータの化学的及び電気化
学的安定性は重要な因子である。この点からポリオレフ
ィン系高分子が好ましく、電池セパレータの目的の一つ
である自己閉塞温度の点からポリエチレン製であること
が望ましい。
The negative electrode usually contains the above active material and a binder. As the binder, the same material as that for the positive electrode can be used. Also, the same method as that for the positive electrode can be used for the production. The electrolyte layer is usually composed of an ion conductor made of an electrolyte and a separator. When using a separator, usually a microporous polymer film is used, nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, those made of polyolefin polymers such as polybutene Used. The chemical and electrochemical stability of the separator is an important factor. In this respect, a polyolefin-based polymer is preferable, and it is preferable that the battery is made of polyethylene from the viewpoint of the self-closing temperature, which is one of the purposes of the battery separator.

【0022】ポリエチレンセパレーターの場合、高温形
状維持性の点から超高分子量ポリエチレンであることが
好ましく、その分子量の下限は好ましくは50万、さら
に好ましくは100万、最も好ましくは150万であ
る。他方分子量の上限は、好ましくは500万、更に好
ましくは400万、最も好ましくは300万である。分
子量が大きすぎると、流動性が低すぎて加熱された時セ
パレーターの孔が閉塞しない場合があるからである。
In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5,000,000, more preferably 4,000,000, and most preferably 3,000,000. If the molecular weight is too large, the fluidity is too low and the pores of the separator may not be closed when heated.

【0023】また、本発明のリチウム二次電池における
イオン伝導体には、例えば公知の有機電解液、高分子固
体電解質、ゲル状電解質、無機固体電解質等を用いるこ
とができるが、中でも有機電解液が好ましい。有機電解
液は、有機溶媒と溶質から構成される。有機溶媒として
は特に限定されるものではないが、例えばカーボネート
類、エーテル類、ケトン類、スルホラン系化合物、ラク
トン類、ニトリル類、塩素化炭化水素類、エーテル類、
アミン類、エステル類、アミド類、リン酸エステル化合
物等を使用することができる。これらの代表的なものを
列挙すると、プロピレンカーボネート、エチレンカーボ
ネート、ビニレンカーボネート、テトラヒドロフラン、
2−メチルテトラヒドロフラン、1,4−ジオキサン、
4−メチル−2−ペンタノン、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル、ベンゾニトリ
ル、ブチロニトリル、バレロニトリル、1,2−ジクロ
ロエタン、ジメチルホルムアミド、ジメチルスルホキシ
ド、リン酸トリメチル、リン酸トリエチル等の単独もし
くは二種類以上の混合溶媒が使用できる。
As the ion conductor in the lithium secondary battery of the present invention, for example, known organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes and the like can be used. Is preferred. The organic electrolyte is composed of an organic solvent and a solute. The organic solvent is not particularly limited, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers,
Amines, esters, amides, phosphate compounds and the like can be used. When these representatives are listed, propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran,
2-methyltetrahydrofuran, 1,4-dioxane,
4-methyl-2-pentanone, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, dimethylformamide, dimethylsulfoxide, A single solvent such as trimethyl phosphate and triethyl phosphate or a mixture of two or more solvents can be used.

【0024】またこの溶媒に溶解させる溶質として特に
限定されるものではないが、従来公知のいずれもが使用
でき、LiClO4 、LiAsF6 、LiPF6 、Li
BF 4 、LiB(C6 5 4 、LiCl、LiBr、
CH3 SO3 Li、CF3 SO3 Li等のリチウム塩が
挙げられ、これらのうち少なくとも1種以上のものを用
いることができる。
Particularly, as a solute dissolved in this solvent,
Any known, but not limited, use
Yes, LiClOFour, LiAsF6, LiPF6, Li
BF Four, LiB (C6HFive)Four, LiCl, LiBr,
CHThreeSOThreeLi, CFThreeSOThreeLithium salts such as Li
Use at least one of these
Can be.

【0025】高分子固体電解質を使用する場合にも、こ
の高分子に公知のものを用いることができ、特にリチウ
ムイオンに対するイオン導電性の高い高分子を使用する
ことが好ましく、例えば、ポリエチレンオキサイド、ポ
リプロピレンオキサイド、ポリエチレンイミン等が好ま
しく使用され、またこの高分子に対して上記の溶質と共
に、上記の溶媒を加えてゲル状電解質として使用するこ
とも可能である。無機固体電解質を使用する場合にも、
この無機物に公知の結晶質、非晶質固体電解質を用いる
ことができる。結晶質の固体電解質としては例えば、L
iI、Li3 N、Li1+x x Ti2-x (PO4
3 (ただしM=Al、Sc、Y及びLaからなる群から
選ばれる少なくとも一種)、Li0.5-3xRE0.5+x Ti
3 (ただしRE=La、Pr、Nd及びSmからなる
群から選ばれる少なくとも一種)等が挙げられ、非晶質
の固体電解質としては例えば、4.9 LiI−34.1Li2
O−61B2O5,33.3Li2O−66.7SiO2等の酸
化物ガラスや0.45LiI−0.37Li2S−0.26B2S
3,0.30LiI−0.42Li2S−0.28SiS2等の硫化
物ガラス等が挙げられる。これらのうち少なくとも1種
以上のものを用いることができる。
When a polymer solid electrolyte is used, any known polymer can be used. In particular, it is preferable to use a polymer having high ion conductivity with respect to lithium ions. Polypropylene oxide, polyethyleneimine and the like are preferably used, and the polymer can be used as a gel electrolyte by adding the above solvent together with the above solute. When using an inorganic solid electrolyte,
A known crystalline or amorphous solid electrolyte can be used for this inorganic substance. Examples of the crystalline solid electrolyte include L
iI, Li 3 N, Li 1 + x M x Ti 2-x (PO 4 )
3 (however, at least one selected from the group consisting of M = Al, Sc, Y and La), Li 0.5-3x RE 0.5 + x Ti
O 3 (wherein RE = at least one selected from the group consisting of La, Pr, Nd and Sm), and the like. As the amorphous solid electrolyte, for example, 4.9 LiI-34.1Li 2
Oxide glass such as O-61B2O5, 33.3Li2O-66.7SiO2 or 0.45LiI-0.37Li2S-0.26B2S
Sulfide glass such as 3,0.30LiI-0.42Li2S-0.28SiS2 and the like. At least one or more of these can be used.

【0026】[0026]

【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらにより何ら制限され
るものではない。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0027】実施例1 まず、正極を以下のように作成した。水酸化リチウム一
水和物(LiOH・H2 O)、三酸化二マンガン(Mn
2 3 )、ベーマイト(AlOOH)をモル比が1.0
3:1.85:0.12となるような量で秤量し、良く
混合し、850℃で24時間加熱してリチウムマンガン
複合酸化物(比表面積1.7m2 /g、平均1次粒径
0.5μm)を得た。この様にして得られたリチウムマ
ンガン複合酸化物を、以下、「核剤」と表記する。水6
0gに核剤8.42g、シュウ酸チタンアンモニウム
0.36gを加え、良く攪拌してスラリーとした後、噴
霧乾燥、解砕し、500℃で2hr加熱し、リチウムマ
ンガン複合酸化物の1次粒子の表面が酸化チタンで被覆
された正極活物質を得た。正極活物質中のMnに対する
Tiのモル比は0.012であるが、X線光電子分光で
のMn2pとTi2pの強度より求めた表面におけるM
nに対するTiのモル比は0.16であった。
Example 1 First, a positive electrode was prepared as follows. Lithium hydroxide
Hydrate (LiOH ・ HTwoO), dimanganese trioxide (Mn)
TwoO Three), Boehmite (AlOOH) having a molar ratio of 1.0
3: Weigh in such an amount as to give 1.85: 0.12.
Mix and heat at 850 ° C for 24 hours
Complex oxide (specific surface area 1.7mTwo/ G, average primary particle size
0.5 μm). The lithium polymer thus obtained is
The gangue composite oxide is hereinafter referred to as “nucleating agent”. Water 6
8.42 g of nucleating agent in 0 g, titanium ammonium oxalate
After adding 0.36 g and stirring well to form a slurry,
Mist drying, crushing, heating at 500 ° C for 2 hours,
The surface of primary particles of gangue composite oxide is coated with titanium oxide
The obtained positive electrode active material was obtained. For Mn in positive electrode active material
Although the molar ratio of Ti is 0.012, it is determined by X-ray photoelectron spectroscopy.
On the surface determined from the strength of Mn2p and Ti2p
The molar ratio of Ti to n was 0.16.

【0028】正極合剤は、正極活物質と導電剤としての
アセチレンブラック及び結着剤としてのポリ4フッ化エ
チレン樹脂を重量比で75:20:5の割合で混合して
作成した。次いで、正極合剤をシート状に成型して正極
とした。塗布負極は、黒鉛と結着剤としてのポリフッ化
ビニリデン(PVdF)を重量比で90:10の割合で
使用し、N−メチルピロリドンを溶媒として20μmの
厚さの銅箔の片面に塗布し、乾燥して溶媒を蒸発させ、
圧力0.5t/cm2 でプレス処理をすることにより作
成した。得られた塗布負極を12mmφに打ち抜き、負
極として用いた。
The positive electrode mixture was prepared by mixing a positive electrode active material, acetylene black as a conductive agent and polytetrafluoroethylene resin as a binder in a weight ratio of 75: 20: 5. Next, the positive electrode mixture was formed into a sheet to obtain a positive electrode. The coated negative electrode uses graphite and polyvinylidene fluoride (PVdF) as a binder at a weight ratio of 90:10, and is coated on one surface of a copper foil having a thickness of 20 μm using N-methylpyrrolidone as a solvent. Dry and evaporate the solvent,
It was prepared by performing a press treatment at a pressure of 0.5 t / cm 2 . The obtained coated negative electrode was punched into 12 mmφ and used as a negative electrode.

【0029】上記の正極、負極を用いて、電池を作成し
た。即ち正極の上にセパレーターとして多孔性ポリプロ
ピレンフィルムを置き、その上に負極を、ポリプロピレ
ン製ガスケットを付けた封口缶に圧着した。非水電解液
として1 モル/lのLiPF 6 を溶解したエチレンカー
ボネートとジエチルカーボネートとの混合溶液(50v
ol%:50vol%)を用い、これをセパレーター及
び負極上に加えた。この後、電池を封口してリチウム二
次電池とした。
A battery was prepared using the above positive electrode and negative electrode.
Was. That is, a porous polypropylene is used as a separator on the positive electrode.
Place a pyrene film on which the negative electrode is
It was crimped to a sealing can fitted with a gasket made of stainless steel. Non-aqueous electrolyte
1 mol / l LiPF 6Dissolved ethylene car
Mixed solution of carbonate and diethyl carbonate (50 v
ol%: 50 vol%), which was used as a separator and
And on the negative electrode. After this, the battery is sealed and lithium
The following battery was used.

【0030】実施例2 SnO2 0.40g、Sb2 3 0.04g含有するゾ
ル、及び実施例1で使用したのと同様の核剤10.14
gを水に加え全容積を60mlとした。この液を良く攪
拌してスラリーとした後、噴霧乾燥、解砕し、500℃
で2hr加熱し、正極活物質を得た。正極活物質中のM
nに対するSnのモル比は0.014であるが、X線光
電子分光でのMn2pとSn3d5の強度より求めた表
面におけるMnに対するSnのモル比は0.83であっ
た。また、SEMによって、リチウムマンガン複合酸化
物の1次粒子の表面が被覆層によって被覆されているの
を確認した。以下、実施例1と同様にしてリチウム二次
電池を作成した。
Example 2 Sol containing 0.40 g of SnO 2 and 0.04 g of Sb 2 O 3 , and the same nucleating agent as used in Example 1 10.14
g was added to water to make the total volume 60 ml. This liquid was stirred well to form a slurry, then spray-dried and pulverized at 500 ° C.
For 2 hours to obtain a positive electrode active material. M in positive electrode active material
The molar ratio of Sn to n was 0.014, but the molar ratio of Sn to Mn on the surface determined from the intensity of Mn2p and Sn3d5 by X-ray photoelectron spectroscopy was 0.83. Further, it was confirmed by SEM that the surface of the primary particles of the lithium manganese composite oxide was covered with the covering layer. Hereinafter, a lithium secondary battery was prepared in the same manner as in Example 1.

【0031】実施例3 水にSnO2 0.20g含有するゾル、実施例1で使用
したのと同様の核剤8.56gを加え全容積を60ml
とした。この液を良く攪拌してスラリーとした後、噴霧
乾燥、解砕し、500℃で2hr加熱し、正極活物質を
得た。SEMによって、リチウムマンガン複合酸化物の
1次粒子の表面が被覆層によって被覆されているのを確
認した。この様にして作成した正極活物質を用いること
以外は実施例1と同様にしてリチウム二次電池を作成し
た。
Example 3 A sol containing 0.20 g of SnO 2 in water and 8.56 g of the same nucleating agent as used in Example 1 were added to make a total volume of 60 ml.
And This liquid was stirred well to form a slurry, spray-dried and crushed, and heated at 500 ° C. for 2 hours to obtain a positive electrode active material. It was confirmed by SEM that the surface of the primary particles of the lithium manganese composite oxide was covered with the covering layer. A lithium secondary battery was prepared in the same manner as in Example 1 except that the thus prepared positive electrode active material was used.

【0032】比較例1 実施例1で示した核剤をそのまま正極活物質として用い
ること以外は実施例1と同様にしてリチウム二次電池を
作成した。これらの電池の50℃での高温サイクル特性
の比較を行った。なお、高温サイクル特性は、充放電電
流密度1mA/cm2 、電圧範囲が4.2Vから3.0
Vの間で定電流充放電する充放電サイクル試験によって
評価した。放電容量・サイクル特性を表−1に示す。な
お、表−1では正極活物質1g当たりに換算した放電容
量を用いている。本発明にかなう実施例では、高温サイ
クル特性が改良されていることが分かる。
Comparative Example 1 A lithium secondary battery was prepared in the same manner as in Example 1, except that the nucleating agent shown in Example 1 was used as a positive electrode active material. The high-temperature cycle characteristics at 50 ° C. of these batteries were compared. The high-temperature cycle characteristics were as follows: charge / discharge current density 1 mA / cm 2 , voltage range from 4.2 V to 3.0 V.
It was evaluated by a charge / discharge cycle test in which constant current charge / discharge was performed between V. Table 1 shows the discharge capacity and cycle characteristics. In Table 1, a discharge capacity converted per 1 g of the positive electrode active material is used. It can be seen that the examples according to the present invention have improved high-temperature cycle characteristics.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明によれば、容量、サイクル特性、
レート特性等の電池性能に優れ、特に、高温でのサイク
ル特性、高温安定に優れたリチウム二次電池用の材料を
提供することができる。その結果、安価で資源の豊富な
材料であるマンガンを使用したリチウムマンガン酸化物
が正極材料として実用上問題なく使用可能となり、高性
能で安全で安価なリチウム二次電池が広い用途に供給で
きるようになる。
According to the present invention, the capacity, cycle characteristics,
It is possible to provide a material for a lithium secondary battery that is excellent in battery performance such as rate characteristics, and particularly excellent in cycle characteristics at high temperatures and high temperature stability. As a result, lithium manganese oxide using manganese, an inexpensive and resource-rich material, can be used as a positive electrode material without any practical problems, and high-performance, safe and inexpensive lithium secondary batteries can be supplied to a wide range of applications. become.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z (72)発明者 釣田 寧 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 Fターム(参考) 4G048 AA04 AB01 AB04 AC06 AE05 AE06 AE07 5H029 AJ02 AJ03 AJ05 AK03 AL06 AL07 AL08 AL12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/40 H01M 10/40 Z (72) Inventor Nari Tsurida 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation Yokohama Research Laboratory F-term (reference) 4G048 AA04 AB01 AB04 AC06 AE05 AE06 AE07 5H029 AJ02 AJ03 AJ05 AK03 AL06 AL07 AL08 AL12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウムマンガン複合酸化物の粒子表面
を、電気伝導性及びリチウム伝導性を有する金属酸化物
及び金属硫化物からなる群から選ばれる少なくとも一種
で被覆してなるリチウム二次電池用正極材料。
1. A positive electrode for a lithium secondary battery comprising a lithium manganese composite oxide particle surface coated with at least one selected from the group consisting of metal oxides and metal sulfides having electrical conductivity and lithium conductivity. material.
【請求項2】 請求項1において、金属酸化物又は金属
硫化物がTi、Sn、V、Nb、Mo及びWからなる群
から選ばれる少なくとも一種の金属を含有するリチウム
二次電池用正極材料。
2. The positive electrode material for a lithium secondary battery according to claim 1, wherein the metal oxide or metal sulfide contains at least one metal selected from the group consisting of Ti, Sn, V, Nb, Mo and W.
【請求項3】 請求項1において、金属酸化物又は金属
硫化物がTi及びSnからなる群から選ばれる少なくと
も一種の金属を含有するリチウム二次電池用正極材料。
3. The positive electrode material for a lithium secondary battery according to claim 1, wherein the metal oxide or metal sulfide contains at least one metal selected from the group consisting of Ti and Sn.
【請求項4】 請求項1乃至3のいずれかにおいて、リ
チウムマンガン複合酸化物の粒子表面に、さらに、金属
酸化物及び/又は金属硫化物中の金属元素と異なる価数
の金属元素を存在させるリチウム二次電池用正極材料。
4. A metal element having a valence different from that of the metal element in the metal oxide and / or metal sulfide on the particle surface of the lithium manganese composite oxide according to any one of claims 1 to 3. Positive electrode material for lithium secondary batteries.
【請求項5】 請求項1乃至4のいずれかに記載の正極
材料、結着剤及び導電材を含有するリチウム二次電池用
正極。
5. A positive electrode for a lithium secondary battery, comprising the positive electrode material according to claim 1, a binder and a conductive material.
【請求項6】 請求項1乃至4のいずれかに記載の正極
材料を用いたリチウム二次電池。
6. A lithium secondary battery using the positive electrode material according to claim 1.
【請求項7】 リチウムマンガン複合酸化物と金属を含
有する被覆層原料とを含有したスラリーを噴霧乾燥後、
焼成することを特徴とする請求項1乃至4のいずれか1
つに記載のリチウム二次電池用正極材料の製造法。
7. After spray-drying a slurry containing a lithium manganese composite oxide and a coating layer raw material containing a metal,
5. The method according to claim 1, wherein the sintering is performed.
5. A method for producing a positive electrode material for a lithium secondary battery according to any one of the above.
JP2000079929A 1999-04-23 2000-03-22 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery Expired - Lifetime JP4706090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079929A JP4706090B2 (en) 1999-04-23 2000-03-22 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11672899 1999-04-23
JP11-116728 1999-04-23
JP1999116728 1999-04-23
JP2000079929A JP4706090B2 (en) 1999-04-23 2000-03-22 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery

Publications (3)

Publication Number Publication Date
JP2001006676A true JP2001006676A (en) 2001-01-12
JP2001006676A5 JP2001006676A5 (en) 2007-05-10
JP4706090B2 JP4706090B2 (en) 2011-06-22

Family

ID=26455000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079929A Expired - Lifetime JP4706090B2 (en) 1999-04-23 2000-03-22 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4706090B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202960A (en) * 2000-01-14 2001-07-27 Sony Corp Positive electrode material and secondary battery using the same
JP2003123739A (en) * 2001-10-17 2003-04-25 Samsung Sdi Co Ltd Positive electrode active material for lithium - sulfur battery, positive electrode active material composition including the same, method of preparing the same, and lithium - sulfur battery prepared using the same
KR100393684B1 (en) * 2001-10-25 2003-08-06 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
KR100424637B1 (en) * 2001-10-25 2004-03-24 삼성에스디아이 주식회사 A thin film for lithium secondary battery and a method of preparing the same
KR100424646B1 (en) * 2001-06-14 2004-03-31 삼성에스디아이 주식회사 Active material for battery and a method of preparing same
KR100437339B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 A method of preparing active material for battery and active material prepared therefrom
KR100437340B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR100441520B1 (en) * 2002-05-28 2004-07-23 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
WO2008013208A1 (en) * 2006-07-26 2008-01-31 Agc Seimi Chemical Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2008071750A (en) * 2006-08-17 2008-03-27 Tdk Corp Process for production of active material and electrode, active material, and electrode
JP2009218198A (en) * 2008-02-13 2009-09-24 Tdk Corp Method of manufacturing active material and electrode, and active material and electrode
JP2010225593A (en) * 2010-06-02 2010-10-07 Sony Corp Positive electrode material and secondary battery
WO2011145462A1 (en) * 2010-05-17 2011-11-24 住友電気工業株式会社 Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
JP2012238554A (en) * 2011-05-13 2012-12-06 Toyota Industries Corp Lithium manganese silicate composite, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US8715854B2 (en) 2006-08-17 2014-05-06 Tdk Corporation Active material with a surface-modified layer covering a metal oxide core and an electrode and battery comprising the same
JP2017216243A (en) * 2015-11-13 2017-12-07 日立金属株式会社 Positive electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2018190720A (en) * 2017-04-28 2018-11-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery
KR20190022396A (en) * 2017-08-24 2019-03-06 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same
JP2020518962A (en) * 2017-05-04 2020-06-25 エルジー・ケム・リミテッド Negative electrode active material, negative electrode including the negative electrode active material, secondary battery including the negative electrode, and method for manufacturing the negative electrode active material
WO2024000405A1 (en) * 2022-06-30 2024-01-04 宁德新能源科技有限公司 Positive electrode material, electrochemical apparatus and electrical apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101794097B1 (en) 2013-07-03 2017-11-06 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288127A (en) * 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd Nonaqueous electrolyte battery
JPH08102332A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Secondary battery
JPH08138744A (en) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08250120A (en) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd Lithium secondary battery
JPH0950810A (en) * 1995-08-08 1997-02-18 Mitsui Toatsu Chem Inc Electrode active material for non-aqueous electrolytic battery and manufacture thereof
WO1997023918A1 (en) * 1995-12-26 1997-07-03 Kao Corporation Anode active material and nonaqueous secondary battery
JPH10255764A (en) * 1997-03-14 1998-09-25 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH1116566A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Battery
JPH11185758A (en) * 1997-12-24 1999-07-09 Aichi Steel Works Ltd Positive electrode material for nonaqueous secondary battery
JP2000040512A (en) * 1998-07-24 2000-02-08 Mitsui Mining & Smelting Co Ltd Manufacture of positive electrode material for lithium secondary battery
JP2000149948A (en) * 1998-11-12 2000-05-30 Toshiba Corp Positive active material, lithium ion secondary battery and manufacture of its positive active material
JP2000231919A (en) * 1999-02-09 2000-08-22 Denso Corp Positive electrode active material and nonaqueous electrolyte secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288127A (en) * 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd Nonaqueous electrolyte battery
JPH08102332A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Secondary battery
JPH08138744A (en) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08250120A (en) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd Lithium secondary battery
JPH0950810A (en) * 1995-08-08 1997-02-18 Mitsui Toatsu Chem Inc Electrode active material for non-aqueous electrolytic battery and manufacture thereof
WO1997023918A1 (en) * 1995-12-26 1997-07-03 Kao Corporation Anode active material and nonaqueous secondary battery
JPH10255764A (en) * 1997-03-14 1998-09-25 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH1116566A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Battery
JPH11185758A (en) * 1997-12-24 1999-07-09 Aichi Steel Works Ltd Positive electrode material for nonaqueous secondary battery
JP2000040512A (en) * 1998-07-24 2000-02-08 Mitsui Mining & Smelting Co Ltd Manufacture of positive electrode material for lithium secondary battery
JP2000149948A (en) * 1998-11-12 2000-05-30 Toshiba Corp Positive active material, lithium ion secondary battery and manufacture of its positive active material
JP2000231919A (en) * 1999-02-09 2000-08-22 Denso Corp Positive electrode active material and nonaqueous electrolyte secondary battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202960A (en) * 2000-01-14 2001-07-27 Sony Corp Positive electrode material and secondary battery using the same
KR100424646B1 (en) * 2001-06-14 2004-03-31 삼성에스디아이 주식회사 Active material for battery and a method of preparing same
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
JP4856847B2 (en) * 2001-08-20 2012-01-18 ユミコア Positive electrode active material for secondary battery and method for producing the same
JP2003123739A (en) * 2001-10-17 2003-04-25 Samsung Sdi Co Ltd Positive electrode active material for lithium - sulfur battery, positive electrode active material composition including the same, method of preparing the same, and lithium - sulfur battery prepared using the same
KR100393684B1 (en) * 2001-10-25 2003-08-06 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
KR100424637B1 (en) * 2001-10-25 2004-03-24 삼성에스디아이 주식회사 A thin film for lithium secondary battery and a method of preparing the same
KR100437340B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR100437339B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 A method of preparing active material for battery and active material prepared therefrom
KR100441520B1 (en) * 2002-05-28 2004-07-23 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
WO2008013208A1 (en) * 2006-07-26 2008-01-31 Agc Seimi Chemical Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2008071750A (en) * 2006-08-17 2008-03-27 Tdk Corp Process for production of active material and electrode, active material, and electrode
US8715854B2 (en) 2006-08-17 2014-05-06 Tdk Corporation Active material with a surface-modified layer covering a metal oxide core and an electrode and battery comprising the same
JP2009218198A (en) * 2008-02-13 2009-09-24 Tdk Corp Method of manufacturing active material and electrode, and active material and electrode
WO2011145462A1 (en) * 2010-05-17 2011-11-24 住友電気工業株式会社 Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
CN102893431A (en) * 2010-05-17 2013-01-23 住友电气工业株式会社 Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
JP2010225593A (en) * 2010-06-02 2010-10-07 Sony Corp Positive electrode material and secondary battery
JP2012238554A (en) * 2011-05-13 2012-12-06 Toyota Industries Corp Lithium manganese silicate composite, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017216243A (en) * 2015-11-13 2017-12-07 日立金属株式会社 Positive electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2018190720A (en) * 2017-04-28 2018-11-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery
JP7131056B2 (en) 2017-04-28 2022-09-06 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2020518962A (en) * 2017-05-04 2020-06-25 エルジー・ケム・リミテッド Negative electrode active material, negative electrode including the negative electrode active material, secondary battery including the negative electrode, and method for manufacturing the negative electrode active material
JP7045556B2 (en) 2017-05-04 2022-04-01 エルジー エナジー ソリューション リミテッド A method for manufacturing a negative electrode active material, a negative electrode containing the negative electrode active material, a secondary battery including the negative electrode, and the negative electrode active material.
US11437611B2 (en) 2017-05-04 2022-09-06 Lg Energy Solution, Ltd. Negative electrode active material, negative electrode including the same, secondary battery including the negative electrode, and preparation method of the negative electrode active material
KR20190022396A (en) * 2017-08-24 2019-03-06 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same
KR102138691B1 (en) 2017-08-24 2020-07-28 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same
WO2024000405A1 (en) * 2022-06-30 2024-01-04 宁德新能源科技有限公司 Positive electrode material, electrochemical apparatus and electrical apparatus

Also Published As

Publication number Publication date
JP4706090B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4706090B2 (en) Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery
JP5111421B2 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
US8062794B2 (en) Positive active material and nonaqueous electrolyte secondary battery produced using the same
KR101535325B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
EP2555287B1 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
TWI311827B (en) Positive electrode active material and non-aqueous electrolyte secondary cell
JP7127277B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode active material for lithium ion secondary battery
JP2015015244A (en) Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP2012038534A (en) Positive electrode material for lithium secondary battery, lithium secondary battery and secondary battery module using the same
JP4834901B2 (en) Positive electrode material for lithium secondary battery
CN114868281A (en) Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
JP5300370B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2011216300A (en) Manufacturing method of active material, and manufacturing method of electrode
JP2014072025A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP3944899B2 (en) Non-aqueous secondary battery
JP5017010B2 (en) Lithium secondary battery
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
CN115191040A (en) Na-excess P3 type layered oxide Na x M y O z Wherein x is more than or equal to 0.66, y is more than or equal to 0.8 and less than or equal to 1.0, and z is less than or equal to 2 and is used as a cathode material of the sodium-ion battery
JP2002145619A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and manufacturing method of lithium secondary cell and lithium manganese multiple oxide
WO2018123603A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R150 Certificate of patent or registration of utility model

Ref document number: 4706090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term