JP2001004850A - Substrate for optical part and its manufacture, and controlling method for thermal expansion coefficient of the substrate - Google Patents

Substrate for optical part and its manufacture, and controlling method for thermal expansion coefficient of the substrate

Info

Publication number
JP2001004850A
JP2001004850A JP11171414A JP17141499A JP2001004850A JP 2001004850 A JP2001004850 A JP 2001004850A JP 11171414 A JP11171414 A JP 11171414A JP 17141499 A JP17141499 A JP 17141499A JP 2001004850 A JP2001004850 A JP 2001004850A
Authority
JP
Japan
Prior art keywords
polyimide
thermal expansion
substrate
coefficient
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11171414A
Other languages
Japanese (ja)
Inventor
Shigekuni Sasaki
重邦 佐々木
Toru Matsuura
松浦  徹
Fumio Yamamoto
二三男 山本
Hiroichi Yokoyama
博一 横山
Norimi Sugimoto
範巳 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Du Pont Toray Co Ltd
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd, NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical Du Pont Toray Co Ltd
Priority to JP11171414A priority Critical patent/JP2001004850A/en
Publication of JP2001004850A publication Critical patent/JP2001004850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for optical parts capable of manufacturing a polymer substrate for a polymer optical waveguide excellent in surface smoothness and having a thermal expansion coefficient of 4×10-5/ deg.C or higher and 1.2×10-4/ deg.C or lower, and to provide a manufacturing method for the substrate for optical parts, and a controlling method for the thermal expansion coefficient of the polymer substrate. SOLUTION: Thin polymer films with smooth surfaces are laminated to form a laminated body, which is applied to a substrate for optical parts. In addition, one kind of polyimide film or two or more kinds of polyimide films of different thermal expansion coefficients are used to make a laminated body in which the polyimide films are laminated in an appropriate order. This laminated body is used as a substrate, which changes the chemical structure of the polyimide and the constitution of the laminating to control the thermal expansion coefficient of the substrate for optical parts in a wide range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数層の高分子フ
ィルムを積層一体化してなる光部品用基板とその製造方
法、および該基板の熱膨張率制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for an optical component formed by laminating and integrating a plurality of polymer films, a method for manufacturing the same, and a method for controlling the coefficient of thermal expansion of the substrate.

【0002】[0002]

【従来の技術】低損失光ファイバの開発による光通信シ
ステムの実用化に伴い、種々の光通信用部品の開発が望
まれている。また、これら光部品を高密度に実装する光
配線技術、特に光導波路技術の確立が望まれている。
2. Description of the Related Art With the practical use of optical communication systems by the development of low-loss optical fibers, development of various optical communication components has been desired. Further, it is desired to establish an optical wiring technology for mounting these optical components at a high density, particularly an optical waveguide technology.

【0003】一般に、光導波路材料には、光損失が小さ
いこと、光導波路の作製が容易なこと、コアとクラッド
の屈折率差を制御できること、耐熱性に優れているこ
と、等の条件が要求される。光導波路材料として、これ
までに最も精力的に検討されているのが石英系材料であ
る。光ファイバで実証済のように、石英は光透過性が極
めて良好であるため、光導波路とした場合も、波長が
1.3μmにおいて0.1dB/cm以下の低光損失化
が達成されている。しかし、その光導波路には、作製に
長時間を必要とする、作製時に高温が必要である、大面
積化が困難であるなど、製造上の問題がある。
In general, optical waveguide materials are required to have conditions such as low optical loss, easy production of the optical waveguide, control of the refractive index difference between the core and the clad, and excellent heat resistance. Is done. The most vigorously studied optical waveguide material so far is a quartz-based material. As demonstrated with optical fibers, quartz has extremely good light transmittance, so that even when used as an optical waveguide, a low optical loss of 0.1 dB / cm or less is achieved at a wavelength of 1.3 μm. . However, the optical waveguide has manufacturing problems, such as a long time required for fabrication, a high temperature required for fabrication, and difficulty in increasing the area.

【0004】これに対して、ポリメチルメタクリレート
などのプラスチック光学材料は、低い温度で光導波路形
成が可能であり、低価格が期待できるなどの長所がある
一方、耐熱性,耐湿性に劣るという欠点がある。また、
ポリイミドはプラスチックの中で最も耐熱性に優れてい
るが、従来のポリイミドは光透過性に劣るという問題が
あった。
[0004] On the other hand, plastic optical materials such as polymethyl methacrylate have the advantages that an optical waveguide can be formed at a low temperature and low cost can be expected, but they are inferior in heat resistance and moisture resistance. There is. Also,
Polyimide has the highest heat resistance among plastics, but conventional polyimide has a problem in that it has poor light transmittance.

【0005】そこで、本発明者らはポリイミドの化学構
造を検討することにより光透過性に優れたポリイミド光
学材料の研究を行ってきた。本発明者らは特開平3−7
2528号公報で光透過性に優れたフッ素化ポリイミド
を明らかにしている。さらに、特開平4−8734号公
報では、このフッ素化ポリイミドを共重合することによ
り、例えば、光導波路の形成に必要な屈折率制御が可能
であることを明らかにしている。また、このフッ素化ポ
リイミドを用いた光導波路については、特開平4−98
07号公報、同4−235505号公報、同4−235
506号公報で明らかにしている。このように光透過性
に優れたポリイミドで耐熱性に優れたプラスチック光導
波路が実現されている。
Accordingly, the present inventors have studied a polyimide optical material having excellent light transmittance by examining the chemical structure of polyimide. The present inventors have disclosed in Japanese Patent Application Laid-Open
No. 2528 discloses a fluorinated polyimide excellent in light transmittance. Further, Japanese Patent Application Laid-Open No. 4-8734 discloses that copolymerization of this fluorinated polyimide makes it possible to control, for example, the refractive index necessary for forming an optical waveguide. An optical waveguide using this fluorinated polyimide is disclosed in
Nos. 07, 4-235505 and 4-235
No. 506 discloses this. As described above, a plastic optical waveguide excellent in heat resistance is realized by using polyimide excellent in light transmittance.

【0006】しかしながら、ポリイミド光導波路におい
ても、幾つかの問題がある。例えば、ポリイミドは耐熱
性に優れている反面、化学構造中の芳香族環が配向し易
いという面も持っている。これは、光学材料としてみた
場合、複屈折を発現し易いということが言える。複屈折
自体は、光学材料としてはある場合は好ましい特性であ
り、ある場合は好ましくない特性となる。また、光導波
路用材料としてみた場合も、同じことが言える。例え
ば、直線偏光の偏波面を保存しながら導波させたい場合
は、複屈折があった方が良いが、無偏波の光を導波させ
たい場合は、複屈折を持たない方が良い。このように、
複屈折をいかようにも制御できることが期待されてい
る。本発明者らのこれまでの検討により、このうち低複
屈折ポリイミド膜については、基板の熱膨張係数とポリ
イミドの熱膨張係数を合わせること、すなわち、基板と
してポリイミド基板を用いることにより低複屈折ポリイ
ミド膜が実現できることを、見いだした(特願平7−1
87652号明細書)。このように光部品を作製するに
当り、光導波路材料に合わせて、基板の熱膨張係数を制
御することは高性能な光部品を作製するために極めて有
効かつ重要な手法である。
However, polyimide optical waveguides also have some problems. For example, polyimide has excellent heat resistance, but also has a surface in which aromatic rings in the chemical structure are easily oriented. This means that when viewed as an optical material, birefringence is easily developed. The birefringence itself is a desirable characteristic as an optical material in some cases, and an undesirable characteristic in some cases. In addition, the same can be said when viewed as a material for an optical waveguide. For example, if it is desired to guide the waveguide while maintaining the plane of polarization of linearly polarized light, it is better to have birefringence, but if it is desired to guide non-polarized light, it is better not to have birefringence. in this way,
It is expected that the birefringence can be controlled in any way. The inventors of the present invention have studied so far that the low birefringence polyimide film has a low birefringence polyimide by matching the coefficient of thermal expansion of the substrate with the coefficient of thermal expansion of the polyimide, that is, by using a polyimide substrate as the substrate. It has been found that a film can be realized (Japanese Patent Application No. 7-1).
87652). In manufacturing an optical component as described above, controlling the thermal expansion coefficient of the substrate in accordance with the material of the optical waveguide is an extremely effective and important method for manufacturing a high-performance optical component.

【0007】また、LSI等の基板やモジュール基板、
プリズム基板等の電子部品の回路基板においても、回路
を構成する金属材料や絶縁材料に合わせて、基板の熱膨
張係数を制御することは、電子部品の応力を低減し、部
品の歩留まりや信頼性を大きく向上させることが期待で
きる。
In addition, substrates such as LSIs and module substrates,
For circuit boards of electronic components such as prism substrates, controlling the coefficient of thermal expansion of the substrate in accordance with the metal material or insulating material that constitutes the circuit reduces the stress on the electronic components and reduces the yield and reliability of the components. Can be expected to be greatly improved.

【0008】[0008]

【発明が解決しようとする課題】ところで、前述の光部
品用基板には、以下のような問題点があることが明らか
となった。すなわち、ポリイミド基板上にポリイミド膜
を形成する場合、低複屈折化は実現できるが、この基板
上に作製したポリイミド光導波路は光を通しにくいとい
う問題点が生じた。これはポリイミド基板が光学用途に
適した基板ではないということが原因であると考えられ
る。そこで、本発明者らは、圧縮成型等で作製したポリ
イミド成型体から切り出したポリイミド基板の表面の平
均粗さを500Å以下に研磨することで光学用基板とし
て適用できることを、特願平9−187194号明細書
において、明らかにした。しかし、この方法では、成型
直後のポリイミド成型体はその表面粗さが著しく大きい
ため、表面を平滑にするための研磨に長時間を要し、基
板の製造コストが著しく高くなるという問題点を有して
いた。
However, it has been found that the above-mentioned substrate for optical components has the following problems. That is, when a polyimide film is formed on a polyimide substrate, a low birefringence can be realized, but there is a problem that the polyimide optical waveguide formed on this substrate does not easily transmit light. This is considered to be because the polyimide substrate is not a substrate suitable for optical applications. The inventors of the present invention have disclosed that the surface of a polyimide substrate cut out from a polyimide molded body produced by compression molding or the like can be applied as an optical substrate by polishing the surface to an average roughness of 500 ° or less, as disclosed in Japanese Patent Application No. Hei 9-187194. In the specification, it was made clear. However, this method has a problem that the polyimide molded body immediately after molding has a remarkably large surface roughness, so that a long time is required for polishing for smoothing the surface, and the production cost of the substrate is significantly increased. Was.

【0009】また、前述のように、光部品や電光部品の
基板の熱膨張係数を制御することは部品の製造における
歩留まりや部品の性能を向上する極めて効果的な方法で
あるが、これまで光部品(特に光学用ポリイミドを用い
た光部品)や電子部品の作製に必要な熱処理に耐え得る
材料を用いた基板で、簡便にその熱膨張係数を制御でき
る基板はなかった。
As described above, controlling the thermal expansion coefficient of the substrate of an optical component or an electro-optical component is a very effective method for improving the yield and the performance of the component in the production of the component. There has been no substrate using a material that can withstand the heat treatment required for producing components (particularly optical components using an optical polyimide) and electronic components, and whose thermal expansion coefficient can be easily controlled.

【0010】したがって、本発明の第1の課題は、表面
の平滑性に優れ、かつ熱膨張係数が4×10-5/℃以上
1.2×10-4/℃以下である、高分子光導波路用の高
分子基板を簡便に作製できる光部品用基板およびその製
造方法を提供することにある。
Accordingly, a first object of the present invention is to provide a polymer photoconductor having excellent surface smoothness and a thermal expansion coefficient of not less than 4 × 10 −5 / ° C. and not more than 1.2 × 10 −4 / ° C. An object of the present invention is to provide an optical component substrate and a method for manufacturing the same, which can easily produce a polymer substrate for a waveguide.

【0011】また、本発明の第2の課題は、光部品や電
子部品の基板の熱膨張係数を部品材料に合わせて制御す
る方法を提供することにある。
A second object of the present invention is to provide a method for controlling the coefficient of thermal expansion of a substrate of an optical component or an electronic component in accordance with a component material.

【0012】[0012]

【課題を解決するための手段】本発明者らは、光部品用
の高分子基板の作製を鋭意検討した結果、表面が平滑な
高分子薄膜を積層して得られる積層体が良好な表面平滑
性を有し、この積層体が光部品用の基板として適用でき
ることをつきとめた。さらに、本発明者らは、光部品、
特にポリイミド光導波路に用いる基板や、電子部品の基
板の熱膨張率制御方法について鋭意検討した結果、1種
類または熱膨張係数の異なる2種類以上のポリイミドフ
ィルムを用い、これらを適当な順序で重ねた積層体を作
製して、これを基板として用い、ポリイミドの化学構造
および積層の構成を変化させることで、光部品や電子部
品の基板の熱膨張係数を幅広い範囲で制御できることを
明らかにし、この積層体が光部品や電子部品用の基板と
して適用できることをつきとめた。本発明は、これら知
見に基づいて成されたものである。
Means for Solving the Problems As a result of intensive studies on the production of a polymer substrate for an optical component, the present inventors have found that a laminate obtained by laminating polymer thin films having a smooth surface has a good surface smoothness. It has been found that the laminate can be used as a substrate for optical components. Further, the present inventors have developed optical components,
In particular, the substrate used for the polyimide optical waveguide and the method of controlling the coefficient of thermal expansion of the substrate of the electronic component have been studied as a result. By fabricating a laminate and using it as a substrate, and by changing the chemical structure of polyimide and the composition of the laminate, it was clarified that the thermal expansion coefficient of substrates for optical and electronic components could be controlled over a wide range. They found that the body could be used as a substrate for optical and electronic components. The present invention has been made based on these findings.

【0013】すなわち、本発明を概説すれば、本発明の
請求項1の光部品用基板は、1種類または2種類以上の
高分子フィルムが複数層積層されるとともに加熱圧着さ
れてなる積層体からなることを特徴とする。
In other words, according to the present invention, the substrate for an optical component according to the first aspect of the present invention comprises a laminate formed by laminating one or more kinds of polymer films in a plurality of layers and thermocompression bonding. It is characterized by becoming.

【0014】また、本発明の請求項2の光部品用基板
は、前記請求項1の光部品用基板において、前記積層体
を構成する高分子フィルムがポリイミドであることを特
徴とする。
According to a second aspect of the present invention, there is provided the optical component substrate according to the first aspect, wherein the polymer film constituting the laminate is polyimide.

【0015】また、本発明の請求項3の光部品用基板
は、前記請求項1の光部品用基板において、前記積層体
を構成する1種類または2種類以上の高分子フィルムと
して、下記構造式(1)、(2):
According to a third aspect of the present invention, there is provided the optical component substrate according to the first aspect, wherein one or more polymer films constituting the laminate are represented by the following structural formula: (1), (2):

【0016】[0016]

【化9】 Embedded image

【0017】[0017]

【化10】 Embedded image

【0018】で表される繰り返し単位のいずれかからな
るポリイミドのフィルムまたは前記繰り返し単位の2種
類以上からなる共重合ポリイミドのフィルムを用いるこ
とを特徴とする。
A polyimide film composed of any of the repeating units represented by the formula (1) or a copolymer polyimide film composed of two or more of the repeating units is used.

【0019】また、本発明の請求項4の光部品用基板の
製造方法は、下記構造式(1)、(2):
Further, the method for manufacturing a substrate for an optical component according to claim 4 of the present invention comprises the following structural formulas (1) and (2):

【0020】[0020]

【化11】 Embedded image

【0021】[0021]

【化12】 Embedded image

【0022】で表される繰り返し単位のいずれかからな
るポリイミドまたは前記繰り返し単位の2種類以上から
なる共重合ポリイミドを用いて、ロール延伸法または溶
液塗布法により1種類または2種類以上のポリイミドフ
ィルムまたは共重合ポリイミドフィルムを作製し、前記
1種類または2種類以上のポリイミドフィルムまたは共
重合ポリイミドフィルムを複数層に重ね、前記複数層に
重ねたポリイミドフィルム積層体を加熱圧縮により一体
化して光部品用の基板を得ることを特徴とする。
Using a polyimide consisting of any of the repeating units represented by the formula (1) or a copolymerized polyimide consisting of two or more of the above repeating units, one or more polyimide films or Producing a copolymerized polyimide film, laminating one or more kinds of polyimide film or copolymerized polyimide film in a plurality of layers, heat-compression-combined polyimide film laminated on the plurality of layers for optical components The method is characterized by obtaining a substrate.

【0023】さらに、本発明の請求項5の光部品用基板
の熱膨張率制御方法は、熱膨張率の異なる複数のポリイ
ミドフィルムから1種類または2種類以上のポリイミド
フィルムを選択して複数層積層し、これを加熱圧着して
得られる光部品用基板の熱膨張係数を制御する方法であ
って、前記複数のポリイミドフィルムを積層する際に、
前記1種類または2種類以上のポリイミドフィルムの積
層順または/および積層数を変化させることにより、該
基板の熱膨張率を所望値に制御することを特徴とする。
Further, according to a fifth aspect of the present invention, there is provided a method for controlling the coefficient of thermal expansion of an optical component substrate, wherein one or two or more types of polyimide films are selected from a plurality of polyimide films having different coefficients of thermal expansion to form a multilayer laminate. A method for controlling the coefficient of thermal expansion of the optical component substrate obtained by heat-pressing this, when laminating the plurality of polyimide films,
The thermal expansion coefficient of the substrate is controlled to a desired value by changing the lamination order and / or the lamination number of the one or more polyimide films.

【0024】また、本発明の請求項6の光部品用基板の
熱膨張率制御方法は、前記請求項5の制御方法におい
て、前記1種類または2種類以上のポリイミドフィルム
を構成するポリイミドのうちの1種類のポリイミドとし
て、下記構造式(1)、(2):
According to a sixth aspect of the present invention, there is provided a method for controlling the coefficient of thermal expansion of an optical component substrate according to the fifth aspect of the present invention, wherein the one or more kinds of polyimides constituting the polyimide film are used. As one kind of polyimide, the following structural formulas (1) and (2):

【0025】[0025]

【化13】 Embedded image

【0026】[0026]

【化14】 Embedded image

【0027】で表される繰り返し単位からなるポリイミ
ドまたは前記繰り返し単位の2種類以上からなる共重合
ポリイミドを用いることを特徴とする。
A polyimide comprising a repeating unit represented by the formula (1) or a copolymerized polyimide comprising two or more kinds of the above repeating units is used.

【0028】また、本発明の請求項7の光部品用基板の
熱膨張率制御方法は、前記請求項6の制御方法におい
て、前記熱膨張率を制御するための低熱膨張率ポリイミ
ドフィルムとして、下記構造式(3)または(4):
According to a seventh aspect of the present invention, there is provided a method for controlling the coefficient of thermal expansion of an optical component substrate according to the sixth aspect, wherein the polyimide film having a low coefficient of thermal expansion for controlling the coefficient of thermal expansion is as follows. Structural formula (3) or (4):

【0029】[0029]

【化15】 Embedded image

【0030】[0030]

【化16】 Embedded image

【0031】で表される繰り返し単位からなるポリイミ
ドのフィルムを用いることを特徴とする。
It is characterized by using a polyimide film comprising a repeating unit represented by the following formula.

【0032】[0032]

【発明の実施の形態】以下、本発明を具体的に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below.

【0033】本発明の光部品用基板に用いる高分子薄膜
は、ロール延伸や溶液塗布法で得られた均一膜厚で表面
の平滑性に優れた薄膜フィルムを使用することが可能で
ある。高分子薄膜の材質については、膜厚が10μm程
度以上の薄膜形成が可能であって、加熱圧着や多層化等
の手法により積層可能な材料であれば、特に制限はな
い。しかし、この高分子薄膜材料は、基板の熱安定性の
観点からポリイミドがよく、さらに、ポリイミド光導波
路に用いる積層体の材料としては、光導波路材料との熱
膨張率整合の観点から前記構造式(1)、(2)で表さ
れる繰り返し単位からなるポリイミドフィルムまたは前
記構造式で表されるイミド化合物を組み合わせて重合し
てなる共重合ポリイミドフィルム、または、熱膨張係数
が4×10-5/℃以上1.2×10-4/℃以下であるポ
リイミドフィルムが好ましい。なぜなら、耐熱性に関し
ては、これらのポリイミドフィルムで作製したポリイミ
ド基板上にポリイミド膜を形成することを予定してお
り、そのためにはポリアミド酸からポリイミドへ熱イミ
ド化する時の温度に耐える必要があるからである。ま
た、熱膨張係数に関しては、基板上に形成されるポリイ
ミド膜からなる光導波路の熱膨張係数が概ね8×10-5
/℃であるため、光導波路のひずみを防止するために
は、光導波路部分と基板部分の熱膨張係数をある程度合
わせておくことが必要となるためである。基板の熱膨張
係数が4×10-5/℃以上1.2×10-4/℃以下の範
囲から外れると、光導波路部分と基板部分の熱膨張係数
差に基づく大きなひずみを生じて、光導波路に剥離やひ
び割れを引き起こし、また、光導波路の複屈折が著しく
大きくなるといった不具合を生じることとなる。
As the polymer thin film used for the substrate for optical parts of the present invention, a thin film having a uniform thickness and excellent surface smoothness obtained by roll stretching or solution coating can be used. The material of the polymer thin film is not particularly limited as long as it can form a thin film having a thickness of about 10 μm or more and can be laminated by a method such as thermocompression bonding or multilayering. However, this polymer thin film material is preferably polyimide from the viewpoint of thermal stability of the substrate, and further, as a material of the laminate used for the polyimide optical waveguide, the structural formula is used from the viewpoint of matching the coefficient of thermal expansion with the optical waveguide material. (1) A polyimide film comprising a repeating unit represented by (2) or a copolymerized polyimide film obtained by polymerizing a combination of imide compounds represented by the above structural formulas; or a thermal expansion coefficient of 4 × 10 −5. A polyimide film having a temperature not lower than / ° C and not higher than 1.2 × 10 -4 / ° C is preferable. Because, with regard to heat resistance, it is planned to form a polyimide film on a polyimide substrate made of these polyimide films, and for that purpose, it is necessary to withstand the temperature at which polyamic acid is thermally imidized to polyimide Because. Regarding the coefficient of thermal expansion, the coefficient of thermal expansion of an optical waveguide formed of a polyimide film on a substrate is approximately 8 × 10 −5.
/ ° C., it is necessary to match the thermal expansion coefficients of the optical waveguide portion and the substrate portion to some extent in order to prevent distortion of the optical waveguide. When the coefficient of thermal expansion of the substrate is out of the range of 4 × 10 −5 / ° C. or more and 1.2 × 10 −4 / ° C. or less, a large distortion is generated based on the difference in the coefficient of thermal expansion between the optical waveguide portion and the substrate portion, and This causes peeling and cracking in the wave path, and also causes a problem that the birefringence of the optical waveguide becomes extremely large.

【0034】これらの材料を用いた高分子薄膜を重ねて
加熱圧着し、または複数回コーティングして、膜厚50
0μm以上の積層体を作製する。
Polymer thin films using these materials are stacked and heat-pressed or coated a plurality of times to form a film having a thickness of 50 μm.
A laminate having a thickness of 0 μm or more is produced.

【0035】なお、前記積層体を構成するポリイミドフ
ィルムとしては、その熱膨張率の制御範囲を広くするた
めには、ポリイミドの中でも熱膨張係数が非常に大きい
前記構造式(1)または(2)で表される繰り返し単位
からなるポリイミドを高熱膨張成分として用いることが
好ましい。また、ポリイミド光導波路に用いる積層体の
材料としては、光導波路材料との整合性の観点からも前
記構造式(1)で表される繰り返し単位からなるポリイ
ミドを用いることが好ましい。
In order to widen the control range of the coefficient of thermal expansion of the polyimide film constituting the laminate, the structural formula (1) or (2) having a very large coefficient of thermal expansion among polyimides is preferred. It is preferable to use a polyimide composed of a repeating unit represented by the following formula as a high thermal expansion component. Further, as the material of the laminate used for the polyimide optical waveguide, it is preferable to use a polyimide composed of the repeating unit represented by the structural formula (1) also from the viewpoint of compatibility with the optical waveguide material.

【0036】また、2種類目の低熱膨張成分のポリイミ
ドフィルムとしては、フィルムの製膜と積層後の加熱圧
着が可能であって、前記構造式(1)で表される繰り返
し単位からなるポリイミドより熱膨張率の小さいポリイ
ミドであれば、特に分子構造の制限はなく、市販のポリ
イミドフィルムの使用も可能である。例えば、前記構造
式(3)で表される繰り返し単位からなるポリイミド
は、汎用性が高く、低熱膨張成分のポリイミド材料とし
て好適である。また、第2成分のポリイミドとして、さ
らに低熱膨張性を有するポリイミドを用いることで、積
層体基板の熱膨張率はさらに広い範囲で制御可能とな
る。そのようなものとしては、前記構造式(4)で表さ
れる繰り返し単位からなるポリイミドが好適であり、ま
たはそれ以外には、下記の酸無水物とジアミンから合成
されるポリイミド等が挙げられる。酸無水物としては、
ピロメリット酸二無水物、ビフェニルテトラカルボン酸
二無水物、ベンゾフェノンテトラカルボン酸二無水物、
等を挙げることができ、ジアミンとしては、パラフェニ
レンジアミン、メタフェニレンジアミン、2,2′−ジ
メチル−4,4′−ジアミノビフェニル、3,3′−ジ
アミノ−4,4′−ビフェニル、2,2′−ジトリフル
オロメチル−4,4′−ジアミノビフェニル、4,4′
−ジアミノビフェニル、4,4″−ジアミノ−P−テル
フェニル等を用いたポリイミドを挙げることができる。
As the second kind of polyimide film having a low thermal expansion component, heat-compression bonding after film formation and lamination is possible, and a polyimide comprising a repeating unit represented by the structural formula (1) is used. As long as the polyimide has a small coefficient of thermal expansion, there is no particular limitation on the molecular structure, and a commercially available polyimide film can be used. For example, polyimide comprising a repeating unit represented by the structural formula (3) has high versatility and is suitable as a polyimide material having a low thermal expansion component. Further, by using a polyimide having a lower thermal expansion property as the polyimide of the second component, the coefficient of thermal expansion of the laminated substrate can be controlled in a wider range. As such a material, a polyimide composed of a repeating unit represented by the structural formula (4) is preferable, and in addition, a polyimide synthesized from the following acid anhydride and diamine is exemplified. As the acid anhydride,
Pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride,
And diamines such as paraphenylenediamine, metaphenylenediamine, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diamino-4,4′-biphenyl, 2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4 '
-Diaminobiphenyl, polyimide using 4,4 "-diamino-P-terphenyl and the like.

【0037】また、前記構造式(3)(4)で表される
繰り返し単位からなる低熱膨張性ポリイミドは高いガラ
ス転移温度を有している。従って、これらのポリイミド
のフィルムを積層体の一部として用いることで、得られ
る基板の形状安定性を高めることができる。
The low thermal expansion polyimide comprising the repeating units represented by the structural formulas (3) and (4) has a high glass transition temperature. Therefore, by using these polyimide films as a part of the laminate, the shape stability of the obtained substrate can be improved.

【0038】これらの材料を用いたポリイミドフィルム
を重ねて加熱圧着し、または、複数回コーティングし
て、膜厚500μm以上の積層体を作製する。積層体の
熱膨張率は、用いる2種類以上のポリイミドの分子構造
とそれらのフィルムを積層する際の比率を変えること
で、最も低熱膨張成分のポリイミドフィルムの熱膨張係
数と、最も高熱膨張成分のポリイミドフィルムの熱膨張
係数との範囲内で、任意に制御することができる。
Polyimide films using these materials are stacked and heat-pressed or coated a plurality of times to produce a laminate having a thickness of 500 μm or more. The coefficient of thermal expansion of the laminate is changed by changing the molecular structure of two or more kinds of polyimides used and the ratio of laminating those films, so that the coefficient of thermal expansion of the polyimide film of the lowest thermal expansion component and the highest thermal expansion component It can be arbitrarily controlled within the range of the coefficient of thermal expansion of the polyimide film.

【0039】[0039]

【実施例】以下、いくつかの実施例を用いて本発明をさ
らに詳しく説明するが、本発明はこれらの実施例に限定
されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to several examples, but the present invention is not limited to these examples.

【0040】以下の各実施例において、作製したポリイ
ミド積層体の平均表面粗さ(Ra)は表面粗さ計を用
い、積層体表面の5点を無作為に選んだ測定カ所で測定
長さ3mm、測定針加重25mgの条件で測定した平均
値として求めた。また、ポリイミド積層体の熱膨張係数
は作製した積層体を長さ3mm、幅5mmの大きさに切
り出し、熱機械試験機に取り付けて圧縮モードで5℃/
分の速度で昇温し、50℃から300℃までの平均熱膨
張係数として求めた。また、ポリイミド積層体上に形成
したポリイミド膜の複屈折は、プリズムカップリング法
を用いて測定した波長1.3μmでの、基板面に平行な
偏波方向の屈折率(nTE)と、基板面に垂直な偏波方向
の屈折率(nTM)との差として、求めた。
In each of the following examples, the average surface roughness (Ra) of the produced polyimide laminate was measured using a surface roughness meter at a measuring point at which five points on the laminate were randomly selected at a measuring point of 3 mm. It was determined as an average value measured under the condition of a measurement needle weight of 25 mg. The coefficient of thermal expansion of the polyimide laminate was determined by cutting out the produced laminate to a size of 3 mm in length and 5 mm in width, and attaching the same to a thermomechanical tester and compressing at 5 ° C.
The temperature was raised at a rate of minutes, and the average thermal expansion coefficient from 50 ° C to 300 ° C was determined. Further, the birefringence of the polyimide film formed on the polyimide laminate is determined by measuring the refractive index (n TE ) in the direction of polarization parallel to the substrate surface at a wavelength of 1.3 μm measured using the prism coupling method, It was determined as the difference from the refractive index (n TM ) in the direction of polarization perpendicular to the plane.

【0041】(実施例1)ロール延伸法により作製した
前記構造式(1)で表される繰り返し単位からなる厚さ
65μmのポリイミドフィルム(日本電信電話株式会社
製;商品名FLUPI−01)からなるポリイミド層A
を10層重ね合わせて加熱プレス機に挟み、40kg/
cm2の圧力下、150℃で5時間加熱後、さらに最大
390℃まで昇温し、1時間保持した後、室温まで徐冷
した。これを直径2インチに切り出して、円板状のポリ
イミド積層体を得た。このポリイミド積層体の平均表面
粗さ(Ra)は965Åであり、面方向の熱膨張係数は
8×10-5/℃であった。
Example 1 A polyimide film (manufactured by Nippon Telegraph and Telephone Corporation; trade name: FLUPI-01) having a thickness of 65 μm and comprising a repeating unit represented by the structural formula (1) prepared by a roll stretching method. Polyimide layer A
Are piled in 10 layers and sandwiched between heating presses, and 40kg /
After heating at 150 ° C. for 5 hours under a pressure of cm 2, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The average surface roughness (Ra) of this polyimide laminate was 965 °, and the coefficient of thermal expansion in the plane direction was 8 × 10 −5 / ° C.

【0042】そして、この積層体上に前記構造式(1)
で表される繰り返し単位からなるポリイミドの前躯体溶
液をスピンコートした後、380℃で1時間の熱処理を
行い、前記ポリイミド積層体上に膜厚8μmのポリイミ
ド膜(平面光導波路)を得た。このポリイミド膜の複屈
折は0.001以下であった。
Then, the above-mentioned structural formula (1)
Was spin-coated with a polyimide precursor solution composed of a repeating unit represented by the formula, and then heat-treated at 380 ° C. for 1 hour to obtain an 8 μm-thick polyimide film (planar optical waveguide) on the polyimide laminate. The birefringence of this polyimide film was 0.001 or less.

【0043】(実施例2)前記厚さ65μmのポリイミ
ド層Aを7層と、厚さ25μmの東レ・デュポン(株)
製のポリイミドフィルム(商品名;100KJ)からな
るポリイミド層Bを6層とを用意し、前者の7層のポリ
イミド層Aの間に後者の6層のポリイミド層Bを交互に
入れて積層し、これを加熱プレス機に挟み、40kg/
cm2の圧力下、150℃で5時間加熱後、さらに最大
390℃まで昇温し、1時間保持した後、室温まで徐冷
した。これを直径2インチに切り出して、円板状のポリ
イミド積層体を得た。このポリイミド積層体の平均表面
粗さ(Ra)は754Åであり、面方向の熱膨張係数は
6×10-5/℃であった。
Example 2 Seven layers of the polyimide layer A having a thickness of 65 μm and a Toray Dupont Co., Ltd. having a thickness of 25 μm were used.
6 polyimide layers B made of a polyimide film (trade name: 100KJ) made of the same are prepared, and the latter 6 polyimide layers A are alternately inserted between the former 7 polyimide layers A and laminated. This is sandwiched between heating presses, and 40kg /
After heating at 150 ° C. for 5 hours under a pressure of cm 2, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The average surface roughness (Ra) of this polyimide laminate was 754 °, and the coefficient of thermal expansion in the plane direction was 6 × 10 −5 / ° C.

【0044】そして、この積層体上に前記構造式(1)
で表されるポリイミドの前躯体溶液をスピンコートした
後、380℃で1時間の熱処理を行い、前記ポリイミド
積層体上に膜厚8μmのポリイミド膜(平面光導波路)
を得た。このポリイミド膜の複屈折は0.001以下で
あった。
Then, the above-mentioned structural formula (1)
Is spin-coated with a polyimide precursor solution represented by the formula, and then heat-treated at 380 ° C. for 1 hour, and a 8 μm-thick polyimide film (planar optical waveguide) is formed on the polyimide laminate.
I got The birefringence of this polyimide film was 0.001 or less.

【0045】(実施例3)前記厚さ65μmのポリイミ
ド層Aと、前記厚さ25μmの東レ・デュポン(株)製
ポリイミドフィルム(商品名;100HA)からなるポ
リイミド層B’とを用い、順に、層A×3,層B’×
1、層A×1,層B’×1,層A×1,層B’×1,層
A×3というように、合計11層重ね、これを加熱プレ
ス機にはさみ、40kg/cm2の圧力下、150℃で
5時間加熱後、さらに最大390℃まで昇温し、1時間
保持した後、室温まで徐冷した。これを直径2インチに
切り出して、円板状のポリイミド積層体を得た。このポ
リイミド積層体の平均表面粗さ(Ra)は44Å、面方
向の熱膨張係数は7×10-5/℃であった。
Example 3 The polyimide layer A having a thickness of 65 μm and the polyimide layer B ′ having a thickness of 25 μm and made of a polyimide film (trade name: 100HA) manufactured by Dupont Toray Co., Ltd. were used. Layer A × 3, Layer B ′ ×
1, the layer A × 1, layer B '× 1, the layer A × 1, layer B' × 1, so that the layer A × 3, cumulative - 11 layers, sandwiched this hot press, the 40 kg / cm 2 After heating at 150 ° C. for 5 hours under pressure, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The average surface roughness (Ra) of this polyimide laminate was 44 °, and the coefficient of thermal expansion in the plane direction was 7 × 10 −5 / ° C.

【0046】そして、この積層体上に前記構造式(1)
で表されるポリイミドの前躯体溶液をスピンコートした
後、380℃で1時間の熱処理を行い、前記ポリイミド
積層体上に膜厚8μmのポリイミド膜(平面光導波路)
を得た。このポリイミド膜の複屈折は0.001であっ
た。
Then, the above-mentioned structural formula (1)
Is spin-coated with a polyimide precursor solution represented by the formula, and then heat-treated at 380 ° C. for 1 hour, and a 8 μm-thick polyimide film (planar optical waveguide) is formed on the polyimide laminate.
I got The birefringence of this polyimide film was 0.001.

【0047】(実施例4)前記構造式(1)で表される
繰り返し単位からなるポリイミドを用いてロール延伸法
により作製した厚さ65μmのポリイミドフィルムから
なるポリイミド層Aと、前記厚さ25μmの東レ・デュ
ポン(株)製ポリイミドフィルム(100KJ)からな
るポリイミド層Bと、厚さ50μmの東レ・デュポン
(株)製ポリイミドフィルム(商品名;カプトン)から
なるポリイミド層Cとを用い、順に、層A×1,層B×
7,層C×1,層B×7,層A×1というように、合計
17層重ね、これを加熱プレス機にはさみ、40kg/
cm2の圧力下、150℃で5時間加熱後、さらに最大
390℃まで昇温し、1時間保持した後、室温まで徐冷
した。これを直径2インチに切り出して、円板状のポリ
イミド積層体を得た。このポリイミド積層体の平均表面
粗さ(Ra)は50Å、面方向の熱膨張係数は5×10
-5/℃であった。
Example 4 A polyimide layer A made of a 65 μm-thick polyimide film prepared by a roll stretching method using a polyimide consisting of a repeating unit represented by the structural formula (1), and a polyimide layer A having a thickness of 25 μm Using a polyimide layer B made of a polyimide film (100 KJ) manufactured by Dupont Toray Co., Ltd., and a polyimide layer C formed of a polyimide film (trade name: Kapton) manufactured by Dupont Toray Co., Ltd. having a thickness of 50 μm, in order, A × 1, layer B ×
A total of 17 layers, such as 7, layer C × 1, layer B × 7 and layer A × 1, were sandwiched by a heating press machine, and 40 kg /
After heating at 150 ° C. for 5 hours under a pressure of cm 2, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The average surface roughness (Ra) of this polyimide laminate was 50 °, and the coefficient of thermal expansion in the plane direction was 5 × 10
−5 / ° C.

【0048】そして、この積層体上に前記構造式(1)
で表される繰り返し単位からなるポリイミドの前躯体溶
液をスピンコートした後、380℃で1時間の熱処理を
行い、前記ポリイミド積層体上に膜厚8μmのポリイミ
ド膜(平面光導波路)を得た。このポリイミド膜の複屈
折は0.003であった。
Then, the above-mentioned structural formula (1)
Was spin-coated with a polyimide precursor solution composed of a repeating unit represented by the formula, and then heat-treated at 380 ° C. for 1 hour to obtain an 8 μm-thick polyimide film (planar optical waveguide) on the polyimide laminate. The birefringence of this polyimide film was 0.003.

【0049】(比較例)前記構造式(3)で表される繰
り返し単位からなる厚さ50μmの東レ・デュポン
(株)製ポリイミドフィルム(商品名;カプトン)から
なるポリイミド層Cと、厚さ25μmの東レ・デュポン
(株)ポリイミドフィルム(商品名;100KJ)から
なるポリイミド層Bとを用い、前者の7層の間に後者の
6層を交互に入れて、加熱プレス機にはさみ、40kg
/cm2の圧力下、150℃で5時間加熱後、さらに最
大390℃まで昇温し、1時間保持した後、室温まで徐
冷した。これを直径2インチに切り出して、円板状のポ
リイミド積層体を得た。このポリイミド積層体の平均表
面粗さ(Ra)は1635Å、面方向の熱膨張係数は3
×10-5/℃であった。
Comparative Example A polyimide layer C made of a polyimide film (trade name: Kapton) manufactured by Toray Dupont Co., Ltd. having a thickness of 50 μm and comprising a repeating unit represented by the structural formula (3), and a thickness of 25 μm Toray Dupont Co., Ltd. and polyimide layer B made of polyimide film (trade name: 100KJ), and the latter six layers are alternately inserted between the former seven layers, and sandwiched by a heating press machine, 40 kg.
After heating at 150 ° C. for 5 hours under a pressure of / cm 2, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. This polyimide laminate has an average surface roughness (Ra) of 1,635 ° and a thermal expansion coefficient of 3 in the plane direction.
× 10 -5 / ° C.

【0050】そして、この積層体上に前記構造式(1)
で表される繰り返し単位からなるポリイミドの前躯体溶
液をスピンコートした後、380℃で1時間の熱処理を
行い、前記ポリイミド積層体上に膜厚8μmのポリイミ
ド膜(平面光導波路)を得た。このポリイミド膜の複屈
折は0.006であった。
Then, the structural formula (1)
Was spin-coated with a polyimide precursor solution composed of a repeating unit represented by the formula, and then heat-treated at 380 ° C. for 1 hour to obtain an 8 μm-thick polyimide film (planar optical waveguide) on the polyimide laminate. The birefringence of this polyimide film was 0.006.

【0051】さらに上記実施例1〜4では、高分子光導
波路用基板の材料として前記構造式(1)で表される繰
り返し単位からなる厚さ65μmのポリイミドフィルム
からなるポリイミド層を用いたが、前記構造式(2)で
表される繰り返し単位からなるポリイミドを用いても、
同様の結果が得られた。さらに、前記構造式(1)、
(3)、(4)でそれぞれ表される繰り返し単位からな
るそれぞれイミド化合物を組み合わせて重合してなる共
重合ポリイミドを用いても、同様の結果が得られた。
Further, in the above Examples 1 to 4, a polyimide layer made of a polyimide film having a thickness of 65 μm and comprising a repeating unit represented by the structural formula (1) was used as a material of the polymer optical waveguide substrate. Even when using a polyimide comprising a repeating unit represented by the structural formula (2),
Similar results were obtained. Further, the structural formula (1),
Similar results were obtained using copolymerized polyimides obtained by combining and polymerizing imide compounds composed of the repeating units represented by (3) and (4), respectively.

【0052】次に、光部品用基板の熱膨張率を制御する
ことを目的に行った実施例を示す。以下の実施例には、
前記実施例1〜4と同じ内容の実施例もあるが、前述の
ように、熱膨張率を制御する実施例であるとの観点か
ら、省略せずに記載した。
Next, an embodiment performed for the purpose of controlling the coefficient of thermal expansion of the optical component substrate will be described. In the following example,
Although there is an example having the same contents as the above-mentioned Examples 1 to 4, it is described without omission from the viewpoint that the coefficient of thermal expansion is controlled as described above.

【0053】(実施例5)前記構造式(1)で表される
繰り返し単位からなるポリイミドを用いてロール延伸法
により作製した厚さ65μmのポリイミドフィルム(商
品名;FLUPI−01)からなるポリイミド層Aを1
0層重ね合わせて加熱プレス機に挟み、40kg/cm
2の圧力下、150℃で5時間加熱後、さらに最大39
0℃まで昇温し、1時間保持した後、室温まで徐冷し
た。これを直径2インチに切り出して、円板状のポリイ
ミド積層体を得た。このポリイミド積層体の面方向の熱
膨張係数は8×10-5/℃であった。
Example 5 A polyimide layer made of a 65 μm-thick polyimide film (trade name: FLUPI-01) prepared by a roll stretching method using a polyimide consisting of a repeating unit represented by the above structural formula (1) A is 1
0 layers are overlapped and sandwiched by a heating press machine, 40kg / cm
After heating at 150 ° C for 5 hours under a pressure of 2 , an additional maximum of 39
The temperature was raised to 0 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The coefficient of thermal expansion in the plane direction of this polyimide laminate was 8 × 10 −5 / ° C.

【0054】(実施例6)前記厚さ65μmのポリイミ
ド層Aと、前記厚さ25μmの東レ・デュポン(株)製
ポリイミドフィルム(商品名;100HA)からなるポ
リイミド層B’とを用い、順に、層A×3、層B’×
1、層A×1、層B’×1、層A×1、層B’×1、層
A×3というように、合計11層重ね、これを加熱プレ
ス機に挟み、40kg/cm2の圧力下、150℃で5
時間加熱後、さらに最大390℃まで昇温し、1時間保
持した後、室温まで徐冷した。これを直径2インチに切
り出して、円板状のポリイミド積層体を得た。このポリ
イミド積層体の面方向の熱膨張係数は7×10-5/℃で
あった。
Example 6 A polyimide layer A having a thickness of 65 μm and a polyimide layer B ′ having a thickness of 25 μm made of a polyimide film (trade name: 100HA) manufactured by Dupont Toray Co., Ltd. were used in this order. Layer A × 3, Layer B ′ ×
1, a layer A × 1, a layer B ′ × 1, a layer A × 1, a layer B ′ × 1, a layer A × 3, and a total of 11 layers were stacked, and this was sandwiched by a heating press to obtain 40 kg / cm 2 . 5 at 150 ° C under pressure
After heating for an hour, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The coefficient of thermal expansion in the plane direction of this polyimide laminate was 7 × 10 −5 / ° C.

【0055】(実施例7)前記厚さ65μmのポリイミ
ド層Aと、厚さ25μmの東レ・デュポン(株)ポリイ
ミドフィルム(商品名;100KJ)からなるポリイミ
ド層Bとを用い、前者の7層の間に後者の6層を交互に
入れて積層し、これを加熱プレス機に挟み、40kg/
cm2の圧力下、150℃で5時間加熱後、さらに最大
390℃まで昇温し、1時間保持した後、室温まで徐冷
した。これを直径2インチに切り出して、円板状のポリ
イミド積層体を得た。このポリイミド積層体の面方向の
熱膨張係数は6×10-5/℃であった。
(Example 7) The polyimide layer A having a thickness of 65 μm and the polyimide layer B having a thickness of 25 μm and made of a polyimide film (trade name: 100 KJ) manufactured by Dupont Toray Co., Ltd. were used. The latter six layers are alternately put in between and laminated, and this is sandwiched between heating presses, and 40 kg /
After heating at 150 ° C. for 5 hours under a pressure of cm 2, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The coefficient of thermal expansion in the plane direction of this polyimide laminate was 6 × 10 −5 / ° C.

【0056】(実施例8)ロール延伸法により作製した
厚さ65μmのポリイミド層Aと、前記厚さ25μmの
東レ・デュポン(株)製ポリイミドフィルム(商品名;
100KJ)からなるポリイミド層Bと、前記構造式
(3)で表される繰り返し単位からなる厚さ50μmの
東レ・デュポン(株)製ポリイミドフィルム(商品名;
カプトン)からなるポリイミド層Cを用いて、順に、層
A×1、層B×7、層C×1、層B×7、層A×1とい
うように、合計17層重ね、これを加熱プレス機に挟
み、40kg/cm2の圧力下、150℃で5時間加熱
後、さらに最大390℃まで昇温し、1時間保持した
後、室温まで徐冷した。これを直径2インチに切り出し
て、円板状のポリイミド積層体を得た。このポリイミド
積層体の面方向の熱膨張係数は5×10-5℃であった。
Example 8 A polyimide layer A having a thickness of 65 μm produced by a roll stretching method and a polyimide film having a thickness of 25 μm manufactured by Toray DuPont (trade name;
100 KJ) and a polyimide film (trade name; manufactured by Toray Dupont Co., Ltd.) having a thickness of 50 μm and comprising a repeating unit represented by the structural formula (3).
Using a polyimide layer C composed of Kapton), a total of 17 layers such as layer A × 1, layer B × 7, layer C × 1, layer B × 7, and layer A × 1 are stacked in order, and are hot-pressed. After being sandwiched by a machine and heated at 150 ° C. for 5 hours under a pressure of 40 kg / cm 2 , the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The coefficient of thermal expansion in the plane direction of this polyimide laminate was 5 × 10 -5 ° C.

【0057】(実施例9)前記厚さ50μmの東レ・デ
ュポン(株)製ポリイミドフィルム(100HA)から
なるポリイミド層B’と、前記厚さ25μmの東レ・デ
ュポン(株)製ポリイミドフィルム(100KJ)から
なるポリイミド層Bとを用い、前者の7層の間に後者の
6層を交互に入れて積層し、これを加熱プレス機に挟
み、40kg/cm2の圧力下、150℃で5時間加熱
後、さらに最大390℃まで昇温し、1時間保持した
後、室温まで徐冷した。これを直径2インチに切り出し
て、円板状のポリイミド積層体を得た。このポリイミド
積層体の面方向の熱膨張係数は4×10-5℃であった。
Example 9 A polyimide layer B 'made of a polyimide film (100HA) manufactured by Toray Dupont having a thickness of 50 μm, and a polyimide film (100KJ) manufactured by Dupont Toray having a thickness of 25 μm And a polyimide layer B comprising the above-mentioned seven layers, and the latter six layers are alternately placed between the former seven layers, and the layers are sandwiched by a heating press, and heated at 150 ° C. for 5 hours under a pressure of 40 kg / cm 2. Thereafter, the temperature was further raised to a maximum of 390 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The coefficient of thermal expansion in the plane direction of this polyimide laminate was 4 × 10 -5 ° C.

【0058】(実施例10)前記構造式(3)で表され
る繰り返し単位からなる厚さ25μmの東レ・デュポン
(株)製ポリイミドフィルム(カプトン)からなるポリ
イミド層Cと、厚さ25μmの東レ・デュポン(株)製
ポリイミドフィルム(100KJ)からなるポリイミド
層Bとを用い、前者の7層の間に後者の6層を交互に入
れて積層し、これを加熱プレス機に挟み、40kg/c
2の圧力下、150℃で5時間加熱後、さらに最大3
90℃まで昇温し、1時間保持した後、室温まで徐冷し
た。これを直径2インチに切り出して、円板状のポリイ
ミド積層体を得た。このポリイミド積層体の面方向の熱
膨張係数は3×10-5/℃であった。
Example 10 A polyimide layer C made of a polyimide film (Kapton) manufactured by Dupont Co., Ltd. and having a thickness of 25 μm comprising a repeating unit represented by the structural formula (3), and a Toray having a thickness of 25 μm Using a polyimide layer B made of a polyimide film (100 KJ) manufactured by DuPont Co., Ltd., and alternately stacking the latter six layers between the former seven layers and sandwiching them in a heating press to obtain 40 kg / c.
After heating at 150 ° C for 5 hours under a pressure of m 2 ,
The temperature was raised to 90 ° C., maintained for 1 hour, and then gradually cooled to room temperature. This was cut out to a diameter of 2 inches to obtain a disk-shaped polyimide laminate. The coefficient of thermal expansion in the plane direction of this polyimide laminate was 3 × 10 −5 / ° C.

【0059】前述の実施例5〜10に示したように、用
いた2種類以上のポリイミドフィルムの分子構造とそれ
らのフィルムを積層する際の比率を変えることにより、
積層体の熱膨張率を3×10-5/℃から8×10-5/℃
の範囲で制御できた。
As shown in Examples 5 to 10 above, by changing the molecular structure of two or more kinds of polyimide films used and the ratio of laminating those films,
The coefficient of thermal expansion of the laminate is from 3 × 10 −5 / ° C. to 8 × 10 −5 / ° C.
Could be controlled within the range.

【0060】さらに、上記実施例5〜10では、高分子
光導波路用基板として、前記構造式(1)、(3)で表
される繰り返し単位からなるポリイミドフィルムからな
るポリイミド層を用いたが、前記構造式(2)、(4)
で表される繰り返し単位からなるポリイミドを用いて
も、同様の結果が得られた。さらに、前記構造式(1)
〜(4)でそれぞれ表される繰り返し単位からなる、そ
れぞれイミド化合物を組み合わせて重合してなる共重合
ポリイミドを用いても、同様の結果が得られた。
Further, in the above Examples 5 to 10, the polyimide layer made of the polyimide film composed of the repeating units represented by the above structural formulas (1) and (3) was used as the polymer optical waveguide substrate. The structural formulas (2) and (4)
The same result was obtained by using a polyimide composed of a repeating unit represented by Further, the structural formula (1)
Similar results were obtained using copolymerized polyimides composed of repeating units represented by (4) to (4) and polymerized by combining imide compounds.

【0061】[0061]

【発明の効果】以上説明したように、本発明の光部品用
基板およびその製造方法によれば、表面粗さが小さく、
かつ熱膨張係数が大きい光学用ポリイミドと近い熱膨張
係数を有する光学用ポリイミド基板が作製でき、この基
板上に作製した光学用ポリイミドの複屈折を低減できる
ため、偏波依存性が小さいポリイミド光導波路を作製で
きるという効果がある。
As described above, according to the optical component substrate and the method of manufacturing the same of the present invention, the surface roughness is small,
In addition, a polyimide optical waveguide having a thermal expansion coefficient close to that of an optical polyimide having a large thermal expansion coefficient can be manufactured, and since the birefringence of the optical polyimide manufactured on this substrate can be reduced, a polarization-dependent polyimide optical waveguide is small. Has the effect of being able to produce

【0062】また、本発明の光部品用基板の熱膨張率制
御方法によれば、分子構造の相異なる2種類以上のポリ
イミドフィルムを加熱圧着または複数回コーティング
し、用いるポリイミドの分子構造とフィルムを積層する
際の比率を変えることにより、積層体の熱膨張率が制御
可能であることが明らかとなり、この積層体を光部品や
電子部品の基板として用いることで部品製造の歩留ま
り、部品の信頼性、性能を向上できるという効果があ
る。
Further, according to the method for controlling the coefficient of thermal expansion of an optical component substrate of the present invention, two or more kinds of polyimide films having different molecular structures are heat-pressed or coated a plurality of times, and the molecular structure of the polyimide used and the film are determined. It became clear that the coefficient of thermal expansion of the laminate can be controlled by changing the ratio at the time of lamination, and by using this laminate as a substrate for optical components and electronic components, the yield of component production and the reliability of components The effect is that the performance can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 重邦 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 松浦 徹 東京都武蔵野市御殿山一丁目1番3号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 (72)発明者 山本 二三男 東京都武蔵野市御殿山一丁目1番3号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 (72)発明者 横山 博一 愛知県東海市新宝町31番地の6 東レ・デ ュポン株式会社東海事業場内 (72)発明者 杉本 範巳 大阪市北区中之島3丁目4番18号 東レ・ デュポン株式会社大阪本社内 Fターム(参考) 2H047 KA02 PA01 PA02 PA28 QA05 TA00 TA42 4F071 AA66 AA66X AF43 AH19 BC02 4J043 PA02 PA04 PA08 PC146 QB16 QB26 RA35 SA06 SB01 SB03 TA22 TB01 UA132 UB062 UB121 UB401 VA021 VA041 ZA35 ZB21  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigekuni Sasaki 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Japan Telegraph and Telephone Corporation (72) Inventor Tohru Matsuura 1-3-1 Gotenyama, Musashino City, Tokyo No. NTT Advanced Technology Co., Ltd. (72) Inventor Fumio Yamamoto 1-3-1 Gotenyama, Musashino-shi, Tokyo, Japan Inside NTT Advanced Technology Co., Ltd. (72) Inventor Hirokazu Yokoyama 31 Toray Dupont Co., Ltd., Tokai Works, 31-31, Shintakara-cho, Tokai City, Aichi Prefecture (72) Inventor Norimi Sugimoto 3-4-1, Nakanoshima, Kita-ku, Osaka Toray-Dupont Co., Ltd. Osaka Head Office F Terms (reference) 2H047 KA02 PA01 PA02 PA28 QA05 TA00 TA42 4F071 AA66 AA66X AF43 AH19 BC02 4J043 PA02 PA04 PA08 PC146 QB16 QB26 RA35 SA06 SB01 SB03 TA22 TB01 UA132 UB062 UB121 UB401 VA021 VA041 ZA35 ZB21

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1種類または2種類以上の高分子フィル
ムが複数層積層されるとともに加熱圧着されてなる積層
体からなる光部品用基板。
1. An optical component substrate comprising a laminate in which one or two or more polymer films are laminated in a plurality of layers and heated and pressed.
【請求項2】 前記積層体を構成する高分子フィルムが
ポリイミドであることを特徴とする請求項1記載の光部
品用基板。
2. The optical component substrate according to claim 1, wherein the polymer film constituting the laminate is polyimide.
【請求項3】 前記積層体を構成する1種類または2種
類以上の高分子フィルムとして、下記構造式(1)、
(2): 【化1】 【化2】 で表される繰り返し単位のいずれかからなるポリイミド
フィルムまたは前記繰り返し単位の2種類以上からなる
共重合ポリイミドフィルムを用いることを特徴とする請
求項1記載の光部品用基板。
3. One or more polymer films constituting the laminate are represented by the following structural formula (1):
(2): Embedded image 2. The optical component substrate according to claim 1, wherein a polyimide film composed of any of the repeating units represented by the formula (1) or a copolymerized polyimide film composed of two or more of the repeating units is used.
【請求項4】 下記構造式(1)、(2): 【化3】 【化4】 で表される繰り返し単位のいずれかからなるポリイミド
または前記繰り返し単位の2種類以上からなる共重合ポ
リイミドを用いて、ロール延伸法または溶液塗布法によ
り1種類または2種類以上のポリイミドフィルムまたは
共重合ポリイミドフィルムを作製し、 前記1種類または2種類以上のポリイミドフィルムまた
は共重合ポリイミドフィルムを複数層に重ね、 前記複数層に重ねたポリイミドフィルム積層体を加熱圧
縮により一体化して光部品用の基板を得ることを特徴と
する光部品用基板の製造方法。
4. The following structural formulas (1) and (2): Embedded image Using a polyimide consisting of any of the repeating units represented by or a copolymer polyimide consisting of two or more of the above repeating units, one or more polyimide films or copolymer polyimides by a roll stretching method or a solution coating method A film is prepared, the one or more kinds of polyimide films or copolymerized polyimide films are laminated on a plurality of layers, and the polyimide film laminate laminated on the plurality of layers is integrated by heating and compression to obtain a substrate for an optical component. A method for manufacturing a substrate for an optical component, comprising:
【請求項5】 熱膨張率の異なる複数のポリイミドフィ
ルムから1種類または2種類以上のポリイミドフィルム
を選択して複数層積層し、これを加熱圧着して得られる
光部品用基板の熱膨張率を制御する方法であって、 前記複数のポリイミドフィルムを積層する際に、前記1
種類または2種類以上のポリイミドフィルムの積層順ま
たは/および積層数を変化させることにより、該基板の
熱膨張率を所望値に制御することを特徴とする光部品用
基板の熱膨張率制御方法。
5. An optical component substrate obtained by selecting one kind or two or more kinds of polyimide films from a plurality of polyimide films having different coefficients of thermal expansion, laminating a plurality of layers, and thermocompression bonding the layers. A method of controlling, when laminating the plurality of polyimide films,
A method for controlling the coefficient of thermal expansion of an optical component substrate, wherein the coefficient of thermal expansion of the substrate is controlled to a desired value by changing the type or the order of lamination of two or more types of polyimide films.
【請求項6】 前記1種類または2種類以上のポリイミ
ドフィルムを構成するポリイミドのうちの1種類のポリ
イミドとして、下記構造式(1)、(2): 【化5】 【化6】 で表される繰り返し単位からなるポリイミドまたは前記
繰り返し単位の2種類以上からなる共重合ポリイミドを
用いることを特徴とする請求項5記載の光部品用基板の
熱膨張率制御方法。
6. One of the polyimides constituting the one or more polyimide films may be one of the following structural formulas (1) and (2): Embedded image 6. The method for controlling the coefficient of thermal expansion of an optical component substrate according to claim 5, wherein a polyimide comprising a repeating unit represented by the formula or a copolymerized polyimide comprising two or more kinds of the repeating unit is used.
【請求項7】 前記熱膨張率を制御するための低熱膨張
率ポリイミドフィルムとして、下記構造式(3)または
(4): 【化7】 【化8】 で表される繰り返し単位からなるポリイミドのフィルム
を用いることを特徴とする請求項6に記載の光部品用基
板の熱膨張率制御方法。
7. The polyimide film having a low coefficient of thermal expansion for controlling the coefficient of thermal expansion is represented by the following structural formula (3) or (4): Embedded image 7. The method for controlling a coefficient of thermal expansion of an optical component substrate according to claim 6, wherein a polyimide film comprising a repeating unit represented by the following formula is used.
JP11171414A 1999-06-17 1999-06-17 Substrate for optical part and its manufacture, and controlling method for thermal expansion coefficient of the substrate Pending JP2001004850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11171414A JP2001004850A (en) 1999-06-17 1999-06-17 Substrate for optical part and its manufacture, and controlling method for thermal expansion coefficient of the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11171414A JP2001004850A (en) 1999-06-17 1999-06-17 Substrate for optical part and its manufacture, and controlling method for thermal expansion coefficient of the substrate

Publications (1)

Publication Number Publication Date
JP2001004850A true JP2001004850A (en) 2001-01-12

Family

ID=15922705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11171414A Pending JP2001004850A (en) 1999-06-17 1999-06-17 Substrate for optical part and its manufacture, and controlling method for thermal expansion coefficient of the substrate

Country Status (1)

Country Link
JP (1) JP2001004850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225031A (en) * 2004-02-12 2005-08-25 Konica Minolta Opto Inc Optical film manufacturing method
US7065270B2 (en) 2002-07-30 2006-06-20 Fuji Xerox Co., Ltd. Optical transmission device
US7682691B2 (en) * 2002-02-06 2010-03-23 Sekisui Chemical Co., Ltd. Resin composition of layered silicate
CN117183347A (en) * 2023-11-06 2023-12-08 紫晶电子材料(杭州)有限公司 Liquid crystal polymer film, manufacturing method thereof and flexible circuit board

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268746A (en) * 1985-09-20 1987-03-28 三菱化学株式会社 Laminated polyimide film and manufacture thereof
JPS62140822A (en) * 1985-12-17 1987-06-24 Ube Ind Ltd Polyimide laminated sheet and its manufacture
JPH04258903A (en) * 1990-10-09 1992-09-14 American Teleph & Telegr Co <Att> Product comprising passive optical waveguide
JPH04262593A (en) * 1991-02-18 1992-09-17 Hitachi Ltd Multilayer interconnection structure and multilayers laminating method therefor
JPH04288331A (en) * 1991-03-18 1992-10-13 Nippon Telegr & Teleph Corp <Ntt> Optical polyimide material
JPH06115040A (en) * 1992-10-03 1994-04-26 Unitika Ltd Laminated sheet
JPH06347658A (en) * 1993-06-08 1994-12-22 Nippon Telegr & Teleph Corp <Ntt> Plastic optical waveguide
JPH07214637A (en) * 1993-12-22 1995-08-15 E I Du Pont De Nemours & Co Production of coextruded multilayer aromatic polyimide film
JPH07239422A (en) * 1994-03-01 1995-09-12 Nippon Telegr & Teleph Corp <Ntt> Polymer film optical waveguide and its production
JPH08184701A (en) * 1994-12-27 1996-07-16 Nippon Telegr & Teleph Corp <Ntt> Polarizable film and its production and waveguide type optical device formed by using the same
JPH0995647A (en) * 1995-09-29 1997-04-08 Nitto Denko Corp Adhesive film for flexible printed wiring board, laminated film for flexible printed wiring board using the same and flexible printed wiring board using the same laminated film
JP2657700B2 (en) * 1988-08-08 1997-09-24 日本電信電話株式会社 Fluorine-containing polyimide optical material
JPH116930A (en) * 1997-06-17 1999-01-12 Nippon Telegr & Teleph Corp <Ntt> High-polymer optical waveguide
JPH1123870A (en) * 1997-06-30 1999-01-29 Nippon Telegr & Teleph Corp <Ntt> Optical polyimide substrate and its manufacture
JPH11133254A (en) * 1997-10-29 1999-05-21 Hitachi Ltd Polymer optical waveguide, optical integrated circuit and optical module

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268746A (en) * 1985-09-20 1987-03-28 三菱化学株式会社 Laminated polyimide film and manufacture thereof
JPS62140822A (en) * 1985-12-17 1987-06-24 Ube Ind Ltd Polyimide laminated sheet and its manufacture
JP2657700B2 (en) * 1988-08-08 1997-09-24 日本電信電話株式会社 Fluorine-containing polyimide optical material
JPH04258903A (en) * 1990-10-09 1992-09-14 American Teleph & Telegr Co <Att> Product comprising passive optical waveguide
JPH04262593A (en) * 1991-02-18 1992-09-17 Hitachi Ltd Multilayer interconnection structure and multilayers laminating method therefor
JPH04288331A (en) * 1991-03-18 1992-10-13 Nippon Telegr & Teleph Corp <Ntt> Optical polyimide material
JPH06115040A (en) * 1992-10-03 1994-04-26 Unitika Ltd Laminated sheet
JPH06347658A (en) * 1993-06-08 1994-12-22 Nippon Telegr & Teleph Corp <Ntt> Plastic optical waveguide
JPH07214637A (en) * 1993-12-22 1995-08-15 E I Du Pont De Nemours & Co Production of coextruded multilayer aromatic polyimide film
JPH07239422A (en) * 1994-03-01 1995-09-12 Nippon Telegr & Teleph Corp <Ntt> Polymer film optical waveguide and its production
JPH08184701A (en) * 1994-12-27 1996-07-16 Nippon Telegr & Teleph Corp <Ntt> Polarizable film and its production and waveguide type optical device formed by using the same
JPH0995647A (en) * 1995-09-29 1997-04-08 Nitto Denko Corp Adhesive film for flexible printed wiring board, laminated film for flexible printed wiring board using the same and flexible printed wiring board using the same laminated film
JPH116930A (en) * 1997-06-17 1999-01-12 Nippon Telegr & Teleph Corp <Ntt> High-polymer optical waveguide
JPH1123870A (en) * 1997-06-30 1999-01-29 Nippon Telegr & Teleph Corp <Ntt> Optical polyimide substrate and its manufacture
JPH11133254A (en) * 1997-10-29 1999-05-21 Hitachi Ltd Polymer optical waveguide, optical integrated circuit and optical module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682691B2 (en) * 2002-02-06 2010-03-23 Sekisui Chemical Co., Ltd. Resin composition of layered silicate
US7065270B2 (en) 2002-07-30 2006-06-20 Fuji Xerox Co., Ltd. Optical transmission device
JP2005225031A (en) * 2004-02-12 2005-08-25 Konica Minolta Opto Inc Optical film manufacturing method
JP4529465B2 (en) * 2004-02-12 2010-08-25 コニカミノルタオプト株式会社 Method for producing optical cellulose ester film
CN117183347A (en) * 2023-11-06 2023-12-08 紫晶电子材料(杭州)有限公司 Liquid crystal polymer film, manufacturing method thereof and flexible circuit board
CN117183347B (en) * 2023-11-06 2024-02-20 紫晶电子材料(杭州)有限公司 Liquid crystal polymer film, manufacturing method thereof and flexible circuit board

Similar Documents

Publication Publication Date Title
JP6640072B2 (en) Thermoplastic liquid crystal polymer film, laminate and circuit board using the same
JP4216433B2 (en) Method for producing metal-clad laminate for circuit board
US5572619A (en) Polimide optical waveguide
JPH0792326A (en) Optical wave plate, its production and waveguide type optical device using the same
KR20080021078A (en) Optical waveguide film and photoelectric film
JP2007062352A (en) Polyimide-copper foil laminated plate
CN101784928A (en) Polymeric optical waveguide film
TW200930565A (en) Metal-clad laminate
US6047098A (en) Plastic optical waveguide and optical switch using same
TW201043458A (en) Flexible metal-clad laminate and manufacturing method thereof
JP2001004850A (en) Substrate for optical part and its manufacture, and controlling method for thermal expansion coefficient of the substrate
JP3131940B2 (en) Polyimide copolymer and method for producing the same
JP2002286957A (en) Substrate with light guide and method for producing the same
JP2006297821A (en) Multilayered polyimide film and polyimide laminate
JPH08184701A (en) Polarizable film and its production and waveguide type optical device formed by using the same
JPH0921920A (en) Polyimide optical waveguide
JP2000047028A (en) Dielectric multilayered film filter, its production and optical part using the filter
JP2000198842A (en) Polyimide for optical substrate and polyimide substrate for optical use
JPH0915608A (en) Production of low double refractive polyimide film
JP4296550B2 (en) Manufacturing method of polyimide substrate for optics.
TWI829033B (en) High-frequency composite substrate and preparation method thereof
JPH08278422A (en) Reflection type optical wavelength plate and its production
JP3299017B2 (en) Polyimide optical waveguide
JP2000198843A (en) Polyimide for optical substrate and polyimide substrate for optical use
JP2006091500A (en) Optical waveguide board into which optical waveguide is engaged and optical and electric hybrid circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329