JP2000503070A - Method of coating substrate with titanium dioxide - Google Patents

Method of coating substrate with titanium dioxide

Info

Publication number
JP2000503070A
JP2000503070A JP9524846A JP52484697A JP2000503070A JP 2000503070 A JP2000503070 A JP 2000503070A JP 9524846 A JP9524846 A JP 9524846A JP 52484697 A JP52484697 A JP 52484697A JP 2000503070 A JP2000503070 A JP 2000503070A
Authority
JP
Japan
Prior art keywords
titanium dioxide
sputtering
target
coating
stoichiometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9524846A
Other languages
Japanese (ja)
Other versions
JP3980643B2 (en
Inventor
ファンデルストラエテン,ヨハン・エミーレ・マリー
Original Assignee
ベーヴェーベーアー・ファンデルストラエテン・エー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10786662&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000503070(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ベーヴェーベーアー・ファンデルストラエテン・エー filed Critical ベーヴェーベーアー・ファンデルストラエテン・エー
Publication of JP2000503070A publication Critical patent/JP2000503070A/en
Application granted granted Critical
Publication of JP3980643B2 publication Critical patent/JP3980643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

(57)【要約】 基材表面を二酸化チタンで被覆する方法であって、xが2以下の半化学量論的二酸化チタンTiOxからなるスパッタリングターゲットからの直流プラズマスパッタリング及び/又は中周波数スパッタリングからなる。 (57) Abstract: A method for coating a substrate surface with titanium dioxide, wherein direct current plasma sputtering and / or medium frequency sputtering from a sputtering target consisting of semi-stoichiometric titanium dioxide TiO x where x is 2 or less. Become.

Description

【発明の詳細な説明】 二酸化チタンによる基材の被覆方法 本発明は、基材表面を二酸化チタンで被覆するための改良された被覆方法に関 する。 種々の酸化物(例えば、シリカ)や窒化物(例えば、窒化ケイ素)のスパッタ 被覆膜が、多くの基材に興味深い特性を賦与する光学被覆膜の形成に用いられて いる。知られている応用としては、窓ガラスの低放射フィルム、反射板のコール ドミラー、フォトコピアの強化ミラー及び絵ガラス又はテレビ画面の反射防止膜 がある。これらの被覆膜は、通常、屈折率の異なる複数の膜、好ましくは光学フ ィルターを作るため、低屈折率と高屈折率の膜の積層体からなる。反射防止被覆 膜の場合には、可能な範囲で最高及び最低の屈折率を持つ2つの材料を組み合わ せるのが好ましい。その例としては、チタニアとシリカが挙げられる。これらの 材料のもう一つの利点としては、耐久性が挙げられる。窓ガラスの低放射フィル ムの場合、光の透過を促進する銀を反射しないように、銀層と高屈折率の材料と を組み合わせることが好ましい。 二酸化チタンの被覆膜は、高屈折率を有し、高屈折率の被覆膜又は光学スタッ クにおける高屈折率の被覆膜に好適に用いられる。従来の二酸化チタン製造方法 においては、スパッタリングターゲットとして金属チタン、プラズマガスの成分 として酸素を用いる。チタンはスパッタリングの過程において、二酸化チタンに 変化する。二酸化チタンの被覆膜としての特性は満足すべきものであるが、堆積 速度が大変遅く、酸化亜鉛及び/又は酸化スズによる被覆の場合よりはるかに遅 い。スパッタリングプロセスの安定性と放電速度は、特に高い電力レベルにおい ては、ターゲットの導電性に大きく依存する。 二酸化チタンの代わりに酸化ニオブのような他の材料を用いることが提案され ている。金属ニブのターゲットを用い、チタンの場合より僅かに速いスピードで 基材を酸化ニオブで被覆することが可能であるが、ニオブは高価である。 特開昭62−161945号公報に、主に、ZrO2,TiO2,SiO2,T a23,Al23,Fe23又はこれらの材料の化合物からなるセラミック材料 を水プラズマ溶射法により溶射して、スパッタリングターゲットとなる成形体を 製造するセラミックスパッタリングターゲットの製造方法が開示されている。そ のスパッタリングターゲットは、非導電性のターゲット材料の高周波スパッタリ ングターゲットは、非導電性のターゲット材料の高周波スパッタリングに用いら れる。 特開平1−118807号公報に、チタン、一酸化チタン(TiO)又は二酸化 チタン(TiO2)からなるターゲットをスパッタリングターゲットとして用い 、アルゴンと酸素の混合雰囲気中、例えば500Wの高周波電力密度でスパッタ リングする酸化チタン薄膜の製造方法が開示されている。 しかし、基材材料上への二酸化チタンの被覆に関し、改良されたプロセスへの ニーズはまだ存在する。我々は、驚くべきことに、抵抗が1Ω・cm以下、好ま しくは0.1Ω・cm以下の半化学量論的な二酸化チタンからなるターゲットを 用いれば、スパッタリング条件により、基材上に半化学量論的な二酸化チタン又 は二酸化チタンのいずれかの被覆膜を形成できることを見出した。 したがって、本発明は二酸化チタンによる基材表面の被覆方法を提供するもの であり、本発明の方法は、xが2以下の半化学量論的な二酸化チタンTiOxか らなり、抵抗が1Ω・cm以下のスパッタリングターゲットを用いる直流プラズ マスパッタリング及び/又は中周波数スパッタリングからなるものである。 半化学量論的な二酸化チタン、TiOxは、xが2以下、一般に1.55から 1.95の範囲にあり、公知である。それは、導電性を持った二酸化チタンであ る。本発明に好適に用いられる二酸化チタンの抵抗は0.1Ω・cm以下である 。 本発明の方法に用いられるスパッタリングターゲットは、支持管又は支持板の ようなターゲット基材の上に被覆された半化学量論的二酸化チタンTiOxから なる、そして、ターゲット基材としては導電性材料のものが挙げられ、さらに導 電性材料としては、例えば、ステンレス鋼又は金属チタン、アルミニウム又は銅 が挙げられる。半化学量論的二酸化チタンは導電性であるため、直流プラズマス パッタリング及び/又は中周波スパッタリング、例えばトゥイン−マグ(Twi n−Mag)システムを適用することができる。しかし、直流プラズマスパッタ リングを用いることが好ましい。ターゲットは、たとえば、回転可能なターゲッ ト又は平らなマグネトロンターゲット等の公知のいずれのものを用いることがで きる。 本発明に用いられるスパッタリングターゲットは、酸素を含まず、そして酸素 含有化合物も含まない雰囲気中で、二酸化チタンをターゲット基材上にプラズマ 溶射することにより製造される。ターゲット基材は、xが2以下のTiOxで被 覆され、半化学量論的二酸化チタンが酸素と結合しないような条件で凝固させら れる。プラズマ溶射の過程の間、二酸化チタンに対するプラズマの作用により、 二酸化チタンは、その格子、好ましくは粒子表面からいくつかの酸素原子を奪わ れる。二酸化チタンは、半化学量論的な形態、すなわち非化学量論的な酸素欠損 チタニアに変化する。 半化学量論的二酸化チタン、TiOxターゲットからのスパッタリングは、プ ラズマガスとして、アルゴン、アルゴンと酸素の混合物、窒素とアルゴンの混合 物、又は窒素と酸素の混合物を用いて行うことが好ましい。もしプラズマガスが 酸素を含まない場合、例えば、純粋なアルゴンを用いた場合、半化学量論的な二 酸化チタンの被覆膜が得られる。得られた被覆膜は、完全に透明ではなく、いく らかの導電性を有している。しかし、もしプラズマガスが酸素を含むと、二酸化 チタンの半化学量論的な形態が、スパッタリングの過程において、化学量論的又 は実質的に化学量論的であり、高屈折率を有する透明な形態に変化する。透明の 程度は、プラズマガスに含まれる酸素の量に依存する。被覆膜として、透明な二 酸化チタンを形成するのに好ましいガス混合物は、70〜90体積%のアルゴン と30〜10体積%の酸素とからなる。 この方法により被覆される基材には、たとえば、光学ガラス、例えばテレビ画 面のようなブラウン管の画面、コールドミラー、低放射ガラス、建築用ガラス、 反射防止パネル、酸素遮断フィルムのような可撓性フィルムが挙げられる。 本発明のターゲットを用いることにより、金属状態又は汚染された酸素状態に 対するチタニアの雷崩れ効果を防ぐことができる。高度なガス制御システム又は プラズマモニタリング装置は不要である。ターゲットは容易に操作、制御され、 化学量論的又はあらゆるレベルの半化学量論性を備えた非化学量論的なフィルム の製造に適用できる。わずかに酸素が欠乏したスパッタリングプロセスでターゲ ットを操作することにより、光学被覆膜にとって重要な高屈折率膜が得られる。 スパッタリングのパラメータを変えることにより、ルチル又はアナターゼ構造を 持った非晶質又は結晶質の膜を得ることができる。ルチル膜は、優れた光学的、 機械的及び電気的特性を有する。化学量論的二酸化チタンからなる被覆膜が形成 される条件で、半化学量論的二酸化チタンをスパッタリングすることにより、実 質的に透明で無色の被覆膜が得られる。 化学量論的な二酸化チタンで被覆された膜は、たとえば、包装に用いる場合、 優れた酸素遮断特性を有するにも拘らず、静電気を帯びやすいため、コーヒーの ような粉製品の包装には向かないという欠点を有する。 半化学量論的二酸化チタンターゲットを用いて得られた半化学量論的二酸化チ タン膜の場合、透明性は低下し、僅かに青に着色するが、導電性があり、そして 抵抗3×105Ω・cm以上の静電防止特性を有している。それゆえ、非化学量 論的二酸化チタンで被覆された膜は、良好な酸素遮断特性を有するだけでなく、 優れた静電気防止特性を有するため、包装、中でも特に食品産業における包装に 好適に用いることができる。半化学量論的二酸化チタンで被覆した膜のさらなる 利点は、ひどく折り曲げたり、皺にしても酸素遮断特性が低下することのない優 れた可撓性を有していることである。膜はわずかに青に着色しているが、これに より食品産業における利用の可能性が減じるものではなく、青色は製品に”新鮮 な”外観を提供する。水蒸気と酸素の遮断フィルムとしては、従来の二酸化チタ ン被覆フィルムと比較すると、水蒸気で5倍、酸素で3倍の遮断性能の向上が認 められる。 本発明の主たる利点は、本発明の半化学量論的二酸化チタンターゲットを用い ることにより、金属チタンターゲットを用いる場合に比べ、スパッタリング速度 が約10倍に増加することにあり、そのため産業上、魅力的なプロセスを提供で きる。さらに、スパッタリングプロセスは非常に安定であり、アーク放電はほと んどあるいは全く発生しない。 本発明を、以下の実施例を用いて、詳細に説明する。 実施例1(比較) 直径133mmで長さ800mmの金属チタン管からなる回転可能なターゲッ トを用いて、ターゲットから18cm離れて配置されたガラス板の上に金属チタ ンをスパッタした。スパッタリングは、プラズマガスとして、アルゴン圧5×1 0-3mBarで35kW(80A,446V)の電力値で行った。3.5分後、 段差計により厚みが測定された厚さ18000Åのチタン金属層がガラス板上に 形成された。 実施例2(比較) 比較例1の最初のプラズマガスをアルゴンから、80%O2と20%Arの混 合ガスに変えた以外は、比較例1と同様の方法で行った。スパッタリングは、4 .5×10-3mBarの圧力下、電力値45kW(97A,460V)で行った 。実施例1記載の金属チタンターゲットを用いて、ターゲット上方に配置された ガラス板の上に3.5分で厚さ1500Åの二酸化チタン膜が形成された。 実施例3 直径133mmで長さ800mmのステンレス鋼の管からなる回転可能なター ゲット上に半化学量論的二酸化チタン、TiOxを、ここで前述のようにxは2 以下であり、一次プラズマガスにアルゴン、二次プラズマガスに水素を用いプラ ズマ溶射して被覆した。721(60%アルゴン、40%水素)を用いた。電力値 は、45kW(455A,96V)であった。 このターゲットは、実施例1に記載の方法でスパッタリングターゲットとして 用いた。一次プラズマガスとしてアルゴンを用い、5.4×10-3mBarの圧 力下、電力値45kW(97A,460V)でスパッタリングを行った。 .4×10-3mBarの圧力下、電力値45kW(97A,460V)でスパッ タリングを行った。暗青色、半透明で厚さ14000Åの半化学量論的二酸化チ タン層が、3.5分でターゲット上方に配置されたガラス板上に形成された。ス パッタリングは、アーク放電を発生することなく、円滑に進行した。 実施例4 実施例3に記載の方法で調製された回転可能なターゲットを、75%アルゴン と25%酸素との混合ガスをプラズマガスとして、実施例3に記載の方法により スパッタリングターゲットとして用いた。5×10-3mBarの圧力下、電力値 45kW(95A,473V)でスパッタリングを行った。明るく、透明で厚さ 12500Åの化学量論的二酸化チタン層が、3.5分でターゲット上方に配置 されたガラス板上に形成された。スパッタリングは、アーク放電を発生すること なく、円滑に進行した。 実施例5(比較) 純粋なアルゴン(401)を用い、電力値34kW(820A,42V)で、 実施例3記載の方法で回転可能なターゲットを調製した。ターゲットの導電率は 、実施例3の10分の1と低かった。ターゲットからのスパッタリングは、アー ク放電のため困難であった。プロセスの安定性は、サンプル作製には不十分であ った。The present invention relates to an improved coating method for coating a substrate surface with titanium dioxide. Sputter coatings of various oxides (eg, silica) and nitrides (eg, silicon nitride) have been used to form optical coatings that impart interesting properties to many substrates. Known applications include window glass low emissivity films, reflector cold mirrors, photocopier enhanced mirrors and anti-reflective coatings on glazing or television screens. These coating films usually comprise a laminate of low refractive index and high refractive index films to produce a plurality of films having different refractive indices, preferably optical filters. In the case of an antireflection coating, it is preferable to combine two materials having the highest and lowest refractive indexes as far as possible. Examples include titania and silica. Another advantage of these materials is durability. In the case of a low-emissivity film of a window glass, it is preferable to combine a silver layer with a material having a high refractive index so as not to reflect silver which promotes light transmission. The coating film of titanium dioxide has a high refractive index and is suitably used as a coating film having a high refractive index or a coating film having a high refractive index in an optical stack. In a conventional titanium dioxide production method, metal titanium is used as a sputtering target, and oxygen is used as a component of a plasma gas. Titanium changes to titanium dioxide during the sputtering process. The properties of titanium dioxide as a coating are satisfactory, but the deposition rate is very slow, much slower than with zinc oxide and / or tin oxide. The stability and discharge rate of the sputtering process depends largely on the conductivity of the target, especially at high power levels. It has been proposed to use other materials such as niobium oxide instead of titanium dioxide. It is possible to coat the substrate with niobium oxide at a slightly faster speed than with titanium using a nib target, but niobium is expensive. Japanese Patent Application Laid-Open No. 62-161945 discloses that a ceramic material mainly composed of ZrO 2 , TiO 2 , SiO 2 , Ta 2 O 3 , Al 2 O 3 , Fe 2 O 3 or a compound of these materials is subjected to water plasma. There is disclosed a method for manufacturing a ceramic sputtering target in which a formed body to be a sputtering target is manufactured by spraying by a thermal spraying method. The sputtering target is a high-frequency sputtering target of a non-conductive target material, and the sputtering target is used for high-frequency sputtering of a non-conductive target material. Japanese Patent Application Laid-Open No. HEI 1-118807 discloses that a target made of titanium, titanium monoxide (TiO) or titanium dioxide (TiO 2 ) is used as a sputtering target and sputtering is performed in a mixed atmosphere of argon and oxygen at a high frequency power density of, for example, 500 W. A method for producing a titanium oxide thin film is disclosed. However, there is still a need for an improved process for coating titanium dioxide on a substrate material. We have surprisingly found that, with a target consisting of substoichiometric titanium dioxide having a resistance of less than 1 Ω · cm, preferably less than 0.1 Ω · cm, the sputtering conditions allow for a substoichiometry on the substrate. It has been found that either a stoichiometric titanium dioxide or a coating of titanium dioxide can be formed. Accordingly, the present invention provides a method for coating a substrate surface with titanium dioxide, wherein the method comprises a semi-stoichiometric titanium dioxide TiO x having x of 2 or less and a resistance of 1 Ω · cm. It consists of DC plasma sputtering and / or medium frequency sputtering using the following sputtering targets. Semi-stoichiometric titanium dioxide, TiO x, is known, where x is less than or equal to 2, typically in the range of 1.55 to 1.95. It is conductive titanium dioxide. The resistance of titanium dioxide suitably used in the present invention is 0.1 Ω · cm or less. The sputtering target used in the method of the present invention comprises semi-stoichiometric titanium dioxide TiO x coated on a target substrate such as a support tube or a support plate, and comprises a conductive material as the target substrate. And as the conductive material, for example, stainless steel or metallic titanium, aluminum or copper. Because semi-stoichiometric titanium dioxide is conductive, direct current plasma sputtering and / or medium frequency sputtering, such as a Twin-Mag system, can be applied. However, it is preferable to use DC plasma sputtering. As the target, any known target such as a rotatable target or a flat magnetron target can be used. The sputtering target used in the present invention is produced by plasma spraying titanium dioxide on a target substrate in an atmosphere containing no oxygen and no oxygen-containing compound. The target substrate is coated with TiO x with x less than or equal to 2 and solidified under conditions such that the substoichiometric titanium dioxide does not combine with oxygen. During the process of plasma spraying, the action of the plasma on the titanium dioxide deprives the titanium dioxide of some oxygen atoms from its lattice, preferably the particle surface. Titanium dioxide changes to a semi-stoichiometric form, ie, non-stoichiometric oxygen-deficient titania. Sputtering from a substoichiometric titanium dioxide or TiO x target is preferably performed using argon, a mixture of argon and oxygen, a mixture of nitrogen and argon, or a mixture of nitrogen and oxygen as the plasma gas. If the plasma gas does not contain oxygen, for example using pure argon, a substoichiometric titanium dioxide coating is obtained. The resulting coating is not completely transparent and has some conductivity. However, if the plasma gas contains oxygen, the sub-stoichiometric form of titanium dioxide will be stoichiometric or substantially stoichiometric during the sputtering process, and the transparent Change to form. The degree of transparency depends on the amount of oxygen contained in the plasma gas. A preferred gas mixture for forming transparent titanium dioxide as a coating comprises 70-90% by volume of argon and 30-10% by volume of oxygen. Substrates coated by this method include, for example, optical glass, for example, cathode ray tube screens such as television screens, cold mirrors, low emissivity glass, architectural glass, anti-reflection panels, and flexible materials such as oxygen barrier films. Films. By using the target of the present invention, it is possible to prevent the effect of titania from thunder crushing in a metal state or a contaminated oxygen state. No sophisticated gas control system or plasma monitoring equipment is required. The target is easily manipulated and controlled and can be applied to the production of non-stoichiometric films with stoichiometric or any level of sub-stoichiometry. Operating the target in a slightly oxygen deficient sputtering process provides a high refractive index film that is important for optical coatings. By changing sputtering parameters, an amorphous or crystalline film having a rutile or anatase structure can be obtained. Rutile films have excellent optical, mechanical and electrical properties. Sputtering semi-stoichiometric titanium dioxide under conditions that form a coating of stoichiometric titanium dioxide results in a substantially transparent, colorless coating. Films coated with stoichiometric titanium dioxide are, for example, suitable for packaging of powdered products such as coffee because they are easily charged with static electricity, despite having excellent oxygen barrier properties when used for packaging. There is a disadvantage that there is no. In the case of a substoichiometric titanium dioxide film obtained using a substoichiometric titanium dioxide target, the transparency is reduced, slightly colored blue, but electrically conductive and having a resistance of 3 × 10 5 It has antistatic properties of Ω · cm or more. Therefore, non-stoichiometric titanium dioxide coated films not only have good oxygen barrier properties, but also have excellent antistatic properties, making them suitable for packaging, especially in the food industry. Can be. A further advantage of semi-stoichiometric titanium dioxide coated membranes is that they have excellent flexibility without severely bending or wrinkling, without a loss of oxygen barrier properties. The membrane is tinted slightly blue, but this does not diminish its potential use in the food industry, and blue provides a "fresh" appearance to the product. As a film for blocking water vapor and oxygen, improvement of the barrier performance by 5 times with water vapor and 3 times with oxygen is recognized as compared with the conventional titanium dioxide coated film. A major advantage of the present invention is that the use of the substoichiometric titanium dioxide target of the present invention increases the sputtering rate by a factor of about 10 compared to the use of a metallic titanium target, which makes it industrially attractive. Process can be provided. Furthermore, the sputtering process is very stable and little or no arcing occurs. The present invention will be described in detail with reference to the following examples. Example 1 (Comparative) Using a rotatable target made of a metal titanium tube having a diameter of 133 mm and a length of 800 mm, metal titanium was sputtered on a glass plate placed 18 cm away from the target. The sputtering was performed at a power of 35 kW (80 A, 446 V) at a plasma pressure of 5 × 10 −3 mBar as an argon gas. After 3.5 minutes, a 18000 ° thick titanium metal layer whose thickness was measured by a step gauge was formed on the glass plate. Example 2 (Comparative) The same procedure as in Comparative Example 1 was performed except that the first plasma gas in Comparative Example 1 was changed from argon to a mixed gas of 80% O 2 and 20% Ar. Sputtering is performed in 4. The test was performed under a pressure of 5 × 10 −3 mBar at a power value of 45 kW (97 A, 460 V). Using the titanium metal target described in Example 1, a titanium dioxide film having a thickness of 1500 ° was formed on a glass plate placed above the target in 3.5 minutes. Example 3 Semi-stoichiometric titanium dioxide, TiO x , on a rotatable target consisting of a stainless steel tube 133 mm in diameter and 800 mm in length, where x is 2 or less and primary plasma gas Was coated by plasma spraying using argon and secondary plasma gas with hydrogen. 721 (60% argon, 40% hydrogen) was used. The power value was 45 kW (455 A, 96 V). This target was used as a sputtering target by the method described in Example 1. Using argon as a primary plasma gas, sputtering was performed under a pressure of 5.4 × 10 −3 mBar at a power value of 45 kW (97 A, 460 V). . Sputtering was performed under a pressure of 4 × 10 −3 mBar at a power value of 45 kW (97 A, 460 V). A dark blue, translucent, 14,000 ° thick, semi-stoichiometric titanium dioxide layer was formed on the glass plate placed above the target in 3.5 minutes. Sputtering proceeded smoothly without generating arc discharge. Example 4 A rotatable target prepared by the method described in Example 3 was used as a sputtering target according to the method described in Example 3, using a mixed gas of 75% argon and 25% oxygen as a plasma gas. Sputtering was performed under a pressure of 5 × 10 −3 mBar at a power value of 45 kW (95 A, 473 V). A bright, transparent, 12,500 ° thick stoichiometric titanium dioxide layer was formed on the glass plate located above the target in 3.5 minutes. Sputtering proceeded smoothly without generating arc discharge. Example 5 (Comparative) A rotatable target was prepared by the method described in Example 3 using pure argon (401) at a power value of 34 kW (820 A, 42 V). The conductivity of the target was as low as one-tenth that of Example 3. Sputtering from the target was difficult due to arc discharge. Process stability was insufficient for sample preparation.

【手続補正書】特許法第184条の8第1項 【提出日】1998年2月26日(1998.2.26) 【補正内容】 請求の範囲 1.xが2以下の半化学量論的二酸化チタンTiOxを必須成分として含み、抵 抗が1Ω・cm以下であるスパッタリングターゲットからの直流プラズマスパッ タリング及び/又は中周波数スパッタリングにより、プラズマガスにアルゴン、 又はアルゴンと窒素の混合ガスを用い、基材表面の二酸化チタンによる被覆方法 において、基材表面に形成された被覆膜が、xが2以下の半化学量論的二酸化チ タンTiOxを必須成分として含む被覆方法。 2.被覆される基材が、光学ガラス、ブラウン管の画面、コールドミラー、低放 射ガラス、構造用ガラス、反射防止パネルガラス、ブラウン管の画面、可撓性フ ィルム又は水蒸気と酸素遮断フィルムである請求項1記載の被覆方法。 3.半化学量論的二酸化チタンの抵抗が0.1Ω・cm以下である請求項1又は 2に記載の被覆方法。 4.請求項1から3のいずれか一つの方法で被覆された基材。 5.半化学量論的二酸化チタンで被覆された可撓性フィルムであって、静電気防 止特性を有する請求項4記載の基材。 6.被覆膜が半化学量論的二酸化チタンであって、ルチル型の結晶構造を有する 請求項4記載の基材。[Procedure for Amendment] Article 184-8, Paragraph 1 of the Patent Act [Date of Submission] February 26, 1998 (Feb. 26, 1998) [Details of Amendment] Claims 1. The plasma gas contains argon or argon by direct current plasma sputtering and / or medium frequency sputtering from a sputtering target containing semi-stoichiometric titanium dioxide TiO x having an x of 2 or less as an essential component and having a resistance of 1 Ω · cm or less. In a method for coating a substrate surface with titanium dioxide using a mixed gas of nitrogen and nitrogen, the coating film formed on the substrate surface contains semi-stoichiometric titanium dioxide TiO x with x of 2 or less as an essential component. Coating method. 2. The substrate to be coated is an optical glass, a CRT screen, a cold mirror, a low-emission glass, a structural glass, an antireflection panel glass, a CRT screen, a flexible film, or a water vapor and oxygen barrier film. Coating method. 3. The coating method according to claim 1 or 2, wherein the resistance of the semi-stoichiometric titanium dioxide is 0.1 Ω · cm or less. 4. A substrate coated by the method according to any one of claims 1 to 3. 5. 5. The substrate according to claim 4, which is a flexible film coated with semi-stoichiometric titanium dioxide and has antistatic properties. 6. 5. The substrate according to claim 4, wherein the coating film is semi-stoichiometric titanium dioxide and has a rutile-type crystal structure.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(KE,LS,MW,SD,S Z,UG),UA(AM,AZ,BY,KG,KZ,MD ,RU,TJ,TM),AL,AM,AT,AU,AZ ,BA,BB,BG,BR,BY,CA,CH,CN, CU,CZ,DE,DK,EE,ES,FI,GB,G E,HU,IL,IS,JP,KE,KG,KP,KR ,KZ,LC,LK,LR,LS,LT,LU,LV, MD,MG,MK,MN,MW,MX,NO,NZ,P L,PT,RO,RU,SD,SE,SG,SI,SK ,TJ,TM,TR,TT,UA,UG,US,UZ, VN────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA (BF, BJ, CF) , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (KE, LS, MW, SD, S Z, UG), UA (AM, AZ, BY, KG, KZ, MD , RU, TJ, TM), AL, AM, AT, AU, AZ , BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, G E, HU, IL, IS, JP, KE, KG, KP, KR , KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, P L, PT, RO, RU, SD, SE, SG, SI, SK , TJ, TM, TR, TT, UA, UG, US, UZ, VN

Claims (1)

【特許請求の範囲】 1.基材表面の二酸化チタンによる被覆方法であって、xが2以下の半化学量論 的二酸化チタンTiOxを含み、1Ω・cm以下の抵抗を有するスパッタリング ターゲットを用いる直流プラズマスパッタリング及び/又は中周波数スパッタリ ングからなる被覆方法。 2.プラズマガスとして、アルゴン又は混合ガス又はアルゴンと窒素を用いるタ ーゲットからのスパッタリングであって、基材表面に形成された被覆膜が、xが 2以下の半化学量論的二酸化チタンTiOxからなる請求項1記載の被覆方法。 3.プラズマガスとして、アルゴンと酸素の混合ガス、又は窒素と酸素の混合ガ スを用いるターゲットからのスパッタリングであって、基材表面の被覆膜が化学 量論的又は半化学量論的二酸化チタンである請求項1記載の被覆方法。 4.プラズマガスが、70〜90体積%のアルゴンと30〜10体積%の酸素か らなる請求項3記載の被覆方法。 5.被覆される基材が、光学ガラス、ブラウン管の画面、コールドミラー、低放 射ガラス、構造用ガラス、反射防止パネルガラス、ブラウン管の画面、可撓性フ ィルム又は水蒸気と酸素の遮断フィルムである請求項1から4のいずれか一つに 記載の被覆方法。 6.半化学量論的二酸化チタンの抵抗が0.1Ω・cm以下である請求項1から 5のいずれか一つに記載の被覆方法。 7.請求項1から6のいずれか一つに記載の方法で被覆された基材。 8.半化学量論的二酸化チタンTiOxで被覆された可撓性フィルムであって、 静電気防止特性を有する請求項7記載の基材。 9.被覆膜が半化学量論的二酸化チタンTiOxであり、ルチル型の結晶構造を 有する請求項7記載の基材。[Claims] 1. A method for coating a substrate surface with titanium dioxide, wherein DC plasma sputtering using a sputtering target having a substoichiometric titanium dioxide TiO x of 2 or less and having a resistance of 1 Ω · cm or less and / or a medium frequency A coating method comprising sputtering. 2. Sputtering from a target using argon or a mixed gas or argon and nitrogen as a plasma gas, wherein the coating film formed on the substrate surface is composed of a substoichiometric titanium dioxide TiO x having x of 2 or less. The coating method according to claim 1. 3. Sputtering from a target using a mixed gas of argon and oxygen or a mixed gas of nitrogen and oxygen as a plasma gas, wherein the coating film on the substrate surface is stoichiometric or semi-stoichiometric titanium dioxide. The coating method according to claim 1. 4. The coating method according to claim 3, wherein the plasma gas comprises 70 to 90% by volume of argon and 30 to 10% by volume of oxygen. 5. The substrate to be coated is an optical glass, a CRT screen, a cold mirror, a low-emission glass, a structural glass, an antireflection panel glass, a CRT screen, a flexible film, or a water vapor and oxygen barrier film. 5. The coating method according to any one of items 1 to 4. 6. The coating method according to any one of claims 1 to 5, wherein the resistance of the semi-stoichiometric titanium dioxide is 0.1 Ω · cm or less. 7. A substrate coated by the method according to claim 1. 8. A flexible film coated with sub-stoichiometric titanium dioxide TiO x, substrate according to claim 7, further comprising an antistatic characteristic. 9. The base material according to claim 7, wherein the coating film is semi-stoichiometric titanium dioxide TiO x and has a rutile-type crystal structure.
JP52484697A 1996-01-05 1997-01-03 Method for coating substrate with titanium dioxide Expired - Fee Related JP3980643B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9600210.0A GB9600210D0 (en) 1996-01-05 1996-01-05 Improved sputtering targets and method for the preparation thereof
GB9600210.0 1996-01-05
PCT/EP1997/000021 WO1997025450A1 (en) 1996-01-05 1997-01-03 Process for coating a substrate with titanium dioxide

Publications (2)

Publication Number Publication Date
JP2000503070A true JP2000503070A (en) 2000-03-14
JP3980643B2 JP3980643B2 (en) 2007-09-26

Family

ID=10786662

Family Applications (3)

Application Number Title Priority Date Filing Date
JP52484597A Expired - Fee Related JP4087447B2 (en) 1996-01-05 1997-01-03 Sputtering target and manufacturing method thereof
JP52484697A Expired - Fee Related JP3980643B2 (en) 1996-01-05 1997-01-03 Method for coating substrate with titanium dioxide
JP2007219854A Pending JP2007314892A (en) 1996-01-05 2007-08-27 Sputtering target and method for the preparation thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP52484597A Expired - Fee Related JP4087447B2 (en) 1996-01-05 1997-01-03 Sputtering target and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007219854A Pending JP2007314892A (en) 1996-01-05 2007-08-27 Sputtering target and method for the preparation thereof

Country Status (12)

Country Link
US (11) US6461686B1 (en)
EP (2) EP0871792B1 (en)
JP (3) JP4087447B2 (en)
KR (1) KR100510609B1 (en)
CN (2) CN1208495C (en)
AU (2) AU716603B2 (en)
BR (1) BR9706954A (en)
CA (1) CA2241878C (en)
DE (2) DE69715592T2 (en)
GB (1) GB9600210D0 (en)
IL (1) IL125103A0 (en)
WO (2) WO1997025450A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100013A1 (en) * 2004-04-06 2005-10-27 Teijin Dupont Films Japan Limited Antireflective film
JP2012032690A (en) * 2010-08-02 2012-02-16 Seiko Epson Corp Optical article and manufacturing method thereof
JP2015096656A (en) * 2015-01-21 2015-05-21 三井金属鉱業株式会社 Ceramic cylindrical sputtering target material, and method for manufacturing the same
JP2016164680A (en) * 2010-10-01 2016-09-08 カール ツァイス ビジョン ゲーエムベーハー Optical lens having antistatic coating

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852266B1 (en) * 1995-08-23 2004-10-13 Asahi Glass Ceramics Co., Ltd. Target, process for production thereof, and method of forming highly refractive film
GB9600210D0 (en) * 1996-01-05 1996-03-06 Vanderstraeten E Bvba Improved sputtering targets and method for the preparation thereof
US6292302B1 (en) * 1998-11-03 2001-09-18 Cardinal Glass Industries, Inc. Heat-treatable dichroic mirrors
US6262850B1 (en) 1998-11-03 2001-07-17 Cardinal Glass Industries, Inc. Heat-treatable dichroic mirrors
TR200201033T2 (en) 1998-12-21 2002-08-21 Cardinal Cg Company Dirt-resistant coatings for glass surfaces
DE19958424C2 (en) * 1999-12-03 2002-05-29 Zentrum Fuer Material Und Umwe Atomization target for thin coating of large-area substrates and process for its production
CN1158403C (en) * 1999-12-23 2004-07-21 西南交通大学 Process for modifying surface of artificial organ
WO2001071055A1 (en) * 2000-03-22 2001-09-27 Nippon Sheet Glass Co., Ltd. Substrate with photocatalytic film and method for producing the same
JP3708429B2 (en) * 2000-11-30 2005-10-19 Hoya株式会社 Method for manufacturing vapor deposition composition, method for manufacturing optical component having vapor deposition composition and antireflection film
AU2002250831A1 (en) * 2001-01-17 2002-07-30 N.V. Bekaert S.A. Method for the production of sputtering targets
DE10140514A1 (en) 2001-08-17 2003-02-27 Heraeus Gmbh W C Sputtering target based on titanium dioxide
US20040240093A1 (en) * 2001-10-18 2004-12-02 Masato Yoshikawa Optical element and production method therefor, and band pass filter, near infrared cut filter and anti-reflection film
US20040115362A1 (en) * 2002-01-14 2004-06-17 Klause Hartig Photocatalytic sputtering targets and methods for the production and use thereof
US7067195B2 (en) 2002-04-29 2006-06-27 Cardinal Cg Company Coatings having low emissivity and low solar reflectance
KR20020077852A (en) * 2002-08-30 2002-10-14 주식회사 새롬원 Glass board members for anti-contamination
EP1583852A4 (en) * 2002-10-24 2008-03-05 Honeywell Int Inc Target designs and related methods for enhanced cooling and reduced deflection and deformation
US20040149307A1 (en) * 2002-12-18 2004-08-05 Klaus Hartig Reversible self-cleaning window assemblies and methods of use thereof
DE10320472A1 (en) * 2003-05-08 2004-12-02 Kolektor D.O.O. Plasma treatment for cleaning copper or nickel
US6915095B2 (en) * 2003-06-16 2005-07-05 Xerox Corporation Charging member having titanium oxide outer coating on grit blasted substrate
WO2005035822A1 (en) * 2003-10-07 2005-04-21 Deposition Sciences, Inc. Apparatus and process for high rate deposition of rutile titanium dioxide
DE10359508B4 (en) * 2003-12-18 2007-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for magnetron sputtering
US7294404B2 (en) * 2003-12-22 2007-11-13 Cardinal Cg Company Graded photocatalytic coatings
KR100968907B1 (en) 2004-02-25 2010-07-14 에이지씨 플랫 글래스 노스 아메리카, 인코퍼레이티드 Heat stabilized sub-stoichiometric dielectrics
EP1780299A4 (en) * 2004-06-29 2008-03-12 Pioneer Corp Sputtering target for thin film formation, dielectric thin film, optical disk, and process for producing the same
DE102004032635A1 (en) * 2004-07-06 2006-02-09 Gfe Metalle Und Materialien Gmbh Process for producing a titanium-suboxide-based coating material, correspondingly produced coating material and sputtering target provided therewith
ATE377579T1 (en) 2004-07-12 2007-11-15 Cardinal Cg Co LOW MAINTENANCE COATINGS
EP1779155A2 (en) * 2004-08-10 2007-05-02 Cardinal CG Company Lcd mirror system and method
EP1797017B1 (en) * 2004-10-04 2010-11-24 Cardinal CG Company Thin film coating and temporary protection technology, insulating glazing units, and associated methods
US7923114B2 (en) 2004-12-03 2011-04-12 Cardinal Cg Company Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films
US8092660B2 (en) 2004-12-03 2012-01-10 Cardinal Cg Company Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films
US7968216B2 (en) * 2005-01-08 2011-06-28 Toyoda Gosei Co., Ltd. Internal gear pump
US7442933B2 (en) * 2005-02-03 2008-10-28 Lin Alice L Bolometer having an amorphous titanium oxide layer with high resistance stability
FR2881757B1 (en) * 2005-02-08 2007-03-30 Saint Gobain THERMAL PROJECTION DEVELOPING METHOD OF TARGET BASED ON SILICON AND ZIRCONIUM
US8053048B2 (en) * 2005-04-25 2011-11-08 Baxter International Inc. Overpouch film and container and method of making same
DE102005029952B3 (en) * 2005-06-28 2007-01-11 Lanxess Deutschland Gmbh Leveling bracket
US7342716B2 (en) 2005-10-11 2008-03-11 Cardinal Cg Company Multiple cavity low-emissivity coatings
CA2626073A1 (en) * 2005-11-01 2007-05-10 Cardinal Cg Company Reactive sputter deposition processes and equipment
US20070134500A1 (en) * 2005-12-14 2007-06-14 Klaus Hartig Sputtering targets and methods for depositing film containing tin and niobium
CN101466649B (en) 2006-04-11 2013-12-11 卡迪奈尔镀膜玻璃公司 Photocatalytic coatings having improved low-maintenance properties
JP2009534563A (en) 2006-04-19 2009-09-24 日本板硝子株式会社 Opposing functional coating with equivalent single surface reflectivity
DE102006027029B4 (en) * 2006-06-09 2010-09-30 W.C. Heraeus Gmbh Sputtering target with a sputtering material based on TiO2 and manufacturing process
US20070289869A1 (en) * 2006-06-15 2007-12-20 Zhifei Ye Large Area Sputtering Target
US7754336B2 (en) * 2006-06-30 2010-07-13 Cardinal Cg Company Carbon nanotube glazing technology
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
JP5261397B2 (en) * 2006-11-17 2013-08-14 サン−ゴバン グラス フランス Electrode for organic light emitting device, acid etching thereof, and organic light emitting device incorporating the same
US7807248B2 (en) * 2007-08-14 2010-10-05 Cardinal Cg Company Solar control low-emissivity coatings
US7622717B2 (en) * 2007-08-22 2009-11-24 Drs Sensors & Targeting Systems, Inc. Pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption
WO2009036284A1 (en) 2007-09-14 2009-03-19 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US7655274B2 (en) 2007-11-05 2010-02-02 Guardian Industries Corp. Combustion deposition using aqueous precursor solutions to deposit titanium dioxide coatings
JP4993745B2 (en) * 2007-12-28 2012-08-08 株式会社アルバック Deposition equipment
US8951446B2 (en) 2008-03-13 2015-02-10 Battelle Energy Alliance, Llc Hybrid particles and associated methods
US9371226B2 (en) 2011-02-02 2016-06-21 Battelle Energy Alliance, Llc Methods for forming particles
US20130026535A1 (en) * 2011-07-26 2013-01-31 Battelle Energy Alliance, Llc Formation of integral composite photon absorber layer useful for photoactive devices and sensors
US8324414B2 (en) 2009-12-23 2012-12-04 Battelle Energy Alliance, Llc Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods
US8003070B2 (en) * 2008-03-13 2011-08-23 Battelle Energy Alliance, Llc Methods for forming particles from single source precursors
EP2116631A1 (en) * 2008-04-30 2009-11-11 Applied Materials, Inc. Sputter target
US20090272641A1 (en) * 2008-04-30 2009-11-05 Applied Materials, Inc. Sputter target, method for manufacturing a layer, particularly a tco (transparent conductive oxide) layer, and method for manufacturing a thin layer solar cell
JP5624712B2 (en) * 2008-09-01 2014-11-12 豊田合成株式会社 Manufacturing method of conductive transparent layer made of TiO2 and manufacturing method of semiconductor light emitting device using manufacturing method of said conductive transparent layer
JP2010231172A (en) * 2009-03-04 2010-10-14 Seiko Epson Corp Optical article and method for producing the same
FR2944293B1 (en) * 2009-04-10 2012-05-18 Saint Gobain Coating Solutions THERMAL PROJECTION DEVELOPING METHOD OF A TARGET
JP5588135B2 (en) * 2009-08-10 2014-09-10 ホーヤ レンズ マニュファクチャリング フィリピン インク Method for manufacturing optical article
WO2013003458A1 (en) 2011-06-27 2013-01-03 Soleras Ltd. Sputtering target
CN102286717B (en) * 2011-09-01 2013-07-03 基迈克材料科技(苏州)有限公司 Cylindrical large-area film coating target prepared through plasma spray coating and method
DE102011116062A1 (en) * 2011-10-18 2013-04-18 Sintertechnik Gmbh Ceramic product for use as a target
EP2613358A2 (en) * 2012-01-04 2013-07-10 OC Oerlikon Balzers AG Double layer antireflection coating for silicon based solar cell modules
DE102012112739A1 (en) * 2012-10-23 2014-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Light-absorbing layer system and its production as well as a suitable sputtering target
DE102012022237A1 (en) 2012-11-14 2014-05-15 Heraeus Materials Technology Gmbh & Co. Kg Sputtering target with optimized usage properties
BE1021021B1 (en) 2013-02-05 2014-12-19 Soleras Advanced Coatings Bvba SPUTTER TARGET OFF (Go) Zn Sn-OXIDE
RU2013158730A (en) * 2013-12-27 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева" (национальный исследовательский университет)" (СГАУ) METHOD FOR PRODUCING A CATHODE TARGET FOR SPRAYING CERAMIC MATERIALS
EP3541762B1 (en) 2016-11-17 2022-03-02 Cardinal CG Company Static-dissipative coating technology
ES2913535T3 (en) * 2017-03-14 2022-06-02 Materion Advanced Mat Germany Gmbh Titanium oxide cylindrical sputtering target and method for manufacturing the same
DE102017118172A1 (en) * 2017-08-09 2019-02-14 Forplan AG Coating method, coating device for carrying out this method and coating system with such a coating device
CN110257790B (en) * 2019-07-29 2020-07-03 福建阿石创新材料股份有限公司 Aluminum oxide-TiOxTarget material and preparation method and application thereof
EP4227434A4 (en) * 2021-12-01 2024-01-24 Contemporary Amperex Technology Co Ltd Doped nickel oxide target material, and preparation method therefor and use thereof

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US232680A (en) 1880-09-28 Peters
US1231280A (en) 1916-11-16 1917-06-26 John F Metten Safety-valve.
US1438462A (en) 1919-04-17 1922-12-12 Skf Svenska Kullagerfab Ab Shock indicator
US1595061A (en) 1922-10-17 1926-08-03 Valerius Johann Electric cut-out
GB232680A (en) 1924-01-23 1925-04-23 Metal & Thermit Corp Improvements in the production of a form of titanium oxide
US3616445A (en) 1967-12-14 1971-10-26 Electronor Corp Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides
DE2300422C3 (en) * 1973-01-05 1981-10-15 Hoechst Ag, 6000 Frankfurt Method of making an electrode
DE2405010C3 (en) 1974-02-02 1982-08-05 Sigri Elektrographit Gmbh, 8901 Meitingen Sintered electrode for electrochemical processes and methods of manufacturing the electrode
GB1595061A (en) * 1976-11-22 1981-08-05 Atomic Energy Authority Uk Electrically conductive layers produced by plasma spraying
DE2752875C2 (en) 1977-11-26 1986-05-15 Sigri GmbH, 8901 Meitingen Electrode for electrochemical processes and processes for their production
GB2028376B (en) 1978-08-23 1982-11-03 Ppg Industries Inc Electrically conductive coatings
US4216259A (en) 1979-01-02 1980-08-05 Bfg Glassgroup Heat reflecting pane and a method of producing it
US4422917A (en) * 1980-09-10 1983-12-27 Imi Marston Limited Electrode material, electrode and electrochemical cell
DE3039821A1 (en) * 1980-10-22 1982-06-03 Robert Bosch Gmbh, 7000 Stuttgart MULTI-LAYER SYSTEM FOR HEAT PROTECTION APPLICATION
US4336119A (en) 1981-01-29 1982-06-22 Ppg Industries, Inc. Method of and apparatus for control of reactive sputtering deposition
US4422916A (en) * 1981-02-12 1983-12-27 Shatterproof Glass Corporation Magnetron cathode sputtering apparatus
US5126218A (en) 1985-04-23 1992-06-30 Clarke Robert L Conductive ceramic substrate for batteries
JPS62161945A (en) * 1985-08-20 1987-07-17 Toyo Soda Mfg Co Ltd Production of ceramic sputtering target
JPS63178474A (en) 1987-01-19 1988-07-22 日立金属株式会社 Heater radiating long wavwlength infrared radiation
US4931213A (en) 1987-01-23 1990-06-05 Cass Richard B Electrically-conductive titanium suboxides
JPH0812302B2 (en) * 1987-11-02 1996-02-07 株式会社日立製作所 Method for producing titanium oxide thin film
US5618388A (en) * 1988-02-08 1997-04-08 Optical Coating Laboratory, Inc. Geometries and configurations for magnetron sputtering apparatus
US4861680A (en) 1988-02-11 1989-08-29 Southwall Technologies Bronze-grey glazing film and window made therefrom
US5354446A (en) * 1988-03-03 1994-10-11 Asahi Glass Company Ltd. Ceramic rotatable magnetron sputtering cathode target and process for its production
US5605609A (en) 1988-03-03 1997-02-25 Asahi Glass Company Ltd. Method for forming low refractive index film comprising silicon dioxide
US5196400A (en) * 1990-08-17 1993-03-23 At&T Bell Laboratories High temperature superconductor deposition by sputtering
US5105310A (en) 1990-10-11 1992-04-14 Viratec Thin Films, Inc. Dc reactively sputtered antireflection coatings
US5100527A (en) * 1990-10-18 1992-03-31 Viratec Thin Films, Inc. Rotating magnetron incorporating a removable cathode
US5616263A (en) * 1992-11-09 1997-04-01 American Roller Company Ceramic heater roller
US5589280A (en) 1993-02-05 1996-12-31 Southwall Technologies Inc. Metal on plastic films with adhesion-promoting layer
US5489369A (en) 1993-10-25 1996-02-06 Viratec Thin Films, Inc. Method and apparatus for thin film coating an article
GB9324069D0 (en) 1993-11-23 1994-01-12 Glaverbel A glazing unit and a method for its manufacture
US5451457A (en) 1993-12-20 1995-09-19 Libbey-Owens-Ford Co. Method and material for protecting glass surfaces
JPH07215074A (en) 1994-02-07 1995-08-15 Toyota Motor Corp Under-cover device for vehicle
JP3836163B2 (en) * 1994-02-22 2006-10-18 旭硝子セラミックス株式会社 Method for forming high refractive index film
US5616225A (en) 1994-03-23 1997-04-01 The Boc Group, Inc. Use of multiple anodes in a magnetron for improving the uniformity of its plasma
JPH08134638A (en) 1994-11-04 1996-05-28 Asahi Glass Co Ltd Formation of titanium oxide film
US5593786A (en) 1994-11-09 1997-01-14 Libbey-Owens-Ford Company Self-adhering polyvinyl chloride safety glass interlayer
DE4441206C2 (en) 1994-11-19 1996-09-26 Leybold Ag Device for the suppression of rollovers in cathode sputtering devices
US5574079A (en) 1994-12-21 1996-11-12 Union Carbide Chemicals & Plastics Technology Corporation Method for the preparation of water-borne coating compositions using thermoplastic polyhydroxyether resins having narrow polydispersity
ES2124048T3 (en) 1995-07-08 1999-01-16 Leybold Ag CATHODIC SYSTEM FOR A SPRAY DEVICE ON AN OBJECT.
JP3844361B2 (en) 1995-07-24 2006-11-08 サウスウォール テクノロジーズ インコーポレイテッド Improved laminated structure and manufacturing process thereof
US5743931A (en) 1995-08-14 1998-04-28 Libbey-Owens-Ford Co. Glass sheet conveying and bending apparatus
EP0852266B1 (en) 1995-08-23 2004-10-13 Asahi Glass Ceramics Co., Ltd. Target, process for production thereof, and method of forming highly refractive film
JPH09189801A (en) 1996-01-09 1997-07-22 Shin Etsu Chem Co Ltd Optical parts with heat resistant antireflection film
GB9600210D0 (en) * 1996-01-05 1996-03-06 Vanderstraeten E Bvba Improved sputtering targets and method for the preparation thereof
AU1577697A (en) 1996-01-11 1997-08-01 Libbey-Owens-Ford Co. Coated glass article having a solar control coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100013A1 (en) * 2004-04-06 2005-10-27 Teijin Dupont Films Japan Limited Antireflective film
JP2012032690A (en) * 2010-08-02 2012-02-16 Seiko Epson Corp Optical article and manufacturing method thereof
US8789944B2 (en) 2010-08-02 2014-07-29 Hoya Lens Manufacturing Philippines Inc. Optical article and optical article production method
JP2016164680A (en) * 2010-10-01 2016-09-08 カール ツァイス ビジョン ゲーエムベーハー Optical lens having antistatic coating
JP2015096656A (en) * 2015-01-21 2015-05-21 三井金属鉱業株式会社 Ceramic cylindrical sputtering target material, and method for manufacturing the same

Also Published As

Publication number Publication date
US20060249373A1 (en) 2006-11-09
AU1439097A (en) 1997-08-01
JP2007314892A (en) 2007-12-06
EP0871792B1 (en) 2003-06-25
DE69715592T2 (en) 2003-01-16
DE69715592D1 (en) 2002-10-24
CA2241878C (en) 2009-07-21
CA2241878A1 (en) 1997-07-17
EP0871792A1 (en) 1998-10-21
AU1310097A (en) 1997-08-01
CN1727514A (en) 2006-02-01
US20020071971A1 (en) 2002-06-13
US6461686B1 (en) 2002-10-08
JP4087447B2 (en) 2008-05-21
CN1208495C (en) 2005-06-29
CN1212026A (en) 1999-03-24
AU716603B2 (en) 2000-03-02
GB9600210D0 (en) 1996-03-06
EP0871794A1 (en) 1998-10-21
KR19990076990A (en) 1999-10-25
IL125103A0 (en) 1999-01-26
JP2000515929A (en) 2000-11-28
DE69723053T2 (en) 2004-05-19
DE69723053D1 (en) 2003-07-31
BR9706954A (en) 2000-01-04
KR100510609B1 (en) 2005-10-25
US20020036135A1 (en) 2002-03-28
US6511587B2 (en) 2003-01-28
EP0871794B1 (en) 2002-09-18
WO1997025451A1 (en) 1997-07-17
US20010019738A1 (en) 2001-09-06
US6468402B1 (en) 2002-10-22
US20010010288A1 (en) 2001-08-02
US20020081465A1 (en) 2002-06-27
US20020127349A1 (en) 2002-09-12
WO1997025450A1 (en) 1997-07-17
US20020125129A1 (en) 2002-09-12
JP3980643B2 (en) 2007-09-26
US20040069623A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3980643B2 (en) Method for coating substrate with titanium dioxide
CA1335887C (en) Neutral sputtered films of metal alloy oxides
US4902580A (en) Neutral reflecting coated articles with sputtered multilayer films of metal oxides
US4948677A (en) High transmittance, low emissivity article and method of preparation
EP0622645B1 (en) Thin film coated filter and method of manufacture
US4861669A (en) Sputtered titanium oxynitride films
EP1080245B2 (en) Coated article comprising a sputter deposited dielectric layer
EP0657562B1 (en) Durable sputtered metal oxide coating
JP4836376B2 (en) Protective layer for sputter coated articles
US4786563A (en) Protective coating for low emissivity coated articles
KR900003979B1 (en) High transmittances low emissivity articles and process for making
EP0343695A1 (en) Sputtered films for metal alloy oxides
WO1997027997A1 (en) Methods and apparatus for providing an absorbing, broad band, low brightness antireflection coating
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
Löbl et al. ITO films for antireflective and antistatic tube coatings prepared by dc magnetron sputtering
KR100259236B1 (en) Anti-reflective coating substrate with light absorption layer and a method for manufacturing thereof
JP2003139909A (en) Conductive antireflection film and glass panel for cathode ray tube
JPH01299028A (en) Heat ray reflecting film
JPH01299029A (en) Heat ray reflecting film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350