JP2000346477A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JP2000346477A
JP2000346477A JP11163295A JP16329599A JP2000346477A JP 2000346477 A JP2000346477 A JP 2000346477A JP 11163295 A JP11163295 A JP 11163295A JP 16329599 A JP16329599 A JP 16329599A JP 2000346477 A JP2000346477 A JP 2000346477A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
heat exchanger
air temperature
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11163295A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatani
和生 中谷
Michiyoshi Kusaka
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP11163295A priority Critical patent/JP2000346477A/en
Priority to CN00800748A priority patent/CN1302365A/en
Priority to KR1020007013577A priority patent/KR20010052480A/en
Priority to EP00911399A priority patent/EP1094285A1/en
Priority to PCT/JP2000/001885 priority patent/WO2000060288A1/en
Publication of JP2000346477A publication Critical patent/JP2000346477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To control capability responsive to a load by obtaining a sufficient composition separating width even under any operating condition of cooling and heating with a simple constitution and control, and enlarging the control width by regulating a refrigerant amount of a main circuit and the composition control. SOLUTION: A non-azeotrope refrigerant is sealed in the heat pump device. A check valve 16 and an opening/closing valve 17 are connected in series from midway of piping of an outdoor heat exchanger 13 and connected to a tower bottom of a rectifying separator 20. A sub-throttle unit 18 and a check valve 19 are connected in series from piping between a main throttle unit 14 and an indoor heat exchanger 15, and connected to the bottom of the separator 20. Further, a sub-circuit of the separator 20, a cooler 21 and a reservoir 22 is constituted. The pump device comprises a temperature sensor 25 for sensing an air temperature in a room, a memory 26 for storing a set air temperature value, and an arithmetic and control unit 21 for deciding a large or small difference between the air temperature and the set temperature to operate to open or close the valve 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用い、冷媒精留塔により低沸点冷媒を貯留し、主回路を
流れる冷媒組成を変化させ、負荷に対応した能力を発生
させることができるヒートポンプ装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-azeotropic mixed refrigerant, in which a low-boiling-point refrigerant is stored in a refrigerant rectification column, the composition of the refrigerant flowing through a main circuit is changed, and a capacity corresponding to a load is generated. The present invention relates to an improvement in a heat pump device capable of performing heat treatment.

【0002】[0002]

【従来の技術】非共沸混合冷媒を用い、組成分離により
低沸点冷媒を貯留して主回路組成を可変するヒートポン
プ装置として、特公平5−44582号公報に示されて
いるものがある。
2. Description of the Related Art Japanese Patent Publication No. 5-44582 discloses a heat pump device which uses a non-azeotropic refrigerant mixture and stores a low-boiling refrigerant by composition separation to vary the main circuit composition.

【0003】以下、図面を参照しながら上記従来のヒー
トポンプ装置を説明する。
Hereinafter, the conventional heat pump device will be described with reference to the drawings.

【0004】図5は、従来のヒートポンプ装置を示す冷
凍サイクルの構成図である。図5において、圧縮機1、
四方弁2、室外熱交換器3、主回路減圧装置4、室内熱
交換器5が直列に接続されている。また、凝縮器3と主
回路減圧装置4との中間より減圧器6を連結し、精留塔
7の底部に接続されている。精留塔7の塔頂部には冷却
器8を配設し、圧縮機1と四方弁2との間の配管が貫通
し、熱交換可能なように配設されている。この冷却器8
は精留塔7の塔頂部と接続され、冷媒の貯留器を兼ねて
いる。
FIG. 5 is a configuration diagram of a refrigeration cycle showing a conventional heat pump device. In FIG. 5, the compressor 1,
The four-way valve 2, the outdoor heat exchanger 3, the main circuit pressure reducing device 4, and the indoor heat exchanger 5 are connected in series. Further, a decompressor 6 is connected from an intermediate point between the condenser 3 and the main circuit decompression device 4, and is connected to the bottom of the rectification column 7. A cooler 8 is provided at the top of the rectification column 7, and a pipe between the compressor 1 and the four-way valve 2 penetrates therethrough so that heat can be exchanged. This cooler 8
Is connected to the top of the rectification column 7 and also serves as a refrigerant reservoir.

【0005】また、冷却器8の下部は、精留塔7の塔頂
部と接続され、精留塔7に流入した気相冷媒は、貯留器
を兼ねる冷却器8で液化され、冷媒の気相、液相の比重
差により還流する。
[0005] The lower part of the cooler 8 is connected to the top of the rectification tower 7, and the gas-phase refrigerant flowing into the rectification tower 7 is liquefied by the cooler 8 serving also as a storage device, and the gas phase of the refrigerant is vaporized. Reflux due to the difference in specific gravity of the liquid phase.

【0006】さらに、精留塔7の底部より冷却器8で液
化した冷媒を主回路に流出させるために、精留塔7の底
部を減圧器9を介して、主回路減圧装置4と室内熱交換
器5の中間に連結している。
Further, in order to allow the refrigerant liquefied in the cooler 8 to flow out from the bottom of the rectification tower 7 to the main circuit, the bottom of the rectification tower 7 is connected to the main circuit decompression device 4 via the decompression device 9 and the indoor heat depressurizer. It is connected to the middle of the exchanger 5.

【0007】このような構成からなる回路において、暖
房時には圧縮機1から吐出した冷媒は、四方弁2、室内
熱交換器5に高温冷媒が流れ、利用側熱交換器となり部
屋等を暖房する。さらに、室内熱交換器5で放熱した冷
媒は液化し、減圧器9を通過する精留回路と、主回路減
圧装置4を通過する主回路に分流される。
In the circuit having such a configuration, the refrigerant discharged from the compressor 1 at the time of heating flows into the four-way valve 2 and the indoor heat exchanger 5, and becomes a use side heat exchanger to heat a room or the like. Further, the refrigerant radiated in the indoor heat exchanger 5 is liquefied and divided into a rectification circuit passing through the pressure reducer 9 and a main circuit passing through the main circuit pressure reducing device 4.

【0008】主回路減圧装置4を通過する冷媒は室外熱
交換器3で蒸発し、四方弁2を通って再び圧縮機1に吸
入される。
The refrigerant passing through the main circuit pressure reducing device 4 evaporates in the outdoor heat exchanger 3, passes through the four-way valve 2, and is sucked into the compressor 1 again.

【0009】また、精留回路に分岐した冷媒は減圧装置
9により冷媒は減圧される。
The refrigerant branched to the rectification circuit is depressurized by the decompression device 9.

【0010】一方、精留塔7に流入する冷媒の状態は、
室内熱交換器5の能力の大小変化により、液領域、二相
領域と変化し、液領域で精留塔7に流入すれば前述のよ
うな冷媒の組成分離は行われず、低沸点成分の富んだ冷
媒が循環し、能力が増大する。一方、二相領域の冷媒で
精留塔7に流入すれば、気相が精留塔7を上昇し、冷却
器8により冷却され液化し貯留され、精留作用により冷
却器8には低沸点成分に富んだ冷媒が貯留され、主回路
には高沸点成分に富んだ冷媒が循環し、能力を減少させ
ることができるものである。
On the other hand, the state of the refrigerant flowing into the rectification column 7 is as follows:
Due to the change in the capacity of the indoor heat exchanger 5, it changes into a liquid region and a two-phase region. If the refrigerant flows into the rectification column 7 in the liquid region, the composition separation of the refrigerant as described above is not performed, and the low-boiling component is rich. The refrigerant circulates and the capacity increases. On the other hand, if the refrigerant in the two-phase region flows into the rectification column 7, the gas phase rises in the rectification column 7, is cooled and liquefied by the cooler 8 and stored. A refrigerant rich in components is stored, and a refrigerant rich in high-boiling components is circulated in the main circuit, so that the capacity can be reduced.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のヒートポンプ装置では、冷房、暖房いずれの
場合にも分離を行わせようとすると、減圧器6,9を同
等の絞り開度とする必要があり、そのため、精留塔7の
圧力は主回路の中間圧となり、精留分離もこの圧力で動
作することになる。したがって、精留塔7の塔頂部の温
度は低沸点成分が多くなるため、上昇する気相を液化さ
せるための飽和温度はより低くなる。
However, in such a conventional heat pump device, if separation is to be performed in both cooling and heating, it is necessary to set the decompressors 6 and 9 to the same throttle opening. Therefore, the pressure of the rectification column 7 becomes the intermediate pressure of the main circuit, and the rectification separation also operates at this pressure. Therefore, since the temperature at the top of the rectification column 7 has a large amount of low-boiling components, the saturation temperature for liquefying the rising gas phase becomes lower.

【0012】一方、冷却器8の冷却源として圧縮機1と
四方弁2の間の吸入配管を用いているために、圧縮機1
の吸入過熱度が大きい場合には冷却源の冷媒温度が上昇
するため、前述の塔頂部の気相を液化させるための温度
としては不十分となり、冷却熱量が不足し、そのため、
比較的沸点差の大きい非共沸混合冷媒を分離する場合に
は、分離幅が小さくなり、能力制御幅が少ない状況とな
っていた。
On the other hand, since the suction pipe between the compressor 1 and the four-way valve 2 is used as a cooling source of the cooler 8, the compressor 1
If the suction superheat degree is large, the refrigerant temperature of the cooling source rises, so that the temperature for liquefying the gas phase at the top of the tower becomes insufficient, and the amount of cooling heat is insufficient.
In the case of separating a non-azeotropic mixed refrigerant having a relatively large difference in boiling point, the separation width is small and the capacity control width is small.

【0013】また、減圧装置6,9は常に開放の状態と
なっており、冷却器8には冷媒が常に貯留された状態と
なり、冷媒量の調整はできないため、冷媒量による能力
制御はできなかった。
Further, since the decompression devices 6 and 9 are always in an open state, the refrigerant is always stored in the cooler 8 and the refrigerant amount cannot be adjusted, so that the capacity cannot be controlled by the refrigerant amount. Was.

【0014】本発明は従来の課題を解決するもので、冷
房暖房いずれの運転条件においても、また、沸点差の大
きな非共沸混合冷媒においても、十分な組成分離幅を得
ることができ、また主回路の冷媒量調整による能力制御
の効果も付加することができ、能力制御幅をより拡大す
ることができ、さらに貯留した液冷媒の潜熱を有効に利
用することができるヒートポンプ装置を提供することを
目的とする。
The present invention has been made to solve the conventional problems, and it is possible to obtain a sufficient composition separation width under any operating condition of cooling and heating, and also in a non-azeotropic mixed refrigerant having a large boiling point difference. An object of the present invention is to provide a heat pump device capable of adding the effect of capacity control by adjusting the amount of refrigerant in the main circuit, further expanding the capacity control range, and effectively utilizing the latent heat of the stored liquid refrigerant. With the goal.

【0015】[0015]

【課題を解決するための手段】この目的を達成するため
本発明は、精留分離器の底部と室外熱交換器の配管とを
開閉弁および逆止弁の直列回路で接続したので、冷房運
転時に精留分離器が略高圧となり、また塔頂側の冷却源
として塔底から流出する液冷媒の潜熱を利用したので、
沸点差の大きな非共沸混合冷媒においても低沸点成分の
多い冷媒を貯留して分離幅を大きくとることができる。
In order to achieve this object, the present invention provides a cooling operation by connecting the bottom of the rectifying separator and the piping of the outdoor heat exchanger by a series circuit of an on-off valve and a check valve. Sometimes the rectification separator became almost high pressure, and also used the latent heat of the liquid refrigerant flowing out from the bottom as a cooling source on the top side,
Even in a non-azeotropic mixed refrigerant having a large difference in boiling point, a refrigerant having a large amount of low boiling components can be stored to increase the separation width.

【0016】また、暖房運転時においても室内熱交換器
の出口と副絞り装置を介して接続したので、精留分離器
を略高圧とすることができ、また塔頂側の冷却源として
塔底から流出する液冷媒の潜熱を利用したので、冷房運
転時と同様、精留塔上下での温度差を大きくとることが
でき、分離幅を大きくとることができる。
Further, even during the heating operation, since the outlet of the indoor heat exchanger is connected via the sub-throttle device, the rectification separator can be set to a substantially high pressure. Since the latent heat of the liquid refrigerant flowing out of the rectifier is used, the temperature difference between the top and bottom of the rectification tower can be increased and the separation width can be increased as in the cooling operation.

【0017】さらに、貯留器内の冷媒を貯留あるいはほ
ぼ空に制御して、主回路の冷媒量を調整することができ
るので、冷媒量による能力制御と、冷媒組成による能力
制御により、幅広い能力制御が可能となる。
Furthermore, since the amount of refrigerant in the main circuit can be adjusted by controlling the refrigerant in the reservoir to be stored or almost empty, a wide range of capacity control can be achieved by controlling the capacity based on the refrigerant amount and controlling the capacity based on the refrigerant composition. Becomes possible.

【0018】また、本発明は、室内機の吸い込み空気温
度を検知し、設定温度との差が一定値以下、すなわち、
室内の負荷に比べ冷暖房能力が過剰となった場合、開閉
弁を操作するようにしたので、簡単な制御で、主回路冷
媒組成を高沸点側に変化させて能力セーブを行うことが
でき、また、設定温度との差が一定値以上、すなわち、
室内の負荷に比べ冷暖房能力が不足となった場合、開閉
弁を操作するという簡単な制御のみで、貯留器の冷媒量
をほぼ空にし、主回路の冷媒量を増加させ、また冷媒組
成を元の充填組成に戻すことにより能力向上を行うこと
ができる。
Also, the present invention detects the temperature of the intake air of the indoor unit and determines that the difference from the set temperature is equal to or less than a predetermined value, that is,
When the cooling / heating capacity becomes excessive compared with the indoor load, the on-off valve is operated, so that the capacity can be saved by changing the main circuit refrigerant composition to the high boiling point side with simple control, and , The difference from the set temperature is a certain value or more, that is,
If the cooling and heating capacity becomes insufficient compared to the indoor load, the refrigerant amount in the reservoir is almost emptied, the refrigerant amount in the main circuit is increased, and the refrigerant composition is reduced by simple control of operating the on-off valve only. The performance can be improved by returning to the filling composition of the above.

【0019】また、本発明は、精留分離器の底部と室外
熱交換器の配管とを開閉弁を介して接続し、精留分離器
の底部と、室内熱交換と主絞り装置の間とを開閉弁を介
して接続したので、冷暖房運転時ともに精留分離器が略
高圧となり、また塔頂側の冷却源として塔底から流出す
る液冷媒の潜熱を利用したので、沸点差の大きな非共沸
混合冷媒においても低沸点成分の多い冷媒を貯留して分
離幅を大きくとることができる。
Further, according to the present invention, the bottom of the rectifier and the piping of the outdoor heat exchanger are connected via an on-off valve, and the bottom of the rectifier and the space between indoor heat exchange and the main throttle device are connected. Is connected via an on-off valve, so that the rectification separator has a substantially high pressure during both the cooling and heating operations, and uses the latent heat of the liquid refrigerant flowing out from the bottom as a cooling source at the top of the tower. Even in an azeotropic mixed refrigerant, a refrigerant having a large amount of low-boiling components can be stored to increase the separation width.

【0020】また、貯留した冷媒を主回路に戻す場合
に、開閉弁を介して冷房時には室内熱交換器に戻すこと
ができるので、貯留した液冷媒潜熱を有効に利用でき、
また、暖房時は室外側熱交換器に戻すことができるの
で、貯留した液冷媒潜熱により外気からの吸熱を促進
し、能力向上を早めることができる。
Further, when the stored refrigerant is returned to the main circuit, the stored refrigerant can be returned to the indoor heat exchanger through the on-off valve during cooling, so that the stored liquid refrigerant latent heat can be used effectively.
In addition, since the heat can be returned to the outdoor heat exchanger during heating, heat absorption from the outside air is promoted by the stored liquid refrigerant latent heat, and the capacity improvement can be accelerated.

【0021】また、本発明は、室内機の吸い込み空気温
度を検知し、設定温度との差が一定値以下、すなわち、
室内の負荷に比べ冷暖房能力が過剰となった場合、開閉
弁を開閉するようにしたので、貯留器に冷媒量を貯留し
て主回路の冷媒量を減少させ、また精留分離を行わせる
ことにより主回路冷媒組成を高沸点側に変化させて能力
セーブを行うことができ、また、設定温度との差が一定
値以上、すなわち、室内の負荷に比べ冷暖房能力が不足
となった場合、開閉弁を開閉するという簡単な制御のみ
で、貯留器の冷媒量をほぼ空にし、主回路の冷媒量を増
加させ、さらに貯留した液冷媒の潜熱を有効に利用し、
冷媒組成を元の充填組成に戻すことにより能力向上を行
うことができる。
Further, the present invention detects the temperature of the intake air of the indoor unit and determines that the difference from the set temperature is equal to or less than a predetermined value, that is,
When the cooling and heating capacity becomes excessive compared to the indoor load, the on-off valve is opened and closed, so the amount of refrigerant in the reservoir is reduced by reducing the amount of refrigerant in the main circuit, and rectification and separation are performed. By changing the composition of the main circuit refrigerant to the high boiling point side, it is possible to save capacity, and when the difference from the set temperature is a certain value or more, that is, when the cooling and heating capacity becomes insufficient compared with the indoor load, opening and closing With only simple control of opening and closing the valve, the refrigerant amount in the reservoir is almost empty, the refrigerant amount in the main circuit is increased, and the latent heat of the stored liquid refrigerant is effectively used,
The capacity can be improved by returning the refrigerant composition to the original filling composition.

【0022】[0022]

【発明の実施の形態】本発明の請求項1に記載の発明
は、圧縮機、四方弁、室外熱交換器、主絞り装置、室内
熱交換器を配管接続して冷凍サイクルの主回路を構成
し、頂部に冷却器および貯留器を環状に接続した回路を
有する精留分離器の底部と前記室外熱交換器の配管とを
開閉弁および第一の逆止弁の直列回路で接続し、前記第
一の逆止弁は前記室外熱交換器の配管から前記精留分離
器に向かってのみ流れる構成とし、前記開閉弁と前記第
一の逆止弁との間と、前記主絞り装置と前記室内熱交換
器の間とを第一の副絞り装置および第二の逆止弁の直列
回路で接続し、前記第二の逆止弁は前記主絞り装置と前
記室内熱交換器の間の配管から前記開閉弁に向かっての
み流れる構成とし、さらに前記精留分離器の底部と前記
冷却器とを第二の副絞り装置を介して接続し、前記冷却
器において前記精留分離器の頂部の回路を間接的に熱交
換するように構成し、さらに前記冷却器と前記圧縮機の
吸入配管とを接続し、非共沸混合冷媒を封入した構成と
したものであり、冷暖房能力の必要な負荷の大きい場合
には、貯留器をほぼ空とし主回路冷媒量を増加させ、ま
た、精留分離作用は行なわず主回路は充填組成のままの
冷媒量の多い状態で運転することにより、負荷に見合っ
た高能力な運転を行うことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention comprises a main circuit of a refrigeration cycle by connecting a compressor, a four-way valve, an outdoor heat exchanger, a main throttle device, and an indoor heat exchanger by piping. The bottom of the rectifier having a circuit in which a cooler and a reservoir are connected in a ring at the top and the piping of the outdoor heat exchanger are connected by a series circuit of an on-off valve and a first check valve, The first check valve is configured to flow only from the pipe of the outdoor heat exchanger toward the rectifying separator, between the on-off valve and the first check valve, the main throttle device, and A connection between the indoor heat exchanger and a series circuit of a first auxiliary throttle device and a second check valve, wherein the second check valve is a pipe between the main throttle device and the indoor heat exchanger. From the rectifier to the on-off valve, and a second sub-throttle between the bottom of the rectifier and the cooler. Connected through a device, and configured to indirectly exchange heat with the circuit at the top of the rectifying separator in the cooler. Further, the cooler and the suction pipe of the compressor are connected to each other. When the load required for cooling and heating capacity is large, the reservoir is almost empty and the amount of refrigerant in the main circuit is increased. By operating in a state in which the amount of the refrigerant with the filling composition is large, a high-capacity operation corresponding to the load can be performed.

【0023】また、冷暖房能力をあまり必要としない負
荷の小さい場合には、貯留器に冷媒を貯留することによ
り主回路冷媒量を減少させ、また、精留分離を行なって
貯留冷媒を低沸点成分に富んだ冷媒組成とし、主回路は
高沸点成分に富んだ冷媒量の少ない状態で運転すること
により、負荷に見合った能力セーブを行なうことができ
る。
When the load that does not require much cooling and heating capacity is small, the amount of refrigerant in the main circuit is reduced by storing the refrigerant in the storage device, and the stored refrigerant is subjected to rectification and separation to reduce the stored refrigerant to low boiling point components. By operating the main circuit in a state in which the refrigerant composition is rich and the amount of refrigerant rich in high-boiling components is small, the capacity can be saved according to the load.

【0024】また、冷暖房運転時とも精留分離器の圧力
を略高圧とすることができるので、精留分離器圧力にお
ける冷媒飽和温度に対し、冷却側の冷媒との温度差を大
きくすることができるので、精留分離器で発生したガス
を確実に冷却することができ、分離性能を向上させ、よ
り能力変化幅を広げることができる。
Further, since the pressure of the rectifying separator can be made substantially high even during the cooling / heating operation, it is possible to increase the temperature difference between the refrigerant saturation temperature at the rectifying separator pressure and the refrigerant on the cooling side. As a result, the gas generated in the rectifying separator can be reliably cooled, the separation performance can be improved, and the capacity change width can be further widened.

【0025】本発明の請求項2に記載の発明は、請求項
1記載の発明において、あらかじめ設定した設定空気温
度と室内温度センサーで検知した吸い込み空気温度との
温度差が一定値以下になった場合に、前記開閉弁を開放
し、また前記設定空気温度と前記吸い込み空気温度との
温度差が一定値以上になった場合に、前記開閉弁を閉止
するように制御する構成としたものであり、簡単なセン
シングで負荷の大小を判断でき、また開閉弁動作という
簡単な構成で主回路冷媒量と主回路組成を可変して、負
荷に応じた能力制御を行うことができる。
According to a second aspect of the present invention, in the first aspect of the present invention, a temperature difference between a preset air temperature and a suction air temperature detected by a room temperature sensor is equal to or less than a predetermined value. In the case, the on-off valve is opened, and when the temperature difference between the set air temperature and the suction air temperature becomes equal to or more than a predetermined value, the on-off valve is controlled to be closed. In addition, the magnitude of the load can be determined by simple sensing, and the capacity of the main circuit refrigerant and the composition of the main circuit can be varied with a simple configuration such as an on-off valve operation to perform capacity control according to the load.

【0026】本発明の請求項3に記載の発明は、圧縮
機、四方弁、室外熱交換器、主絞り装置、室内熱交換器
を配管接続して冷凍サイクルの主回路を構成し、頂部に
冷却器および貯留器を環状に接続した回路を有する精留
分離器の底部と前記室外熱交換器の配管とを第一の開閉
弁を介して接続し、前記精留分離器の底部と前記主絞り
装置と前記室内熱交換器の間の配管とを第一の副絞り装
置および第二の開閉弁の直列回路で接続し、さらに前記
精留分離器の底部と前記冷却器とを第二の副絞り装置を
介して接続し、前記冷却器において前記精留分離器の頂
部の回路と間接的に熱交換するように構成し、さらに前
記冷却器と前記圧縮機の吸入配管とを第三の開閉弁を介
して接続し、非共沸混合冷媒を封入した構成としたもの
であり、冷暖房能力の必要な負荷の大きい場合には、貯
留器をほぼ空とし主回路冷媒量を増加させ、また、精留
分離作用は行なわず主回路は充填組成のままの冷媒量の
多い状態で運転することにより、負荷に見合った高能力
な運転を行うことができる。
According to a third aspect of the present invention, a main circuit of a refrigeration cycle is constructed by connecting a compressor, a four-way valve, an outdoor heat exchanger, a main expansion device, and an indoor heat exchanger by piping. A bottom of a rectifier having a circuit in which a cooler and a reservoir are connected in a ring is connected to a pipe of the outdoor heat exchanger via a first on-off valve, and a bottom of the rectifier and the main unit are connected to each other. The expansion device and the pipe between the indoor heat exchanger are connected by a series circuit of a first auxiliary expansion device and a second on-off valve, and the bottom of the rectifying separator and the cooler are connected to a second device. Connected through a sub-throttling device, and configured to indirectly exchange heat with the circuit at the top of the rectifying separator in the cooler, and further connect the cooler and the suction pipe of the compressor to a third It is connected via an on-off valve and has a configuration in which a non-azeotropic mixed refrigerant is enclosed. When the required load is large, the reservoir is almost empty, and the amount of refrigerant in the main circuit is increased. In addition, it is possible to perform a high-capacity operation corresponding to the load.

【0027】また、冷暖房能力をあまり必要としない負
荷の小さい場合には、貯留器に冷媒を貯留することによ
り主回路冷媒量を減少させ、また、精留分離を行なって
貯留冷媒を低沸点成分に富んだ冷媒組成とし、主回路は
高沸点成分に富んだ冷媒量の少ない状態で運転すること
により、負荷に見合った能力セーブを行なうことができ
る。
When the load that does not require much cooling and heating capacity is small, the amount of the main circuit refrigerant is reduced by storing the refrigerant in the storage device, and the refrigeration is performed to reduce the stored refrigerant to a low boiling point component. By operating the main circuit in a state in which the refrigerant composition is rich and the amount of refrigerant rich in high-boiling components is small, the capacity can be saved according to the load.

【0028】また、冷暖房運転時とも精留分離器の圧力
を略高圧とすることができるので、精留分離器圧力にお
ける冷媒飽和温度に対し、冷却側の冷媒との温度差を大
きくすることができるので、精留分離器で発生したガス
を確実に冷却することができ、分離性能を向上させ、よ
り能力変化幅を広げることができる。
Further, since the pressure of the rectifying separator can be made substantially high even during the cooling / heating operation, it is possible to increase the temperature difference between the refrigerant saturation temperature at the rectifying separator pressure and the refrigerant on the cooling side. As a result, the gas generated in the rectifying separator can be reliably cooled, the separation performance can be improved, and the capacity change width can be further widened.

【0029】さらにまた、貯留した冷媒を主回路に戻す
場合に、開閉弁を介して冷房時には室内熱交換器に戻す
ことができるので、貯留した液冷媒潜熱を有効に利用で
き、また、暖房時は室外側熱交換器に戻すことができる
ので、貯留した液冷媒潜熱により外気からの吸熱を促進
し、能力向上を早めることができる。
Further, when returning the stored refrigerant to the main circuit, the stored refrigerant can be returned to the indoor heat exchanger through the on-off valve during cooling, so that the stored latent heat of the liquid refrigerant can be used effectively, and Can be returned to the outdoor heat exchanger, so that the stored liquid refrigerant latent heat promotes heat absorption from the outside air, thereby speeding up capacity improvement.

【0030】本発明の請求項4に記載の発明は、請求項
3記載の発明において、あらかじめ設定した設定空気温
度と室内温度センサーで検知した吸い込み空気温度との
温度差が一定値以下になった場合に、前記開閉弁を操作
し、また前記設定空気温度と前記吸い込み空気温度との
温度差が一定値以上になった場合に、前記開閉弁を操作
するように制御する構成としたものであり、簡単なセン
シングで負荷の大小を判断でき、また開閉弁動作という
簡単な構成で主回路冷媒量と主回路組成を可変して、負
荷に応じた能力制御を行うことができるものである。
According to a fourth aspect of the present invention, in the third aspect of the present invention, a temperature difference between a preset air temperature and a suction air temperature detected by an indoor temperature sensor is equal to or less than a predetermined value. In this case, the on-off valve is operated, and when the temperature difference between the set air temperature and the suction air temperature becomes a certain value or more, the on-off valve is controlled to be operated. In addition, the magnitude of the load can be determined by simple sensing, and the capacity of the main circuit refrigerant and the composition of the main circuit can be varied with a simple configuration such as an on-off valve operation to perform capacity control according to the load.

【0031】[0031]

【実施例】以下、本発明になるヒートポンプ装置の一実
施例を図に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the heat pump apparatus according to the present invention will be described below with reference to the drawings.

【0032】(実施例1)図1は本発明の実施例1によ
るヒートポンプ装置のシステム構成図であり、非共沸混
合冷媒が封入され、圧縮機11、四方弁12、室外熱交
換器13、主絞り装置14、室内熱交換器15が直列に
接続されて冷凍サイクルの主回路を構成している。
(Embodiment 1) FIG. 1 is a system configuration diagram of a heat pump apparatus according to Embodiment 1 of the present invention, in which a non-azeotropic mixed refrigerant is sealed, a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, The main expansion device 14 and the indoor heat exchanger 15 are connected in series to form a main circuit of the refrigeration cycle.

【0033】また、室外熱交換器13を構成する配管の
途中に、主回路から分岐する配管を設けて、その配管上
に逆止弁16と開閉弁17を直列に接続しており、逆止
弁16は開閉弁17の方向にのみ流れる構成としてい
る。
A pipe branching from the main circuit is provided in the middle of the pipe constituting the outdoor heat exchanger 13, and a check valve 16 and an on-off valve 17 are connected in series on the pipe. The valve 16 is configured to flow only in the direction of the on-off valve 17.

【0034】また、主絞り装置14と室内熱交換器15
の間に主回路から分岐する配管を設けて、その配管上に
副絞り装置18と逆止弁19を直列に接続しており、逆
止弁19のもう一端は逆止弁16と開閉弁17の間に接
続しており、逆止弁19は開閉弁17の方向にのみ流れ
る構成としている。
The main expansion device 14 and the indoor heat exchanger 15
A sub-throttle device 18 and a check valve 19 are connected in series on the pipe, and the other end of the check valve 19 is connected to a check valve 16 and an open / close valve 17. And the check valve 19 is configured to flow only in the direction of the on-off valve 17.

【0035】また、20は精留分離器であり、内部に充
填材(図示せず)が充填された直管で構成されている。
また、精留分離器20の頂部は冷却器21と貯留器22
を直列に接続して再び精留分離器20の頂部に帰還する
回路を構成し、また、精留分離器20の底部は開閉弁1
7と接続している。また、同じく精留分離器20の底部
は副絞り装置23を介して冷却器21に接続し、ここで
精留分離器20の頂部の回路と間接的に熱交換するよう
に構成され、さらに圧縮機11と四方弁12との間の吸
入配管に接続されている。
Reference numeral 20 denotes a rectification separator, which is constituted by a straight pipe filled with a filler (not shown).
The top of the rectifier 20 is provided with a cooler 21 and a reservoir 22.
Are connected in series to constitute a circuit for returning to the top of the rectifier 20 again.
7 is connected. Similarly, the bottom of the rectifier 20 is connected to the cooler 21 via the sub-throttling device 23, and is configured to indirectly exchange heat with the circuit at the top of the rectifier 20. It is connected to a suction pipe between the machine 11 and the four-way valve 12.

【0036】24は室内熱交換器15などからなる室内
機であり、室内の空気温度(すなわち室内機24の吸い
込み空気温度)を検知する温度センサー25を備えてい
る。また、26はあらかじめユーザーが所望の値に設定
した設定空気温度値を記憶する記憶装置、27は記憶装
置26の設定空気温度と温度センサー25で検知した空
気温度とを比較し、空気温度と設定空気温度との差の大
小を判定して開閉弁17を開閉操作する演算制御装置で
ある。
Reference numeral 24 denotes an indoor unit including the indoor heat exchanger 15 and the like. The indoor unit 24 includes a temperature sensor 25 for detecting the indoor air temperature (that is, the temperature of the intake air of the indoor unit 24). 26 is a storage device for storing a set air temperature value set in advance by the user to a desired value, and 27 is a device for comparing the set air temperature of the storage device 26 with the air temperature detected by the temperature sensor 25, and setting the air temperature. This is an arithmetic and control unit that determines the magnitude of the difference from the air temperature and opens and closes the on-off valve 17.

【0037】次に、このような構成からなる冷凍サイク
ルにおいて、図2を参照しながらその動作を説明する。
Next, the operation of the refrigeration cycle having such a configuration will be described with reference to FIG.

【0038】図2は、本発明の実施例1におけるヒート
ポンプ装置の制御フローチャートを示す。
FIG. 2 is a control flowchart of the heat pump device according to the first embodiment of the present invention.

【0039】冷房時、圧縮機11の起動直後など冷房能
力を必要としている場合、開閉弁21は閉止する(ST
EP1)。この状態で、圧縮機11から吐出した冷媒
は、四方弁12、室外熱交換器13に高温冷媒が流れ、
外気へ放熱して自らは凝縮液化し主絞り装置14に流入
し、ここで低圧まで減圧されて室内熱交換器15に流入
し、ここで室内機24の設置されている部屋の空気から
熱を奪い冷房に寄与し、自らは蒸発気化して、再び四方
弁12を通り、圧縮機11へと帰還する。
When cooling is required, such as immediately after the start of the compressor 11 during cooling, the on-off valve 21 is closed (ST).
EP1). In this state, the refrigerant discharged from the compressor 11 is a high-temperature refrigerant flowing through the four-way valve 12 and the outdoor heat exchanger 13,
The heat is radiated to the outside air and condensed and liquefied and flows into the main throttle device 14, where the pressure is reduced to a low pressure and flows into the indoor heat exchanger 15, where heat is removed from the air in the room where the indoor unit 24 is installed. Contributes to robbing and cooling, evaporates and vaporizes itself, passes through the four-way valve 12 again, and returns to the compressor 11.

【0040】ここにおいて、負荷判定を行い(STPE
2)、温度センサー25で検知された室内機24の吸い
込み空気温度と記憶装置26に記憶されている設定空気
温度との差が一定値tより大きい場合、すなわち冷房負
荷が大きい場合には、開閉弁17の閉止信号が演算制御
装置27から送られ、開閉弁17は閉止されたままとな
る。
Here, load determination is performed (STPE
2) If the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature stored in the storage device 26 is larger than a certain value t, that is, if the cooling load is large, the opening / closing operation is performed. A signal for closing the valve 17 is sent from the arithmetic and control unit 27, and the on-off valve 17 remains closed.

【0041】したがって、室外熱交換器13を構成する
配管の途中に設けた高圧の配管から逆止弁16を通る回
路は、開閉弁17が閉止されているため精留分離器20
へは冷媒は流れず、また、逆止弁19も閉止の方向とな
るため、副絞り装置18方向へも冷媒は流れない。
Therefore, in the circuit passing from the high-pressure pipe provided in the middle of the pipe constituting the outdoor heat exchanger 13 to the check valve 16, the on-off valve 17 is closed and the rectification separator 20
The refrigerant does not flow toward the sub-throttle device 18 because the check valve 19 is also closed.

【0042】一方、副絞り装置23を介して圧縮機11
の吸入配管と接続されている精留分離器20、冷却器2
1、貯留器22は、冷凍サイクルの低圧となり、冷媒は
過熱ガスが貯留されているのみであり貯留冷媒量はほと
んどない。
On the other hand, the compressor 11 is
Rectifier 20 and cooler 2 connected to the suction pipe of
1. Reservoir 22 has a low pressure in the refrigeration cycle, and the refrigerant only stores the superheated gas, and there is almost no stored refrigerant amount.

【0043】こうすることにより、主回路の冷媒は充填
組成のままの混合された非共沸混合冷媒で、かつ主回路
の冷媒量の多い状態で運転され、負荷に適した能力の大
きい運転ができる。
By doing so, the refrigerant in the main circuit is a mixed non-azeotropic refrigerant mixed with the filling composition as it is, and is operated in a state where the refrigerant amount in the main circuit is large. it can.

【0044】次に、負荷判定を行い(STEP2)、温
度センサー25で検知された室内機24の吸い込み空気
温度と記憶装置26に記憶されている設定空気温度との
差が一定値tより小さい場合、すなわち冷房負荷が小さ
い場合には、開閉弁17の開放信号が演算制御装置27
から送られ、開閉弁17は開放される(STEP3)。
Next, a load determination is made (STEP 2). If the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature stored in the storage device 26 is smaller than a predetermined value t. That is, when the cooling load is small, the opening signal of the on-off valve 17
And the on-off valve 17 is opened (STEP 3).

【0045】ここでは、室外熱交換器13で凝縮液化す
る途中の二相冷媒は逆止弁16、開閉弁17を介して精
留分離器20の塔底に流入すると共に、一部は副絞り装
置23を通って減圧され、低温の二相冷媒となって冷却
器21に流入し、ここで精留分離器20の塔頂部の気相
冷媒と間接的に熱交換する。
Here, the two-phase refrigerant in the middle of being condensed and liquefied in the outdoor heat exchanger 13 flows into the bottom of the rectifying separator 20 via the check valve 16 and the on-off valve 17, and a part is sub-throttled. It is depressurized through the device 23 and becomes a low-temperature two-phase refrigerant and flows into the cooler 21, where it indirectly exchanges heat with the gas-phase refrigerant at the top of the fractionator 20.

【0046】ここにおいては、冷却器21の冷却源とし
て、低温低圧の二層冷媒を利用しているため潜熱を有効
に利用でき、冷却器21を小型にできるのみならず、精
留分離器20の塔頂部のガスを確実に液化できる。
In this case, since a low-temperature and low-pressure two-layer refrigerant is used as a cooling source of the cooler 21, the latent heat can be effectively used. The gas at the top of the column can be reliably liquefied.

【0047】また、精留分離器20の塔底より流入した
冷媒は冷却器21で冷却されて液化し、貯留器22に貯
留されて、徐々に貯留量が増加し、再び精留分離器20
の塔頂部に帰還して精留分離器20を下降するようにな
る。この状態が連続的に起こると、精留分離器20を上
昇する冷媒ガスと下降する冷媒液とが精留分離器20内
で気液接触により精留作用が起こり、貯留器22には徐
々に低沸点に富んだ冷媒組成が貯留され、精留分離器2
0を下降し副絞り装置23を通過する冷媒は徐々に高沸
点に富んだ組成となって、冷却器21を介して圧縮機1
1に吸入される。
The refrigerant flowing from the bottom of the rectifier 20 is cooled by the cooler 21 to be liquefied, stored in the storage 22, and the storage amount is gradually increased.
And the rectifier 20 descends. When this state occurs continuously, the refrigerant gas rising in the rectifying separator 20 and the descending refrigerant liquid are rectified by gas-liquid contact in the rectifying separator 20, and the storage device 22 gradually enters the rectifying operation. Refrigerant composition rich in low boiling point is stored and rectification separator 2
0, and the refrigerant passing through the sub-throttling device 23 gradually becomes a composition having a high boiling point.
Inhaled into 1.

【0048】このようにして、主回路は徐々に高沸点に
富んだ冷媒組成となり、能力をセーブすることができ
る。また、貯留器22に低沸点冷媒が貯留されているた
め、主回路冷媒量を少なくすることができ、冷媒量減少
の効果も加えることにより、さらに能力セーブに寄与
し、負荷に適した低能力の運転ができるものである。
In this way, the main circuit gradually becomes a refrigerant composition having a high boiling point, and the capacity can be saved. In addition, since the low-boiling refrigerant is stored in the reservoir 22, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is added, thereby further contributing to capacity saving, and reducing the capacity suitable for the load. Can be driven.

【0049】ここにおいては、精留分離器20の圧力は
略高圧となっており、また冷却器21の冷却源は低温低
圧の二相冷媒を利用しているため、精留分離器18の塔
頂部の温度と冷却器19の冷却熱源との温度差を大きく
とることができ、精留分離器20での分離幅を十分にと
ることができる。
In this case, the pressure of the rectifier 20 is substantially high, and the cooling source of the cooler 21 utilizes a low-temperature and low-pressure two-phase refrigerant. The temperature difference between the top temperature and the cooling heat source of the cooler 19 can be made large, and the separation width in the rectification separator 20 can be made sufficient.

【0050】なお、ここにおいては精留分離器20の塔
底へは凝縮途中の二相冷媒を流入させることができるの
で、十分なガス発生量を確保することができ、分離に要
する時間も短縮することができると共に、飽和ガスを流
入させることができるので、吐出ガスのような過熱ガス
を導入させる場合と比較して、ガスの液化が容易とな
り、分離性能はさらに向上させることができる。
Here, since the two-phase refrigerant in the middle of condensation can flow into the bottom of the rectifier 20, a sufficient amount of gas can be generated and the time required for separation can be shortened. In addition, since a saturated gas can be flowed in, the gas can be easily liquefied and the separation performance can be further improved as compared with a case where a superheated gas such as a discharge gas is introduced.

【0051】なお、この場合もまた、逆止弁19の流れ
の方向性により、副絞り装置18方向へは冷媒は流れな
い。
In this case as well, the refrigerant does not flow toward the sub-throttling device 18 due to the directionality of the flow of the check valve 19.

【0052】この状態で、負荷判定を行い(STEP
4)、負荷が大きくなり、温度センサー25で検知され
た室内機24の吸い込み空気温度と記憶装置26に記憶
されている設定空気温度との差が一定値tより大きくな
った場合には、開閉弁17の閉止信号が演算制御装置2
7から送られ、開閉弁17は再び閉止されることにより
(STEP5)、貯留器22に貯留された冷媒は副絞り
装置23,冷却器21を通過して、徐々に圧縮機11に
吸引され、主回路の冷媒組成は高能力な充填組成の状態
に戻り、また主回路の冷媒量も増加して、負荷に見合っ
た能力の大きい運転が再開できる。
In this state, load judgment is performed (STEP
4) If the load increases and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature stored in the storage device 26 becomes larger than a certain value t, the switch is opened and closed. The closing signal of the valve 17 is transmitted to the arithmetic and control unit 2
7 and the on-off valve 17 is closed again (STEP 5), whereby the refrigerant stored in the storage 22 passes through the sub-throttling device 23 and the cooler 21, and is gradually sucked into the compressor 11, The refrigerant composition of the main circuit returns to the state of the high-capacity filling composition, and the amount of refrigerant in the main circuit also increases, so that operation with a large capacity corresponding to the load can be resumed.

【0053】このように、負荷の大小を室内機24の吸
い込み空気温度と設定空気温度との差で検知して、開閉
弁17を開閉するという簡単な操作のみで、主回路の冷
媒量と冷媒組成を負荷に見合った状態に可変することに
より、負荷に見合った能力制御を行うことができるもの
である。
As described above, the magnitude of the load is detected by the difference between the intake air temperature of the indoor unit 24 and the set air temperature, and only the simple operation of opening and closing the on-off valve 17 is required. By varying the composition to a state suitable for the load, it is possible to perform capacity control corresponding to the load.

【0054】次に、暖房運転時には、冷媒流れが主回路
において逆になるが、その動作は同様である。
Next, during the heating operation, the flow of the refrigerant is reversed in the main circuit, but the operation is the same.

【0055】すなわち、圧縮機11の起動直後など暖房
能力を必要としている場合、開閉弁17は閉止する(S
TEP1)。
That is, when heating capacity is required, for example, immediately after the compressor 11 is started, the on-off valve 17 is closed (S
TEP1).

【0056】圧縮機11から吐出した冷媒は、四方弁1
2、室内熱交換器15に高温冷媒が流れ、暖房に寄与し
て凝縮液化し主絞り装置14に流入する回路と副絞り装
置18に流入する回路に分流される。
The refrigerant discharged from the compressor 11 is supplied to the four-way valve 1
2. The high-temperature refrigerant flows through the indoor heat exchanger 15 and is condensed and liquefied while contributing to heating, and is divided into a circuit flowing into the main expansion device 14 and a circuit flowing into the auxiliary expansion device 18.

【0057】副絞り装置18に流入した冷媒はやや減圧
され、冷凍サイクル主回路の高圧からやや低下した圧力
となる。そのため、副絞り装置18を出た冷媒は気液混
合の二相状態となっている。また、逆止弁19は副絞り
装置18から開閉弁17の方向にのみ流れる構成となっ
ており通過可能であり、開閉弁17を介して精留分離器
20の塔低部と接続されているため、開閉弁17の開閉
操作によって冷媒を精留分離器20に流入させることが
できる。なお、逆止弁19の出口側に接続されている逆
止弁16は、逆方向になるため、ここを冷媒が通過する
ことはない。
The refrigerant flowing into the sub-throttle device 18 is slightly depressurized to a pressure slightly lower than the high pressure of the refrigeration cycle main circuit. Therefore, the refrigerant exiting the sub-throttling device 18 is in a two-phase state of gas-liquid mixing. Further, the check valve 19 is configured to flow only from the sub-throttle device 18 in the direction of the on-off valve 17, and can pass therethrough, and is connected to the lower part of the fractionator 20 via the on-off valve 17. Therefore, the refrigerant can be caused to flow into the rectification separator 20 by opening and closing the on-off valve 17. Since the check valve 16 connected to the outlet side of the check valve 19 is in the opposite direction, the refrigerant does not pass therethrough.

【0058】ここにおいて、負荷判定を行い(STEP
2)、記憶装置26に記憶されている室内機24の設定
空気温度と温度センサー25で検知された室内機24の
吸い込み空気温度との差が一定値tより大きい場合、す
なわち暖房負荷が大きい場合には、開閉弁17の閉止信
号が演算制御装置27から送られ、開閉弁17は閉止さ
れたままとなる。したがって、室内熱交換器15を出た
冷媒は、すべて主絞り装置14を通過して低圧まで絞ら
れ、室外熱交換器13で蒸発して、その後、四方弁12
を通って再び圧縮機11に吸入される。
Here, a load determination is made (STEP
2) When the difference between the set air temperature of the indoor unit 24 stored in the storage device 26 and the suction air temperature of the indoor unit 24 detected by the temperature sensor 25 is larger than a certain value t, that is, when the heating load is large. , A signal to close the on-off valve 17 is sent from the arithmetic and control unit 27, and the on-off valve 17 remains closed. Therefore, all the refrigerant that has exited the indoor heat exchanger 15 passes through the main throttle device 14 and is throttled to a low pressure, evaporates in the outdoor heat exchanger 13, and thereafter, the four-way valve 12.
Through the compressor 11 again.

【0059】一方、精留分離器20、冷却器21、貯留
器22は、圧縮機11の吸入配管に接続されているため
低圧のガスとなり、冷媒の貯留はほとんどない。
On the other hand, since the rectifying separator 20, the cooler 21, and the reservoir 22 are connected to the suction pipe of the compressor 11, they become low-pressure gas, and hardly store refrigerant.

【0060】こうすることにより、主回路の冷媒は充填
組成のままの混合された状態で、かつ冷媒量の多い状態
で運転され、負荷に適した能力の大きい運転ができる。
Thus, the refrigerant in the main circuit is operated in a mixed state with the filling composition as it is and in a state in which the amount of the refrigerant is large, and an operation having a large capacity suitable for the load can be performed.

【0061】次に、負荷判定を行い(STEP2)、記
憶装置25に記憶されている設定空気温度と温度センサ
ー25で検知された室内機24の吸い込み空気温度との
差が一定値tより小さい場合、すなわち暖房負荷が小さ
い場合には、開閉弁17の開放信号が演算制御装置27
から送られ、開閉弁17は開放されるため(STEP
3)、副絞り装置18を出た二相冷媒は、開閉弁17を
通過して精留分離器18の塔底に流入すると共に、一部
は副絞り装置23を通って減圧され、低温の二相冷媒と
なって冷却器21に流入し、ここで精留分離器20の塔
頂部の冷媒と間接的に熱交換する。
Next, a load determination is made (STEP 2). If the difference between the set air temperature stored in the storage device 25 and the suction air temperature of the indoor unit 24 detected by the temperature sensor 25 is smaller than a certain value t. That is, when the heating load is small, the opening signal of the on-off valve 17 is
And the on-off valve 17 is opened (STEP
3) The two-phase refrigerant that has left the sub-throttle device 18 passes through the on-off valve 17 and flows into the bottom of the rectification separator 18, and a part of the refrigerant is depressurized through the sub-throttle device 23, It becomes a two-phase refrigerant and flows into the cooler 21, where it indirectly exchanges heat with the refrigerant at the top of the fractionator 20.

【0062】ここにおいては、冷却器21の冷却源とし
て、サイクル中で最もエンタルピの低い低温低圧の二相
冷媒を利用しているため潜熱を有効に利用でき、冷却器
21を小型にできるのみならず、精留分離器20の塔頂
部のガスを確実に液化できる。
Here, as the cooling source of the cooler 21, a low-temperature, low-pressure two-phase refrigerant having the lowest enthalpy in the cycle is used, so that latent heat can be effectively used and the cooler 21 can be reduced in size. Instead, the gas at the top of the rectifier 20 can be reliably liquefied.

【0063】このようにして、精留分離器20の塔底よ
り流入した冷媒は冷却器21で冷却されて液化し、貯留
器22に貯留されて、徐々に貯留量が増加し、再び精留
分離器20の塔頂部に帰還して精留分離器20を下降す
るようになる。
In this way, the refrigerant flowing from the bottom of the rectifying separator 20 is cooled by the cooler 21 to be liquefied, stored in the storing unit 22, and the storage amount is gradually increased, and the rectifying is performed again. The rectifier 20 returns to the top of the separator 20 and descends.

【0064】この状態が連続的に起こると、精留分離器
20を上昇する冷媒ガスと下降する冷媒液とが精留分離
器20内で気液接触により精留作用が起こり、貯留器2
2には徐々に低沸点に富んだ冷媒組成が貯留され、精留
分離器20を下降し副絞り装置22を通過する冷媒は徐
々に高沸点に富んだ組成となり、冷却器21を介して圧
縮機11に吸入される。
When this state occurs continuously, the refrigerant gas rising in the rectifying separator 20 and the descending refrigerant liquid are rectified by gas-liquid contact in the rectifying separator 20 to cause a rectification action.
2 gradually stores a refrigerant composition having a low boiling point, the refrigerant flowing down the rectifying separator 20 and passing through the sub-throttle device 22 gradually becomes a composition having a high boiling point, and is compressed through the cooler 21. Machine 11.

【0065】このようにして、主回路は徐々に高沸点に
富んだ冷媒組成となるため、能力をセーブすることがで
きる。また、貯留器22に低沸点冷媒が貯留されている
ために主回路冷媒量を少なくすることができ、冷媒量減
少の効果も加えることにより、さらに能力セーブに寄与
し、負荷に適した低能力の運転ができるものである。
In this manner, the main circuit gradually becomes a refrigerant composition having a high boiling point, so that the capacity can be saved. Further, since the low-boiling-point refrigerant is stored in the reservoir 22, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is also added, thereby further contributing to capacity saving and reducing the capacity suitable for the load. Can be driven.

【0066】ここにおいては、精留分離器18の圧力は
略高圧となっており、また冷却器21の冷却源は低温低
圧の二相冷媒を利用しているため、精留分離器18の塔
頂部の温度と冷却器21の冷却熱源との温度差を大きく
とることができ、冷却器21を小型にできるのみなら
ず、精留分離器20の塔頂部のガスを確実に液化でき
る。
In this case, the pressure of the rectifier 18 is substantially high, and the cooling source of the cooler 21 utilizes a low-temperature and low-pressure two-phase refrigerant. The difference between the temperature at the top and the temperature of the cooling heat source of the cooler 21 can be increased, and not only can the cooler 21 be reduced in size, but also the gas at the top of the rectification separator 20 can be reliably liquefied.

【0067】この状態で、負荷判定を行い(STEP
4)、負荷が大きくなり、記憶装置26に記憶されてい
る設定空気温度と温度センサー25で検知された室内機
24の吸い込み空気温度との差が一定値tより大きくな
った場合には、開閉弁17の閉止信号が演算制御装置2
7から送られ、開閉弁17は再び閉止され(STEP
5)、貯留器22に貯留された冷媒は徐々に圧縮機11
に吸引され、主回路の冷媒組成は高能力な充填組成の状
態に戻り、また冷媒量も増加して、負荷に見合った能力
の大きい運転ができる。
In this state, load determination is performed (STEP
4) If the load increases and the difference between the set air temperature stored in the storage device 26 and the suction air temperature of the indoor unit 24 detected by the temperature sensor 25 becomes larger than a certain value t, the switch is opened and closed. The closing signal of the valve 17 is transmitted to the arithmetic and control unit 2
7 and the on-off valve 17 is closed again (STEP
5), the refrigerant stored in the storage 22 gradually flows into the compressor 11
Then, the refrigerant composition of the main circuit returns to the state of the high-capacity filling composition, and the amount of the refrigerant also increases, so that the operation with the large capacity corresponding to the load can be performed.

【0068】このように、負荷の大小を設定空気温度と
室内機24の吸い込み空気温度との差で検知して、開閉
弁17を開閉するという簡単な操作のみで、主回路の冷
媒量と冷媒組成を負荷に見合った状態に可変することに
より、冷房暖房いずれの運転状態においても能力制御を
行うことができるものである。
As described above, the magnitude of the load is detected by the difference between the set air temperature and the temperature of the intake air of the indoor unit 24, and only the simple operation of opening and closing the on-off valve 17 enables the amount of refrigerant in the main circuit and the amount of refrigerant in the main circuit. By varying the composition to a state suitable for the load, capacity control can be performed in any of the cooling and heating operation states.

【0069】なお、本発明において、室外熱交換器13
と逆止弁16の間に副絞り装置などによってそこを流れ
る流量を制御したような構成も本発明に含まれる。
In the present invention, the outdoor heat exchanger 13
The present invention also includes a configuration in which the flow rate flowing between the check valve 16 and the check valve 16 is controlled by a sub-throttle device or the like.

【0070】(実施例2)図3は本発明の実施例2によ
るヒートポンプ装置のシステム構成図であり、実施例1
と同様の構成で同様の機能を有するものについては同一
の符号を記してあり、説明は省略する。
(Embodiment 2) FIG. 3 is a system configuration diagram of a heat pump apparatus according to Embodiment 2 of the present invention.
Components having the same configuration and the same function as those described above are denoted by the same reference numerals, and description thereof will be omitted.

【0071】ここにおいては、非共沸混合冷媒が封入さ
れ、室外熱交換器13を構成する配管の途中に、主回路
から分岐する配管を設けて、開閉弁30を介して精留分
離器20の塔底部に接続している。また、主絞り装置1
4と室内熱交換器15の間の配管に主回路から分岐する
配管を設けて、その配管上に副絞り装置18と開閉弁3
1を直列に接続しており、開閉弁31のもう一端は開閉
弁30と精留分離器20の間の配管に接続している。
In this case, a non-azeotropic mixed refrigerant is sealed, and a pipe branching from the main circuit is provided in the middle of the pipe constituting the outdoor heat exchanger 13. Connected to the bottom of the tower. Also, the main aperture device 1
A pipe branching from the main circuit is provided in a pipe between the indoor heat exchanger 15 and the sub-throttle device 18 and the on-off valve 3 on the pipe.
1 are connected in series, and the other end of the on-off valve 31 is connected to a pipe between the on-off valve 30 and the rectification separator 20.

【0072】また、20は精留分離器であり、内部に充
填材(図示せず)が充填された直管で構成されている。
また、精留分離器20の頂部は冷却器21と貯留器22
を直列に接続して再び精留分離器20の頂部に帰還する
回路を構成し、精留分離器20の底部は副絞り装置23
を介して冷却器21に接続し、ここで精留分離器20の
頂部の回路と間接的に熱交換するように構成され、開閉
弁32を介して圧縮機11と四方弁12との間の吸入配
管に接続されている。
Reference numeral 20 denotes a rectification separator, which is constituted by a straight pipe filled with a filler (not shown).
The top of the rectifier 20 is provided with a cooler 21 and a reservoir 22.
Are connected in series to form a circuit for returning to the top of the rectifier 20 again, and the bottom of the rectifier 20 is
, Which is configured to indirectly exchange heat with the circuit at the top of the rectifying separator 20, and between the compressor 11 and the four-way valve 12 via the on-off valve 32. It is connected to the suction pipe.

【0073】24は室内熱交換器15などからなる室内
機であり、室内の空気温度(すなわち室内機24の吸い
込み空気温度)を検知する温度センサー25を備えてい
る。また、33はあらかじめユーザーが所望の値に設定
した設定空気温度値を記憶する記憶装置、34は記憶装
置33の設定空気温度と温度センサー25で検知した空
気温度とを比較し、空気温度と設定空気温度との差の大
小を判定して開閉弁30,31,32を開閉操作する演
算制御装置である。
Reference numeral 24 denotes an indoor unit including the indoor heat exchanger 15 and the like. The indoor unit 24 has a temperature sensor 25 for detecting the indoor air temperature (that is, the air intake temperature of the indoor unit 24). A storage device 33 stores a set air temperature value set in advance by a user to a desired value. A storage device 34 compares the set air temperature of the storage device 33 with the air temperature detected by the temperature sensor 25, and sets the air temperature. This is an arithmetic and control unit that determines the magnitude of the difference from the air temperature to open and close the on-off valves 30, 31, and 32.

【0074】次に、このような構成からなる冷凍サイク
ルにおいて、図4を参照しながらその動作を説明する。
Next, the operation of the refrigeration cycle having such a configuration will be described with reference to FIG.

【0075】図4は、本発明の実施例2におけるヒート
ポンプ装置の制御フローチャートを示す。
FIG. 4 is a control flowchart of the heat pump device according to the second embodiment of the present invention.

【0076】冷房時、圧縮機11の起動直後など冷房能
力を必要としている場合、開閉弁30,32は閉止し、
開閉弁31は開放する(STEP1)。この状態で、冷
房時には圧縮機11から吐出した冷媒は、四方弁12、
室外熱交換器13に高温冷媒が流れ、外気へ放熱して自
らは凝縮液化し主絞り装置14に流入し、ここで低圧ま
で減圧されて室内熱交換器15に流入し、ここで室内機
24の設置されている部屋の空気から熱を奪い冷房に寄
与し、自らは蒸発気化して、再び四方弁12を通り、圧
縮機11へと帰還する。
When cooling performance is required, such as immediately after the compressor 11 is started during cooling, the on-off valves 30 and 32 are closed.
The on-off valve 31 is opened (STEP 1). In this state, the refrigerant discharged from the compressor 11 during cooling is a four-way valve 12,
The high-temperature refrigerant flows through the outdoor heat exchanger 13, radiates heat to the outside air, condenses and liquefies, and flows into the main throttle device 14, where the pressure is reduced to a low pressure and flows into the indoor heat exchanger 15, where the indoor unit 24 Heat is taken from the air in the room where is installed, and contributes to cooling, and the vaporizer itself evaporates and returns to the compressor 11 through the four-way valve 12 again.

【0077】ここにおいて、温度センサー25で検知さ
れた室内機24の吸い込み空気温度と記憶装置33に記
憶されている設定空気温度との差が一定値tより大きい
場合、すなわち冷房負荷が大きい場合には、開閉弁3
0,開閉弁32の閉止信号および開閉弁31の開放信号
が演算制御装置27から送られ、開閉弁30,開閉弁3
2は閉止され、開閉弁31は開放されたままである。
Here, when the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature stored in the storage device 33 is larger than a predetermined value t, that is, when the cooling load is large. Is the on-off valve 3
0, a closing signal of the on-off valve 32 and an opening signal of the on-off valve 31 are sent from the arithmetic and control unit 27, and the on-off valve 30, the on-off valve 3
2 is closed and the on-off valve 31 remains open.

【0078】これによって、室外熱交換器13を構成す
る配管の途中から開閉弁30を通る回路は、開閉弁30
が閉止されているため精留分離器20へは冷媒は流れ
ず、また、開閉弁32も閉止されているため、副絞り装
置23、冷却器21を介して圧縮機11の吸入配管の方
向へも冷媒は流れない。
Thus, the circuit passing through the on-off valve 30 from the middle of the piping constituting the outdoor heat exchanger 13 is
Is closed, the refrigerant does not flow to the rectification separator 20, and the on-off valve 32 is also closed, so that the refrigerant flows in the direction of the suction pipe of the compressor 11 via the sub-throttle device 23 and the cooler 21. No refrigerant flows.

【0079】一方、開閉弁31は開放されているため、
精留分離器20、冷却器21、貯留器22内の冷媒は、
冷凍サイクルの低圧側と接続されている副絞り装置18
を介して冷凍サイクルの主回路へ流出し、精留分離器2
0、冷却器21、貯留器22内の冷媒は過熱ガスが貯留
されているのみであり貯留冷媒量はほとんどなくなる。
On the other hand, since the on-off valve 31 is open,
The refrigerant in the rectification separator 20, the cooler 21, and the storage 22 is
Sub-throttle device 18 connected to the low pressure side of the refrigeration cycle
Flows into the main circuit of the refrigeration cycle through the rectification separator 2
0, the refrigerant in the cooler 21 and the storage device 22 only stores the superheated gas, and the stored refrigerant amount almost disappears.

【0080】こうすることにより、主回路の冷媒は充填
組成のままの混合された非共沸混合冷媒で、かつ主回路
の冷媒量の多い状態で運転され、負荷に適した能力の大
きい運転ができる。
By doing so, the refrigerant in the main circuit is a mixed non-azeotropic refrigerant mixed with the filling composition as it is, and the main circuit is operated with a large amount of refrigerant. it can.

【0081】次に、負荷判定を行い(STEP2)、温
度センサー25で検知された室内機24の吸い込み空気
温度と記憶装置33に記憶されている設定空気温度との
差が一定値tより小さい場合、すなわち冷房負荷が小さ
い場合には、開閉弁30,32の開放信号が演算制御装
置27から送られ、開閉弁30,32は閉止される。ま
た、開閉弁31の閉止信号が演算制御装置27から送ら
れ、開閉弁31は閉止される(STEP3)。
Next, a load determination is made (STEP 2). If the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature stored in the storage device 33 is smaller than a certain value t. That is, when the cooling load is small, an open signal of the on-off valves 30, 32 is sent from the arithmetic and control unit 27, and the on-off valves 30, 32 are closed. Further, a signal for closing the on-off valve 31 is sent from the arithmetic and control unit 27, and the on-off valve 31 is closed (STEP 3).

【0082】ここでは、室外熱交換器13で凝縮液化す
る途中の二相冷媒は開閉弁30を介して精留分離器20
の塔底に流入すると共に、一部は副絞り装置23を通っ
て減圧され、低温の二相冷媒となって冷却器21に流入
し、ここで精留分離器20の塔頂部の気相冷媒と間接的
に熱交換する。
Here, the two-phase refrigerant which is being condensed and liquefied in the outdoor heat exchanger 13 is passed through the on-off valve 30 to the rectification separator 20.
And a part thereof is depressurized through the sub-throttling device 23 and becomes a low-temperature two-phase refrigerant and flows into the cooler 21 where the gas-phase refrigerant at the top of the fractionator 20 Indirect heat exchange with

【0083】ここにおいては、精留分離器20の圧力は
略高圧となっており、また冷却器21の冷却源は低温低
圧の二相冷媒を利用しているため、精留分離器20の塔
頂部の温度と冷却器21の冷却熱源との温度差を大きく
とることができ、冷却器21を小型にできるのみなら
ず、精留分離器20の塔頂部のガスを確実に液化でき
る。
In this case, the pressure of the rectifier 20 is substantially high, and the cooling source of the cooler 21 uses a low-temperature and low-pressure two-phase refrigerant. The difference between the temperature at the top and the temperature of the cooling heat source of the cooler 21 can be increased, and not only can the cooler 21 be reduced in size, but also the gas at the top of the rectification separator 20 can be reliably liquefied.

【0084】また、精留分離器20の塔底より流入した
冷媒は冷却器21で冷却されて液化し、貯留器22に貯
留されて、徐々に貯留量が増加し、再び精留分離器20
の塔頂部に帰還して精留分離器20を下降するようにな
る。この状態が連続的に起こると、精留分離器20を上
昇する冷媒ガスと下降する冷媒液とが精留分離器20内
で気液接触により精留作用が起こり、貯留器22には徐
々に低沸点に富んだ冷媒組成が貯留され、精留分離器2
0を下降し副絞り装置23を通過する冷媒は徐々に高沸
点に富んだ組成となって、冷却器21を介して圧縮機1
1に吸入される。
The refrigerant flowing from the bottom of the rectifier 20 is cooled by the cooler 21 to be liquefied, stored in the storage 22, and the storage amount is gradually increased.
And the rectifier 20 descends. When this state occurs continuously, the refrigerant gas rising in the rectifying separator 20 and the descending refrigerant liquid are rectified by gas-liquid contact in the rectifying separator 20, and the storage device 22 gradually enters the rectifying operation. Refrigerant composition rich in low boiling point is stored and rectification separator 2
0, and the refrigerant passing through the sub-throttling device 23 gradually becomes a composition having a high boiling point.
Inhaled into 1.

【0085】このようにして、主回路は徐々に高沸点に
富んだ冷媒組成となり、能力をセーブすることができ
る。また、貯留器22に低沸点冷媒が貯留されているた
め、主回路冷媒量を少なくすることができ、冷媒量減少
の効果も加えることにより、さらに能力セーブに寄与
し、負荷に適した低能力の運転ができるものである。
In this way, the main circuit gradually becomes a refrigerant composition having a high boiling point, and the capacity can be saved. In addition, since the low-boiling refrigerant is stored in the reservoir 22, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is added, thereby further contributing to capacity saving, and reducing the capacity suitable for the load. Can be driven.

【0086】なお、ここにおいては精留分離器20の塔
底へは凝縮途中の二相冷媒を流入させることができるの
で、十分なガス発生量を確保することができ、分離に要
する時間も短縮することができると共に、飽和ガスを流
入させることができるので、吐出ガスのような過熱ガス
を導入させる場合と比較して、ガスの液化が容易とな
り、分離性能も向上させることができる。
In this case, since the two-phase refrigerant in the middle of condensation can flow into the bottom of the fractionator 20, a sufficient amount of gas can be generated and the time required for separation can be reduced. In addition, since a saturated gas can be flowed in, the gas can be easily liquefied and the separation performance can be improved as compared with a case where a superheated gas such as a discharge gas is introduced.

【0087】なお、この場合、開閉弁31は閉止してい
るため、副絞り装置18方向へは冷媒は流れることはな
い。
In this case, since the on-off valve 31 is closed, the refrigerant does not flow toward the sub-throttle device 18.

【0088】この状態で、負荷判定を行い(STEP
4)、負荷が大きくなり、温度センサー25で検知され
た室内機24の吸い込み空気温度と記憶装置33に記憶
されている設定空気温度との差が一定値tより大きくな
った場合には、開閉弁30,開閉弁32の閉止信号およ
び開閉弁31の開放信号が演算制御装置34から送ら
れ、開閉弁30,開閉弁32は再び閉止、開閉弁31は
再び開放され(STEP5)、貯留器22に貯留された
冷媒は開閉弁31、副絞り装置18を通過して、徐々に
室内熱交換器15へ流出し、主回路の冷媒組成は高能力
な充填組成の状態に戻り、また主回路の冷媒量も増加し
て、負荷に見合った能力の大きい運転が再開できる。
In this state, load determination is performed (STEP
4) If the load increases and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature stored in the storage device 33 becomes larger than a certain value t, the switch is opened and closed. A closing signal of the valve 30 and the on-off valve 32 and an opening signal of the on-off valve 31 are sent from the arithmetic and control unit 34, the on-off valve 30 and the on-off valve 32 are closed again, and the on-off valve 31 is opened again (STEP 5). The refrigerant stored in the passage passes through the on-off valve 31 and the sub-throttle device 18 and gradually flows out to the indoor heat exchanger 15, and the refrigerant composition in the main circuit returns to the state of the high-capacity filling composition, and The amount of the refrigerant is also increased, and the operation with a large capacity corresponding to the load can be restarted.

【0089】なお、この場合には貯留された液冷媒を室
内機15に流出させることができるので、液冷媒の持つ
潜熱を室内機15で有効に利用でき、負荷の増大に対し
て、即座に冷房能力の大きな運転に切り換えることがで
きるものである。
In this case, since the stored liquid refrigerant can be discharged to the indoor unit 15, the latent heat of the liquid refrigerant can be effectively used in the indoor unit 15, and the increase in the load can be immediately performed when the load increases. The operation can be switched to an operation having a large cooling capacity.

【0090】このように、負荷の大小を室内機24の吸
い込み空気温度と設定空気温度との差で検知して、開閉
弁30,31,32を開閉するという簡単な操作のみ
で、主回路の冷媒量と冷媒組成を負荷に見合った状態に
可変することにより、能力制御を行うことができるもの
である。
As described above, the magnitude of the load is detected by the difference between the intake air temperature of the indoor unit 24 and the set air temperature, and the on / off valves 30, 31, and 32 are opened and closed only by a simple operation. The capacity control can be performed by changing the refrigerant amount and the refrigerant composition to a state corresponding to the load.

【0091】次に、暖房運転時には、冷媒流れが主回路
において逆になるが、その動作は同様である。
Next, during the heating operation, the flow of the refrigerant is reversed in the main circuit, but the operation is the same.

【0092】暖房時、圧縮機11の起動直後など暖房能
力を必要としている場合、開閉弁30,32は閉止し、
開閉弁31は開放する(STEP1)。この状態で、圧
縮機11から吐出した冷媒は、四方弁12、室内熱交換
器15に高温冷媒が流れ、暖房に寄与して凝縮液化し主
絞り装置14に流入する回路と副絞り装置18に流入す
る回路に分流される。
When heating is required, such as immediately after the compressor 11 is started, the on-off valves 30 and 32 are closed.
The on-off valve 31 is opened (STEP 1). In this state, high-temperature refrigerant flows from the compressor 11 to the four-way valve 12 and the indoor heat exchanger 15, condenses and liquefies by contributing to heating and flows into the main throttle device 14 and the sub-throttle device 18. It is shunted to the incoming circuit.

【0093】副絞り装置18に流入した冷媒はやや減圧
され、冷凍サイクル主回路の高圧からやや低下した圧力
となる。そのため、副絞り装置18を出た冷媒は気液混
合の二相状態となる。また、開閉弁31を介して精留分
離器20の塔底部と接続されているため、開閉弁31の
開閉操作によって冷媒を精留分離器20に流入させるこ
とができる。
The refrigerant flowing into the sub-throttle device 18 is slightly depressurized to a pressure slightly lower than the high pressure of the refrigeration cycle main circuit. Therefore, the refrigerant that has exited the sub-throttling device 18 is in a two-phase state of gas-liquid mixing. Further, since the refrigerant is connected to the bottom of the rectifier 20 via the on-off valve 31, the refrigerant can flow into the rectifier 20 by opening and closing the on-off valve 31.

【0094】また、同じく精留分離器20の塔底部と接
続されている開閉弁30は室外熱交換器13の配管途中
と接続しており、開閉弁30の操作により冷媒を流出さ
せることができる。
An on-off valve 30, which is also connected to the bottom of the rectifier 20, is connected to the middle of the pipe of the outdoor heat exchanger 13, and the refrigerant can be discharged by operating the on-off valve 30. .

【0095】ここにおいて、負荷判定を行い(STEP
2)、記憶装置33に記憶されている室内機24の設定
空気温度と温度センサー25で検知された室内機24の
吸い込み空気温度との差が一定値tより大きい場合、す
なわち暖房負荷が大きい場合には、開閉弁31,32の
閉止信号および開閉弁30の開放信号が演算制御装置3
4から送られ、開閉弁31,32は閉止され、開閉弁3
0は開放されたままとなる。したがって、室内熱交換器
15を出た冷媒は、すべて主絞り装置14を通過して低
圧まで絞られ、室外熱交換器13で蒸発して、その後、
四方弁12を通って再び圧縮機11に吸入される。
Here, a load determination is made (STEP
2) When the difference between the set air temperature of the indoor unit 24 stored in the storage device 33 and the suction air temperature of the indoor unit 24 detected by the temperature sensor 25 is larger than a certain value t, that is, when the heating load is large. The closing signal of the on-off valves 31 and 32 and the opening signal of the on-off valve 30 are transmitted to the arithmetic and control unit 3.
4, the on-off valves 31, 32 are closed, and the on-off valves 3
0 remains open. Therefore, all the refrigerant that has exited the indoor heat exchanger 15 passes through the main expansion device 14 and is throttled to a low pressure, evaporates in the outdoor heat exchanger 13, and thereafter,
It is sucked into the compressor 11 again through the four-way valve 12.

【0096】一方、精留分離器20、冷却器21、貯留
器22は、開放されている開閉弁30を介して低圧とな
っている室外熱交換器13の途中配管と接続されている
ので、内部はほぼ低圧のガスとなり、冷媒の貯留はほと
んどない。
On the other hand, the rectifying separator 20, the cooler 21, and the reservoir 22 are connected to the low pressure intermediate pipe of the outdoor heat exchanger 13 via the open / close valve 30. The inside becomes almost low pressure gas, and there is almost no storage of refrigerant.

【0097】こうすることにより、主回路の冷媒は充填
組成のままの混合された状態で、かつ冷媒量の多い状態
で運転され、負荷に適した能力の大きい運転ができる。
In this way, the refrigerant in the main circuit is operated in a mixed state with the filling composition as it is and in a state in which the amount of the refrigerant is large, and an operation with a large capacity suitable for the load can be performed.

【0098】次に、負荷判定を行い(STEP2)、記
憶装置33に記憶されている設定空気温度と温度センサ
ー25で検知された室内機24の吸い込み空気温度との
差が一定値tより小さい場合、すなわち暖房負荷が小さ
い場合には、開閉弁31,32の開放信号および開閉弁
30の閉止信号が演算制御装置34から送られ、開閉弁
31,32は開放、開閉弁30は閉止されるため(ST
EP3)、副絞り装置18でやや絞られた二相冷媒は、
開閉弁31を通過して精留分離器20の塔底に流入する
と共に、一部は副絞り装置23を通って減圧され、低温
の二相冷媒となって冷却器21に流入し、ここで精留分
離器20の塔頂部の冷媒と間接的に熱交換する。
Next, a load determination is made (STEP 2). If the difference between the set air temperature stored in the storage device 33 and the suction air temperature of the indoor unit 24 detected by the temperature sensor 25 is smaller than a predetermined value t. That is, when the heating load is small, an open signal of the on-off valves 31 and 32 and a close signal of the on-off valve 30 are sent from the arithmetic and control unit 34, and the on-off valves 31 and 32 are opened and the on-off valve 30 is closed. (ST
EP3), the two-phase refrigerant slightly throttled by the sub-throttle device 18 is:
While passing through the on-off valve 31 and flowing into the bottom of the fractionator 20, a part thereof is depressurized through the sub-throttling device 23 and becomes a low-temperature two-phase refrigerant and flows into the cooler 21. The heat exchange is indirectly performed with the refrigerant at the top of the fractionator 20.

【0099】ここにおいては、精留分離器20の圧力は
略高圧となっており、また冷却器21の冷却源はサイク
ル中で最もエンタルピの低い低温低圧の二相冷媒を利用
しているため、精留分離器20の塔頂部の温度と冷却器
21の冷却熱源との温度差を大きくとることができ、冷
却器21を小型にできるのみならず、精留分離器20の
塔頂部のガスを確実に液化できる。
In this case, the pressure of the rectifier 20 is substantially high, and the cooling source of the cooler 21 uses a low-temperature low-pressure two-phase refrigerant having the lowest enthalpy in the cycle. The difference between the temperature at the top of the rectifier 20 and the temperature of the cooling heat source of the cooler 21 can be made large, and not only can the cooler 21 be reduced in size, but also the gas at the top of the rectifier 20 can be cooled. It can be liquefied reliably.

【0100】このようにして、精留分離器20の塔底よ
り流入した冷媒は冷却器21で冷却されて液化し、貯留
器22に貯留されて、徐々に貯留量が増加し、再び精留
分離器20の塔頂部に帰還して精留分離器20を下降す
るようになる。この状態が連続的に起こると、精留分離
器20を上昇する冷媒ガスと下降する冷媒液とが精留分
離器20内で気液接触により精留作用が起こり、貯留器
22には徐々に低沸点に富んだ冷媒組成が貯留され、精
留分離器20を下降し副絞り装置23を通過する冷媒は
徐々に高沸点に富んだ組成となり、冷却器21を介して
圧縮機11に吸入される。このようにして、主回路は徐
々に高沸点に富んだ冷媒組成となるため、能力をセーブ
することができる。また、貯留器22に低沸点冷媒が貯
留されているために主回路冷媒量を少なくすることがで
き、冷媒量減少の効果も加えることにより、さらに能力
セーブに寄与し、負荷に適した低能力の運転ができるも
のである。
In this way, the refrigerant flowing from the bottom of the rectifying separator 20 is cooled by the cooler 21 to be liquefied, stored in the storing unit 22, and the storage amount is gradually increased. The rectifier 20 returns to the top of the separator 20 and descends. When this state occurs continuously, the refrigerant gas rising in the rectifying separator 20 and the descending refrigerant liquid are rectified by gas-liquid contact in the rectifying separator 20, and the storage device 22 gradually enters the rectifying operation. The refrigerant composition having a low boiling point is stored, and the refrigerant passing down the rectifying separator 20 and passing through the sub-throttle device 23 gradually becomes a composition having a high boiling point, and is sucked into the compressor 11 via the cooler 21. You. In this way, the main circuit gradually becomes a refrigerant composition having a high boiling point, so that the capacity can be saved. Further, since the low-boiling-point refrigerant is stored in the reservoir 22, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is also added, thereby further contributing to capacity saving and reducing the capacity suitable for the load. Can be driven.

【0101】なお、ここにおいては精留分離器20の塔
底へは凝縮途中の二相冷媒を流入させることができるの
で、十分なガス発生量を確保することができ、分離に要
する時間も短縮することができると共に、飽和ガスを流
入させることができるので、吐出ガスのような過熱ガス
を導入させる場合と比較して、ガスの液化が容易とな
り、分離性能も向上させることができる。
Here, since the two-phase refrigerant in the middle of the condensation can flow into the bottom of the fractionator 20, a sufficient amount of gas can be generated and the time required for separation can be reduced. In addition, since a saturated gas can be flowed in, the gas can be easily liquefied and the separation performance can be improved as compared with a case where a superheated gas such as a discharge gas is introduced.

【0102】なお、この場合、開閉弁30は閉止してい
るため、室外熱交換器13の方向へは冷媒は流れること
はない。
In this case, since the on-off valve 30 is closed, the refrigerant does not flow toward the outdoor heat exchanger 13.

【0103】この状態で、負荷判定を行い(STEP
4)、負荷が大きくなり、記憶装置33に記憶されてい
る設定空気温度と温度センサー25で検知された室内機
24の吸い込み空気温度との差が一定値tより大きくな
った場合には、開閉弁31,32の閉止信号および開閉
弁30の開放信号が演算制御装置27から送られ、開閉
弁31,32は再び閉止、開閉弁30は再び開放され
(STEP5)、貯留器22に貯留された冷媒は徐々に
室外熱交換器13の配管途中に流出し、さらに四方弁1
2を通って圧縮機11に吸引され、主回路の冷媒組成は
高能力な充填組成の状態に戻り、また冷媒量も増加し
て、負荷に見合った能力の大きい運転ができる。
In this state, load determination is performed (STEP
4) If the load increases and the difference between the set air temperature stored in the storage device 33 and the suction air temperature of the indoor unit 24 detected by the temperature sensor 25 becomes larger than a certain value t, the switch is opened and closed. The closing signals of the valves 31 and 32 and the opening signal of the on-off valve 30 are sent from the arithmetic and control unit 27, the on-off valves 31 and 32 are closed again, the on-off valve 30 is opened again (STEP 5), and stored in the reservoir 22. The refrigerant gradually flows out of the pipes of the outdoor heat exchanger 13 and further flows into the four-way valve 1.
2, the refrigerant is sucked into the compressor 11 and the refrigerant composition of the main circuit returns to the state of the high-capacity filling composition, and the amount of the refrigerant is increased, so that the operation having a large capacity corresponding to the load can be performed.

【0104】なお、この場合には貯留された液冷媒を室
外熱交換器13に流出させることができるので、液冷媒
の持つ潜熱で室外熱交換器15において十分に外気から
吸熱することができ、負荷の増大に対して、即座に暖房
能力の大きな運転に切り換えることができるものであ
る。
In this case, the stored liquid refrigerant can flow out to the outdoor heat exchanger 13, so that the latent heat of the liquid refrigerant can sufficiently absorb heat from the outside air in the outdoor heat exchanger 15. When the load increases, the operation can be immediately switched to an operation having a large heating capacity.

【0105】このように、負荷の大小を設定空気温度と
室内機24の吸い込み空気温度との差で検知して、開閉
弁30,31,32を開閉するという簡単な操作のみ
で、主回路の冷媒量と冷媒組成を負荷に見合った状態に
可変することにより、冷房暖房いずれの運転状態におい
ても能力制御を行うことができるものである。
As described above, the magnitude of the load is detected by the difference between the set air temperature and the suction air temperature of the indoor unit 24, and only the simple operation of opening and closing the on-off valves 30, 31, 32 allows the main circuit to be opened and closed. By varying the amount of refrigerant and the composition of the refrigerant to a state suitable for the load, the capacity can be controlled in any of the cooling and heating operation states.

【0106】なお、本発明において、室外熱交換器13
と開閉弁30の間に副絞り装置などによってそこを流れ
る流量を制御したような構成も本発明に含まれる。
In the present invention, the outdoor heat exchanger 13
The present invention also includes a configuration in which the flow rate flowing between the valve and the on-off valve 30 is controlled by a sub-throttle device or the like.

【0107】[0107]

【発明の効果】以上説明したように、請求項1に記載の
発明は、圧縮機、四方弁、室外熱交換器、主絞り装置、
室内熱交換器を配管接続して冷凍サイクルの主回路を構
成し、頂部に冷却器および貯留器を環状に接続した回路
を有する精留分離器の底部と前記室外熱交換器の配管と
を開閉弁および第一の逆止弁の直列回路で接続し、前記
第一の逆止弁は前記室外熱交換器の配管から前記精留分
離器に向かってのみ流れる構成とし、前記開閉弁と前記
第一の逆止弁との間と、前記主絞り装置と前記室内熱交
換器の間とを第一の副絞り装置および第二の逆止弁の直
列回路で接続し、前記第二の逆止弁は前記主絞り装置と
前記室内熱交換器の間の配管から前記第一の開閉弁に向
かってのみ流れる構成とし、さらに前記精留分離器の底
部と前記冷却器とを第二の副絞り装置を介して接続し、
前記冷却器において前記精留分離器の頂部の回路を間接
的に熱交換するように構成し、さらに前記冷却器と前記
圧縮機の吸入配管とを第二の開閉弁を介して接続し、非
共沸混合冷媒を封入した構成としたので、冷暖房能力の
必要な負荷の大きい場合には、貯留器をほぼ空とし主回
路冷媒量を増加させ、また、精留分離作用は行なわず主
回路は充填組成のままの冷媒量の多い状態で運転するこ
とにより、負荷に見合った高能力な運転を行うことがで
きる。
As described above, the first aspect of the present invention provides a compressor, a four-way valve, an outdoor heat exchanger, a main throttle device,
The indoor heat exchanger is connected by piping to form the main circuit of the refrigeration cycle, and the bottom of the rectifier having a circuit in which a cooler and a reservoir are connected in a ring at the top and the piping of the outdoor heat exchanger are opened and closed. A valve and a first check valve are connected by a series circuit, and the first check valve is configured to flow only from the pipe of the outdoor heat exchanger toward the rectifying separator, and the open / close valve and the second check valve are connected to each other. A first check valve and a second check valve connected in series between the main throttle device and the indoor heat exchanger, and the second check valve. The valve is configured to flow only from the pipe between the main throttle device and the indoor heat exchanger toward the first on-off valve, and further connects the bottom of the rectification separator and the cooler with a second sub-throttle. Connected through the device,
In the cooler, a circuit at the top of the rectifying separator is configured to indirectly exchange heat, and further, the cooler and a suction pipe of the compressor are connected via a second on-off valve. Since the azeotropic mixed refrigerant is used, the reservoir is almost empty to increase the amount of refrigerant in the main circuit when the load required for cooling and heating capacity is large, and the main circuit is not rectified and separated. By operating in a state in which the amount of the refrigerant with the filling composition is large, a high-capacity operation corresponding to the load can be performed.

【0108】また、冷暖房能力をあまり必要としない負
荷の小さい場合には、貯留器に冷媒を貯留することによ
り主回路冷媒量を減少させ、また、精留分離を行なって
貯留冷媒を低沸点成分に富んだ冷媒組成とし、主回路は
高沸点成分に富んだ冷媒量の少ない状態で運転すること
により、負荷に見合った能力セーブを行なうことができ
る。
When the load which does not require much cooling and heating capacity is small, the amount of the main circuit refrigerant is reduced by storing the refrigerant in the storage device, and the stored refrigerant is subjected to rectification separation to reduce the stored refrigerant to low boiling point components. By operating the main circuit in a state in which the refrigerant composition is rich and the amount of refrigerant rich in high-boiling components is small, the capacity can be saved according to the load.

【0109】また、冷暖房運転時とも精留分離器の圧力
を略高圧とすることができるので、精留分離器圧力にお
ける冷媒飽和温度に対し、冷却側の冷媒との温度差を大
きくすることができるので、精留分離器で発生したガス
を確実に冷却することができ、分離性能を向上させ、よ
り能力変化幅を広げることができる。
Further, since the pressure of the rectifying separator can be made substantially high even during the cooling and heating operation, it is possible to increase the temperature difference between the refrigerant saturation temperature at the rectifying separator pressure and the refrigerant on the cooling side. As a result, the gas generated in the rectifying separator can be reliably cooled, the separation performance can be improved, and the capacity change width can be further widened.

【0110】また、請求項2に記載の本発明は、請求項
1に記載の発明において、吸い込み空気温度を検知し、
設定温度との差が一定値以下、すなわち、室内の負荷に
比べ冷暖房能力が過剰となった場合、開閉弁を操作する
ようにしたので、簡単な制御で、主回路冷媒組成を高沸
点側に変化させて能力セーブを行うことができ、また、
設定温度との差が一定値以上、すなわち、室内の負荷に
比べ冷暖房能力が不足となった場合、開閉弁を操作する
という簡単な制御のみで、貯留器の冷媒量をほぼ空に
し、主回路の冷媒量を増加させ、また冷媒組成を元の充
填組成に戻すことにより能力向上を行うヒートポンプ装
置の運転制御方法を提供することができる。
According to a second aspect of the present invention, in accordance with the first aspect of the present invention, the intake air temperature is detected,
When the difference from the set temperature is below a certain value, that is, when the cooling / heating capacity becomes excessive compared with the indoor load, the on-off valve is operated, so that the main circuit refrigerant composition is shifted to the high boiling point side with a simple control. You can change the ability and save the ability,
When the difference from the set temperature is a certain value or more, that is, when the cooling and heating capacity is insufficient compared with the indoor load, the refrigerant amount of the reservoir is almost empty by only simple control of operating the on-off valve, and the main circuit is It is possible to provide a method for controlling the operation of a heat pump device in which the capacity is improved by increasing the amount of refrigerant and returning the refrigerant composition to the original filling composition.

【0111】本発明の請求項3に記載の発明は、圧縮
機、四方弁、室外熱交換器、主絞り装置、室内熱交換器
を配管接続して冷凍サイクルの主回路を構成し、頂部に
冷却器および貯留器を環状に接続した回路を有する精留
分離器の底部と前記室外熱交換器の配管とを第一の開閉
弁を介して接続し、前記精留分離器の底部と前記主絞り
装置と前記室内熱交換器の間とを第一の副絞り装置およ
び第二の開閉弁の直列回路で接続し、さらに前記精留分
離器の底部と前記冷却器とを第二の副絞り装置を介して
接続し、前記冷却器において前記精留分離器の頂部の回
路と間接的に熱交換するように構成し、さらに前記冷却
器と前記圧縮機の吸入配管とを第三の開閉弁を介して接
続し、非共沸混合冷媒を封入した構成としたものであ
り、冷暖房能力の必要な負荷の大きい場合には、貯留器
をほぼ空とし主回路冷媒量を増加させ、また、精留分離
作用は行なわず主回路は充填組成のままの冷媒量の多い
状態で運転することにより、負荷に見合った高能力な運
転を行うことができる。
According to a third aspect of the present invention, a compressor, a four-way valve, an outdoor heat exchanger, a main expansion device, and an indoor heat exchanger are connected by piping to form a main circuit of a refrigeration cycle. A bottom of a rectifier having a circuit in which a cooler and a reservoir are connected in a ring is connected to a pipe of the outdoor heat exchanger via a first on-off valve, and a bottom of the rectifier and the main unit are connected to each other. A throttle device and the indoor heat exchanger are connected by a series circuit of a first sub-throttle device and a second on-off valve, and the bottom of the rectifying separator and the cooler are further connected to a second sub-throttle. Connected through a device, configured to indirectly exchange heat with the circuit at the top of the rectifying separator in the cooler, and further connecting a third open / close valve to the cooler and the suction pipe of the compressor. Connected via a non-azeotropic refrigerant mixture, which requires cooling and heating capacity. When the load is large, the reservoir is almost empty and the amount of refrigerant in the main circuit is increased.In addition, the rectification is not performed, and the main circuit is operated in a state in which the refrigerant amount is large with the filling composition unchanged. High-performance driving can be performed.

【0112】また、冷暖房能力をあまり必要としない負
荷の小さい場合には、貯留器に冷媒を貯留することによ
り主回路冷媒量を減少させ、また、精留分離を行なって
貯留冷媒を低沸点成分に富んだ冷媒組成とし、主回路は
高沸点成分に富んだ冷媒量の少ない状態で運転すること
により、負荷に見合った能力セーブを行なうことができ
る。
When the load that does not require much cooling and heating capacity is small, the amount of the main circuit refrigerant is reduced by storing the refrigerant in the storage device, and the stored refrigerant is subjected to rectification and separation to reduce the stored refrigerant to low boiling point components. By operating the main circuit in a state in which the refrigerant composition is rich and the amount of refrigerant rich in high-boiling components is small, the capacity can be saved according to the load.

【0113】また、冷暖房運転時とも精留分離器の圧力
を略高圧とすることができるので、精留分離器圧力にお
ける冷媒飽和温度に対し、冷却側の冷媒との温度差を大
きくすることができるので、精留分離器で発生したガス
を確実に冷却することができ、分離性能を向上させ、よ
り能力変化幅を広げることができる。
Further, since the pressure of the rectifying separator can be made substantially high even during the cooling / heating operation, it is possible to increase the temperature difference between the refrigerant saturation temperature at the rectifying separator pressure and the refrigerant on the cooling side. As a result, the gas generated in the rectifying separator can be reliably cooled, the separation performance can be improved, and the capacity change width can be further widened.

【0114】さらにまた、貯留した冷媒を主回路に戻す
場合に、開閉弁を介して冷房時には室内熱交換器に戻す
ことができるので、貯留した液冷媒潜熱を有効に利用で
き、また、暖房時は室外側熱交換器に戻すことができる
ので、貯留した液冷媒潜熱により外気からの吸熱を促進
し、能力向上を早めることができる。
Further, when the stored refrigerant is returned to the main circuit, the stored refrigerant can be returned to the indoor heat exchanger via the on-off valve during cooling, so that the stored liquid refrigerant latent heat can be used effectively, and the stored refrigerant can be used during heating. Can be returned to the outdoor heat exchanger, so that the stored liquid refrigerant latent heat promotes heat absorption from the outside air, thereby speeding up capacity improvement.

【0115】本発明の請求項4に記載の発明は、請求項
3記載の発明において、あらかじめ設定した設定空気温
度と室内温度センサーで検知した吸い込み空気温度との
温度差が一定値以下になった場合に、前記開閉弁を操作
し、また前記設定空気温度と前記吸い込み空気温度との
温度差が一定値以上になった場合に、前記開閉弁を操作
するように制御する構成としたものであり、簡単なセン
シングで負荷の大小を判断でき、また開閉弁動作という
簡単な構成で主回路冷媒量と主回路組成を可変して、負
荷に応じた能力制御を行うヒートポンプ装置の運転制御
方法を提供することができる。
According to a fourth aspect of the present invention, in the third aspect of the present invention, a temperature difference between a preset air temperature and a suction air temperature detected by a room temperature sensor is equal to or less than a predetermined value. In this case, the on-off valve is operated, and when the temperature difference between the set air temperature and the suction air temperature becomes a certain value or more, the on-off valve is controlled to be operated. Provide a method of controlling the operation of a heat pump device that can judge the size of the load with simple sensing, and vary the main circuit refrigerant amount and main circuit composition with a simple configuration called an on-off valve operation to perform capacity control according to the load. can do.

【0116】さらにまた、貯留した冷媒を主回路に戻す
場合に、開閉弁を介して冷房時には室内熱交換器に戻す
ことができるので、貯留した液冷媒潜熱を有効に利用で
き、また、暖房時は室外側熱交換器に戻すことができる
ので、貯留した液冷媒潜熱により外気からの吸熱を促進
し、能力向上を早めることができるなど多大な効果を有
するものである。
Furthermore, when the stored refrigerant is returned to the main circuit, it can be returned to the indoor heat exchanger at the time of cooling via the on-off valve, so that the stored liquid refrigerant latent heat can be used effectively, Can be returned to the outdoor heat exchanger, which has a great effect, such as accelerating heat absorption from the outside air by the stored liquid refrigerant latent heat and speeding up capacity improvement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になるヒートポンプ装置の実施例1のシ
ステム構成図
FIG. 1 is a system configuration diagram of a first embodiment of a heat pump device according to the present invention.

【図2】同実施例の動作を示すフローチャートFIG. 2 is a flowchart showing the operation of the embodiment.

【図3】本発明になるヒートポンプ装置の実施例2のシ
ステム構成図
FIG. 3 is a system configuration diagram of Embodiment 2 of the heat pump device according to the present invention.

【図4】同実施例の動作を示すフローチャートFIG. 4 is a flowchart showing the operation of the embodiment.

【図5】従来のヒートポンプ装置のシステム構成図FIG. 5 is a system configuration diagram of a conventional heat pump device.

【符号の説明】[Explanation of symbols]

11 圧縮機 12 四方弁 13 室外熱交換器 14 主絞り装置 15 室内熱交換器 16,19 逆止弁 17,30,31,32 開閉弁 18,23 副絞り装置 20 精留分離器 21 冷却器 22 貯留器 24 室内機 25 温度センサー 26,33 記憶装置 27,34 演算制御装置 DESCRIPTION OF SYMBOLS 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger 14 Main throttle device 15 Indoor heat exchanger 16, 19 Check valve 17, 30, 31, 32 On-off valve 18, 23 Sub-throttle device 20 Rectifier 21 Cooler 22 Reservoir 24 Indoor unit 25 Temperature sensor 26,33 Storage device 27,34 Operation control device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、主絞り
装置、室内熱交換器を配管接続して冷凍サイクルの主回
路を構成し、頂部に冷却器および貯留器を環状に接続し
た回路を有する精留分離器の底部と前記室外熱交換器の
配管とを開閉弁および第一の逆止弁の直列回路で接続
し、前記第一の逆止弁は前記室外熱交換器の配管から前
記精留分離器に向かってのみ流れる構成とし、前記開閉
弁と前記第一の逆止弁との間と、前記主絞り装置と前記
室内熱交換器の間とを第一の副絞り装置および第二の逆
止弁の直列回路で接続し、前記第二の逆止弁は前記主絞
り装置と前記室内熱交換器の間の配管から前記第一の開
閉弁に向かってのみ流れる構成とし、さらに前記精留分
離器の底部と前記冷却器とを第二の副絞り装置を介して
接続し、前記冷却器において前記精留分離器の頂部の回
路を間接的に熱交換するように構成し、さらに前記冷却
器と前記圧縮機の吸入配管とを接続し、非共沸混合冷媒
を封入したことを特徴とするヒートポンプ装置。
1. A main circuit of a refrigeration cycle is configured by connecting a compressor, a four-way valve, an outdoor heat exchanger, a main expansion device, and an indoor heat exchanger by piping, and a cooler and a reservoir are connected in a ring at a top portion. The bottom of the rectifier having a circuit and the piping of the outdoor heat exchanger are connected by a series circuit of an on-off valve and a first check valve, and the first check valve is connected to the piping of the outdoor heat exchanger. From the on-off valve and the first check valve, and a first auxiliary throttle device between the main throttle device and the indoor heat exchanger. And a second check valve connected in a series circuit, wherein the second check valve flows only from the pipe between the main throttle device and the indoor heat exchanger toward the first on-off valve. Further, the bottom of the rectifier and the cooler are connected via a second auxiliary throttle device, and the cooler is connected to the cooler. Wherein the circuit at the top of the rectifier is indirectly heat-exchanged, the cooler and the suction pipe of the compressor are connected, and a non-azeotropic mixed refrigerant is sealed. Heat pump device.
【請求項2】 前記室内熱交換器を有する室内機の吸い
込み空気温度を検知する室内温度センサーを設け、あら
かじめ設定した設定空気温度と前記室内温度センサーで
検知した吸い込み空気温度との温度差が一定値以下にな
った場合に、前記開閉弁を開放し、また前記設定空気温
度と前記吸い込み空気温度との温度差が一定値以上にな
った場合に、前記開閉弁を閉止することを特徴とする請
求項1記載のヒートポンプ装置の運転制御方法。
2. An indoor temperature sensor for detecting a suction air temperature of an indoor unit having the indoor heat exchanger, wherein a temperature difference between a preset air temperature and a suction air temperature detected by the indoor temperature sensor is constant. When the temperature falls below a predetermined value, the on-off valve is opened, and when the temperature difference between the set air temperature and the suction air temperature becomes a certain value or more, the on-off valve is closed. An operation control method for the heat pump device according to claim 1.
【請求項3】 圧縮機、四方弁、室外熱交換器、主絞り
装置、室内熱交換器を配管接続して冷凍サイクルの主回
路を構成し、頂部に冷却器および貯留器を環状に接続し
た回路を有する精留分離器の底部と前記室外熱交換器の
配管とを第一の開閉弁を介して接続し、前記精留分離器
の底部と前記主絞り装置と前記室内熱交換器の間の配管
とを第一の副絞り装置および第二の開閉弁の直列回路で
接続し、さらに前記精留分離器の底部と前記冷却器とを
第二の副絞り装置を介して接続し、前記冷却器において
前記精留分離器の頂部の回路と間接的に熱交換するよう
に構成し、さらに前記冷却器と前記圧縮機の吸入配管と
を第三の開閉弁を介して接続し、非共沸混合冷媒を封入
したことを特徴とするヒートポンプ装置。
3. A main circuit of the refrigeration cycle is constructed by connecting a compressor, a four-way valve, an outdoor heat exchanger, a main expansion device, and an indoor heat exchanger by piping, and a cooler and a reservoir are connected in a ring at the top. The bottom of the rectifier having a circuit and the piping of the outdoor heat exchanger are connected via a first on-off valve, and the bottom of the rectifier and the main throttle device and the indoor heat exchanger are connected. And a pipe connected in a series circuit of a first sub-throttle device and a second on-off valve, further connected the bottom of the rectification separator and the cooler through a second sub-throttle device, The cooler is configured to indirectly exchange heat with the circuit at the top of the rectifying separator, and the cooler and the suction pipe of the compressor are connected via a third on-off valve, and the A heat pump device characterized by containing a boiling mixed refrigerant.
【請求項4】 前記室内熱交換器を有する室内機の吸い
込み空気温度を検知する室内温度センサーを設け、冷房
運転時にあらかじめ設定した設定空気温度と前記室内温
度センサーで検知した吸い込み空気温度との温度差が一
定値以下になった場合、前記第一および第三の開閉弁を
開放、第二の開閉弁を閉止し、前記設定空気温度と前記
吸い込み空気温度との温度差が一定値以上になった場合
には、前記第一および第三の開閉弁を閉止、第二の開閉
弁を開放し、暖房運転時にあらかじめ設定した設定空気
温度と前記室内温度センサーで検知した吸い込み空気温
度との温度差が一定値以下になった場合、前記第二およ
び第三の開閉弁を開放、第一の開閉弁を閉止し、前記設
定空気温度と前記吸い込み空気温度との温度差が一定値
以上になった場合には、前記第二および第三の開閉弁を
閉止、第一の開閉弁を開放することを特徴とする請求項
3記載のヒートポンプ装置の運転制御方法。
4. An indoor temperature sensor for detecting a suction air temperature of an indoor unit having the indoor heat exchanger, wherein a temperature between a preset air temperature set in a cooling operation and a suction air temperature detected by the indoor temperature sensor is provided. When the difference is equal to or less than a certain value, the first and third on-off valves are opened and the second on-off valve is closed, and the temperature difference between the set air temperature and the suction air temperature is equal to or more than a certain value. In this case, the first and third on-off valves are closed, the second on-off valve is opened, and the temperature difference between the preset air temperature set during the heating operation and the suction air temperature detected by the indoor temperature sensor. Is less than a certain value, the second and third on-off valves are opened, the first on-off valve is closed, and the temperature difference between the set air temperature and the suction air temperature is more than a certain value. In case The method according to claim 3, wherein the second and third on-off valves are closed and the first on-off valve is opened.
JP11163295A 1999-04-02 1999-06-10 Heat pump device Pending JP2000346477A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11163295A JP2000346477A (en) 1999-06-10 1999-06-10 Heat pump device
CN00800748A CN1302365A (en) 1999-04-02 2000-03-27 Heat pump
KR1020007013577A KR20010052480A (en) 1999-04-02 2000-03-27 Heat pump
EP00911399A EP1094285A1 (en) 1999-04-02 2000-03-27 Heat pump
PCT/JP2000/001885 WO2000060288A1 (en) 1999-04-02 2000-03-27 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11163295A JP2000346477A (en) 1999-06-10 1999-06-10 Heat pump device

Publications (1)

Publication Number Publication Date
JP2000346477A true JP2000346477A (en) 2000-12-15

Family

ID=15771122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11163295A Pending JP2000346477A (en) 1999-04-02 1999-06-10 Heat pump device

Country Status (1)

Country Link
JP (1) JP2000346477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389039A (en) * 2020-03-18 2020-07-10 谢海刚 Rectification heat energy closed circulation energy-saving system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389039A (en) * 2020-03-18 2020-07-10 谢海刚 Rectification heat energy closed circulation energy-saving system
CN111389039B (en) * 2020-03-18 2023-07-07 谢海刚 Energy-saving system for rectifying heat energy closed circulation

Similar Documents

Publication Publication Date Title
AU766121B2 (en) High pressure regulation in economized vapor compression cycles
EP2587193A2 (en) Air conditioner
JP2004183913A (en) Air conditioner
JP2002081767A (en) Air conditioner
US20040261447A1 (en) Refrigeration equipment
JP6598882B2 (en) Refrigeration cycle equipment
JP2007255730A (en) Air conditioner
JP2006234239A (en) Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system
JP2007155143A (en) Refrigerating device
JP3161347B2 (en) Refrigeration equipment
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JPH11270918A (en) Refrigerating device
JP2008096072A (en) Refrigerating cycle device
JP2000346477A (en) Heat pump device
JP2002357353A (en) Air conditioner
JP2002039648A (en) Refrigerant charging method and air conditioner
JP2001317828A (en) Heat pump apparatus
JP2001133059A (en) Heat pump system
JP3334331B2 (en) Air conditioner
JP2001349629A (en) Heat pump device
JP2007147227A (en) Refrigerating device
JPH01302072A (en) Heat pump type air conditioner
JP2001091063A (en) Air conditioner
JP2000292019A (en) Heat pump device
JP2001317829A (en) Heat pump apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071025

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131025