JP2000340256A - Aqueous lithium ion battery - Google Patents

Aqueous lithium ion battery

Info

Publication number
JP2000340256A
JP2000340256A JP11152255A JP15225599A JP2000340256A JP 2000340256 A JP2000340256 A JP 2000340256A JP 11152255 A JP11152255 A JP 11152255A JP 15225599 A JP15225599 A JP 15225599A JP 2000340256 A JP2000340256 A JP 2000340256A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
positive electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11152255A
Other languages
Japanese (ja)
Inventor
Hitoshi Inoue
均 井上
Motoyuki Toki
元幸 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP11152255A priority Critical patent/JP2000340256A/en
Publication of JP2000340256A publication Critical patent/JP2000340256A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an aqueous lithium ion battery safety, inexpensive, and with a stable operation in a neutral water solution. SOLUTION: This battery comprises a positive electrode 1 wherein lithium ions are freely inserted or removed, a negative electrode 3 made of iron oxide or iron oxyhydroxide, and a water solution electrolyte 5 containing lithium, Since a water solution is used as an electrolyte solution, ignition and explosion are not caused, the battery can be manufactured in the air without using a special facility such as a dry box, a drying process is not needed, and an inexpensive iron compound is used. Therefore, the battery can be manufactured at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、水溶液を電解質
として動作する水系リチウムイオン電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aqueous lithium-ion battery that operates using an aqueous solution as an electrolyte.

【0002】[0002]

【従来の技術】高エネルギー密度の二次電池として、リ
チウム二次電池が上市されている。この電池では一般
に、特開昭63−121260号公報に開示されている
ように、正極活物質に比較的貴な電位でリチウムイオン
を出し入れできる酸化物を、負極活物質に比較的卑な電
位でリチウムイオンを出し入れできるカーボンや金属リ
チウムなどをそれぞれ用い、リチウム塩の非水溶液を電
解液として電池を構成している。そして、この電池では
通常、正極活物質である酸化物は、金属リチウムに対し
て+3V〜+4Vの電位で、また負極活物質であるカー
ボンなどは金属リチウムに対して+1V以下の電位で、
それぞれリチウムイオンを出し入れすることから、電池
電圧は3V〜4Vとなり、このような高い電圧で駆動す
るために、電気分解しにくい非水溶液が電解質として用
いられている。
2. Description of the Related Art As a high energy density secondary battery, a lithium secondary battery is on the market. In this battery, as disclosed in Japanese Patent Application Laid-Open No. 63-121260, an oxide capable of taking lithium ions in and out of the positive electrode active material at a relatively noble potential is generally converted into a negative electrode active material at a relatively low potential. The battery is constituted by using a non-aqueous solution of a lithium salt as an electrolyte, using carbon or metal lithium capable of taking lithium ions in and out. Usually, in this battery, the oxide as the positive electrode active material has a potential of +3 V to +4 V with respect to metallic lithium, and the carbon as the negative electrode active material has a potential of +1 V or less with respect to metallic lithium.
Since lithium ions are taken in and out, respectively, the battery voltage becomes 3 V to 4 V. In order to operate at such a high voltage, a non-aqueous solution that is difficult to electrolyze is used as an electrolyte.

【0003】これに対して、電解液に水溶液を用いた水
系電池が特表平09−508490号公報に開示されて
いる。ここでは、正極にリチウムとマンガンとの複合酸
化物などを、負極にリチウムとマンガンまたはバナジウ
ムなどとの複合酸化物をそれぞれ用い、主としてアルカ
リ性の水溶液電解質を用いて電池を構成している。
On the other hand, an aqueous battery using an aqueous solution as an electrolytic solution is disclosed in Japanese Patent Publication No. 09-508490. Here, a battery is formed by using a composite oxide of lithium and manganese for the positive electrode and a composite oxide of lithium and manganese or vanadium for the negative electrode, and mainly using an alkaline aqueous electrolyte.

【0004】[0004]

【発明が解決しようとする課題】一般のリチウム電池に
用いられている非水溶液の溶媒は、常に引火、爆発の危
険があり、電池の製造、使用に当たって大きな問題とな
っている。特に、何らかの原因により電池の正極と負極
とが電池内部であるいは電池外部で短絡した場合、急激
な温度上昇によって非水電解液と負極あるいは正極とが
反応を起こし、それに伴う発熱でさらなる温度上昇が起
こり、次々に別の反応や相変化を誘発して、最終的に爆
発的な燃焼に至る、ということが指摘されている。
The non-aqueous solvent used in general lithium batteries always has a risk of ignition or explosion, and has become a major problem in the manufacture and use of batteries. In particular, when the positive electrode and negative electrode of the battery are short-circuited inside or outside the battery for some reason, a sudden temperature rise causes a reaction between the non-aqueous electrolyte and the negative electrode or the positive electrode, and the resulting heat generation causes a further temperature rise. It has been pointed out that, in turn, it triggers other reactions and phase changes one after another, eventually leading to explosive combustion.

【0005】また、電池の原理から明らかなように、電
池内部にわずかでも水が混入していると、水の電気分解
反応による電力の損失、水との反応によるリチウムの消
費、電気分解で発生したガスによる内圧の上昇、電池の
破裂など、極めて甚大な問題を引き起こす。そのため、
リチウムイオン電池の製造においては、水を完全に除去
するために特殊な設備と多大な労力を要し、電池のコス
トを引き上げる一因にもなっている。
Further, as is apparent from the principle of the battery, if even a small amount of water is mixed in the battery, power loss due to the electrolysis reaction of water, consumption of lithium due to reaction with water, and generation of electricity due to the electrolysis occur. This causes extremely serious problems such as an increase in the internal pressure due to the gas and rupture of the battery. for that reason,
In the manufacture of a lithium ion battery, special equipment and a great deal of labor are required to completely remove water, which also contributes to raising the cost of the battery.

【0006】これに対し、電解液に水溶液を用いた水系
電池では、上記のような問題は基本的に発生しない。し
かし、酸化物系の電極材料は、一般に、中性や酸性の水
溶液中では安定性に乏しい、という問題がある。特に負
極材料は、正極材料に比べて卑な酸化還元電位を有して
いるので、水中の水素イオンによる酸化を受けやすい。
金属リチウム負極は、その最も極端な例であると言うこ
とができる。従って、実質的には、安定に動作する電池
を得るにはアルカリ性の電解質を用いる必要がある。
[0006] On the other hand, the above-mentioned problem basically does not occur in an aqueous battery using an aqueous solution as an electrolytic solution. However, there is a problem that oxide-based electrode materials generally have poor stability in neutral or acidic aqueous solutions. In particular, since the negative electrode material has a lower oxidation-reduction potential than the positive electrode material, it is susceptible to oxidation by hydrogen ions in water.
Metallic lithium anodes can be said to be the most extreme example. Therefore, in order to obtain a battery that operates stably, it is necessary to use an alkaline electrolyte.

【0007】ところが、アルカリ性の水溶液中では、水
が分解して酸素が発生する電位が中性や酸性の水溶液に
比べて卑な方向へ移動する、すなわち酸素が発生しやす
くなるため、正極を充電する際に高い貴の電位をかける
ことができず、正極物質が本来持っている充放電容量を
充分に活用することが難しい。例えば、pH=12の水
溶液の酸素発生電位は、標準水素電極に対して+0.5
2Vである。これに対して、通常の正極材料、例えばL
iCoOやLiNiO、LiMnなどは、金
属リチウムに対して+3.5V〜+4.2V、すなわち
標準水素電極に対して+0.5V〜+1.2Vで充電さ
れるので、pH=12の水溶液中で酸素発生なしに充電
することは極めて困難である。
However, in an alkaline aqueous solution, the potential at which water is decomposed and oxygen is generated moves in a lower direction than that of a neutral or acidic aqueous solution, that is, oxygen is easily generated. In such a case, a high noble potential cannot be applied, and it is difficult to make full use of the charge / discharge capacity inherent in the positive electrode material. For example, the oxygen generation potential of an aqueous solution having a pH of 12 is +0.5 with respect to a standard hydrogen electrode.
2V. On the other hand, a normal cathode material, for example, L
Since iCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like are charged at +3.5 V to +4.2 V with respect to lithium metal, that is, at +0.5 V to +1.2 V with respect to a standard hydrogen electrode, pH = 12 It is extremely difficult to charge an aqueous solution without generating oxygen.

【0008】また、アルカリ水溶液は腐食性が強いの
で、外部に液が漏れ出たときの安全上の問題があり、電
池の外装材や電極集電体等の材質も耐アルカリ性のもの
に制限されることになる。
Further, since the alkaline aqueous solution is highly corrosive, there is a problem in safety when the liquid leaks to the outside, and the materials of the battery exterior material and the electrode current collector are limited to those having alkali resistance. Will be.

【0009】この発明は、以上のような事情に鑑みてな
されたものであり、アルカリ性水溶液だけでなく中性の
水溶液電解質中でも安定に動作し、低価格の原料を利用
して低コストで安全な水系リチウムイオン電池を提供す
ることを目的とする。なお、ここでの中性とは、厳密に
pH=7.0を指すのではなく、pHの値で言えば6〜
8のものを指している。
The present invention has been made in view of the above circumstances, and operates stably not only in an alkaline aqueous solution but also in a neutral aqueous electrolyte, and uses a low-cost raw material to provide a low-cost and safe method. An object is to provide a water-based lithium-ion battery. The term “neutral” here does not strictly indicate pH = 7.0, but rather means pH 6 to
8 points.

【0010】[0010]

【課題を解決するための手段】請求項1に係る発明は、
リチウムイオンの挿入および脱離が可能である物質から
なる正極と、鉄の酸化物または鉄の酸化水酸化物からな
る負極と、リチウムイオンを含む水溶液電解質とから水
系リチウムイオン電池を構成することを特徴とする。
The invention according to claim 1 is
A water-based lithium-ion battery is constituted by a positive electrode made of a substance capable of inserting and removing lithium ions, a negative electrode made of iron oxide or iron oxide hydroxide, and an aqueous electrolyte containing lithium ions. Features.

【0011】負極に用いる化合物は、α−Fe
γ−Fe、α−FeOOH、γ−FeOOHなど
の、比較的安価で入手の容易な化合物で、これらの化合
物は、一般的に水溶液から合成されるものであり、水に
対する安定性は極めて高く、標準水素電極に対して0〜
−0.6Vの電位で再現性良く繰り返しリチウムイオン
を挿入および脱離することができる。従って、標準水素
電極に対して+0.5V〜+1.2Vで動作する通常の
正極材料と組み合わせれば、水の分解を起こすことな
く、繰り返し充放電が可能である1V〜2V級の電池を
構成することができる。また、標準水素電極に対して+
0.5V以下の電位でリチウムイオンを挿脱できる物質
を正極に用いた場合にも、それに応じた電圧の電池が得
られる。
The compound used for the negative electrode is α-Fe 2 O 3 ,
Relatively inexpensive and readily available compounds such as γ-Fe 2 O 3 , α-FeOOH, and γ-FeOOH. These compounds are generally synthesized from an aqueous solution, and have stability against water. Extremely high, 0 to standard hydrogen electrode
Lithium ions can be repeatedly inserted and removed at a potential of -0.6 V with good reproducibility. Therefore, when combined with a normal cathode material that operates at +0.5 V to +1.2 V with respect to the standard hydrogen electrode, a 1 V to 2 V class battery that can be repeatedly charged and discharged without decomposing water is configured. can do. Also, + with respect to the standard hydrogen electrode
Even when a substance capable of inserting and removing lithium ions at a potential of 0.5 V or less is used for the positive electrode, a battery having a voltage corresponding to the substance can be obtained.

【0012】請求項2に係る発明は、請求項1記載の電
池において、水溶液電解質としてpHが6以上である水
溶液を用いることを特徴とする。
According to a second aspect of the present invention, in the battery according to the first aspect, an aqueous solution having a pH of 6 or more is used as the aqueous solution electrolyte.

【0013】図2に、各種pH値における水溶液からの
酸素発生電位、水素発生電位、鉄化合物の1つであるγ
−FeOOHのリチウムイオン挿脱電位、および、代表
的な正極材料の1つであるLiNiOのリチウムイオ
ン挿脱電位をそれぞれ示す。図2に示されているよう
に、pH=6の水溶液の水素発生電位は、標準水素電極
に対して−0.35Vであるから、上記の負極材料のリ
チウム挿脱反応が起こる電位とほぼ同じである。しか
し、一般的に知られているように、実際に水が分解して
水素を発生するには過電圧が必要であり、平衡論的に導
かれる電位では水素発生はほとんど起こらない。そのた
め、pH=6の水溶液中でも、上記負極材料は安定にリ
チウムイオン挿脱反応を起こすことが可能である。一
方、正極側での酸素発生電位は、pH=6の水溶液では
+0.88Vであるから、やはり過電圧を考慮すると、
通常の正極材料、例えばLiCoOやLiNiO
LiMn などが、酸素発生無しに動作することが
できる。
FIG. 2 shows the results from aqueous solutions at various pH values.
Oxygen evolution potential, hydrogen evolution potential, γ which is one of iron compounds
Lithium ion insertion / removal potential of FeOOH, and representative
LiNiO, one of the typical positive electrode materials2The lithium ion
The insertion / removal potential is shown. As shown in FIG.
In addition, the hydrogen generation potential of an aqueous solution having a pH of 6 is determined by a standard hydrogen electrode.
Is -0.35 V with respect to the negative electrode material.
It is almost the same as the potential at which the insertion and removal of thium occurs. Only
And, as is generally known, water actually decomposes
Overvoltage is required to generate hydrogen, and
At the applied potential, little hydrogen evolution occurs. That
Therefore, even in an aqueous solution of pH = 6, the above-mentioned negative electrode material is stably
It is possible to cause a thion ion insertion / removal reaction. one
On the other hand, the oxygen generation potential on the positive electrode side is
Since it is +0.88 V, also considering the overvoltage,
Normal cathode material, for example LiCoO2And LiNiO2,
LiMn 2O4Can operate without oxygen generation
it can.

【0014】pHが6以上である水溶液中では、水素発
生電位は卑の方向に移動するので、γ−FeOOH等の
各種鉄化合物のリチウム挿脱反応には問題を生じず、本
発明の電池は安定に動作する。ただし、正極材料の選択
によっては酸素の発生を伴う場合があり得るので、容量
的には必ずしも好ましいとは言えない。
In an aqueous solution having a pH of 6 or more, since the hydrogen generation potential moves in a negative direction, there is no problem in the lithium insertion / removal reaction of various iron compounds such as γ-FeOOH. It works stably. However, the generation of oxygen may occur depending on the selection of the positive electrode material, so that it is not necessarily preferable in terms of capacity.

【0015】請求項3に係る発明は、正極材料に、コバ
ルト、ニッケル、マンガン、バナジウムおよびニオブか
らなる群より選ばれた1種もしくは2種以上の元素とリ
チウムとの複合酸化物を用いて、請求項1または請求項
2記載の水系リチウムイオン電池を構成することを特徴
とする。これらの化合物を、鉄化合物からなる負極と組
み合わせることで、上記の理由により、安定に動作する
水系リチウムイオン電池を得ることができる。
According to a third aspect of the present invention, a composite oxide of one or more elements selected from the group consisting of cobalt, nickel, manganese, vanadium and niobium and lithium is used as the positive electrode material. A water-based lithium ion battery according to claim 1 or 2 is configured. By combining these compounds with a negative electrode composed of an iron compound, a water-based lithium-ion battery that operates stably can be obtained for the above-described reason.

【0016】[0016]

【発明の実施の形態】以下に、この発明の好適な実施形
態について図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、この発明の実施形態の1例を示
し、水系リチウムイオン電池の構造を模式的に示す縦断
面図である。この電池は、正極物質1を集電体金属2上
に固定した正極と、負極物質3を別の集電体金属4上に
固定した負極とが、リチウムイオンを含んだ水溶液電解
質5で隔てられて構成されている。水溶液電解質5の部
分は、水溶液そのものでもよく、また、電子を通さずイ
オンや溶媒のみが通過するような多孔質の隔壁を設け、
その隔壁に水溶液電解質を浸み込ませたものでもよい。
外装材6は、液の漏れや蒸発を防ぎ、電池の形状を保持
するためのものであり、密閉型のものでもよいし、外部
との連絡孔を設けて電解液の補充が可能である構造にし
てもよい。
FIG. 1 is a longitudinal sectional view showing an example of an embodiment of the present invention and schematically showing a structure of an aqueous lithium ion battery. In this battery, a positive electrode having a positive electrode material 1 fixed on a current collector metal 2 and a negative electrode having a negative electrode material 3 fixed on another current collector metal 4 are separated by an aqueous electrolyte 5 containing lithium ions. It is configured. The portion of the aqueous electrolyte 5 may be an aqueous solution itself, or a porous partition wall that allows only ions and a solvent to pass without passing electrons,
The partition wall may be impregnated with an aqueous electrolyte.
The exterior material 6 is for preventing the leakage and evaporation of the liquid and for maintaining the shape of the battery, and may be a closed type or provided with a communication hole with the outside so that the electrolyte can be replenished. It may be.

【0018】正極物質1は、リチウムイオンを挿脱する
物質からなるが、その他に、導電性を高めるための導電
性付与剤や、電極の形状を維持させて集電体金属2に充
分な強度で固定するための結着剤が必要に応じて混合さ
れる。リチウムイオンを挿脱する物質としては、標準水
素電極に対して0〜+1.5V程度の電位でリチウムイ
オンを挿脱できる化合物が好適に用いられる。具体的に
は、コバルト、ニッケル、マンガン、バナジウム、ニオ
ブなどの遷移金属とリチウムとの複合酸化物や、ジスル
フィド等の有機物などを用いることができる。導電性付
与剤としては、黒鉛粉末などが好適に用いられ、結着剤
としては、ポリフッ化ビニリデンやポリテトラフルオロ
エチレン等が好適に用いられる。
The positive electrode material 1 is made of a material capable of inserting and removing lithium ions. In addition, the positive electrode material 1 has a conductivity-imparting agent for increasing conductivity, and has sufficient strength for the current collector metal 2 by maintaining the shape of the electrode. A binder for fixing at is mixed as necessary. As the substance capable of inserting and removing lithium ions, a compound capable of inserting and removing lithium ions at a potential of about 0 to +1.5 V with respect to a standard hydrogen electrode is preferably used. Specifically, a composite oxide of lithium with a transition metal such as cobalt, nickel, manganese, vanadium, or niobium, or an organic substance such as disulfide can be used. As the conductivity-imparting agent, graphite powder or the like is suitably used, and as the binder, polyvinylidene fluoride or polytetrafluoroethylene is preferably used.

【0019】正極を構成する物質を混合し集電体金属2
上に固定する方法としては、各材料粉末を乳鉢等で混
合、混練した後に圧粉成型し、集電体金属上に保持させ
る方法や、溶媒中で正極を構成する物質を混練してペー
スト化した後、集電体金属上に塗布する方法などが用い
られる。
The current collector metal 2 is mixed with the material constituting the positive electrode.
As a method of fixing on the top, each material powder is mixed and kneaded in a mortar or the like, then compacted, and held on a current collector metal, or a material constituting the positive electrode is kneaded in a solvent to form a paste. After that, a method of coating on the current collector metal or the like is used.

【0020】負極物質3は、鉄の酸化物または鉄の酸化
水酸化物からなるが、正極と同様に、導電性を高めるた
めの導電性付与剤や、電極の形状を維持させて集電体金
属4に充分な強度で固定するための結着剤が必要に応じ
て混合される。導電性付与剤としては、黒鉛粉末などが
好適に用いられ、結着剤としては、ポリフッ化ビニリデ
ンやポリテトラフルオロエチレン等が好適に用いられ
る。また、負極を構成する物質を混合し集電体金属4上
に固定する方法としては、正極の場合と同じ手法を適用
することができる。
The negative electrode material 3 is made of iron oxide or iron oxide hydroxide. Like the positive electrode, the negative electrode material 3 has a conductivity-imparting agent for increasing conductivity and a current collector for maintaining the shape of the electrode. A binder for fixing to the metal 4 with sufficient strength is mixed as needed. As the conductivity-imparting agent, graphite powder or the like is suitably used, and as the binder, polyvinylidene fluoride or polytetrafluoroethylene is preferably used. In addition, as a method of mixing the substances constituting the negative electrode and fixing the mixed substance on the current collector metal 4, the same method as in the case of the positive electrode can be applied.

【0021】正極および負極のそれぞれの集電体金属
2、4としては、アルミニウム、ステンレス、銅、白金
等の金属やカーボンなどの導電性の高い固体の箔、板、
棒、網などを使用することができる。
The current collector metals 2 and 4 of the positive electrode and the negative electrode include metals such as aluminum, stainless steel, copper and platinum, and highly conductive solid foils and plates such as carbon;
Rods, nets, etc. can be used.

【0022】リチウムイオンを含む水溶液電解質として
は、硫酸リチウム、塩化リチウム、水酸化リチウム、硝
酸リチウム、酢酸リチウム、ほう酸リチウム、りん酸リ
チウム、過塩素酸リチウム、ほうフッ化リチウム、りん
フッ化リチウムなどの各種のリチウム化合物の水溶液が
用いられる。これらの電解質は、単独でも、また混合さ
せても用いることができる。電解質の濃度は、両電極を
出入りするリチウムイオンが電極近傍で枯渇しない程度
あればよいが、一般的に1mol/l程度かそれ以上で
あることが望ましい。
Examples of the aqueous electrolyte containing lithium ions include lithium sulfate, lithium chloride, lithium hydroxide, lithium nitrate, lithium acetate, lithium borate, lithium phosphate, lithium perchlorate, lithium borofluoride, and lithium phosphoride. Of various lithium compounds are used. These electrolytes can be used alone or in combination. The concentration of the electrolyte may be such that lithium ions entering and leaving both electrodes are not depleted in the vicinity of the electrodes, but generally desirably about 1 mol / l or more.

【0023】[0023]

【実施例】次に、この発明の具体的な実施例について説
明する。
Next, specific embodiments of the present invention will be described.

【0024】〔実施例1〕硝酸鉄(III)・9水和物20
重量部を500重量部の水に溶解させ、水酸化カリウム
10重量部を添加した後、溶液を40℃の温度で24時
間放置した。得られた沈澱をろ過、水洗し、60℃の温
度で乾燥させて、α−FeOOHを得た。この化合物5
0重量部にカーボンブラック45重量部およびポリテト
ラフルオロエチレン5重量部を加えて乳鉢中で混合さ
せ、5,000kg/cmの圧力をかけて径13mm
のディスク状に成型し、これを負極とした。この負極に
含まれるα−FeOOHは30mgであった。
Example 1 Iron (III) nitrate 9-hydrate 20
Parts by weight were dissolved in 500 parts by weight of water, 10 parts by weight of potassium hydroxide was added, and the solution was left at a temperature of 40 ° C. for 24 hours. The obtained precipitate was filtered, washed with water, and dried at a temperature of 60 ° C. to obtain α-FeOOH. This compound 5
0 parts by weight, 45 parts by weight of carbon black and 5 parts by weight of polytetrafluoroethylene were added and mixed in a mortar, and a pressure of 5,000 kg / cm 2 was applied thereto to obtain a diameter of 13 mm.
And was used as a negative electrode. Α-FeOOH contained in the negative electrode was 30 mg.

【0025】周知の方法によりLiNi0.81Co
0.19組成の化合物を合成し、負極と同様の配合
比、手法でディスク状の正極を作成した。この正極に含
まれるLiNi0.81Co0.19は30mgで
あった。
According to a known method, LiNi 0.81 Co
A compound having a composition of 0.19 O 2 was synthesized, and a disk-shaped positive electrode was prepared by the same mixing ratio and method as those of the negative electrode. LiNi 0.81 Co 0.19 O 2 contained in the positive electrode was 30 mg.

【0026】1MのLiSO水溶液を調製し、これ
を電解液とした。この電解液のpHは6.2であった。
正極および負極をそれぞれ白金網に挟み、上記電解液に
浸して電池を構成した。電極間距離は、1cmとした。
1mAの定電流で充放電を行なったときの電圧変化を負
極活物質1g当たりの容量に対してとったグラフを図3
に示す。この図3に示されているように、Liの可逆的
な挿脱が可能であった。
A 1 M aqueous solution of Li 2 SO 4 was prepared and used as an electrolyte. The pH of this electrolyte was 6.2.
A positive electrode and a negative electrode were sandwiched between platinum nets, respectively, and immersed in the above-mentioned electrolyte to form a battery. The distance between the electrodes was 1 cm.
FIG. 3 is a graph showing a voltage change when charging and discharging are performed at a constant current of 1 mA with respect to a capacity per 1 g of the negative electrode active material.
Shown in As shown in FIG. 3, reversible insertion / removal of Li was possible.

【0027】〔実施例2〕実施例1で合成したα−Fe
OOHを600℃の温度で5時間熱処理して脱水させ、
α−Feを得た。この化合物を、実施例1と同様
の方法でディスク状に成型した。電極に含まれるα−F
は30mgであった。この電極を白金網に挟ん
で負極とし、白金を対極として、pH=6.2の1Mの
LiSO 水溶液に浸した。電極間距離は、1cmと
した。
Example 2 α-Fe synthesized in Example 1
Heat-treat OOH at a temperature of 600 ° C. for 5 hours to dehydrate,
α-Fe2O3I got This compound was prepared in the same manner as in Example 1.
Into a disk by the method described above. Α-F contained in the electrode
e2O3Was 30 mg. This electrode is sandwiched between platinum nets
With 1M of pH = 6.2 as a negative electrode and platinum as a counter electrode.
Li2SO 4Dipped in aqueous solution. The distance between the electrodes is 1cm
did.

【0028】1mAの定電流で充放電を行なったときの
負極の電位変化を容量に対してとったグラフを図4に示
す。α−FeOOHと同様に、Liイオンの挿脱が可能
であることが分かる。
FIG. 4 is a graph showing the change in the potential of the negative electrode with respect to the capacity when charging and discharging are performed at a constant current of 1 mA. It can be seen that Li ions can be inserted and removed similarly to α-FeOOH.

【0029】〔実施例3〕実施例1で合成したα−Fe
OOH45重量部とカーボンブラック45重量部とを混
合させ、ポリフッ化ビニリデンの10%N−メチル−2
−ピロリドン溶液100重量部を加えて混練した。これ
にN−メチル−2−ピロリドン100重量部を加えてさ
らに混練し、混練物をステンレス箔上に、乾燥後の厚さ
が0.1mmとなるように塗布して、これを負極とし
た。負極材料が塗布された面積は4cmで、この中に
含まれるα−FeOOHは、16mgであった。同様
に、実施例2で合成したLiNi0.81Co0.19
45重量部とカーボンブラック45重量部とを混合
し、ポリフッ化ビニリデンの10%N−メチル−2−ピ
ロリドン溶液100重量部を加えて混練し、N−メチル
−2−ピロリドン100重量部を加えてさらに混練し
て、混練物をステンレス箔上に、乾燥後の厚さが0.1
mmとなるように塗布して、これを正極とした。正極材
料が塗布された面積は4cmで、この中に含まれるL
iNi0.81Co0.19は、15mgであっ
た。
Example 3 α-Fe synthesized in Example 1
45 parts by weight of OOH and 45 parts by weight of carbon black are mixed, and 10% N-methyl-2 of polyvinylidene fluoride is mixed.
-100 parts by weight of a pyrrolidone solution was added and kneaded. To this was added 100 parts by weight of N-methyl-2-pyrrolidone, and the mixture was further kneaded. The kneaded product was applied on a stainless steel foil so that the thickness after drying was 0.1 mm, and this was used as a negative electrode. The area on which the negative electrode material was applied was 4 cm 2 , and the amount of α-FeOOH contained therein was 16 mg. Similarly, LiNi 0.81 Co 0.19 synthesized in Example 2
45 parts by weight of O 2 and 45 parts by weight of carbon black are mixed, 100 parts by weight of a 10% N-methyl-2-pyrrolidone solution of polyvinylidene fluoride is added and kneaded, and 100 parts by weight of N-methyl-2-pyrrolidone is added. In addition, further kneading, the kneaded material on a stainless steel foil, the thickness after drying is 0.1
mm, and this was used as a positive electrode. The area on which the positive electrode material was applied was 4 cm 2 , and L contained therein was
iNi 0.81 Co 0.19 O 2 was 15 mg.

【0030】これらの正極および負極を、pH=6.2
の1MのLiSO水溶液に浸して電池を構成した。
電極間距離は、1cmとした。
The positive electrode and the negative electrode were prepared at pH = 6.2.
Was immersed in a 1 M aqueous solution of Li 2 SO 4 to form a battery.
The distance between the electrodes was 1 cm.

【0031】1mAの定電流で充放電を行なったとこ
ろ、充電容量は8.2mAh/g、放電容量は4.4m
Ah/gであった。
When charging and discharging were performed at a constant current of 1 mA, the charge capacity was 8.2 mAh / g and the discharge capacity was 4.4 m.
Ah / g.

【0032】〔実施例4〕実施例1と同様の材料、手法
で正極と負極を作成し、pH=6.0の1Mの塩化リチ
ウム水溶液中で同様の充放電を行なった。電池挙動は、
実施例1の場合とほぼ同じであった。
Example 4 A positive electrode and a negative electrode were prepared using the same materials and methods as in Example 1, and the same charge and discharge were performed in a 1M aqueous lithium chloride solution having a pH of 6.0. Battery behavior is
It was almost the same as in Example 1.

【0033】〔実施例5〕実施例1と同様の材料、手法
で正極と負極を作成し、pH=6.1の5%のほうフッ
化リチウム水溶液中で同様の充放電を行なった。電池挙
動は、実施例1の場合とほぼ同じであった。
Example 5 A positive electrode and a negative electrode were prepared using the same materials and methods as in Example 1, and the same charge / discharge was performed in a 5% aqueous solution of lithium borofluoride having a pH of 6.1. The battery behavior was almost the same as in Example 1.

【0034】〔実施例6〕硫酸鉄(II)・7水和物6.1
5重量部を水300重量部に溶解させ、水酸化ナトリウ
ムを加えてpH=5に調整した。これにリン酸水素二ナ
トリウム0.4重量部を添加した後、40℃の温度で1
時間、空気を吹き込んで酸化した。得られた沈澱をろ
過、水洗、乾燥させ、γ−FeOOHを得た。この化合
物50重量部にカーボンブラック45重量部およびポリ
テトラフルオロエチレン5重量部を加えて乳鉢中で混合
させ、5,000kg/cmの圧力をかけて径13m
mのディスク状に成型し、これを負極とした。この負極
に含まれるγ−FeOOHは30mgであった。
Example 6 Iron (II) sulfate heptahydrate 6.1
5 parts by weight were dissolved in 300 parts by weight of water, and the pH was adjusted to 5 by adding sodium hydroxide. After adding 0.4 parts by weight of disodium hydrogen phosphate, 1
Oxidized by blowing air for hours. The obtained precipitate was filtered, washed with water, and dried to obtain γ-FeOOH. To 50 parts by weight of this compound, 45 parts by weight of carbon black and 5 parts by weight of polytetrafluoroethylene were added and mixed in a mortar, and a pressure of 5,000 kg / cm 2 was applied to obtain a diameter of 13 m.
m, and this was used as a negative electrode. Γ-FeOOH contained in the negative electrode was 30 mg.

【0035】周知の方法によりLiNi0.81Co
0.19組成の化合物を合成し、負極と同様の配合
比、手法でディスク状の正極を作成した。この正極に含
まれるLiNi0.81Co0.19は30mgで
あった。
According to a well-known method, LiNi 0.81 Co
A compound having a composition of 0.19 O 2 was synthesized, and a disk-shaped positive electrode was prepared by the same mixing ratio and method as those of the negative electrode. LiNi 0.81 Co 0.19 O 2 contained in the positive electrode was 30 mg.

【0036】これらの正極および負極により、実施例1
と同様にして電池を構成し、1mAの電流で充放電を行
なったときの電圧変化を図5に示す。γ−FeOOH
は、α−FeOOHよりも貴な電位でLiイオンを挿脱
できることを反映して、水の電解が起こらない範囲で、
より多くの電気量の蓄積が可能になっている。
Using these positive and negative electrodes, Example 1
FIG. 5 shows a voltage change when a battery was constructed in the same manner as described above and charge / discharge was performed with a current of 1 mA. γ-FeOOH
Is a range in which water electrolysis does not occur, reflecting that Li ions can be inserted and removed at a potential higher than α-FeOOH,
It is possible to store more electricity.

【0037】〔実施例7〕実施例6で合成したγ−Fe
OOHを300℃の温度で5時間熱処理して脱水させ、
γ−Feを得た。この化合物を、実施例1と同様
の方法でディスク状に成型した。電極に含まれるγ−F
は、30mgであった。この電極を白金網に挟
んで負極とし、白金を対極として、pH=6.2の1M
のLiSO水溶液に浸した。電極間距離は、1cm
とした。
Example 7 γ-Fe synthesized in Example 6
OOH is dehydrated by heat treatment at a temperature of 300 ° C. for 5 hours,
γ-Fe 2 O 3 was obtained. This compound was molded into a disk in the same manner as in Example 1. Γ-F contained in the electrode
e 2 O 3 was 30 mg. This electrode was sandwiched between platinum nets to serve as a negative electrode, and platinum was used as a counter electrode, and 1 M of pH = 6.2 was used.
Was immersed in an aqueous solution of Li 2 SO 4 . The distance between the electrodes is 1cm
And

【0038】1mAの定電流で充放電を行なったときの
負極の電位変化を容量に対してとったグラフを図6に示
す。実施例6のγ−FeOOHと同等の容量が得られる
ことが分かる。
FIG. 6 is a graph showing the change in the potential of the negative electrode with respect to the capacity when charging and discharging are performed at a constant current of 1 mA. It can be seen that a capacity equivalent to that of γ-FeOOH of Example 6 can be obtained.

【0039】〔実施例8〕実施例6と同様の材料、手法
で電極を作成し、この電極を白金網に挟んで負極とし、
白金を対極として、pH=6.2の1MのLiSO
水溶液に浸した。電極間距離は、1cmとした。
[Embodiment 8] An electrode was formed using the same material and method as in Embodiment 6, and this electrode was used as a negative electrode by sandwiching it between platinum nets.
1M Li 2 SO 4 at pH = 6.2 with platinum as counter electrode
Dipped in aqueous solution. The distance between the electrodes was 1 cm.

【0040】1mAの電流値で繰り返し充放電を行なっ
たときの放電容量の変化を図7に示す。50回の繰り返
し充放電後でも、負極容量の低下は小さいことが分か
る。
FIG. 7 shows a change in discharge capacity when charge and discharge are repeatedly performed at a current value of 1 mA. It can be seen that the decrease in the negative electrode capacity is small even after 50 times of repeated charging and discharging.

【0041】〔比較例〕炭酸リチウムと二酸化マンガン
とから、周知の方法でLiMnを合成し、実施例
1と同様の方法でディスク状に成型して負極を作成し
た。この負極に含まれるLiMnは、30mgで
あった。また、実施例1で合成したLiNi0.81
0.19を、実施例1と同様の方法でディスク状
に成型し、正極を作成した。この正極に含まれるLiN
0.81Co0.19は、30mgであった。
Comparative Example LiMn 2 O 4 was synthesized from lithium carbonate and manganese dioxide by a well-known method, and was molded into a disk in the same manner as in Example 1 to produce a negative electrode. LiMn 2 O 4 contained in the negative electrode was 30 mg. In addition, LiNi 0.81 C synthesized in Example 1
o 0.19 O 2 was molded into a disk in the same manner as in Example 1 to form a positive electrode. LiN contained in this positive electrode
i 0.81 Co 0.19 O 2 was 30 mg.

【0042】これらの正極、負極をそれぞれ白金網に挟
み、pH=6.2の1MのLiSO水溶液に浸して
電池を構成した。電極間距離は、1cmとした。
Each of the positive electrode and the negative electrode was sandwiched between platinum nets, and immersed in a 1M aqueous solution of Li 2 SO 4 having a pH of 6.2 to constitute a battery. The distance between the electrodes was 1 cm.

【0043】0.5mAの定電流で繰り返し充放電を行
なったときの電圧変化を充放電時間に対してとったグラ
フを図8に示す。
FIG. 8 is a graph showing the voltage change when charging and discharging are repeatedly performed at a constant current of 0.5 mA with respect to the charging and discharging time.

【0044】図8に示されているように、1回目の充電
では、電圧が0.8V付近から上昇しなくなる。これ
は、充電のために供給された電流が負極の腐食反応に費
やされたためと考えられ、実際に負極の溶出が認められ
た。この場合、充電電流が流れても負極へのリチウムイ
オンの挿入は起こっていないので、放電容量はほとんど
観測されない。図には示されていないが、2回目、3回
目の充放電でも、電圧が徐々に上昇するだけで状況はほ
ぼ同じであった。3回目の充電では、電圧が1.3Vま
で上昇したが、これは主として正極側のLiNi
0.81Co0.19 からのリチウムイオンの脱離
が限界に近付いたためと考えられる。負極の腐食は依然
として継続しており、やはり放電容量は示さない。5回
目になると、正極から脱離できるリチウムイオンが無く
なり、充電容量も放電容量もほとんど示さなくなってい
る。
As shown in FIG. 8, the first charging
Then, the voltage does not rise from around 0.8V. this
Means that the current supplied for charging is
The elution of the negative electrode was actually observed.
Was. In this case, even if charging current flows, lithium
Since no on-insertion has occurred, the discharge capacity is almost
Not observed. Although not shown in the figure, the second and third times
Even when charging and discharging the eyes, the situation is almost
They were the same. In the third charge, the voltage is increased to 1.3V.
But this is mainly due to the LiNi
0.81Co0.19O 2Of Lithium Ion from Water
Is thought to be approaching the limit. Negative electrode corrosion still
And no discharge capacity is shown. 5 times
In the eyes, there is no lithium ion that can be desorbed from the positive electrode
And almost no charge capacity or discharge capacity
You.

【0045】LiMnは、アルカリ性の水溶液中
では負極として安定であると言われている。しかし、上
記のように中性の水溶液中で負極として用いると、腐
食、溶出が激しく、安定に動作するリチウムイオン電池
を得ることはできない。
LiMn 2 O 4 is said to be stable as a negative electrode in an alkaline aqueous solution. However, when used as a negative electrode in a neutral aqueous solution as described above, corrosion and elution are severe, and a lithium ion battery that operates stably cannot be obtained.

【0046】[0046]

【発明の効果】この発明に係る水系リチウムイオン電池
は、電解液として水溶液を使用するため、引火、爆発の
危険が無く、ドライボックスなどの特殊な設備を使わず
に空気中で製造することができ、乾燥工程も不要である
上、安価な鉄化合物を用いているために、低コストの電
池製造が可能になる。また、中性溶液中で動作するの
で、腐食性の強いアルカリを使う必要が無く、安全性が
高く、容量も大きくすることができる。
The aqueous lithium ion battery according to the present invention uses an aqueous solution as an electrolyte, so there is no danger of ignition or explosion, and it can be manufactured in air without using special equipment such as a dry box. It does not require a drying step and uses an inexpensive iron compound, so that a low-cost battery can be manufactured. Further, since the device operates in a neutral solution, it is not necessary to use a highly corrosive alkali, so that the safety is high and the capacity can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態の1例を示し、水系リチウ
ムイオン電池の構造を模式的に示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing a structure of an aqueous lithium ion battery, showing an example of an embodiment of the present invention.

【図2】各種pH値における水溶液からの酸素発生電位
および水素発生電位と、電極活物質材料のリチウムイオ
ン挿脱電位との関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between an oxygen generation potential and an hydrogen generation potential from an aqueous solution at various pH values, and a lithium ion insertion / extraction potential of an electrode active material.

【図3】この発明の実施例1の充放電時の電圧変化を負
極容量に対してとったグラフである。
FIG. 3 is a graph showing a voltage change at the time of charging and discharging in Example 1 of the present invention with respect to a negative electrode capacity.

【図4】この発明の実施例2の充放電時の負極の電位変
化を負極容量に対してとったグラフである。
FIG. 4 is a graph showing a change in the potential of the negative electrode during charge and discharge in Example 2 of the present invention with respect to the negative electrode capacity.

【図5】この発明の実施例6の充放電時の電圧変化を負
極容量に対してとったグラフである。
FIG. 5 is a graph showing a voltage change at the time of charging and discharging in Example 6 of the present invention with respect to a negative electrode capacity.

【図6】この発明の実施例7の充放電時の負極の電位変
化を負極容量に対してとったグラフである。
FIG. 6 is a graph showing a change in the potential of the negative electrode during charge and discharge in Example 7 of the present invention with respect to the negative electrode capacity.

【図7】この発明の実施例8の放電容量の変化を充放電
の繰り返し回数に対してとったグラフである。
FIG. 7 is a graph showing changes in discharge capacity in Example 8 of the present invention with respect to the number of repetitions of charge and discharge.

【図8】比較例の充放電時の電圧変化を充放電時間に対
してとったグラフである。
FIG. 8 is a graph showing a change in voltage during charge and discharge of a comparative example with respect to a charge and discharge time.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体金属 3 負極 4 負極集電体金属 5 水溶液電解質 6 外装材 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode current collector metal 3 Negative electrode 4 Negative electrode current collector metal 5 Aqueous electrolyte 6 Exterior material

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA10 BB04 BB05 BD06 5H014 AA02 EE10 HH08 5H029 AJ12 AK03 AL02 AM00 DJ09 HJ10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA10 BB04 BB05 BD06 5H014 AA02 EE10 HH08 5H029 AJ12 AK03 AL02 AM00 DJ09 HJ10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンの挿入および脱離が可能
である物質からなる正極と、鉄の酸化物または鉄の酸化
水酸化物からなる負極と、リチウムイオンを含む水溶液
電解質とから構成される水系リチウムイオン電池。
1. An aqueous system comprising: a positive electrode made of a material capable of inserting and removing lithium ions; a negative electrode made of iron oxide or iron oxide hydroxide; and an aqueous electrolyte containing lithium ions. Lithium-ion battery.
【請求項2】 水溶液電解質のpHが6以上である請求
項1記載の水系リチウムイオン電池。
2. The aqueous lithium ion battery according to claim 1, wherein the pH of the aqueous electrolyte is 6 or more.
【請求項3】 正極が、コバルト、ニッケル、マンガ
ン、バナジウムおよびニオブからなる群より選ばれた1
種もしくは2種以上の元素とリチウムとの複合酸化物か
らなる請求項1または請求項2記載の水系リチウムイオ
ン電池。
3. The method according to claim 1, wherein the positive electrode is selected from the group consisting of cobalt, nickel, manganese, vanadium and niobium.
3. The aqueous lithium-ion battery according to claim 1, comprising a composite oxide of one or more kinds of elements and lithium.
JP11152255A 1999-05-31 1999-05-31 Aqueous lithium ion battery Pending JP2000340256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11152255A JP2000340256A (en) 1999-05-31 1999-05-31 Aqueous lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11152255A JP2000340256A (en) 1999-05-31 1999-05-31 Aqueous lithium ion battery

Publications (1)

Publication Number Publication Date
JP2000340256A true JP2000340256A (en) 2000-12-08

Family

ID=15536493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11152255A Pending JP2000340256A (en) 1999-05-31 1999-05-31 Aqueous lithium ion battery

Country Status (1)

Country Link
JP (1) JP2000340256A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530668A (en) * 1991-07-16 1993-02-05 Murata Mfg Co Ltd Battery charging circuit
JP2004362837A (en) * 2003-06-02 2004-12-24 Toyota Central Res & Dev Lab Inc Aqueous system lithium secondary battery
US7189475B2 (en) 2000-07-27 2007-03-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
JP2008243414A (en) * 2007-03-26 2008-10-09 Kyoto Univ Composite material, its manufacturing method, secondary battery electrode material, secondary battery electrode, and secondary battery
WO2009008280A1 (en) * 2007-07-11 2009-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Aqueous lithium rechargeable battery
WO2012035218A1 (en) 2010-09-17 2012-03-22 Commissariat À L' Energie Atomique Et Aux Energies Alternatives Aryl diazonium salt and use in an electrolytic solution of an electrochemical generator
WO2012035217A1 (en) 2010-09-17 2012-03-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrochemical generator and method of producing such a generator
JP2013065423A (en) * 2011-09-16 2013-04-11 Toyota Motor Corp Electrode active material and nickel-iron battery using the same and a production method of electrode active material
WO2013100050A1 (en) * 2011-12-27 2013-07-04 国立大学法人岡山大学 Negative electrode active material and use of same
US8900746B2 (en) 2009-10-13 2014-12-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Aqueous secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530668A (en) * 1991-07-16 1993-02-05 Murata Mfg Co Ltd Battery charging circuit
US7189475B2 (en) 2000-07-27 2007-03-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
JP2004362837A (en) * 2003-06-02 2004-12-24 Toyota Central Res & Dev Lab Inc Aqueous system lithium secondary battery
JP4492039B2 (en) * 2003-06-02 2010-06-30 株式会社豊田中央研究所 Water-based lithium secondary battery
JP2008243414A (en) * 2007-03-26 2008-10-09 Kyoto Univ Composite material, its manufacturing method, secondary battery electrode material, secondary battery electrode, and secondary battery
JP5218406B2 (en) * 2007-07-11 2013-06-26 株式会社豊田中央研究所 Water-based lithium secondary battery
WO2009008280A1 (en) * 2007-07-11 2009-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Aqueous lithium rechargeable battery
US8507130B2 (en) 2007-07-11 2013-08-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Water based lithium secondary battery
US8900746B2 (en) 2009-10-13 2014-12-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Aqueous secondary battery
WO2012035217A1 (en) 2010-09-17 2012-03-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrochemical generator and method of producing such a generator
WO2012035218A1 (en) 2010-09-17 2012-03-22 Commissariat À L' Energie Atomique Et Aux Energies Alternatives Aryl diazonium salt and use in an electrolytic solution of an electrochemical generator
US9257723B2 (en) 2010-09-17 2016-02-09 Commissariat à l'Energie Atomique et aux Energies Alternatives Aryl diazonium salt and use in an electrolytic solution of an electrochemical generator
US9362059B2 (en) 2010-09-17 2016-06-07 Commissariat à l'Energie Atomique et aux Energies Alternatives Electrochemical generator and method of producing such a generator
JP2013065423A (en) * 2011-09-16 2013-04-11 Toyota Motor Corp Electrode active material and nickel-iron battery using the same and a production method of electrode active material
WO2013100050A1 (en) * 2011-12-27 2013-07-04 国立大学法人岡山大学 Negative electrode active material and use of same
JPWO2013100050A1 (en) * 2011-12-27 2015-05-11 国立大学法人 岡山大学 Negative electrode active material and use thereof
US9595715B2 (en) 2011-12-27 2017-03-14 National University Corporation Okayama University Negative electrode active material and use of same

Similar Documents

Publication Publication Date Title
JP2000077073A (en) Aqueous lithium ion battery
Besenhard Handbook of battery materials
JP4301527B2 (en) Aqueous rechargeable battery
JP3624088B2 (en) Powder material, electrode structure, manufacturing method thereof, and lithium secondary battery
US11342548B2 (en) Zinc electrodes with high capacity utilizations
CN111602277B (en) Rechargeable metal halide battery
JP2002110221A (en) Lithium ion battery
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
JP2001102086A (en) Water system of lithium ion cell
KR20130013310A (en) A preparation method of mno2/carbon composite, mno2/carbon composite prepared by the same, and lithium/air secondary cell comprising the composite
JP2000340256A (en) Aqueous lithium ion battery
US20210343995A1 (en) Electrochemical plating of additives on metallic electrodes for energy dense batteries
JPH07296849A (en) Nonaqueous electrolyte secondary battery
WO2015079689A1 (en) High capacity alkali/oxidant battery
JPH0745304A (en) Organic electrolyte secondary battery
JP4862356B2 (en) Negative electrode active material and aqueous lithium secondary battery
JPH07230824A (en) Nonaqueous electrolyte battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
US20050250012A1 (en) Battery cathodes
JPH07230825A (en) Nonaqueous electrolyte battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP4862357B2 (en) Negative electrode active material and aqueous lithium secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2007115507A (en) Anode activator and aqueous lithium secondary cell
JP3017756B2 (en) Non-aqueous electrolyte secondary battery