JP2000345001A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JP2000345001A
JP2000345001A JP37575999A JP37575999A JP2000345001A JP 2000345001 A JP2000345001 A JP 2000345001A JP 37575999 A JP37575999 A JP 37575999A JP 37575999 A JP37575999 A JP 37575999A JP 2000345001 A JP2000345001 A JP 2000345001A
Authority
JP
Japan
Prior art keywords
epoxy resin
μmol
resin composition
reactive silica
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37575999A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamada
芳範 山田
Fuminori Kasuga
文則 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP37575999A priority Critical patent/JP2000345001A/en
Publication of JP2000345001A publication Critical patent/JP2000345001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition providing excellent adhesion of a silica filler to a resin after curing of the composition and excellent mechanical characteristics of the cured product as well as having sufficient curability even without using a curing accelerator by including a reactive silica particle having a silanol group of at least a certain concentration and a curable epoxy resin. SOLUTION: A reactive silica particle to be used has a silanol group of at least 6 μmol/g, and preferably from at least 6 μmol/g to not more than 5 mmol/g. The reactive silica particle having a silanol group of at least 6 μmol/g is obtained by gelatinizing sodium silicate or an alkyl silicate under wet conditions, and then calcining the resulting gel (sol-gel method spherical silica) at a relatively low-controlled calcining temperature. A particle diameter of the reactive silica particle is preferably an average diameter of 0.01-30 μm, and more preferably 0.1-10 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置封止材
等の樹脂成形材料、或いは各種分野における接着剤等と
して有用なエポキシ樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition useful as a resin molding material such as a sealing material for semiconductor devices or an adhesive in various fields.

【0002】[0002]

【従来の技術】IC,LSI等の半導体素子の封止方法
としてエポキシ樹脂組成物による樹脂封止の方法が低コ
スト、大量生産に適した方法として採用されてから久し
く、エポキシ樹脂や硬化剤、硬化触媒、充填材等の改良
による信頼性の向上が図られてきた。しかし、その一方
で近年の電子機器の小型化、軽量化、高性能化の市場動
向において半導体パッケージの薄型化が進み、パッケー
ジ中に占める樹脂組成物の厚みが一段と薄くなってきて
いることから、樹脂硬化物の熱衝撃強度、靭性の更なる
向上が求められている。
2. Description of the Related Art As a method for encapsulating semiconductor elements such as ICs and LSIs, it has been a long time since a method of encapsulating a resin with an epoxy resin composition has been adopted as a method suitable for mass production at low cost. Reliability has been improved by improving the curing catalyst, the filler and the like. However, on the other hand, semiconductor packages have become thinner in recent market trends of miniaturization, weight reduction, and high performance of electronic devices, and the thickness of the resin composition occupying in the package has been further reduced. Further improvement in thermal shock strength and toughness of the cured resin is required.

【0003】樹脂自体の改良としては、様々な化学構造
を持つ樹脂組成物の検討や、硬化促進の方法等が古くか
ら研究され、例えば適当な硬化促進剤を使用する事によ
り硬化物の強度が向上する事は公知であり(山田光夫,
新保正樹,高分子論文集,37,57(1980))、
最新の半導体樹脂封止剤の組成はエポキシ樹脂、硬化
剤、硬化促進剤を必須成分とするのが一般的である(特
開平10−158360)。硬化促進剤には、アミジン
系化合物、有機リン系化合物、イミダゾール化合物等が
用いられるが、硬化促進剤自体には重合性がないので硬
化樹脂の重合体には組み込まれず、活性を残したまま低
沸点不純分として樹脂中に残留して半導体の信頼性に悪
影響を与える可能性が指摘されている。
In order to improve the resin itself, studies of resin compositions having various chemical structures and methods of accelerating curing have been studied for a long time. For example, by using an appropriate curing accelerator, the strength of the cured product can be reduced. It is known that it will improve (Mitsuo Yamada,
Masaki Shinbo, Journal of Polymers, 37, 57 (1980)),
The latest composition of a semiconductor resin encapsulant generally includes an epoxy resin, a curing agent, and a curing accelerator as essential components (Japanese Patent Application Laid-Open No. H10-158360). Amidine compounds, organic phosphorus compounds, imidazole compounds, etc. are used as the curing accelerator, but since the curing accelerator itself has no polymerizability, it is not incorporated into the polymer of the cured resin and remains low in activity. It has been pointed out that it may remain in the resin as a boiling point impurity and adversely affect the reliability of the semiconductor.

【0004】また、従来の半導体封止用の樹脂組成物で
は熱衝撃強度を高めるために、熱膨張率がシリコンチッ
プに近いシリカ粒子を封止樹脂の充填材としてできるだ
け多く充填する方法が採用されており、その充填率は重
量で樹脂組成物全体の60−90%を占めるまでに達し
ている。この時、従来のシリカ充填材は充填率を上げる
ために溶融して球状に成形されたものであるので、表面
の平滑性が高く、樹脂との接着強度が低いという問題が
あり、シランカップリング剤を利用して接着性を改善す
る方法(特開平4−114065)が知られているが、
その効果は十分ではなかった。
Further, in the conventional resin composition for semiconductor encapsulation, in order to increase the thermal shock strength, a method is employed in which silica particles having a thermal expansion coefficient close to that of a silicon chip are filled as much as possible as a sealing resin filler. The filling ratio reaches 60-90% by weight of the whole resin composition. At this time, since the conventional silica filler is melted and shaped into a sphere to increase the filling rate, there is a problem that the surface is high in smoothness and the bonding strength with the resin is low. A method of improving adhesiveness using an agent (Japanese Patent Laid-Open No. 4-114065) is known,
The effect was not enough.

【0005】[0005]

【本発明が解決しようとする課題】従来の半導体封止用
の樹脂組成物においては、硬化物自体の強度を高めるた
めには硬化促進剤が必須であるが、硬化後は硬化促進剤
が不純物として樹脂硬化物中に残留してしまう問題と、
シリカ充填材と樹脂硬化物との密着性が十分ではないと
いう問題とがあった。本発明は上記の問題を解消し、硬
化促進剤がなくても十分な硬化性を有すると共に、硬化
後においてシリカ充填材と樹脂との密着性に優れ、硬化
物の機械的特性に優れたエポキシ樹脂組成物を提供する
ことを課題とするものである。
In the conventional resin composition for semiconductor encapsulation, a curing accelerator is essential to increase the strength of the cured product itself, but after curing, the curing accelerator contains impurities. And the problem of remaining in the cured resin as
There is a problem that the adhesion between the silica filler and the cured resin is not sufficient. The present invention solves the above problems, has sufficient curability even without a curing accelerator, has excellent adhesion between a silica filler and a resin after curing, and has excellent mechanical properties of a cured product. It is an object to provide a resin composition.

【0006】[0006]

【課題を解決するための手段】本発明者等は前記課題を
解決するため鋭意検討した結果、エポキシ樹脂組成物に
おいて、シラノール基を6μmol/g以上持つ反応性シリ
カ粒子を充填材として含有させると、硬化促進剤を用い
なくても、硬化後の樹脂の靭性が著しく高くなり、半導
体の封止材として使用した場合には半導体の信頼性が飛
躍的に高まる事を見出し、本発明を完成するに至った。
即ち、本発明は6μmol/g以上のシラノール基を有する
反応性シリカ粒子及び硬化性エポキシ樹脂を含有するこ
とを特徴とするエポキシ樹脂組成物である。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that the epoxy resin composition contains reactive silica particles having a silanol group of 6 μmol / g or more as a filler. Even without using a curing accelerator, the toughness of the cured resin is significantly increased, and when used as a semiconductor encapsulant, it has been found that the reliability of the semiconductor is dramatically increased, and the present invention is completed. Reached.
That is, the present invention is an epoxy resin composition comprising reactive silica particles having a silanol group of 6 μmol / g or more and a curable epoxy resin.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いる硬化性エポキシ樹脂は、1分子中にエポ
キシ基を2個以上持つモノマー、オリゴマー又はポリマ
ー全般を使用する事ができる。好ましい具体例として、
例えばビスフェノール型エポキシ化合物、ビフェニル型
エポキシ化合物、スチルベン型エポキシ化合物、フェノ
ールノボラック型エポキシ樹脂、クレゾールノボラック
型エポキシ樹脂、トリフェノールメタン型エポキシ化合
物、アルキル変性トリフェノールメタン型エポキシ樹脂
等があり、あるいは樹脂の難燃化のために、これらを臭
素化した化合物なども使用可能である。これらは単独で
も混合して用いても差し支えなく、混合する場合の各成
分の配合量は任意であり、目的によって最適な配合比が
決定される。また、これらの硬化性エポキシ樹脂の使用
に際してモノエポキシ化合物を適宜併用する事は差し支
えない。モノエポキシ化合物の好ましい具体例としては
スチレンオキシド、シクロヘキセンオキシド、メチルグ
リシジルエーテル他のアルキルグリシジルエーテル等が
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
As the curable epoxy resin used in the present invention, any monomer, oligomer or polymer having two or more epoxy groups in one molecule can be used. As a preferred specific example,
For example, there are bisphenol-type epoxy compounds, biphenyl-type epoxy compounds, stilbene-type epoxy compounds, phenol novolak-type epoxy resins, cresol novolak-type epoxy resins, triphenolmethane-type epoxy compounds, alkyl-modified triphenolmethane-type epoxy resins, and the like. Compounds obtained by brominating these for flame retardation can also be used. These may be used singly or as a mixture, and in the case of mixing, the mixing amount of each component is arbitrary, and the optimum mixing ratio is determined depending on the purpose. When using these curable epoxy resins, a monoepoxy compound may be appropriately used in combination. Preferred specific examples of the monoepoxy compound include styrene oxide, cyclohexene oxide, methyl glycidyl ether and other alkyl glycidyl ethers.

【0008】好ましい硬化剤としてはフェノールノボラ
ック樹脂、クレゾールノボラック樹脂、ジシクロペンタ
ジエン変性フェノール樹脂などのフェノール樹脂があ
る。本発明の樹脂組成物中における配合割合は硬化物の
強度が最高になるように任意に決める事ができ、または
これらの硬化剤を用いなくても差し支えない。
Preferred curing agents include phenol resins such as phenol novolak resins, cresol novolak resins, and dicyclopentadiene-modified phenol resins. The mixing ratio in the resin composition of the present invention can be arbitrarily determined so that the strength of the cured product is maximized, or these curing agents may not be used.

【0009】硬化促進剤を用いなくても、高い機械的強
度が得られる事が本発明の特徴であるが、硬化促進剤を
併用しても樹脂の強度上は悪影響はなく、より低温、短
時間での硬化を望む場合などは併用することができる。
好ましい硬化促進剤としては、エポキシ基とフェノール
性水酸基との反応を促進するものであれば良く、一般に
封止材料に使用されているものを広く使用する事ができ
る。例えばトリフェニルホスフィンや2−メチルイミダ
ゾールなどが挙げられ、単独でも混合しても使用でき
る。硬化促進剤の好ましい配合割合は硬化物の強度が最
高になるように任意に決める事ができるが、配合した硬
化促進剤は、樹脂の重合硬化の際に、重合分子中には組
込まれず、活性を残したまま低沸点不純分として樹脂硬
化物中に残留して半導体の信頼性に悪影響を与える可能
性が指摘されているので、半導体用の封止樹脂として用
いる時は硬化促進剤を使用しない方がより好ましい。
A feature of the present invention is that high mechanical strength can be obtained without using a curing accelerator. However, even if a curing accelerator is used, there is no adverse effect on the strength of the resin. When curing in time is desired, they can be used in combination.
As a preferable curing accelerator, any one can be used as long as it promotes the reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for a sealing material can be widely used. For example, triphenylphosphine, 2-methylimidazole and the like can be mentioned, and they can be used alone or in combination. The preferred compounding ratio of the curing accelerator can be arbitrarily determined so as to maximize the strength of the cured product, but the compounded curing accelerator is not incorporated into the polymer molecule during the polymerization and curing of the resin, and the It has been pointed out that it may remain in the cured resin as a low-boiling impurity while leaving undesired substances and adversely affect the reliability of the semiconductor. Therefore, when used as a sealing resin for semiconductors, no curing accelerator is used. Is more preferred.

【0010】本発明における反応性シリカ粒子を、半導
体封止用樹脂の充填材として用いる時は破砕により得ら
れる角張った粉末よりも球状の方が充填率を上げ易いの
で好ましい。従来、半導体封止樹脂用に市販されている
シリカ充填材としては、大きく分けて破砕したシリカを
溶融して球状に加工したものと、珪素化合物を燃焼させ
て得た燃焼法球状シリカ等があるが、これらの製法は何
れもシリカを1200℃以上の高温で焼成する工程が不
可欠であり、シリカのシラノール基の量は粒径によらず
概ね2μmol/g以下である。
When the reactive silica particles in the present invention are used as a filler for a resin for encapsulating a semiconductor, a spherical shape is preferred because it is easier to increase the filling rate than a square powder obtained by crushing. Conventionally, commercially available silica fillers for semiconductor encapsulating resins include those obtained by melting and roughly processing crushed silica into spherical particles, and those obtained by burning a silicon compound and burning spherical silica. However, in any of these production methods, a step of firing silica at a high temperature of 1200 ° C. or more is indispensable, and the amount of silanol groups of the silica is approximately 2 μmol / g or less regardless of the particle size.

【0011】また、珪酸ソーダや珪酸アルキルを湿式条
件でゲル化させた後、焼成したゾルゲル法球状シリカで
は、現在市販のものはすべて高温で焼成されており、や
はりそのシラノール基の量は粒径に依らず2μmol/g以
下であるが、焼成温度を低く抑える事により、6μmol/
g以上のシラノール基を有する反応性シリカ粒子を得る
事ができる。
Further, as for the sol-gel method spherical silica obtained by gelling sodium silicate or alkyl silicate under a wet condition, all of the commercially available sol-gel method spherical silicas are currently calcined at a high temperature. Is less than 2 μmol / g, but 6 μmol / g by keeping the firing temperature low.
Reactive silica particles having a silanol group of at least g can be obtained.

【0012】反応性シリカにおけるシラノール基の量
は、酸塩基滴定によって決定する事ができる。具体的に
は、反応性シリカ粒子をベンゼン等非極性溶媒に分散
し、メチルレッド等適当な指示薬を用いn−ブチルアミ
ン等の塩基を加え、滴定法により指示薬が変色するまで
に加えた塩基の量から反応性シリカ粒子の持つシラノー
ル基を定量する事ができる。この酸塩基滴定法は簡便な
方法として優れているが、シラノール基が1mmol/g以下
の場合、測定誤差が大きくなるため、シラノール基の赤
外線吸収により分光学的に測定する方法がより好ましく
利用される。具体的には拡散反射法やペースト法などの
既知の粉体試料測定法により、FT−NIR等の赤外吸
光分光分析装置によってシラノール基による特定波長
(4700〜4400cm -1)の吸光量(ピーク面積)を測定し、シ
ラノール基の量を決定する方法である。シラノール基の
量の絶対値は標準物質による検量線法で決定することが
できる。
The amount of silanol groups in the reactive silica
Can be determined by acid-base titration. Specifically
Disperses reactive silica particles in a non-polar solvent such as benzene
And n-butylamide using a suitable indicator such as methyl red.
Until the indicator changes color by titration.
From the amount of base added to the silica
Can be determined. This acid-base titration method is simple
Excellent method, but silanol group is less than 1mmol / g
In the case of, the measurement error increases,
More preferred is a method of spectroscopically measuring by external absorption
Used. Specifically, such as the diffuse reflection method and the paste method
By a known powder sample measurement method, infrared absorption such as FT-NIR
Specific wavelength by silanol group by optical spectrometer
(4700-4400cm -1) Is measured (peak area)
This is a method for determining the amount of lanol groups. Silanol group
The absolute value of the amount can be determined by a standard curve method using a standard substance.
it can.

【0013】好ましいシラノール基の量は、6μmol/g
以上、さらに好ましくは10μmol/g以上である。シラ
ノール基の量が多くなるにつれて架橋可能な官能基が多
くなるために、エポキシ樹脂に配合して硬化させると、
樹脂硬化物の強度が高くなるが、一方でシラノール基自
体は親水性基であり、吸湿性をもたらす原因になる。シ
ラノール基が多すぎると立体障害などで反応しきれない
シラノール基が残り、反応性シリカ粒子を配合したエポ
キシ樹脂組成物の吸湿性が大きくなる原因になるので、
好ましいシラノール基の量の上限は5000μmol/g、さら
に好ましくは1000μmol/gである
The preferred amount of silanol groups is 6 μmol / g
It is more preferably at least 10 μmol / g. As the amount of silanol groups increases, the number of crosslinkable functional groups increases, so when blended into an epoxy resin and cured,
Although the strength of the cured resin is increased, the silanol group itself is a hydrophilic group and causes hygroscopicity. If too many silanol groups remain unreacted silanol groups due to steric hindrance, etc., it will cause the hygroscopic property of the epoxy resin composition containing the reactive silica particles to increase,
The upper limit of the amount of the preferred silanol group is 5000 μmol / g, more preferably 1000 μmol / g.

【0014】本発明における反応性シリカ粒子の配合割
合は、使用するエポキシ化合物のエポキシ当量や、硬化
剤、硬化促進剤の配合量や、硬化後の樹脂の強度や耐熱
衝撃性等により、総合的に判断して決定されるべきであ
るが、一般的には反応性シリカ粒子が多いほどエポキシ
樹脂組成物硬化物の熱膨張率が樹脂単独の硬化物よりも
半導体シリコンチップにより近くなるため、半導体封止
用途では多い方が好ましい。よって、反応性シリカ粒子
の好ましい配合割合は樹脂組成物全体の5重量%以上、
より好ましくは30重量%以上、さらに好ましくは60
重量%以上であり、且つ95重量%以下である。
The proportion of the reactive silica particles in the present invention depends on the epoxy equivalent of the epoxy compound used, the proportion of the curing agent and the curing accelerator, the strength of the cured resin, the thermal shock resistance, and the like. In general, the more reactive silica particles, the more the thermal expansion coefficient of the cured epoxy resin composition becomes closer to the semiconductor silicon chip than the cured product of the resin alone. It is preferable that the number is large for sealing applications. Therefore, the preferred mixing ratio of the reactive silica particles is 5% by weight or more of the entire resin composition,
More preferably 30% by weight or more, further preferably 60% by weight.
% By weight and 95% by weight or less.

【0015】本発明における反応性シリカ粒子の粒径
は、あまり大きいとエポキシ樹脂組成物の硬化物の強度
が減少し、また、あまり細かいと樹脂に混合する際の粘
度が高くなりすぎて扱いにくいため、好ましい平均粒径
は0.01μm〜30μmであり、より好ましくは0.1
μm〜10μmである。また、粗大粒子が含まれていると
配線を傷つけたりする心配があり、微小粒子は量が少な
くても粘度を上昇させる影響が大きいので、粒度分布は
広すぎない方が好ましい。
If the particle size of the reactive silica particles in the present invention is too large, the strength of the cured product of the epoxy resin composition is reduced. If the particle size is too small, the viscosity when mixed with the resin becomes too high, making it difficult to handle. Therefore, the preferred average particle size is 0.01 μm to 30 μm, more preferably 0.1 μm
μm to 10 μm. In addition, if coarse particles are contained, there is a concern that the wiring may be damaged. Even if the amount of fine particles is small, the effect of increasing the viscosity is large, so that the particle size distribution is preferably not too wide.

【0016】本発明に用いる充填材としては、上記反応
性シリカ粒子の他に、一般的な充填材を併用する事がで
き、溶融シリカ粒子、結晶シリカ粒子、アルミナ粒子、
窒化珪素粒子等の無機充填材が挙げられる。また、封止
剤中の遊離イオンを捕捉する事により電子部品の信頼性
を更に高める目的でオキシ水酸化硝酸ビスマス、ハイド
ロタルサイト等の無機イオン捕捉剤を併用する事もでき
る。これら補助的な充填材の配合量についても総合的な
判断で決定されるが、あまり充填量を増やしすぎると樹
脂硬化物の強度が減少するので一般的には充填物の合計
が重量で樹脂組成物の95%以下になる事が好ましい。
これらの充填材の粒径についても好ましい範囲は当該反
応性シリカと同様である。
As the filler used in the present invention, in addition to the above-mentioned reactive silica particles, general fillers can be used in combination, and fused silica particles, crystalline silica particles, alumina particles,
An inorganic filler such as silicon nitride particles may be used. An inorganic ion scavenger such as bismuth oxyhydroxide nitrate or hydrotalcite can also be used for the purpose of further enhancing the reliability of the electronic component by trapping free ions in the sealant. The compounding amount of these auxiliary fillers is also determined by comprehensive judgment, but if the filling amount is too large, the strength of the cured resin will decrease. It is preferably 95% or less of the product.
The preferable range of the particle size of these fillers is the same as that of the reactive silica.

【0017】本発明の組成物には、さらに難燃剤、低応
力剤、シランカップリング剤、ワックス類、ステアリン
酸などの脂肪酸及びその金属塩等の離型剤、カーボンブ
ラック等の顔料、染料、酸化防止剤、その他の添加剤を
配合する事もできる。これらの添加剤の配合量は、本発
明の効果を妨げない範囲で通常量とする事ができる。
The composition of the present invention further comprises a flame retardant, a low stress agent, a silane coupling agent, a wax, a release agent such as a fatty acid such as stearic acid and its metal salt, a pigment such as carbon black, a dye, An antioxidant and other additives can be added. The amount of these additives can be a usual amount as long as the effects of the present invention are not impaired.

【0018】本発明のエポキシ樹脂組成物を成形材料と
して製造するには、定法に従えば良く、各成分その他の
添加剤をミキサー等によって十分に均一に混合した後、
更に3本ロール、熱ロールまたはニーダー等によって混
錬し、成形材料とする事ができる。混練後の成形材料が
室温で固体の時は粉砕して粉体状の封止材料とする事が
できる。これらの成形材料は電気部品あるいは電子部品
の被覆、集積回路等の保護、絶縁、封止等に適用する事
ができる。
In order to produce the epoxy resin composition of the present invention as a molding material, a conventional method may be used. After thoroughly mixing each component and other additives with a mixer or the like,
Furthermore, it can be kneaded with three rolls, a hot roll, a kneader or the like to obtain a molding material. When the molding material after kneading is solid at room temperature, it can be pulverized into a powdery sealing material. These molding materials can be applied to coating of electric parts or electronic parts, protection of integrated circuits, insulation, sealing, and the like.

【0019】[0019]

【作用】元来、エポキシ樹脂組成物用充填剤としてのシ
リカは、それ自身に含まれる不純分を固定化するために
1200℃以上の高温で焼成されるのが普通であり、そ
れほどの高温で焼成しても、2μmol/g以下の微量のシ
ラノール基が残る事は知られており、また、そのシラノ
ール基が酸性を示す事も公知であったが、シラノール基
の量が少なすぎたためにエポキシ樹脂の硬化促進作用に
ついては今まで気づかれていなかった。しかし、シリカ
表面におけるシラノール基の量がある一定以上の高濃度
になった時、シラノール基は硬化性エポキシ樹脂の硬化
触媒として働き出すために硬化性エポキシ樹脂を速やか
に硬化させ、また、シラノール基はシリカ上に偏在する
ために、シリカ粒子を出発点とする重合鎖が形成されて
エポキシ樹脂硬化物の強度を高める効果がある。シリカ
上に残留したシラノール基は、遊離することがないの
で、半導体装置、電子回路に悪影響を及ぼすことがな
い。
Originally, silica as a filler for an epoxy resin composition is usually fired at a high temperature of 1200 ° C. or more to fix impurities contained therein, and at such a high temperature. It is known that a small amount of silanol groups of 2 μmol / g or less remains even after firing, and it is also known that the silanol groups show acidity. However, since the amount of silanol groups is too small, epoxy Until now, the effect of accelerating the curing of the resin has not been noticed. However, when the amount of silanol groups on the silica surface becomes higher than a certain level, the silanol groups act as a curing catalyst for the curable epoxy resin, so that the curable epoxy resin is rapidly cured, and Is unevenly distributed on silica, so that a polymer chain starting from silica particles is formed, which has the effect of increasing the strength of the cured epoxy resin. Since the silanol groups remaining on the silica are not released, they do not adversely affect semiconductor devices and electronic circuits.

【0020】[0020]

【実施例】以下、実施例により、本発明を具体的に説明
する。 [実施例1]20L反応器に純水6kgと乳化剤(キシダ
化学(株)製Tween#80)6gを仕込み、液温を6
0℃に保持して攪拌型乳化機(日鉄鉱業(株)製キャビト
ロン1010型)を使用して11000rpmで攪拌しつ
つテトラメトキシシラン部分加水分解物(多摩化学工業
(株)製メチルシリケート51)3kgを連続的に供給し、
その後3時間かけて液温を130℃まで上昇し、さらに
3時間攪拌を続けた。そして、反応液をろ別、水洗し、
200℃で4時間乾燥して白色粉末(A)を得た。この
白色粉末(A)を再度純水に分散してレーザー回折式粒
度分布計(堀場(株)製粒度分布計LA−900)によっ
て粒度分布を測定した所、平均粒径3.7μm、最大粒
径8μmであった。
The present invention will be described below in detail with reference to examples. Example 1 A 20 L reactor was charged with 6 kg of pure water and 6 g of an emulsifier (Tween # 80 manufactured by Kishida Chemical Co., Ltd.), and the temperature of the solution was set at 6.
A partial hydrolyzate of tetramethoxysilane (Tama Chemical Industry Co., Ltd.) while stirring at 11000 rpm using a stirring type emulsifier (Cabitron Model 1010 manufactured by Nittetsu Mining Co., Ltd.) while maintaining the temperature at 0 ° C.
Methyl silicate 51) 3 kg continuously supplied,
Thereafter, the liquid temperature was increased to 130 ° C. over 3 hours, and the stirring was further continued for 3 hours. Then, the reaction solution is separated by filtration, washed with water,
After drying at 200 ° C. for 4 hours, a white powder (A) was obtained. This white powder (A) was dispersed again in pure water, and the particle size distribution was measured with a laser diffraction type particle size distribution analyzer (Horiba Co., Ltd. particle size distribution analyzer LA-900). The diameter was 8 μm.

【0021】乾燥後の白色粉末(A)をベンゼン溶媒に
分散し、メチルレッドを指示薬として、n−ブチルアミ
ンによって滴定したところ、白色粉末(A)のシラノー
ル基は1.8mmol/gであった。また、走査型電子顕微鏡
(日立製作所S−800)により、粉末粒子の形状を確
認した所、粒子は真球状をした独立粒子である事が確認
された。
The dried white powder (A) was dispersed in a benzene solvent and titrated with n-butylamine using methyl red as an indicator. As a result, the silanol group of the white powder (A) was 1.8 mmol / g. When the shape of the powder particles was confirmed by a scanning electron microscope (Hitachi S-800), it was confirmed that the particles were truly spherical independent particles.

【0022】この白色粉末(A)72重量部及びビスフ
ェノールFグリシジルエーテル31重量部を攪拌棒で3
0分混合した後、硬化剤として無水ハイアミック酸を3
4部混合して30分攪拌した。そして、さらに硬化促進
剤としてN,N−ジメルベンジルアミンを0.5重量部
混ぜてエポキシ樹脂組成物とした。これを攪拌しつつ約
80℃で30分間脱泡してから成形器に注入した。成形
は100℃で3時間、160℃で18時間かけて重合を
進め、さらに150℃で3時間アニールして強度測定用
成形体とした。
[0022] 72 parts by weight of this white powder (A) and 31 parts by weight of bisphenol F glycidyl ether were mixed with a stirring rod to give 3 parts.
After mixing for 0 minutes, 3 parts of hyamic acid anhydride was used as a curing agent.
4 parts were mixed and stirred for 30 minutes. Then, 0.5 parts by weight of N, N-dimerbenzylamine as a curing accelerator was further mixed to obtain an epoxy resin composition. This was defoamed at about 80 ° C. for 30 minutes while stirring, and then poured into a molding machine. The molding proceeded at 100 ° C. for 3 hours and at 160 ° C. for 18 hours, and was further annealed at 150 ° C. for 3 hours to obtain a molded body for strength measurement.

【0023】上記のようにして作製した成形体について
JISK7111号によりシャルピー衝撃試験を行った
結果、0.93kgf・cm/cm2だった。また、JISK7
203に準じて、インストロン万能試験機を使用して、
クロスヘッド速度1mm/分の条件で曲げ強度を測定し
た結果、17.31kgf/mm2であった。
The molded body produced as described above was subjected to a Charpy impact test according to JIS K7111, and as a result, it was 0.93 kgf · cm / cm 2 . Also, JISK7
According to 203, using an Instron universal testing machine,
As a result of measuring the bending strength under the condition of the crosshead speed of 1 mm / min, it was 17.31 kgf / mm 2 .

【0024】また、上記エポキシ樹脂組成物を同じ成形
条件で成形して、シリコーンウエハ上にアルミニウムテ
スト回路を形成した模擬ICをガラスエポキシ基板上に
搭載した試験素子を封止した。このものを、プレッシャ
ークッカー試験機(平山製作所製 PC−242S)に
かけ、121℃、2気圧で400時間PCT試験を行っ
て動作不良となった素子の個数を調べたところ、不良の
個数は40個中2個だった。
Further, the epoxy resin composition was molded under the same molding conditions, and a test device in which a simulated IC having an aluminum test circuit formed on a silicone wafer was mounted on a glass epoxy substrate was sealed. This was subjected to a pressure cooker tester (PC-242S, manufactured by Hirayama Seisakusho), and a PCT test was conducted at 121 ° C. and 2 atm for 400 hours to determine the number of malfunctioning elements. Two of them.

【0025】[比較例1]実施例1における白色粉末
(A)に代えて市販の半導体封止樹脂用の球状シリカを
用いた以外は実施例1と同様にしてエポキシ樹脂組成物
を調製し、強度測定用成形体を作製した。なお、比較例
1で用いた球状シリカは、平均粒径が3.4μmであ
り,最大粒径が12μmであり、FT−NIRで測定し
たシラノール基の量は1μmol/gであった。強度測定の
結果、比較例1の成形体は曲げ強度が10.14kgf/m
m2であり、衝撃強度が0.69 kgf・cm/cm2であった。
また、PCT試験の結果は40個中不良が5個であっ
た。
Comparative Example 1 An epoxy resin composition was prepared in the same manner as in Example 1 except that a commercially available spherical silica for a semiconductor sealing resin was used instead of the white powder (A) in Example 1. A molded body for strength measurement was produced. The spherical silica used in Comparative Example 1 had an average particle size of 3.4 μm, a maximum particle size of 12 μm, and an amount of silanol groups measured by FT-NIR of 1 μmol / g. As a result of the strength measurement, the molded body of Comparative Example 1 had a bending strength of 10.14 kgf / m.
m 2 , and the impact strength was 0.69 kgf · cm / cm 2 .
As a result of the PCT test, 5 of the 40 samples were defective.

【0026】[実施例2]硬化促進剤を使用せず、ま
た、成形条件を100℃で6時間、160℃で36時間
かけ、さらに150℃で6時間アニールした他は実施例
1と全く同様にして成形体を作製した。
Example 2 The same as Example 1 except that no curing accelerator was used, and the molding conditions were 100 ° C. for 6 hours, 160 ° C. for 36 hours, and annealing at 150 ° C. for 6 hours. To produce a molded body.

【0027】[比較例2]実施例1における白色粉末
(A)に代えて比較例1における市販の半導体封止樹脂
用の球状シリカを用いた以外は実施例2と同様にして成
形体を作製した。
[Comparative Example 2] A molded body was produced in the same manner as in Example 2 except that the commercially available spherical silica for a semiconductor sealing resin in Comparative Example 1 was used instead of the white powder (A) in Example 1. did.

【0028】[実施例3]硬化促進剤と硬化剤の両方を
使用せず、また、試験体の成形条件を100℃で10時
間、160℃で100時間かけて重合を終了させ、さら
に150℃で20時間アニールした他は実施例1と全く
同じ試験を行った。
[Example 3] The polymerization was terminated at 100 ° C for 10 hours and at 160 ° C for 100 hours without using both a curing accelerator and a curing agent. Except for 20 hours, the same test as in Example 1 was performed.

【0029】[比較例3]実施例1における白色粉末
(A)に代えて比較例1における市販の半導体封止樹脂
用の球状シリカを用いた以外は実施例3と同様にして成
形体の作製を試みた。しかし、150℃のアニール後に
おいても樹脂組成物は硬化せず、試験はできなかった。
Comparative Example 3 Production of a molded body in the same manner as in Example 3 except that the white powder (A) in Example 1 was replaced with the commercially available spherical silica for a semiconductor sealing resin in Comparative Example 1. Tried. However, even after annealing at 150 ° C., the resin composition did not cure and could not be tested.

【0030】[実施例4]20L反応器に純水6kgと乳
化剤(キシダ化学(株)製Tween#60)6g、酢
酸1gを仕込み、液温を80℃に保持して攪拌型乳化機
(日鉄鉱業(株)製キャビトロン1010型)を使用して
11000rpmで攪拌しつつテトラメトキシシラン部分
加水分解物(多摩化学工業(株)製メチルシリケート5
1)3kgを連続的に供給し、その後3時間かけて液温を
150℃まで上昇し、さらに24時間攪拌を続けた。そ
の後、反応液をろ別、水洗し、200℃で4時間乾燥し
て白色粉末(B)を得た。この白色粉末(B)を再度純
水に分散してレーザー回折式粒度分布計(堀場(株)製粒
度分布計LA−900)によって粒度分布を測定した
所、平均粒径3.2μm、最大粒径7.5μmであった。
また、FT−NIR測定によるシラノール基の量は89
0μmol/gであった。この白色粉末(B)を使用して実
施例1と同じ試験を行った。
Example 4 A 20 L reactor was charged with 6 kg of pure water, 6 g of an emulsifier (Tween # 60 manufactured by Kishida Chemical Co., Ltd.) and 1 g of acetic acid, and the solution was maintained at 80 ° C., and a stirring type emulsifier (JP Tetramethoxysilane partial hydrolyzate (methyl silicate 5 manufactured by Tama Chemical Industry Co., Ltd.) while stirring at 11,000 rpm using a Cavitron 1010 manufactured by Iron Mining Co., Ltd.
1) 3 kg was continuously supplied, and thereafter, the liquid temperature was raised to 150 ° C. over 3 hours, and the stirring was further continued for 24 hours. Thereafter, the reaction solution was separated by filtration, washed with water, and dried at 200 ° C. for 4 hours to obtain a white powder (B). This white powder (B) was dispersed again in pure water, and the particle size distribution was measured with a laser diffraction type particle size distribution analyzer (Horiba Co., Ltd. particle size distribution analyzer LA-900). The diameter was 7.5 μm.
In addition, the amount of silanol groups measured by FT-NIR was 89
It was 0 μmol / g. The same test as in Example 1 was performed using this white powder (B).

【0031】[実施例5]実施例4で調製した白色粉末
(B)を毎時200℃で昇温し、980℃で4時間焼成
したものを白色粉末(C)として実施例1と同じ試験を
行った。FT−NIR測定による粉末(C)のシラノー
ル基の濃度は10μmol/gだった。
Example 5 The same test as in Example 1 was carried out, except that the white powder (B) prepared in Example 4 was heated at 200 ° C./hour and calcined at 980 ° C. for 4 hours to obtain white powder (C). went. The concentration of the silanol group in the powder (C) by FT-NIR measurement was 10 μmol / g.

【0032】実施例1〜5、比較例1〜3の結果を表1
に示す。
Table 1 shows the results of Examples 1 to 5 and Comparative Examples 1 to 3.
Shown in

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明のエポキシ樹脂組成物は、必ずし
も硬化促進剤を用いなくても、定法の硬化手段により速
やかに重合硬化を起こし、硬化後の樹脂の強度が著しく
高くなるばかりか、半導体素子の封止剤として使用した
場合には半導体素子の信頼性を向上させるという効果を
持つ。
The epoxy resin composition of the present invention can be rapidly polymerized and cured by a conventional curing means without necessarily using a curing accelerator. When used as an encapsulant for the device, it has the effect of improving the reliability of the semiconductor device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】6μmol/g以上のシラノール基を有する反
応性シリカ粒子及び硬化性エポキシ樹脂を含有すること
を特徴とするエポキシ樹脂組成物。
1. An epoxy resin composition comprising reactive silica particles having a silanol group of 6 μmol / g or more and a curable epoxy resin.
【請求項2】反応性シリカ粒子1g当たりのシラノール
基が6μmol以上5mmol以下であることを特徴とする請
求項1記載のエポキシ樹脂組成物。
2. The epoxy resin composition according to claim 1, wherein the number of silanol groups per gram of the reactive silica particles is from 6 μmol to 5 mmol.
JP37575999A 1999-04-02 1999-12-28 Epoxy resin composition Pending JP2000345001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37575999A JP2000345001A (en) 1999-04-02 1999-12-28 Epoxy resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-97100 1999-04-02
JP9710099 1999-04-02
JP37575999A JP2000345001A (en) 1999-04-02 1999-12-28 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JP2000345001A true JP2000345001A (en) 2000-12-12

Family

ID=26438304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37575999A Pending JP2000345001A (en) 1999-04-02 1999-12-28 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP2000345001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338231A (en) * 2001-05-22 2002-11-27 Toagosei Co Ltd Spherical silica particles and resin composition containing the same
JP2002338230A (en) * 2001-05-22 2002-11-27 Toagosei Co Ltd Silica particles and resin composition
JP2010092961A (en) * 2008-10-06 2010-04-22 Sharp Corp Method of manufacturing solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338231A (en) * 2001-05-22 2002-11-27 Toagosei Co Ltd Spherical silica particles and resin composition containing the same
JP2002338230A (en) * 2001-05-22 2002-11-27 Toagosei Co Ltd Silica particles and resin composition
JP2010092961A (en) * 2008-10-06 2010-04-22 Sharp Corp Method of manufacturing solar battery

Similar Documents

Publication Publication Date Title
EP0829455B1 (en) Inorganic filler, epoxy resin composition, and semiconductor device
JP4905668B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3468996B2 (en) Epoxy resin composition and resin-encapsulated semiconductor device
JP2002338230A (en) Silica particles and resin composition
JP2001031843A (en) Silica filler and epoxy resin composition
JPH1129624A (en) Semiconductor sealing liquid epoxy resin composition
JP2000345001A (en) Epoxy resin composition
JPH062799B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2843244B2 (en) Epoxy resin composition
JPH09202850A (en) Epoxy resin composition for sealing use, semiconductor device using the same, and production of the composition
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JPH11140274A (en) Epoxy resin composition and semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002201339A (en) Particulate silica composition and epoxy resin composition comprising the same
JP2690795B2 (en) Epoxy resin composition
JP2595854B2 (en) Epoxy resin composition and cured product thereof
KR100413358B1 (en) Epoxy molding composition for encapsulating semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP3982344B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003246932A (en) Low-thermal expansion resin composition and electronic part
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JPH10279667A (en) Epoxy resin composition for semiconductor sealing
JP2864415B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP2000169675A (en) Epoxy resin composition and semiconductor apparatus
JP2002105239A (en) Surface-treated inorganic filler, epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518