JP2000336403A - Production of shaped part with three dimensional form - Google Patents

Production of shaped part with three dimensional form

Info

Publication number
JP2000336403A
JP2000336403A JP11146777A JP14677799A JP2000336403A JP 2000336403 A JP2000336403 A JP 2000336403A JP 11146777 A JP11146777 A JP 11146777A JP 14677799 A JP14677799 A JP 14677799A JP 2000336403 A JP2000336403 A JP 2000336403A
Authority
JP
Japan
Prior art keywords
powder material
powder
pressure
material layer
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11146777A
Other languages
Japanese (ja)
Other versions
JP3551838B2 (en
Inventor
Masataka Takenami
正孝 武南
Isao Fuwa
勲 不破
Seizo Machida
精造 待田
Satoshi Abe
諭 阿部
Noboru Urata
昇 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP14677799A priority Critical patent/JP3551838B2/en
Publication of JP2000336403A publication Critical patent/JP2000336403A/en
Application granted granted Critical
Publication of JP3551838B2 publication Critical patent/JP3551838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To easily obtain a dense, high precision shaped part in a method of producing a shaped part with three dimensional form by laminating laser beam hardened layers of powder. SOLUTION: An inorganic or organic powder material is irradiated with laser beam to form a hardened layer, and one hardened layer is laid on another to produce the desired parts of three dimensional form. This method includes steps of: (a) feeding a powder material 31 to the shaping region where a hardened layer is formed by laser beam irradiation; (b) applying vibration to the powder material 31 fed to the shaping region; (c) applying pressure to the powder material 31 fed to the shaping region; and (d) forming a hardened layer by irradiating the powder material 31 with laser beam after the steps (b) and (c).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三次元形状造形物
の製造方法に関し、詳しくは、光ビームを利用して無機
質または有機質の粉末を層状に連続的に硬化させて製造
する三次元形状造形物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a three-dimensionally shaped object, and more particularly, to a three-dimensionally shaped object manufactured by continuously curing an inorganic or organic powder in a layer using a light beam. The present invention relates to a method for manufacturing a product.

【0002】[0002]

【従来の技術】金属などの無機質粉末あるいは樹脂など
の有機質粉末を堆積させ、そこにレーザや指向性エネル
ギービームなどの光ビームを照射して硬化させ、このよ
うな操作を繰り返すことで硬化物を積層させて三次元形
状造形物を製造する方法が知られている。光ビームが照
射された部分は硬化して一体化し、光ビームが照射され
ない部分は粉末のままで残るので、最終的に堆積した粉
末材料の中から硬化物を取り出し、硬化していない粉末
を除去してしまえば、目的とする三次元形状造形物が得
られる。
2. Description of the Related Art An inorganic powder such as a metal or an organic powder such as a resin is deposited, and irradiated with a light beam such as a laser or a directional energy beam to be cured. There is known a method of manufacturing a three-dimensionally shaped object by stacking. The part irradiated with the light beam is cured and integrated, and the part not irradiated with the light beam remains as powder, so the cured product is taken out of the finally deposited powder material and the uncured powder is removed Then, the desired three-dimensionally shaped object can be obtained.

【0003】製造工程や製造装置などの具体的技術が、
特許第2620353号公報に開示されている。上記方
法は、通常の鋳造や機械加工では製造できないような複
雑で精密な形状の部品を効率的に製造できるという利点
がある。また、部品のCAD設計データなどの電子情報
をもとにして光ビームの走査を電子的に制御するだけ
で、任意の形状を有する部品が直ちに製造できる。従来
の粉末焼結技術のように、予め粉末を成形しておく手間
や設備も必要ない。このような利点を生かす用途とし
て、大量生産の前の試作品の製造、少数製造の精密部品
の生産、金型の生産などが考えられている。
[0003] The specific technology such as the manufacturing process and the manufacturing equipment,
It is disclosed in Japanese Patent No. 2620353. The above method has an advantage that a component having a complicated and precise shape that cannot be manufactured by ordinary casting or machining can be efficiently manufactured. Also, a component having an arbitrary shape can be manufactured immediately simply by electronically controlling the scanning of the light beam based on electronic information such as CAD design data of the component. Unlike the conventional powder sintering technology, there is no need for labor and equipment for molding the powder in advance. Applications that take advantage of these advantages include the production of prototypes before mass production, the production of precision parts that are manufactured in small numbers, and the production of dies.

【0004】特開平10−88201号公報には、堆積
させた粉末材料層に圧力を加えて圧縮したあとレーザ光
を照射することで中間成形体を成形し、この中間成形体
を焼結することで緻密な成形体を製造する技術が示され
ている。粉末材料層を加圧することで、粉末同士の間に
存在する隙間を無くして緻密な構造を得ることができる
とされている。
Japanese Patent Application Laid-Open No. 10-88201 discloses that an intermediate molded body is formed by applying a pressure to a deposited powder material layer, compressing the layer, and then irradiating the layer with a laser beam, and sintering the intermediate molded body. A technique for producing a dense molded product is described. It is said that by pressing the powder material layer, a dense structure can be obtained without gaps between the powders.

【0005】[0005]

【発明が解決しようとする課題】前記した粉末材料層を
加圧する方法でも、粉末材料層の隙間を無くして緻密な
構造の成形体を得ることは難しい。無秩序に堆積した粉
末材料層には、複数の粉末が互いに当接した状態で、そ
の中間に隙間空間が出来る。粉末材料層をその厚み方向
に加圧することで、隙間空間の周囲の粉末が隙間内に落
ち込むように移動することができれば、隙間空間を解消
することができる。しかし、隙間空間を囲む粉体同士が
互いに当接した状態で身動きが出来ないような状態、あ
るいは、いわゆるブリッジやアーチを構成しているよう
な状態になっていると、粉末材料層をいくら加圧しても
隙間空間を十分に解消させることができない。
Even with the above-mentioned method of pressing the powder material layer, it is difficult to obtain a compact having a dense structure by eliminating gaps between the powder material layers. In the randomly deposited powder material layer, a gap space is formed in the middle of the plurality of powders in contact with each other. By pressing the powder material layer in the thickness direction, if the powder around the gap can move so as to fall into the gap, the gap can be eliminated. However, if the powder surrounding the interstitial space is in a state of being unable to move with the powders in contact with each other, or in a state of forming a so-called bridge or arch, the powder material layer will be increased. Even if pressure is applied, the gap space cannot be sufficiently eliminated.

【0006】粉末材料層に隙間が多く存在していると、
成形品の緻密さが低下して、機械的強度などの性能が低
下する。成形品を焼結させたときに、粉末材料が溶融し
て隙間に落ち込むようなことが起きると、成形品の外形
が変形してしまって、成形精度が損なわれる。また、前
記のような隙間を強制的に破壊できる程の大きな圧力を
加えるには、加圧装置が大掛かりになり製造コストが増
大する。しかも、過大な圧力が加わった粉末材料は破壊
されたり変形したりして、成形品の品質性能に悪影響を
与えることになる。
If there are many gaps in the powder material layer,
The compactness of the molded product is reduced, and performance such as mechanical strength is reduced. If the powder material melts and falls into the gap when the molded product is sintered, the external shape of the molded product is deformed, and the molding accuracy is impaired. Further, in order to apply a pressure large enough to forcibly break the gap as described above, the pressurizing device becomes large and the manufacturing cost increases. In addition, the powder material to which the excessive pressure is applied is broken or deformed, which adversely affects the quality performance of the molded product.

【0007】本発明が解決しようとする課題は、前記し
た粉末の光レーザ硬化層を積層して三次元形状を製造す
る方法において、従来技術が有する問題点を解消し、緻
密で精度の高い造形品を容易に得ることである。
The problem to be solved by the present invention is to provide a method for manufacturing a three-dimensional shape by laminating an optical laser cured layer of powder as described above, which solves the problems of the prior art and provides a dense and highly accurate molding. To get the goods easily.

【0008】[0008]

【課題を解決するための手段】本発明にかかる三次元形
状造形物の製造方法は、無機質あるいは有機質の粉末材
料に光ビームを照射して硬化層を形成し、この硬化層を
積み重ねて所望の三次元形状造形物を製造する方法にお
いて、光ビームを照射して硬化層を形成する造形領域に
粉末材料を供給する工程(a) と、造形領域に供給された
粉末材料に振動を加える工程(b) と、造形領域に供給さ
れた粉末材料に圧力を加える工程(c) と、工程(b) およ
び工程(c) の後、粉末材料に光ビームを照射して硬化層
を形成する工程(d) とを含む。 〔粉末材料〕通常の三次元造形物製造に利用される金
属、金属合金、合成樹脂、セラミック、ガラスその他の
無機質あるいは有機質の粉末材料が使用できる。
According to the present invention, there is provided a method for producing a three-dimensionally shaped object, comprising irradiating a light beam to an inorganic or organic powder material to form a hardened layer, and stacking the hardened layers to obtain a desired hardened layer. In a method of manufacturing a three-dimensionally shaped object, a step (a) of supplying a powder material to a shaping area where a hardened layer is formed by irradiating a light beam, and a step of applying vibration to the powder material supplied to the shaping area ( b), a step (c) of applying pressure to the powder material supplied to the modeling region, and after the steps (b) and (c), a step of irradiating the powder material with a light beam to form a hardened layer ( d) is included. [Powder material] Metals, metal alloys, synthetic resins, ceramics, glasses and other inorganic or organic powder materials used in the production of ordinary three-dimensional objects can be used.

【0009】金属材料として、ニッケル、リン銅、鉄、
銅、青銅などが挙げられる。硬化層を構成する粉末材料
は、1種類の粉末材料だけであってもよいし、複数種類
の粉末材料を組み合わせることもできる。粉末材料の形
状は、球形、多面体形、柱形、鱗片形、不定形その他の
通常の粉末形状が適用できる。
As metal materials, nickel, phosphorus copper, iron,
Copper and bronze are exemplified. The powder material constituting the hardened layer may be only one kind of powder material or a combination of a plurality of kinds of powder materials. As the shape of the powder material, spherical, polyhedral, columnar, scale-like, amorphous, and other ordinary powder shapes can be applied.

【0010】粉末材料の粒径は、材質あるいは造形品の
使用目的などによっても異なるが、平均粒径5〜40μ
m程度のものが用いられる。粉末材料として、比較的に
粗い粒径のものと細かい粒径のものを組み合わせること
ができる。具体的には、平均粒径5〜10μmの細かい
粉末と、平均粒径20〜40μmの粗い粉末を組み合わ
せることができる。 〔造形領域〕粉末材料は、造形台の上、あるいは、底面
と周囲が囲まれた容器状の造形空間からなる造形領域に
供給されて、造形領域で光ビームが照射されて硬化層お
よび硬化層の積層体である造形品が形成される。
[0010] The particle size of the powder material varies depending on the material or the purpose of use of the molded article, but the average particle size is 5 to 40 µm.
m is used. As the powder material, one having a relatively coarse particle diameter and one having a fine particle diameter can be combined. Specifically, a fine powder having an average particle size of 5 to 10 μm and a coarse powder having an average particle size of 20 to 40 μm can be combined. [Modeling area] The powder material is supplied to a modeling area formed on a modeling table or a container-shaped modeling space surrounded by a bottom surface and a periphery, and is irradiated with a light beam in the modeling area to form a cured layer and a cured layer. Is formed.

【0011】造形領域を、上面が開放された容器状の造
形枠と、造形枠の内部で昇降自在な造形台とで構成する
ことができる。造形領域は、造形品の外周形状と同じ内
形状を有するものであってもよいが、通常は、造形品の
外周形状よりも少し大きな内形状を有している。 〔粉末材料の供給〕通常の粉末供給手段が適用される。
ホッパーなどに貯留された粉末材料を、自重あるいは空
気圧などを利用して、ノズルやスリットから造形領域に
供給する。
The modeling area can be constituted by a container-shaped molding frame having an open upper surface and a molding table which can be moved up and down inside the molding frame. The modeling region may have the same inner shape as the outer shape of the modeled product, but usually has an inner shape slightly larger than the outer shape of the modeled product. [Supply of powder material] Normal powder supply means is applied.
The powder material stored in a hopper or the like is supplied from a nozzle or a slit to the molding area using its own weight or air pressure.

【0012】粉末材料を層状に堆積させるために、ノズ
ル等の供給手段を移動させながら粉末材料を供給するこ
とができる。堆積された粉末材料層の上方に板状の高さ
規制部材などを移動させて、粉末材料層の表面を平坦か
つ一定の厚みに規制することができる。 〔加振工程〕通常の機械装置や粉体の取扱技術における
加振機構や加振装置を使用して、造形領域に供給された
粉末材料層に振動を加える。
In order to deposit the powder material in layers, the powder material can be supplied while moving a supply means such as a nozzle. By moving a plate-like height regulating member or the like above the deposited powder material layer, the surface of the powder material layer can be regulated to a flat and constant thickness. [Vibration Step] Vibration is applied to the powder material layer supplied to the modeling region using a vibration mechanism or a vibration device in a usual mechanical device or a powder handling technique.

【0013】加振機構の具体例として、超音波振動子、
偏心回転体が挙げられる。加振機構の設置場所は、粉末
材料層に目的の振動を効率的に加えることができれば良
く、造形領域の壁面を構成する部材、粉末材料層を堆積
させる造形台などが利用できる。粉末材料層の上面に加
振機構を備えた部材を当接させて振動を与えることもで
きる。後述する加圧機構と加振機構とを兼用することも
できる。
As a specific example of the vibration mechanism, an ultrasonic vibrator,
An eccentric rotator is mentioned. The vibrating mechanism may be installed at any location as long as the desired vibration can be efficiently applied to the powder material layer, and a member constituting the wall surface of the modeling area, a modeling table on which the powder material layer is deposited, or the like can be used. Vibration can also be given by bringing a member provided with a vibration mechanism into contact with the upper surface of the powder material layer. A pressure mechanism and a vibration mechanism, which will be described later, can also be used.

【0014】振動条件は、粉末材料層の内部に有する隙
間が十分に解消される強さおよび時間が適用される。具
体的には、粉末材料の材質、層の厚みや面積などの条件
によって適宜に設定できる。 〔加圧工程〕粉末材料層を厚み方向に加圧できれば、通
常の機械装置における加圧機構や加圧装置が使用でき
る。
As the vibration conditions, strength and time for which the gaps inside the powder material layer are sufficiently eliminated are applied. Specifically, it can be appropriately set depending on conditions such as the material of the powder material, the thickness and the area of the layer. [Pressing step] As long as the powder material layer can be pressed in the thickness direction, a pressing mechanism or a pressing device in a usual mechanical device can be used.

【0015】具体的には、粉末材料層の上面に加圧板を
押し当てて上方から下方に加圧してもよいし、加圧板は
固定しておき、粉末材料層を支持する造形台を上昇させ
ることで上面の加圧体との間に粉末材料層を挟み込んで
加圧してもよい。加圧板の下降と造形台の上昇の両方を
行ってもよい。加圧圧力は、粉末材料の材質や粒径、厚
みあるいは要求性能などの条件によって異なるが、例え
ば、1〜100kPa の範囲で圧力を設定できる。
Specifically, a pressing plate may be pressed against the upper surface of the powder material layer to apply pressure from above to below, or the pressing plate may be fixed and the molding table supporting the powder material layer may be raised. Thus, the powder material layer may be sandwiched between the upper surface and the pressing body to apply pressure. Both the lowering of the pressure plate and the raising of the modeling table may be performed. The pressurizing pressure varies depending on conditions such as the material, particle size, thickness, and required performance of the powder material. For example, the pressure can be set in the range of 1 to 100 kPa.

【0016】加圧工程は、加振工程が終了してから行っ
ても良いし、加圧工程と加振工程を同時に行うこともで
きる。加圧板に加振機構を組み込んでおけば、加圧と加
振を連続的あるいは同時に行うことができる。加圧と加
振を交互に複数回繰り返すこともできる。 〔光ビーム照射工程〕加振および加圧が行われた粉末材
料層に、通常のレーザ造形技術と同様の装置および手段
で光ビームを照射すれば硬化層が形成できる。
The pressing step may be performed after the vibration step is completed, or the pressing step and the vibration step may be performed simultaneously. If a vibration mechanism is incorporated in the pressure plate, pressure and vibration can be performed continuously or simultaneously. Pressurization and vibration can be alternately repeated a plurality of times. [Light Beam Irradiation Step] A hardened layer can be formed by irradiating the powder material layer, which has been subjected to vibration and pressure, with a light beam using the same apparatus and means as in ordinary laser shaping technology.

【0017】光ビームを照射する粉末材料層の厚みは、
目的とする造形品の形状精度や光ビームの硬化能力など
を考慮して設定される。粉末材料の供給量、加振および
加圧の程度によって粉末材料層の厚みが決定される。粉
末材料の供給、加振および加圧の工程を複数回繰り返し
て、所定厚みの粉末材料層を形成してもよい。光ビーム
を照射する粉末材料層の具体的厚み条件として、0.0
5〜0.2mm程度が採用される。
The thickness of the powder material layer to be irradiated with the light beam is as follows:
The setting is made in consideration of the shape accuracy of the target formed article, the curing ability of the light beam, and the like. The thickness of the powder material layer is determined by the supply amount of the powder material, and the degree of vibration and pressure. The steps of supplying, vibrating, and pressing the powder material may be repeated a plurality of times to form a powder material layer having a predetermined thickness. As a specific thickness condition of the powder material layer to be irradiated with the light beam, 0.0
About 5 to 0.2 mm is adopted.

【0018】光ビームとして、YAGレーザ、CO2
ーザなどのレーザ光が好ましい。光ビームは、粉末材料
層の表面に直接に照射してもよいし、粉末材料層の表面
にガラスなどからなる透明板を配置した状態で、透明板
の外から粉末材料層に光ビームを照射することもでき
る。透明板で粉末材料層を加圧しておけば、加圧と光ビ
ームの照射を同時に行うこともできる。
As the light beam, a laser beam such as a YAG laser or a CO 2 laser is preferable. The light beam may be directly applied to the surface of the powder material layer, or the light beam may be applied to the powder material layer from outside the transparent plate with a transparent plate made of glass or the like disposed on the surface of the powder material layer. You can also. If the powder material layer is pressurized with a transparent plate, pressurization and light beam irradiation can be performed simultaneously.

【0019】光ビームの照射条件は、粉末材料層の全体
もしくは一部が溶融または軟化して、粉末材料層が一体
化された硬化層になれば良く、具体的な光強度や照射時
間などの照射条件は適宜に設定できる。粉末材料層に対
して光ビームの照射位置を走査することで、所望の形状
を有する硬化層が形成できる。
The irradiation conditions of the light beam may be such that the whole or a part of the powder material layer is melted or softened to form a hardened layer in which the powder material layer is integrated, and specific light intensity, irradiation time, etc. Irradiation conditions can be set appropriately. By scanning the irradiation position of the light beam with respect to the powder material layer, a cured layer having a desired shape can be formed.

【0020】粉末材料層を透明材料からなる加圧板で加
圧した状態のままで、光ビームの照射を行えば、加圧後
に粉末材料層の隙間が復元したり拡大したりすることを
防止して、緻密化したままの粉末材料層を硬化させるこ
とができる。 〔造形品の製造〕上記した粉末材料層の供給、加振、加
圧および光ビームの照射を繰り返すことで、複数層の硬
化層が積層された造形品が得られる。形状の異なる硬化
層を積層することで、所望の三次元形状を有する造形品
となる。
By irradiating a light beam while the powder material layer is pressed by a pressing plate made of a transparent material, it is possible to prevent the gaps in the powder material layer from being restored or enlarged after the pressing. Thus, the powder material layer that has been densified can be cured. [Manufacture of shaped article] By repeating the above-described supply of the powder material layer, vibration, pressurization, and light beam irradiation, a shaped article in which a plurality of cured layers are laminated can be obtained. By laminating cured layers having different shapes, a shaped article having a desired three-dimensional shape is obtained.

【0021】造形領域には、硬化層の積層体である造形
品とその周囲に残存する未硬化の粉末材料が存在するの
で、造形品の周囲の粉末材料を除去するか、粉末材料内
から造形品だけを取り出す。造形品は、そのままで各種
用途に利用することができるが、さらに、焼結工程を行
ったり、外形の仕上げ加工を行ったりすることもでき
る。 〔その他の発明〕工程(d) で、造形領域を非酸化性雰囲
気にすることがてきる。
In the molding region, there is a molded article which is a laminate of a hardened layer and an uncured powder material remaining around the molded article. Therefore, the powder material around the molded article is removed or the molding is performed from within the powder material. Take out only the goods. The molded article can be used for various applications as it is, but can also be subjected to a sintering step or a finish processing of the outer shape. [Other inventions] In the step (d), the modeling region is brought into a non-oxidizing atmosphere.

【0022】造形領域を外部空間に対して正圧に維持す
ることができる。工程(b) で、造形領域を構成する部材
を振動させたり、造形領域の開放された表面に加振部材
を配置し、加振部材が発生する振動を粉末材料に加えた
り、超音波振動子が発生する振動を粉末材料に加えた
り、偏心回転体が発生する振動を粉末材料に加えたりす
ることがてきる。
The printing area can be maintained at a positive pressure with respect to the external space. In the step (b), a member constituting the modeling region is vibrated, a vibration member is arranged on an open surface of the modeling region, and vibration generated by the vibration member is applied to the powder material, or an ultrasonic vibrator is used. Vibration generated by the eccentric rotator can be applied to the powder material, or vibration generated by the eccentric rotator can be applied to the powder material.

【0023】工程(c) で、造形領域の開放された表面に
加圧部材を配置し、加圧部材で粉末材料を押圧して圧力
を加えることができる。工程(c) で、移動する加圧部材
で圧力を加える工程(c-1) と、高さ規制部材で粉末材料
の高さ位置を規制する工程(c-2) とを含んでいることが
できる。工程(c) で、圧力センサの検知情報に基づいて
圧力を制御することができる。
In step (c), a pressure member can be placed on the open surface of the modeling area, and the powder material can be pressed by the pressure member to apply pressure. The step (c) may include a step (c-1) of applying pressure with a moving pressure member, and a step (c-2) of regulating the height position of the powder material with a height regulating member. it can. In the step (c), the pressure can be controlled based on the detection information of the pressure sensor.

【0024】工程(a) で、粒径の異なる複数種類の粉末
材料を供給することができる。複数種類の粉末材料のう
ちの1種類が、平均粒径5〜10μmの比較的に細かい
粉末材料であり、別の1種類が、平均粒径20〜40μ
mの比較的に粗い粉末材料であることができる。工程
(a) で、粗い粉末材料の供給工程(a-1) と、工程(a-1)
の後で細かい粉末材料の供給工程(a-2) とを含んでいる
ことができる。
In the step (a), a plurality of types of powder materials having different particle sizes can be supplied. One of the plurality of types of powder materials is a relatively fine powder material having an average particle size of 5 to 10 μm, and another type has an average particle size of 20 to 40 μm.
m relatively coarse powder material. Process
In (a), a coarse powder material supply step (a-1) and a step (a-1)
After the step (a-2) of supplying a fine powder material.

【0025】工程(a) で、粗い粉末材料と細かい粉末材
料との混合粉末の供給工程(a-3) と、工程(a-3) の後で
細かい粉末材料の供給工程(a-4) とを含んでいることが
できる。工程(a) で、粒径と材質が異なる複数種類の粉
末材料を供給したり、特に、複数種類の粉末材料のうち
の1種類が、銅、青銅およびリン銅からなる群から選ば
れる何れか1種以上の材料からなる比較的に粒径の粗い
粉末材料であり、別の1種類が、鉄、ニッケルからなる
群から選ばれる何れか1種以上の材料からなる比較的に
粒径の細かい粉末材料であることができる。
In the step (a), a step (a-3) of supplying a mixed powder of a coarse powder material and a fine powder material, and a step (a-4) of supplying a fine powder material after the step (a-3) And may be included. In the step (a), a plurality of types of powder materials having different particle diameters and materials are supplied, and in particular, one of the plurality of types of powder materials is selected from the group consisting of copper, bronze, and phosphorous copper. A powder material having a relatively coarse particle diameter composed of at least one material, and another one having a relatively fine particle diameter composed of at least one material selected from the group consisting of iron and nickel. It can be a powdered material.

【0026】複数種類の粉末材料のうちの1種類が、比
較的に粒径が細かく、銅、青銅およびリン銅などの融点
が低い粉末材料であり、別の1種類が、比較的に粒径が
粗く鉄、ニッケルなどの融点が高い粉末材料であること
ができる。
One of the plurality of types of powder materials is a powder material having a relatively small particle size and a low melting point such as copper, bronze, and phosphorous copper. Can be a powder material having a high melting point, such as iron and nickel.

【0027】[0027]

【発明の実施の形態】〔基本的製造工程〕図1〜図6
に、基本的な製造工程を示している。図1に示すよう
に、上面が開放された容器状をなす造形枠10には、内
部で昇降自在な造形台12を備えている。造形台12の
上には、造形品を載せて取り扱うための載置板14が配
置される。造形枠10の側壁および載置板14には、超
音波振動子を備えた加振部20が内蔵されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Basic Manufacturing Process] FIGS. 1 to 6
2 shows a basic manufacturing process. As shown in FIG. 1, a molding frame 10 having a container shape with an open upper surface is provided with a molding table 12 that can be moved up and down inside. On the modeling table 12, a mounting plate 14 for placing and handling a modeled product is arranged. A vibration unit 20 having an ultrasonic vibrator is built in the side wall of the modeling frame 10 and the mounting plate 14.

【0028】造形枠10の内部で載置板14の上には、
既に作製された硬化層32が複数層積み重ねられてい
る。硬化層32の周囲には未硬化の粉末材料34が存在
している。造形台12の上下位置を調整することで、硬
化層32および未硬化粉末材料34の表面が、造形枠1
0の上端よりも少し低い位置になるように配置する。造
形枠10と硬化層32の表面との間隔が、次に作製され
る硬化層32の厚みを決める。
On the mounting plate 14 inside the molding frame 10,
A plurality of hardened layers 32 that have already been manufactured are stacked. An uncured powder material 34 exists around the cured layer 32. By adjusting the vertical position of the molding table 12, the surfaces of the cured layer 32 and the uncured powder material 34 are
It is arranged to be a position slightly lower than the upper end of 0. The distance between the modeling frame 10 and the surface of the hardened layer 32 determines the thickness of the hardened layer 32 to be manufactured next.

【0029】図2に示すように、先に形成された硬化層
32および未硬化粉末材料34の上に、新たな粉末材料
30を供給する。造形枠10を横断する幅板状の規制部
材16を造形枠10よりも少し高い位置で水平方向に移
動させて、粉末材料30の高さ位置を規制し、全体が一
定の厚みを有する粉末材料層36とする。粉末材料層3
6の上面は造形枠10の上端よりも少し高い位置にな
る。
As shown in FIG. 2, a new powder material 30 is supplied onto the previously formed cured layer 32 and uncured powder material 34. A width plate regulating member 16 traversing the molding frame 10 is moved in a horizontal direction at a position slightly higher than the molding frame 10 to regulate the height position of the powder material 30, and the powder material having a constant thickness as a whole. The layer 36 is formed. Powder material layer 3
The upper surface of 6 is slightly higher than the upper end of the modeling frame 10.

【0030】図3に示すように、加振部20を作動させ
ると、造形枠10の内部の粉末材料層36に振動が加わ
り、粉末材料層36の内部に存在する微細な隙間が減っ
ていく。したがって、粉末材料層36の厚みも少し薄く
なる。図4に示すように、加振部20の作動を止めたあ
と、粉末材料層36の上面に加圧板40を配置し、加圧
板40を降下させて粉末材料層36を上から下へと加圧
する。加圧によって粉末材料層36の内部に存在する微
細な隙間はさらに減少して、粉末材料が緻密に配置され
た状態になる。粉末材料層36の厚みはさらに薄くなっ
ているが、粉末材料層36の上面は、まだ造形枠10の
上端よりは少し高い位置にある。
As shown in FIG. 3, when the vibrating section 20 is operated, vibration is applied to the powder material layer 36 inside the modeling frame 10, and fine gaps existing inside the powder material layer 36 decrease. . Therefore, the thickness of the powder material layer 36 is slightly reduced. As shown in FIG. 4, after the operation of the vibrating section 20 is stopped, the pressing plate 40 is disposed on the upper surface of the powder material layer 36, and the pressing plate 40 is lowered to apply the powder material layer 36 from top to bottom. Press. The pressurization further reduces the fine gaps present inside the powder material layer 36, so that the powder material is densely arranged. Although the thickness of the powder material layer 36 is further reduced, the upper surface of the powder material layer 36 is still slightly higher than the upper end of the modeling frame 10.

【0031】なお、上記工程で、加振部20の作動を止
めずに、加振部20による加振と同時に加圧板40によ
る加圧を行うこともできる。また、加圧板40に加振部
20を内蔵させておけば、粉末材料層36に直接に当た
っている加圧板40で振動を加えることができ、効率の
良い加振および加圧が可能である。図5に示すように、
規制部材16を造形枠10の上端に沿って水平移動させ
ると、粉末材料層36の上面は造形枠10と同じ高さに
なり、目的の厚みを有する緻密な粉末材料層36が得ら
れる。規制部材16で排除された余分の粉末材料は回収
して再利用することができる。
In the above process, the pressurizing by the pressurizing plate 40 can be performed simultaneously with the vibration by the vibration unit 20 without stopping the operation of the vibration unit 20. If the vibrating section 20 is built in the pressing plate 40, vibration can be applied by the pressing plate 40 directly contacting the powder material layer 36, and efficient vibration and pressurization can be performed. As shown in FIG.
When the regulating member 16 is moved horizontally along the upper end of the modeling frame 10, the upper surface of the powder material layer 36 becomes the same height as the modeling frame 10, and a dense powder material layer 36 having a desired thickness is obtained. Excess powder material removed by the regulating member 16 can be collected and reused.

【0032】図6に示すように、粉末材料層36の表面
にビーム状のレーザ光50を照射すると、その部分の粉
末材料の全体あるいは一部が溶融して粉末材料同士が一
体的に接合されて、硬化層32が形成される。粉末材料
が溶融硬化する際には、粉末材料層36の下方に存在す
る、先に形成された硬化層32とも接合一体化されるの
で、新たに形成された硬化層32は下方に積層された硬
化層32…と一体化することになる。
As shown in FIG. 6, when the surface of the powder material layer 36 is irradiated with a laser beam 50 in the form of a beam, the whole or a part of the powder material at that portion is melted and the powder materials are integrally joined. Thus, a hardened layer 32 is formed. When the powder material is melt-hardened, it is also joined and integrated with the previously formed hardened layer 32 existing below the powdered material layer 36, so that the newly formed hardened layer 32 is laminated below. Will be integrated with the cured layers 32.

【0033】レーザ光50を水平方向に走査すること
で、所定のパターン形状を有する硬化層32が得られ
る。上記のような工程を繰り返すことで、所定のパター
ン形状を有する硬化層32が複数層積層された三次元形
状を有する造形物が得られる。硬化層32すなわち造形
物の周囲には未硬化粉末材料34が残留しているので、
造形枠10の内部から造形物だけを取り出すことができ
る。造形台12を造形枠10の上方まで持ち上げて、造
形物を載置台14に載せた状態で取り出すこともでき
る。 〔粉末材料の挙動〕図7は、前記製造工程における粉末
材料の挙動を模式的に示している。
By scanning the laser beam 50 in the horizontal direction, a cured layer 32 having a predetermined pattern shape is obtained. By repeating the above-described steps, a three-dimensional shaped object in which a plurality of cured layers 32 having a predetermined pattern shape are stacked is obtained. Since the uncured powder material 34 remains around the cured layer 32, that is, around the modeled object,
Only the object can be taken out of the modeling frame 10. The modeling table 12 can be lifted up to above the modeling frame 10 to take out the modeled object placed on the mounting table 14. [Behavior of Powder Material] FIG. 7 schematically shows the behavior of the powder material in the manufacturing process.

【0034】図7(a) は、供給された段階の粉末材料層
36を表し(図2の工程に相当)、個々の粉末31が無
秩序に配置されている。そのため、粉末材料層36の内
部には、比較的に大きな隙間空間が存在している。図7
(b) に示すように、粉末材料層36に振動を加えると
(図3の工程に相当)、個々の粉末31が前後左右に細
かく振動することで、粉末31の自重や互いの衝突の作
用で、粉末31が前記した隙間に落ち込んだり隙間を埋
めるような作用が生じる。その結果、隙間空間は徐々に
減少していく。但し、振動を加えるだけでは、隙間があ
る程度まで減少したあとは、それ以上は隙間を減少させ
ることはできない。
FIG. 7A shows the powder material layer 36 at the supplied stage (corresponding to the process of FIG. 2), in which the individual powders 31 are randomly arranged. Therefore, a relatively large gap space exists inside the powder material layer 36. FIG.
As shown in (b), when vibration is applied to the powder material layer 36 (corresponding to the process in FIG. 3), the individual powders 31 vibrate finely in the front-rear and left-right directions, thereby causing the powder 31 to have its own weight and the effect of collision with each other. As a result, an action occurs such that the powder 31 falls into the gap or fills the gap. As a result, the gap space gradually decreases. However, only by applying vibration, after the gap has been reduced to some extent, the gap cannot be further reduced.

【0035】図7(c) に示すように、粉末材料層36の
上面に加圧板40を配置して加圧すると(図4の工程に
相当)、前記振動に比べて大きな力で粉末31同士の隙
間を埋める作用が生じるので、隙間はさらに減少し、緻
密な粉末材料層36が得られる。なお、図7(a) の状態
で、加振せずに加圧板40を配置して加圧を行った場合
には、ある程度は隙間を無くすことはできるが、複数の
粉末31で構成するブロック状の構造が隙間空間を囲ん
でトラスやドームを構成しているような個所では、粉末
31同士が当接して互いの間に強い抵抗力が働くので、
1方向からの圧力をかけただけでは、隙間を十分に無く
すことは困難である。しかし、このような個所でも、振
動を与えると、個々の粉末31をバラバラに動かすこと
になるので、強固な隙間構造を崩壊させることができ
る。
As shown in FIG. 7 (c), when the pressing plate 40 is disposed on the upper surface of the powder material layer 36 and pressurized (corresponding to the process of FIG. 4), the powders 31 are separated from each other with a larger force than the vibration. Therefore, the gap is further reduced, and the dense powder material layer 36 can be obtained. In the state shown in FIG. 7A, when the pressing plate 40 is arranged without applying vibration and pressure is applied, a gap can be eliminated to some extent, but a block composed of a plurality of powders 31 is used. In a place where the structure like a truss or a dome surrounds the interstitial space, the powders 31 abut each other and a strong resistance acts between them,
It is difficult to eliminate the gap sufficiently only by applying pressure from one direction. However, even in such a location, when vibration is applied, the individual powders 31 are moved apart, so that a strong gap structure can be broken.

【0036】言い換えると、比較的に小さな力で粉体3
1を無秩序に動かす振動と、比較的に大きな力で粉体3
1を一定方向に動かす加圧との両方の作用が相乗的に加
わることで、粉末材料層36に存在する隙間が効率的に
解消されて、緻密な粉末材料層36が得られる。 〔偏心回転体〕図8および図9に示す実施形態は、加振
機構として、前記実施形態の超音波振動子の代わりある
いはそれに加えて、偏心回転体を利用した加振機構を備
えておく。
In other words, the powder 3 is applied with a relatively small force.
The vibration that moves 1 randomly and the powder 3 with relatively large force
Since the action of both pressing and moving 1 in a certain direction is synergistically applied, the gap existing in the powder material layer 36 is efficiently eliminated, and the dense powder material layer 36 is obtained. [Eccentric Rotating Body] In the embodiment shown in FIGS. 8 and 9, a vibrating mechanism using an eccentric rotating body is provided as a vibrating mechanism instead of or in addition to the ultrasonic vibrator of the above embodiment.

【0037】図9に示すように、モータ23の回転軸2
5に偏心盤24を装着している。偏心盤24は、全体が
円形状をなすとともに、回転軸25への取付位置が偏心
盤24の中心ではなく少し外れた位置になっている。モ
ータ23を作動させて偏心盤24を回転させると、偏心
盤24の重量あるいは慣性力が回転軸25に対して不均
等に加わり、装置全体が振動を起こすことになる。振動
の周期および振幅は、偏心盤24の回転数および偏心盤
24の偏心量によって設定される。
As shown in FIG.
5 is equipped with an eccentric board 24. The eccentric disk 24 has a circular shape as a whole, and the position where the eccentric disk 24 is attached to the rotating shaft 25 is not at the center of the eccentric disk 24 but at a position slightly deviated therefrom. When the motor 23 is operated to rotate the eccentric disk 24, the weight or inertia force of the eccentric disk 24 is unequally applied to the rotating shaft 25, so that the entire apparatus causes vibration. The cycle and amplitude of the vibration are set by the rotation speed of the eccentric disk 24 and the amount of eccentricity of the eccentric disk 24.

【0038】図8示すように、前記のようなモータ23
および偏心盤24を内蔵する加振装置22を、造形台1
2や加圧板40の背面に設置しておけば、加振装置22
で発生する振動を粉末材料層36に伝達することができ
る。 〔圧力制御〕図10に示す実施形態は、粉末材料層36
に加える圧力を正確に制御する。
As shown in FIG. 8, the motor 23 as described above is used.
And a vibration device 22 having an eccentric disk 24 built therein.
2 or the back of the pressure plate 40, the vibration device 22
Can be transmitted to the powder material layer 36. [Pressure Control] The embodiment shown in FIG.
Precisely control the pressure applied to

【0039】加圧板40には、粉末材料層36と接触す
る下面に圧力センサ42を備えている。圧力センサ42
は、加圧板40を作動させたときに、粉末材料層36に
加わる圧力を検知する。圧力センサ42で検知された圧
力情報は、加圧板40の外部に設けられたコンピュータ
44に伝達される。コンピュータ44は、加圧板40の
昇降させるアクチュエータなどの作動機構および造形台
12を昇降させる作動機構を電気的に制御できるように
なっている。
The pressure plate 40 is provided with a pressure sensor 42 on the lower surface in contact with the powder material layer 36. Pressure sensor 42
Detects the pressure applied to the powder material layer 36 when the pressure plate 40 is operated. The pressure information detected by the pressure sensor 42 is transmitted to a computer 44 provided outside the pressure plate 40. The computer 44 can electrically control an operation mechanism such as an actuator for raising and lowering the pressure plate 40 and an operation mechanism for raising and lowering the modeling table 12.

【0040】加圧板40で粉末材料層36を加圧する工
程で、加圧板40を下降させながら、圧力センサ42で
検出される圧力が所定の値を超えるまでは、加圧板40
の下降を続ける。圧力センサ42の検知圧力が所定値を
超えれば、加圧板40の作動を止めて、その位置で加圧
板40を維持しておく。なお、加圧板40で粉末材料層
36を加圧すると同時に、造形台12にも上昇方向の圧
力を発生させることで、加圧板40の圧力で造形台12
が下降してしまうことを防げる。また、粉末材料層36
を上下からの圧力で効率的に加圧することができる。コ
ンピュータ44では、圧力センサ42からの検知圧力を
もとにして、加圧板40と造形台12の作動量あるいは
加圧力を適切な値に制御する。
In the step of pressing the powder material layer 36 with the pressing plate 40, the pressing plate 40 is lowered while the pressure detected by the pressure sensor 42 exceeds a predetermined value.
Continue to descend. When the pressure detected by the pressure sensor 42 exceeds a predetermined value, the operation of the pressure plate 40 is stopped, and the pressure plate 40 is maintained at that position. In addition, by simultaneously pressing the powder material layer 36 with the pressing plate 40 and generating a pressure in the ascending direction on the molding table 12, the pressure of the pressing plate 40 increases the molding table 12.
Can be prevented from falling. The powder material layer 36
Can be efficiently pressurized with pressure from above and below. The computer 44 controls the operation amount or the pressing force of the pressing plate 40 and the molding table 12 to an appropriate value based on the pressure detected by the pressure sensor 42.

【0041】なお、加圧工程においては、最初の段階で
は比較的に小さな圧力を加えて、隙間の解消をスムーズ
に行い、隙間の解消がある程度進んだ後では比較的に大
きな圧力を加えて、隙間の完全な解消を図るなどといっ
たように、加圧力の経時的な調整制御を行うこともでき
る。上記のようにして粉末材料層36に加わる圧力を適
切に制御すれば、粉末材料層36を確実かつ効率的に緻
密化することができる。 〔真空吸引〕図11に示す実施形態は、真空力を利用し
て粉末材料層36に圧力を加える。
In the pressurizing step, a relatively small pressure is applied at the initial stage to smoothly eliminate the gap, and after the clearance is somewhat eliminated, a relatively large pressure is applied. It is also possible to perform control of adjusting the pressing force over time, for example, to completely eliminate the gap. By appropriately controlling the pressure applied to the powder material layer 36 as described above, the powder material layer 36 can be reliably and efficiently densified. [Vacuum Suction] In the embodiment shown in FIG. 11, pressure is applied to the powder material layer 36 using a vacuum force.

【0042】造形枠10のうち、造形台12の背面空間
に真空吸引口62を設ける。真空吸引口62は、造形枠
10の外部に設置された真空ポンプ60に接続されてい
る。真空ボンプ60を作動させることで、造形台12の
背面空間の空気を排出して負圧にする。なお、造形台1
2の上方空間と背面空間とは空気の流通が可能になって
おり、背面空間が負圧になれば、造形台12の上方の空
間も負圧になる。
A vacuum suction port 62 is provided in the space behind the modeling table 12 in the modeling frame 10. The vacuum suction port 62 is connected to a vacuum pump 60 installed outside the modeling frame 10. By operating the vacuum pump 60, the air in the space behind the modeling table 12 is exhausted to a negative pressure. In addition, modeling stand 1
Air can flow between the upper space 2 and the rear space, and if the rear space becomes negative, the space above the modeling table 12 also becomes negative.

【0043】造形枠10の上端には、ガラス等の透明板
46を配置しておく。この状態で、真空ポンプ60を作
動させると、造形枠10の内部空間が負圧になる。透明
板46は造形枠10の上面に吸着されて密着する。この
透明板46の運動は、透明板46を機械的に下降させて
粉末材料層36を加圧するのと同じ作用を与える。粉末
材料層36の内部においては、内部の隙間空間に存在す
る空気が吸い出されて負圧になることで、隙間に粉末が
入り込んで隙間が埋められる。
A transparent plate 46 made of glass or the like is arranged at the upper end of the molding frame 10. In this state, when the vacuum pump 60 is operated, the internal space of the modeling frame 10 becomes a negative pressure. The transparent plate 46 is attracted to and adheres to the upper surface of the modeling frame 10. This movement of the transparent plate 46 has the same effect as mechanically lowering the transparent plate 46 and pressing the powder material layer 36. In the inside of the powder material layer 36, the air existing in the internal gap space is sucked out and becomes a negative pressure, so that the powder enters the gap and fills the gap.

【0044】透明板46が配置されたままで、透明板4
6の外から粉末材料層36にレーザ光50を照射すれ
ば、粉末材料層36が硬化して硬化層32が形成され
る。この場合、前記した真空ポンプ60の作動によっ
て、粉末材料層36の隙間を無くして緻密化した状態の
ままで、レーザ光50の照射による硬化が進行するの
で、緻密な硬化層32が形成できる。
With the transparent plate 46 still disposed, the transparent plate 4
By irradiating the laser beam 50 to the powder material layer 36 from outside the powder material 6, the powder material layer 36 is cured to form the cured layer 32. In this case, by the operation of the vacuum pump 60 described above, the hardening by the irradiation of the laser beam 50 proceeds while the gaps in the powder material layer 36 are eliminated and the compacted state remains, so that the dense hardened layer 32 can be formed.

【0045】加圧板40による加圧を行って粉末材料層
36を緻密化していても、加圧板40を取り除くと、個
々の粉末31が有する復元力で再び隙間が拡がったりす
ることがあるが、透明板46を真空吸着させておけば、
このような隙間の再発生や再拡大が生じることなく、粉
末材料層36は緻密化されたままで硬化する。なお、透
明材料からなる加圧板40を粉末材料層36の上方から
押圧したままの状態で、レーザ光50を照射による硬化
層32を形成を行っても、粉末材料層36に隙間が再発
生したり再拡大したりすることが防止できる。
Even if the powder material layer 36 is densified by pressing with the pressing plate 40, if the pressing plate 40 is removed, the gap may be expanded again by the restoring force of each powder 31. If the transparent plate 46 is vacuum-adsorbed,
The powder material layer 36 is hardened while being densified, without such re-generation or re-expansion of the gap. Even if the hardened layer 32 is formed by irradiating the laser beam 50 while the pressing plate 40 made of a transparent material is pressed from above the powder material layer 36, gaps are generated again in the powder material layer 36. Or re-expansion can be prevented.

【0046】加圧板40による押圧と真空ポンプ60に
よる真空吸引との両方の手段を併用して、粉末材料層3
6を加圧して緻密化することもできる。 〔粒径の異なる粉末〕図12に示す実施形態は、粉末材
料30として、比較的に粒径の粗い粉末31aと、比較
的に粒径の細かい粉末31bとを併用する。
The powder material layer 3 is pressed by using both the pressing by the pressure plate 40 and the vacuum suction by the vacuum pump 60.
6 can also be densified by pressing. [Powders with Different Particle Sizes] In the embodiment shown in FIG. 12, as the powder material 30, a powder 31a having a relatively large particle size and a powder 31b having a relatively small particle size are used in combination.

【0047】図12(a) に示すように、粉末材料供給工
程(図2参照)で、まず、粗い粉末31aを所定の厚み
で供給したあと、細かい粉末31bを所定量だけ供給す
る。この状態では、粗い粉末31aの層と細かい粉末3
1bの層とが上下に分かれた状態である。粗い粉末31
a同士の間には比較的に大きな隙間があいた状態になっ
ている。
As shown in FIG. 12A, in a powder material supply step (see FIG. 2), first, a coarse powder 31a is supplied with a predetermined thickness, and then a fine powder 31b is supplied in a predetermined amount. In this state, the layer of the coarse powder 31a and the fine powder 3a
This is a state where the layer 1b is vertically separated. Coarse powder 31
There is a relatively large gap between a.

【0048】図12(b) に示すように、加振工程(図3
参照)で、粉末材料層36に振動を加えると、細かい粉
末31bは自重によって粗い粉末31aの間を落ちてい
き、粗い粉末31aの隙間を埋めることになる。その結
果、粉末材料層36は、粗い粉末31aと細かい粉末3
1bとが混合された状態になるとともに、両者が隙間な
く緻密に配置された状態になる。なお、粗い粉末31a
の隙間を埋めて残った細かい粉末31bは、粗い粉末3
1aの層の上に一定の厚みで層を構成している。
As shown in FIG. 12B, the vibration step (FIG.
When the vibration is applied to the powder material layer 36, the fine powder 31b falls between the coarse powders 31a by its own weight and fills the gaps between the coarse powders 31a. As a result, the powder material layer 36 has the coarse powder 31a and the fine powder 3a.
1b are mixed with each other, and both are densely arranged without gaps. The coarse powder 31a
The fine powder 31b remaining by filling the gaps of
A layer having a constant thickness is formed on the layer 1a.

【0049】図12(c) に示すように、粉末材料層36
に加圧工程(図4参照)を行うか、加圧工程を行わず
に、規制部材16で余分の細かい粉末31bを除去す
る。この状態でも、粉末材料層36の上面は細かい粉末
31bが緻密に敷き詰められた状態である。このように
表面に細かい粉末31bが配置されることで、形成され
る硬化層32の表面を滑らかで緻密なものにできる。
As shown in FIG. 12C, the powder material layer 36
The pressing step (see FIG. 4) is carried out, or the excess fine powder 31b is removed by the regulating member 16 without performing the pressing step. Even in this state, the upper surface of the powder material layer 36 is in a state where the fine powder 31b is densely spread. By disposing the fine powder 31b on the surface in this way, the surface of the formed hardened layer 32 can be made smooth and dense.

【0050】なお、上記高さ規制工程の前あるいは後で
加圧工程を行うことで、粉末材料層36の隙間解消ある
いは緻密化が一層進むことは前記同様である。上記作業
の具体的条件例を示す。細かい粉末31bとして、平均
粒径5〜10μmのニッケル粉を用いる。粗い粉末31
aとして、平均粒径30μmのリン銅粉を用いる。粗い
粉末31aと細かい粉末31bの使用割合は、重量比
1:1とする。
As described above, by performing the pressing step before or after the height regulating step, the clearance of the powder material layer 36 or the densification is further improved. An example of specific conditions for the above work will be described. As the fine powder 31b, nickel powder having an average particle diameter of 5 to 10 μm is used. Coarse powder 31
As a, a phosphor copper powder having an average particle size of 30 μm is used. The weight ratio of the coarse powder 31a to the fine powder 31b is 1: 1.

【0051】粗い粉末31aを厚み0.08mmの層に形
成したあと、その上に細かい粉末31bを厚み0.04
mmの層に形成した〔図12(a) 〕。加振工程、高さ規制
工程、加圧工程を経て、厚み0.1mmの粉末材料層36
を得た。 〔混合粉末〕図13に示す実施形態は、粉末材料30と
して、比較的に粒径の粗い粉末31aと、比較的に粒径
の細かい粉末31bとの混合粉末を用いる。
After the coarse powder 31a is formed into a layer having a thickness of 0.08 mm, the fine powder 31b is coated thereon with a layer having a thickness of 0.04 mm.
mm (FIG. 12 (a)). After a vibration process, a height regulation process, and a pressurization process, a powder material layer 36 having a thickness of 0.1 mm is formed.
I got [Mixed Powder] In the embodiment shown in FIG. 13, a mixed powder of a powder 31a having a relatively large particle size and a powder 31b having a relatively small particle size is used as the powder material 30.

【0052】図13(a) に示すように、粉末材料供給工
程(図2参照)で、混合粉末31a、31bを供給す
る。粉末材料層36は、粒径の異なる2種類の粉末31
a、31bが、ほぼ均等に混在している。粒径の粗い粉
末31a同士が隣接している間に生じる隙間に、粒径の
細かい粉末31bが嵌まり込んだ状態になるので、粒径
の粗い粉末31aだけを使用する場合に比べて、隙間は
減少して緻密な状態になっている。
As shown in FIG. 13A, mixed powders 31a and 31b are supplied in a powder material supplying step (see FIG. 2). The powder material layer 36 is made of two kinds of powders 31 having different particle sizes.
a and 31b are almost uniformly mixed. Since the fine-grained powder 31b is fitted in the gap generated while the coarse-grained powders 31a are adjacent to each other, the gap is smaller than when only the coarse-grained powder 31a is used. Has decreased and is in a dense state.

【0053】図13(b) に示すように、加振工程(図3
参照)で、粉末材料層36に振動を加えると、細かい粉
末31bは自重によって粗い粉末31aの間を落ちてい
き、下方側に集まる。したがって、粉末材料層36の下
方側では、粗い粉末31aと細かい粉末31bとが隙間
なく緻密に充填された状態になる。但し、粉末材料層3
6の上方側では、細かい粉末31bがなく粗い粉末31
a同士が比較的に大きな隙間をあけた状態で配置され
る。
As shown in FIG. 13B, the vibration step (FIG.
When the vibration is applied to the powder material layer 36, the fine powder 31b falls between the coarse powders 31a by its own weight and gathers on the lower side. Therefore, the lower side of the powder material layer 36 is in a state where the coarse powder 31a and the fine powder 31b are densely filled without gaps. However, the powder material layer 3
On the upper side of 6, coarse powder 31 without fine powder 31b
a are arranged with a relatively large gap therebetween.

【0054】図13(c) に示すように、粉末材料層36
の上方に、新たに細かい粉末31bだけを供給する。こ
れによって、粉末材料層36の上方側でも、粗い粉末3
1aの間の隙間が細かい粉末31bで埋められて隙間が
なくなる。粗い粉末31aの上端を超えて細かい粉末3
1bを供給することで、粉末材料層36の上面を細かい
粉末31bのみで構成することができる。細かい粉末3
1bで構成された粉末材料層36の表面は表面粗度が小
さく滑らかで緻密なものとなる。これは、前記した図1
2の実施形態における図12(c) と共通する形態であ
る。その後の工程は前記実施形態と同様に行われる。
As shown in FIG. 13 (c), the powder material layer 36
Above, only the new fine powder 31b is supplied. As a result, even on the upper side of the powder material layer 36, the coarse powder 3
The gap between 1a is filled with the fine powder 31b, and the gap disappears. Fine powder 3 beyond the upper end of coarse powder 31a
By supplying 1b, the upper surface of the powder material layer 36 can be composed of only the fine powder 31b. Fine powder 3
The surface of the powder material layer 36 composed of 1b has a small surface roughness and is smooth and dense. This is the same as FIG.
This is a form common to FIG. 12C in the second embodiment. Subsequent steps are performed in the same manner as in the above embodiment.

【0055】上記作業の具体的条件例を示す。細かい粉
末31bとして、平均粒径5〜10μmのニッケル粉、
粗い粉末31aとして、平均粒径30μmのリン銅粉を
用いる。粗い粉末31aと細かい粉末31bの使用割合
は、重量比1:1とする。粗い粉末31aと細かい粉末
31bとの混合粉末を厚み0.07mmの層に形成し〔図
13(a) 〕、加振工程を行ったあと〔図13(b) 〕、細
かい粉末31bを厚み0.03mmの層に形成した〔図1
3(c) 〕。最終的に厚み0.1mmの粉末材料層36が得
られた。 〔融点の異なる粉末の同時溶融〕図14に示す実施形態
は、細かい粉末31bと粗い粉末31aとを組み合わせ
るとともに、両者の融点に差を付けておく。
An example of specific conditions for the above operation will be described. Nickel powder having an average particle size of 5 to 10 μm as fine powder 31b,
Phosphor copper powder having an average particle size of 30 μm is used as the coarse powder 31a. The weight ratio of the coarse powder 31a to the fine powder 31b is 1: 1. A mixed powder of the coarse powder 31a and the fine powder 31b is formed into a layer having a thickness of 0.07 mm (FIG. 13 (a)), and after a vibration step (FIG. 13 (b)), the fine powder 31b is reduced to a thickness of 0 mm. .03 mm [FIG.
3 (c)]. Finally, a powder material layer 36 having a thickness of 0.1 mm was obtained. [Simultaneous Melting of Powders Having Different Melting Points] In the embodiment shown in FIG. 14, the fine powder 31b and the coarse powder 31a are combined, and the melting points of both powders are differentiated.

【0056】具体的には、細かい粉末31bの材料とし
て、粗い粉末31aの材料よりも融点が高い材料を用い
る。2種類の粉末31a、31bが混在する粉末材料層
36を形成し、所定の加振工程や加圧工程を終えたあ
と、レーザ光50を照射する。レーザ光50が照射され
たときに、粉末30の材質が同じであれば、熱容量の小
さな細かい粉末のほうが、熱容量の大きな粗い粉末より
も、加熱昇温され易く速やかに溶融する。
Specifically, a material having a higher melting point than the material of the coarse powder 31a is used as the material of the fine powder 31b. A powder material layer 36 in which two types of powders 31a and 31b are mixed is formed, and after a predetermined vibrating step and a pressing step are completed, a laser beam 50 is irradiated. When the powder 30 is irradiated with the laser beam 50 and the material of the powder 30 is the same, the fine powder having a small heat capacity is easily heated and melted more quickly than the coarse powder having a large heat capacity and is quickly melted.

【0057】粉末材料層36の細かい粉末31bと粗い
粉末31aとに同時にレーザ光50が照射されたときに
は、細かい粉末31bのほうがはやく加熱昇温され、粗
い粉末31aの加熱昇温は遅れることになる。しかし、
細かい粉末31aは融点が高いため、粗い粉末31bに
比べて高い温度になるまで溶融は開始されない。すなわ
ち、加熱昇温の速い細かい粉末31bが高い溶融温度に
到達するのと、加熱昇温が遅い粗い粉末31aが低い溶
融温度に到達するのとが、同じタイミングになる。
When the fine powder 31b and the coarse powder 31a of the powder material layer 36 are simultaneously irradiated with the laser beam 50, the fine powder 31b is heated and heated more quickly, and the heating and heating of the coarse powder 31a are delayed. . But,
Since the fine powder 31a has a high melting point, melting is not started until the temperature becomes higher than that of the coarse powder 31b. That is, the same timing is reached when the fine powder 31b with a fast heating rise reaches a high melting temperature and the coarse powder 31a with a slow heating rise reaches a low melting temperature.

【0058】その結果、細かい粉末31bと粗い粉末3
1aとが同時に溶融して一体化され、両者が一体的に溶
融した硬化層32が形成される。細かい粉末31bと粗
い粉末31aの具体例を示す。粗い粉末31aとして平
均粒径30μmのリン銅、細かい粉末31bとして平均
粒径5〜10μmのニッケルを用いる。両者の配合割合
は重量比1:1で組み合わせる。上記同様にして硬化層
32を形成したところ、両方の材料が均等に溶融して一
体化された硬化層32が得られた。
As a result, the fine powder 31b and the coarse powder 3
1a are simultaneously melted and integrated to form a cured layer 32 in which both are integrally melted. Specific examples of the fine powder 31b and the coarse powder 31a will be described. Phosphor copper having an average particle size of 30 μm is used as the coarse powder 31a, and nickel having an average particle size of 5 to 10 μm is used as the fine powder 31b. The two components are combined in a weight ratio of 1: 1. When the cured layer 32 was formed in the same manner as above, a cured layer 32 in which both materials were uniformly melted and integrated was obtained.

【0059】粗い粉末31aとして、リン銅の代わりに
銅、青銅を用いることもできる。細かい粉末31aとし
て、ニッケルの代わりに鉄を用いることもできる。前記
実施形態では、レーザ光50の照射時に、2種類の粉末
31a、31bが同時に溶融するので、レーザ光50の
エネルギを効率的に利用でき、最小限のエネルギで2種
類の粉末31a、31bが均等に溶融して合金化した硬
化層32が得られる。その結果、硬化層32の材質にバ
ラツキが生じることによる反りや変形あるいは応力の発
生を最小限に抑えることができ、造形物の寸法精度が向
上する。 〔一部粉末のみの溶融〕図15に示す実施形態は、前記
実施形態とは異なり、細かい粉末31bの融点が、粗い
粉末31aの融点よりも低い条件で2種類の粉末を組み
合わせる。
As the coarse powder 31a, copper or bronze can be used instead of phosphor copper. Iron can be used instead of nickel as the fine powder 31a. In the above-described embodiment, the two types of powders 31a and 31b are simultaneously melted at the time of irradiation with the laser beam 50, so that the energy of the laser beam 50 can be used efficiently and the two types of powders 31a and 31b can be used with minimum energy. A hardened layer 32 that is uniformly melted and alloyed is obtained. As a result, it is possible to minimize the occurrence of warpage, deformation, or stress due to variations in the material of the hardened layer 32, thereby improving the dimensional accuracy of the modeled object. [Melting of Partial Powder Only] Unlike the previous embodiment, the embodiment shown in FIG. 15 combines two types of powder under the condition that the melting point of the fine powder 31b is lower than the melting point of the coarse powder 31a.

【0060】2種類の粉末31a、31bが混在する粉
末材料層36を形成し、ここにレーザ光50を照射する
のは前記実施形態と同じである。レーザ光50は、熱容
量が小さく融点も低い細かい粉末31bを迅速に加熱昇
温して溶融させる。この段階では、熱容量が大きく融点
が高い粗い粉末31aは、それほど加熱昇温されず融点
も高いので、ほとんど溶融しない。
The formation of the powder material layer 36 in which the two types of powders 31a and 31b are mixed and the irradiation of the laser beam 50 thereto is the same as in the above embodiment. The laser light 50 quickly heats and melts the fine powder 31b having a small heat capacity and a low melting point. At this stage, the coarse powder 31a having a large heat capacity and a high melting point is hardly melted because it is not heated so much and has a high melting point.

【0061】その結果、細かい粉末31bの溶融した材
料32bが、粉体状のままの粗い粉末31a同士の隙間
を埋めて互いに接合させて、全体が一体化された硬化層
32を形成することになる。溶融材料32bが接着剤あ
るいはロウ材のような機能を果たすことになる。粗い粉
末31aは、元の形態を保ったままであるか表面の一部
のみが溶融したり軟化したりして溶融材料32bとの接
合性を高めることになる。硬化層32は、両方の材料が
溶融混合された合金状態ではなく、粗い粉末31aを溶
融材料32aで接合した状態である。
As a result, the molten material 32b of the fine powder 31b fills the gaps between the coarse powders 31a as they are and joins them together to form the hardened layer 32 integrated as a whole. Become. The molten material 32b functions like an adhesive or a brazing material. The coarse powder 31a keeps its original form or only a part of the surface is melted or softened, thereby improving the bonding property with the molten material 32b. The hardened layer 32 is not in an alloy state in which both materials are melt-mixed, but in a state in which a coarse powder 31a is joined by a molten material 32a.

【0062】上記実施形態では、レーザ光50のエネル
ギは、溶融し易い細かい粉末31bを溶融させるだけの
容量があればよいので、粉末材料層36の全体を溶融さ
せるのに比べて、エネルギ消費が少なくなり、処理時間
も短くて済む。熱による反り変形や熱応力も少なくなる
ので、形成される硬化物32の寸法精度も向上する。細
かい粉末31bと粗い粉末31aの具体例を示す。粗い
粉末31aとして平均粒径30μmのニッケルと鉄の混
合粉末を用いる。細かい粉末31bとして平均粒径5〜
10μmのリン銅を用いる。3者の配合割合は、ニッケ
ル:鉄:リン銅=20:20:60(重量比)にする。
上記同様にして硬化層32を形成したところ、ニッケル
および鉄からなる粗い粉末31aが、リン銅からなる溶
融材料32bで一体的に接合された硬化層32が得られ
た。
In the above embodiment, the energy of the laser beam 50 needs only to have a capacity enough to melt the fine powder 31b which is easy to melt, so that the energy consumption is lower than that of melting the entire powder material layer 36. Less processing time. Since warpage and thermal stress due to heat are reduced, the dimensional accuracy of the cured product 32 to be formed is also improved. Specific examples of the fine powder 31b and the coarse powder 31a will be described. A mixed powder of nickel and iron having an average particle diameter of 30 μm is used as the coarse powder 31a. Average particle size 5 as fine powder 31b
10 μm phosphor copper is used. The mixing ratio of the three is nickel: iron: phosphorus copper = 20: 20: 60 (weight ratio).
When the hardened layer 32 was formed in the same manner as above, a hardened layer 32 was obtained in which the coarse powder 31a made of nickel and iron was integrally joined with the molten material 32b made of phosphor copper.

【0063】細かい粉末31bとして、リン銅の代わり
に青銅を用いても同様の機能が果たせる。 〔レーザ光の照射環境〕図16に示す実施形態は、粉末
材料層36にレーザ光50を照射して硬化層32を形成
する工程の雰囲気環境を制御する。
The same function can be achieved by using bronze instead of phosphorous copper as the fine powder 31b. [Laser Light Irradiation Environment] In the embodiment shown in FIG. 16, the atmosphere environment in the step of forming the hardened layer 32 by irradiating the powder material layer 36 with the laser light 50 is controlled.

【0064】造形枠10などの装置全体を、内部雰囲気
を制御できる環境室70に収容しておき、環境室70の
外部から、ポンプなどの手段で所望の雰囲気ガスを供給
して、内部の空気を追い出し、環境室70の雰囲気を調
整する。環境室70を窒素ガスなどの不活性ガス雰囲気
にすると、粉末材料層36にレーサ光50が照射されて
粉末30が焼結する際の酸化が防止される。その結果、
空気中で焼結した場合よりも造形物の強度が向上する。
窒素ガスの代わりに、その他の不活性ガスを含む非酸化
性ガスを用いても同様の機能が発揮できる。
The entire apparatus such as the molding frame 10 is housed in an environment chamber 70 in which the internal atmosphere can be controlled, and a desired atmosphere gas is supplied from outside of the environment chamber 70 by means of a pump or the like, and the internal air is supplied. To adjust the atmosphere of the environment chamber 70. When the environment chamber 70 is set in an inert gas atmosphere such as a nitrogen gas atmosphere, the powder material layer 36 is irradiated with the laser light 50 to prevent oxidation when the powder 30 is sintered. as a result,
The strength of the modeled object is improved as compared with the case of sintering in air.
The same function can be exhibited by using a non-oxidizing gas containing another inert gas instead of the nitrogen gas.

【0065】環境室70を水素ガスなどの還元性ガス雰
囲気にすると、粉末30の表面に吸着している酸素分を
還元することができる。その結果、不活性ガスを用いた
場合よりもさらに酸化の防止機能が高まり、形成される
造形物の強度を向上させることができる。環境室70の
圧力を、環境室70の外部に対して正圧に維持すること
ができる。具体的には、外部の大気圧に対して5kgf/cm
2 程度高い圧力に維持することができる。
When the environment chamber 70 is set in a reducing gas atmosphere such as hydrogen gas, oxygen adsorbed on the surface of the powder 30 can be reduced. As a result, the function of preventing oxidation is further enhanced as compared with the case where the inert gas is used, and the strength of the formed object can be improved. The pressure in the environment chamber 70 can be maintained at a positive pressure with respect to the outside of the environment chamber 70. Specifically, 5 kgf / cm
It can be maintained at a pressure about 2 higher.

【0066】レーザ光50を照射して粉末30を硬化さ
せる際の雰囲気圧力が高いと、粉末30の沸点が上昇
し、焼結過程で発生する金属蒸気などの蒸発成分を低減
できる。その結果、焼結後の強度が向上する。蒸発成分
が低減できれば、レーザ光50の照射経路に配置される
集光レンズ等の汚染が少なくなる。レーザ光50の照射
環境を正圧に維持するのは、環境雰囲気が空気の場合に
も有効であるが、前記した非酸化性ガス雰囲気の場合に
は、非酸化性ガスが環境室70の外部に漏れても、圧力
の低い外部の大気は環境室70側に侵入し難く、大気に
よる粉末30の酸化が確実に阻止できる。 〔移動型加圧装置〕図17に示す実施形態は、前記した
加圧板40の代わりに移動型の加圧装置を用いる。
When the atmosphere pressure at the time of irradiating the laser beam 50 to cure the powder 30 is high, the boiling point of the powder 30 rises, and the evaporation components such as metal vapor generated in the sintering process can be reduced. As a result, the strength after sintering is improved. If the evaporation component can be reduced, the contamination of the condenser lens and the like arranged on the irradiation path of the laser beam 50 can be reduced. Maintaining the irradiation environment of the laser beam 50 at a positive pressure is effective even when the environmental atmosphere is air, but in the case of the non-oxidizing gas atmosphere, the non-oxidizing gas is , It is difficult for the outside air having a low pressure to enter the environment chamber 70 side, and the oxidation of the powder 30 by the air can be reliably prevented. [Moveable Pressing Apparatus] In the embodiment shown in FIG. 17, a moving pressurizing apparatus is used in place of the above-described pressurizing plate 40.

【0067】移動装置80は、造形枠10の上方を水平
方向に移動自在に設置されている。移動装置80の進行
方向の先端側には、昇降自在な加圧ブロック48を備え
ている。加圧ブロック48は、平坦な下面を粉末材料層
36に上方から押圧することで、粉末材料層36を加圧
する。加圧装置80を水平移動させながら加圧ブロック
48を上下運動させることで、粉末材料層36の表面全
体を加圧することができる。加圧ブロック48の昇降機
構として、ピストンシリンダ機構やモータ駆動のカム機
構などが採用できる。
The moving device 80 is installed movably in the horizontal direction above the modeling frame 10. A pressure block 48 that can move up and down is provided on the distal end side of the moving device 80 in the traveling direction. The pressing block 48 presses the powder material layer 36 by pressing the flat lower surface against the powder material layer 36 from above. By moving the pressing block 48 up and down while moving the pressing device 80 horizontally, the entire surface of the powder material layer 36 can be pressed. As the elevating mechanism of the pressurizing block 48, a piston cylinder mechanism, a motor driven cam mechanism, or the like can be employed.

【0068】移動装置80あるいは加圧ブロック48に
加振機構を内蔵させておけば、加圧ブロック48で粉末
材料層36に振動を加えることもできる。移動装置80
の進行方向に対して後端側には規制板16を備えてい
る。規制板16の下端は、加圧ブロック48の最下降位
置よりも低く、造形枠10の上端と同じ位置に設定され
ている。移動装置80が水平移動して加圧ブロック48
による粉末材料層36の加圧が行われたあと、つづいて
通過する規制板16で、粉末材料層36の高さ位置が設
定され、余分の粉体30は排除される。その結果、造形
枠10の上端位置と同じ高さの粉末材料層36が形成さ
れる。
If a vibrating mechanism is built in the moving device 80 or the pressure block 48, vibration can be applied to the powder material layer 36 by the pressure block 48. Moving device 80
A regulating plate 16 is provided on the rear end side with respect to the traveling direction. The lower end of the regulating plate 16 is lower than the lowest position of the pressing block 48 and is set at the same position as the upper end of the modeling frame 10. The moving device 80 moves horizontally and the pressing block 48
After the pressurization of the powder material layer 36 is performed, the height position of the powder material layer 36 is set by the regulating plate 16 which subsequently passes, and the extra powder 30 is removed. As a result, a powder material layer 36 having the same height as the upper end position of the modeling frame 10 is formed.

【0069】上記実施形態では、移動装置80の作動に
よって、加圧工程とその後の高さ規制工程とが連続的に
行え、作業の効率化および装置の簡略化が図れる。移動
装置80に、粉末30の供給機構を備えておけば、移動
装置80の移動に伴って、粉末30の供給工程、加振工
程、加圧工程および高さ規制工程を連続的に一連の作業
として実行することもできる。
In the above embodiment, the pressurizing step and the subsequent height regulating step can be performed continuously by the operation of the moving device 80, so that the working efficiency and the apparatus can be simplified. If the moving device 80 is provided with a supply mechanism for the powder 30, the supply process, the vibration process, the pressurizing process, and the height regulating process of the powder 30 are continuously performed as the moving device 80 moves. It can also be executed as

【0070】[0070]

【発明の効果】本発明にかかる三次元形状造形物の製造
方法では、造形領域に供給された粉末材料に、振動を加
える工程(b) と圧力を加える工程(c) とを行うことで、
粉末材料層が隙間の少ない緻密な状態になり、その後に
光ビームを照射する工程(d) を行うことで、最終的に得
られる三次元形状造形物も緻密なものとなる。
According to the method for manufacturing a three-dimensionally shaped object according to the present invention, the step (b) of applying vibration and the step (c) of applying pressure to the powder material supplied to the modeling area are performed.
By the step (d) of irradiating a light beam after the powder material layer is in a dense state with few gaps, the finally obtained three-dimensionally shaped object is also dense.

【0071】工程(d) で、造形領域を非酸化性雰囲気に
すれば、粉末材料の酸化が防止できる。造形領域を外部
空間に対して正圧に維持すれば、外気が造形領域に侵入
して粉末材料の焼成を阻害するのを防止できる。工程
(b) で、造形領域を構成する部材を振動させたり、造形
領域の開放された表面に加振部材を配置し、加振部材が
発生する振動を粉末材料に加えたり、超音波振動子が発
生する振動を粉末材料に加えたり、偏心回転体が発生す
る振動を粉末材料に加えたりすれば、効率的に振動を与
えることができる。
In step (d), if the modeling region is set to a non-oxidizing atmosphere, the oxidation of the powder material can be prevented. By maintaining the modeling region at a positive pressure with respect to the external space, it is possible to prevent the outside air from entering the modeling region and hindering the firing of the powder material. Process
In (b), the members constituting the modeling region are vibrated, the vibration member is arranged on the open surface of the modeling region, the vibration generated by the vibration member is applied to the powder material, or the ultrasonic vibrator is used. When the generated vibration is applied to the powder material or the vibration generated by the eccentric rotator is applied to the powder material, the vibration can be efficiently given.

【0072】工程(c) で、造形領域の開放された表面に
加圧部材を配置し、加圧部材で粉末材料を押圧して圧力
を加えれば、効率的に圧力が加えられる。工程(c) で、
移動する加圧部材で圧力を加える工程(c-1) と、高さ規
制部材で粉末材料の高さ位置を規制する工程(c-2) とを
含んでいれば、粉末材料層に対する効率的な加圧と高さ
規制が行える。
In the step (c), a pressure member is arranged on the open surface of the molding area, and the pressure is applied by pressing the powder material with the pressure member, whereby the pressure is efficiently applied. In step (c),
If the step (c-1) of applying pressure with the moving pressing member and the step (c-2) of regulating the height position of the powder material with the height regulating member are included, efficient Pressure and height regulation.

【0073】工程(c) で、圧力センサの検知情報に基づ
いて圧力を制御すれば、適切な圧力で効率的な加圧が行
える。工程(a) で、粒径の異なる複数種類の粉末材料を
供給すれば、得られる造形物の特性に変化を与えること
ができる。複数種類の粉末材料のうちの1種類が、平均
粒径5〜10μmの比較的に細かい粉末材料であり、別
の1種類が、平均粒径20〜40μmの比較的に粗い粉
末材料であれば、両者の特性を組み合わせて発揮させる
ことができる。
In step (c), if the pressure is controlled based on the information detected by the pressure sensor, efficient pressurization can be performed at an appropriate pressure. If a plurality of types of powder materials having different particle sizes are supplied in the step (a), the characteristics of the obtained molded article can be changed. If one of the plurality of types of powder material is a relatively fine powder material having an average particle size of 5 to 10 μm and another is a relatively coarse powder material having an average particle size of 20 to 40 μm, , And can exhibit both characteristics in combination.

【0074】工程(a) が、粗い粉末材料の供給工程(a-
1) と、工程(a-1) の後で細かい粉末材料の供給工程(a-
2) とを含んでいれば、両者の特性を良好に組み合わせ
ることができる。工程(a) が、粗い粉末材料と細かい粉
末材料との混合粉末の供給工程(a-3) と、工程(a-3) の
後で細かい粉末材料の供給工程(a-4) とを含んでいれ
ば、粉末材料層の表面を緻密で平滑にできる。
Step (a) is a step of supplying a coarse powder material (a-
1) and after the step (a-1), the step of supplying the fine powder material (a-
2) If both are included, the characteristics of both can be favorably combined. The step (a) includes a step (a-3) of supplying a mixed powder of a coarse powder material and a fine powder material, and a step (a-4) of supplying a fine powder material after the step (a-3). If so, the surface of the powder material layer can be made dense and smooth.

【0075】工程(a) で、粒径と材質が異なる複数種類
の粉末材料を供給したり、特に、複数種類の粉末材料の
うちの1種類が、銅、青銅およびリン銅からなる群から
選ばれる何れか1種以上の材料からなる比較的に粒径の
粗い粉末材料であり、別の1種類が、鉄、ニッケルから
なる群から選ばれる何れか1種以上の材料からなる比較
的に粒径の細かい粉末材料であれば、粒径と材質の違い
による特性の組み合わせ効果が発揮できる。
In the step (a), a plurality of powder materials having different particle diameters and materials are supplied, or one of the plurality of powder materials is selected from the group consisting of copper, bronze and phosphorous copper. Is a relatively coarse powder material composed of at least one material selected from the group consisting of iron and nickel, and the other is a relatively powder material composed of at least one material selected from the group consisting of iron and nickel. If the powder material has a small diameter, the effect of combining the characteristics depending on the difference between the particle size and the material can be exhibited.

【0076】複数種類の粉末材料のうちの1種類が、比
較的に粒径が細かく、銅、青銅およびリン銅などの融点
が低い粉末材料であり、別の1種類が、比較的に粒径が
粗く鉄、ニッケルなどの融点が高い粉末材料であれば、
溶融した細かく低融点の粉末材料が、溶融しない粗く高
融点の粉末材料の隙間を埋めて接合一体化された造形物
が得られる。
One of a plurality of types of powder materials is a powder material having a relatively small particle size and a low melting point such as copper, bronze, and phosphorous copper, and another type is a powder material having a relatively small particle size. If the powder material is coarse and has a high melting point such as iron or nickel,
A molded object in which the molten fine and low melting point powder material fills the gap between the coarse and high melting point powder material that does not melt and is joined and integrated is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態となる製造工程のうち最初
の段階を表す模式的工程図
FIG. 1 is a schematic process diagram showing an initial stage in a manufacturing process according to an embodiment of the present invention.

【図2】 粉末供給工程の模式的工程図FIG. 2 is a schematic process diagram of a powder supply process.

【図3】 加振工程の模式的工程図FIG. 3 is a schematic process diagram of a vibration process.

【図4】 加圧工程の模式的工程図FIG. 4 is a schematic process diagram of a pressurizing process.

【図5】 高さ規制工程の模式的工程図FIG. 5 is a schematic process diagram of a height regulation process.

【図6】 レーザ照射工程の模式的工程図FIG. 6 is a schematic process diagram of a laser irradiation process.

【図7】 粉末材料層の形態変化を表す模式図FIG. 7 is a schematic view showing a morphological change of a powder material layer.

【図8】 別の実施形態を表す断面図FIG. 8 is a cross-sectional view illustrating another embodiment.

【図9】 偏心回転体の構造を表す正面図(a) および側
面図(b)
FIG. 9 is a front view (a) and a side view (b) showing the structure of the eccentric rotator.

【図10】 別の実施形態を表す断面図FIG. 10 is a cross-sectional view illustrating another embodiment.

【図11】 別の実施形態を表す断面図FIG. 11 is a cross-sectional view illustrating another embodiment.

【図12】 別の実施形態を段階的に表す模式的断面図FIG. 12 is a schematic sectional view showing another embodiment step by step.

【図13】 別の実施形態を段階的に表す模式的断面図FIG. 13 is a schematic sectional view showing another embodiment stepwise.

【図14】 別の実施形態を段階的に表す模式的断面図FIG. 14 is a schematic sectional view showing another embodiment step by step.

【図15】 別の実施形態を段階的に表す模式的断面図FIG. 15 is a schematic sectional view showing another embodiment step by step.

【図16】 別の実施形態を表す断面図FIG. 16 is a cross-sectional view illustrating another embodiment.

【図17】 別の実施形態を表す断面図FIG. 17 is a cross-sectional view illustrating another embodiment.

【符号の説明】[Explanation of symbols]

10 造形枠 12 造形台 14 載置板 16 規制板 20 加振部 22 加振装置 30 粉末材料 31、31a、31b 粉末 32 硬化層 34 未硬化粉末 36 粉末材料層 40 加圧板 42 圧力センサ 46 透明板 50 レーザ光 DESCRIPTION OF SYMBOLS 10 Modeling frame 12 Modeling board 14 Mounting plate 16 Regulatory plate 20 Vibration part 22 Vibration device 30 Powder material 31, 31a, 31b Powder 32 Hardened layer 34 Unhardened powder 36 Powder material layer 40 Pressure plate 42 Pressure sensor 46 Pressure sensor 46 Transparent plate 50 laser light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 待田 精造 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 阿部 諭 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 浦田 昇 大阪府門真市大字門真1048番地 松下電工 株式会社内 Fターム(参考) 4F213 AA44 AB16 AC04 WA25 WB01 WK01 WK05 WL03 WL12 WL24 WL26 WL34 WL67 WL96 4K018 AA04 AA08 AA29 BA02 BA04 BA13 BB04 CA05 EA21 HA08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seiko Machida 1048 Kazuma Kadoma, Osaka Pref.Matsushita Electric Works, Ltd. 72) Inventor Noboru Urata 1048 Kazuma Kadoma, Kazuma, Osaka Pref.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】無機質あるいは有機質の粉末材料に光ビー
ムを照射して硬化層を形成し、この硬化層を積み重ねて
所望の三次元形状造形物を製造する方法において、 光ビームを照射して硬化層を形成する造形領域に粉末材
料を供給する工程(a)と、 前記造形領域に供給された粉末材料に振動を加える工程
(b) と、 前記造形領域に供給された粉末材料に圧力を加える工程
(c) と、 工程(b) および工程(c) の後、前記粉末材料に光ビーム
を照射して硬化層を形成する工程(d) とを含む三次元形
状造形物の製造方法。
1. A method for irradiating a light beam to an inorganic or organic powder material to form a hardened layer, and stacking the hardened layers to produce a desired three-dimensional shaped object. (A) supplying a powder material to a modeling region for forming a layer, and applying a vibration to the powder material supplied to the modeling region.
(b) and a step of applying pressure to the powder material supplied to the modeling region
(c) and, after the step (b) and the step (c), a step (d) of irradiating the powder material with a light beam to form a hardened layer.
【請求項2】請求項1の方法において、 前記工程(d) が、前記造形領域を非酸化性雰囲気にする
三次元形状造形物の製造方法。
2. The method according to claim 1, wherein in the step (d), the three-dimensionally shaped object is formed in a non-oxidizing atmosphere in the shaping region.
【請求項3】請求項2の方法において、 前記造形領域を外部空間に対して正圧に維持する三次元
形状造形物の製造方法。
3. The method according to claim 2, wherein the molding region is maintained at a positive pressure with respect to an external space.
【請求項4】請求項1〜3の方法において、 前記工程(b) が、前記造形領域を構成する部材を振動さ
せて前記粉末材料に振動を加える三次元形状造形物の製
造方法。
4. The method according to claim 1, wherein said step (b) includes: vibrating a member constituting said modeling region to apply vibration to said powder material.
【請求項5】請求項1〜4の方法において、 前記工程(b) が、前記造形領域の開放された表面に加振
部材を配置し、加振部材が発生する振動を前記粉末材料
に加える三次元形状造形物の製造方法。
5. The method according to claim 1, wherein said step (b) includes disposing a vibrating member on an open surface of said modeling area, and applying vibration generated by said vibrating member to said powder material. A method for producing a three-dimensionally shaped object.
【請求項6】請求項1〜5の方法において、 前記工程(b) が、超音波振動子が発生する振動を前記粉
末材料に加える三次元形状造形物の製造方法。
6. The method according to claim 1, wherein said step (b) includes applying vibration generated by an ultrasonic vibrator to said powder material.
【請求項7】請求項1〜6の方法において、 前記工程(b) が、偏心回転体が発生する振動を前記粉末
材料に加える三次元形状造形物の製造方法。
7. The method according to claim 1, wherein said step (b) includes applying vibration generated by an eccentric rotator to said powder material.
【請求項8】請求項1〜7の方法において、 前記工程(c) が、前記造形領域の開放された表面に加圧
部材を配置し、加圧部材で前記粉末材料を押圧して圧力
を加える三次元形状造形物の製造方法。
8. The method according to claim 1, wherein in the step (c), a pressing member is disposed on an open surface of the modeling area, and the pressing member presses the powder material to reduce pressure. Manufacturing method of the three-dimensional shaped object to be added.
【請求項9】請求項1〜8の方法において、 前記工程(c) が、 前記造形領域の開放された表面に配置された加圧部材
を、前記表面に沿って移動させながら前記粉末材料を押
圧して圧力を加える工程(c-1) と、 前記加圧部材とともに移動し、加圧部材の後方に配置さ
れた高さ規制部材で前記粉末材料の高さ位置を規制する
工程(c-2) とを含む三次元形状造形物の製造方法。
9. The method according to claim 1, wherein the step (c) comprises: moving the pressing material disposed on the open surface of the modeling area along the surface while moving the powder material. Pressing and applying pressure (c-1), and moving with the pressurizing member, and regulating the height position of the powder material with a height regulating member disposed behind the pressurizing member (c- 2) A method for producing a three-dimensionally shaped object including:
【請求項10】請求項1〜9の方法において、 前記工程(c) が、圧力センサで前記粉末材料に生じる圧
力を検知し、検知された圧力情報に基づいて粉末材料に
加える圧力を制御する三次元形状造形物の製造方法。
10. The method according to claim 1, wherein said step (c) comprises detecting a pressure generated in said powder material by a pressure sensor and controlling a pressure applied to said powder material based on the detected pressure information. A method for producing a three-dimensionally shaped object.
【請求項11】請求項1〜10の方法において、 前記工程(a) が、粒径の異なる複数種類の粉末材料を供
給する三次元形状造形物の製造方法。
11. The method according to claim 1, wherein said step (a) comprises supplying a plurality of types of powder materials having different particle diameters.
【請求項12】請求項11の方法において、 複数種類の粉末材料のうちの1種類が、平均粒径5〜1
0μmの比較的に細かい粉末材料であり、別の1種類
が、平均粒径20〜40μmの比較的に粗い粉末材料で
ある三次元形状造形物の製造方法。
12. The method according to claim 11, wherein one of the plurality of types of powdery material has an average particle size of 5-1.
A method for producing a three-dimensionally shaped object, which is a relatively fine powder material of 0 μm and another type is a relatively coarse powder material having an average particle diameter of 20 to 40 μm.
【請求項13】請求項11または12の方法において、 前記工程(a) が、比較的に粒径の粗い粉末材料を供給す
る工程(a-1) と、工程(a-1) の後で比較的に粒径の細か
い粉末材料を供給する工程(a-2) とを含む三次元形状造
形物の製造方法。
13. The method according to claim 11, wherein said step (a) comprises the steps of: (a-1) supplying a powder material having a relatively coarse particle size; and (c) after the step (a-1). Supplying a powder material having a relatively small particle size (a-2).
【請求項14】請求項11〜13の方法において、 前記工程(a) が、比較的に粒径の粗い粉末材料と比較的
に粒径の細かい粉末材料との混合粉末を供給する工程(a
-3) と、工程(a-3) の後で比較的に粒径の細かい粉末材
料を供給する工程(a-4) とを含む三次元形状造形物の製
造方法。
14. The method according to claim 11, wherein said step (a) comprises the step of supplying a mixed powder of a powder material having a relatively large particle size and a powder material having a relatively small particle size.
-3) and a step (a-4) of supplying a powder material having a relatively fine particle diameter after the step (a-3).
【請求項15】請求項11〜14の方法において、 前記工程(a) が、粒径と材質が異なる複数種類の粉末材
料を供給する三次元形状造形物の製造方法。
15. The method according to claim 11, wherein said step (a) comprises supplying a plurality of types of powder materials having different particle sizes and materials.
【請求項16】請求項15の方法において、 複数種類の粉末材料のうちの1種類が、銅、青銅および
リン銅からなる群から選ばれる何れか1種以上の材料か
らなる比較的に粒径の粗い粉末材料であり、別の1種類
が、鉄、ニッケルからなる群から選ばれる何れか1種以
上の材料からなる比較的に粒径の細かい粉末材料である
三次元形状造形物の製造方法。
16. The method according to claim 15, wherein one of the plurality of types of powdered material is made of at least one material selected from the group consisting of copper, bronze and phosphorous copper. For producing a three-dimensionally shaped object, which is a powder material having a relatively small particle diameter, and another one of which is a powder material having a relatively small particle diameter, which is made of at least one material selected from the group consisting of iron and nickel. .
【請求項17】請求項11の方法において、 複数種類の粉末材料のうちの1種類が、比較的に粒径が
細かく融点が低い粉末材料であり、別の1種類が、比較
的に粒径が粗く融点が高い粉末材料である三次元形状造
形物の製造方法。
17. The method of claim 11, wherein one of the plurality of powder materials is a powder material having a relatively small particle size and a low melting point, and the other is a powder material having a relatively small particle size. The method for producing a three-dimensionally shaped object which is a powder material having a coarse and high melting point.
【請求項18】請求項17の方法において、 比較的に粒径が細かく融点が低い粉末材料が、銅、青銅
およびリン銅からなる群から選ばれる何れか1種以上の
材料であり、比較的に粒径が粗く融点が高い粉末材料
が、鉄、ニッケルからなる群から選ばれる何れか1種以
上の材料である三次元形状造形物の製造方法。
18. The method according to claim 17, wherein the powder material having a relatively small particle size and a low melting point is at least one material selected from the group consisting of copper, bronze and phosphorous copper. A method for producing a three-dimensionally shaped object, wherein the powder material having a coarse particle diameter and a high melting point is at least one material selected from the group consisting of iron and nickel.
JP14677799A 1999-05-26 1999-05-26 Manufacturing method of three-dimensional shaped object Expired - Lifetime JP3551838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14677799A JP3551838B2 (en) 1999-05-26 1999-05-26 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14677799A JP3551838B2 (en) 1999-05-26 1999-05-26 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2000336403A true JP2000336403A (en) 2000-12-05
JP3551838B2 JP3551838B2 (en) 2004-08-11

Family

ID=15415308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14677799A Expired - Lifetime JP3551838B2 (en) 1999-05-26 1999-05-26 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP3551838B2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249804A (en) * 2001-02-22 2002-09-06 Hitachi Ltd Method for molding three-dimensional product
JP2004175102A (en) * 2002-11-28 2004-06-24 Degussa Ag Sintering powder for selective laser sintering, producing method for the powder, its production method, and molded body
JP2005067197A (en) * 2003-08-25 2005-03-17 Hewlett-Packard Development Co Lp Method and system for solid freeform fabrication using non-reactive powder
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder
JP2006124732A (en) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd Apparatus for manufacturing article with three-dimensional shape
JP2009512579A (en) * 2006-05-18 2009-03-26 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for producing a three-dimensional object in a layer direction from a powdery forming material
JP2010047813A (en) * 2008-08-22 2010-03-04 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped structure, apparatus for producing the same, and three-dimensionally shaped structure
JP2011504819A (en) * 2007-07-04 2011-02-17 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Processes and devices for producing 3D objects
JP2012024395A (en) * 2010-07-26 2012-02-09 Medeia Kk Method and system for manufacturing dental prosthesis, dental prosthesis, and apparatus for manufacturing dental prosthesis
JP2013505355A (en) * 2009-09-17 2013-02-14 フェニックス・システムズ Method and associated equipment for producing an object by laser treatment from at least two different powder materials
BE1021001B1 (en) * 2013-05-13 2014-12-02 N V Quicktools4P Com GENERATOR OF THREE-DIMENSIONAL OBJECTS.
EP2851145A1 (en) * 2013-09-18 2015-03-25 Siemens Aktiengesellschaft Device for layered generation of components by means of a generative production method, method and component
JP2015076611A (en) * 2013-10-07 2015-04-20 ザ・ボーイング・カンパニーTheBoeing Company Ecological method for constructing circuit boards
WO2015112422A1 (en) 2014-01-22 2015-07-30 United Technologies Corporation Additive manufacturing system and method of operation
JP2015147984A (en) * 2014-02-07 2015-08-20 セイコーエプソン株式会社 Sintering and molding material, sintering and molding method, sintering and molding article and sintering and molding apparatus
WO2015151315A1 (en) * 2014-03-31 2015-10-08 株式会社 東芝 Device and method for manufacturing laminate molded object
JP2015227034A (en) * 2014-06-02 2015-12-17 株式会社リコー Liquid droplet discharging recording apparatus, liquid droplet discharging recording method, and program for controlling liquid droplet discharging recording apparatus
WO2016051801A1 (en) * 2014-10-01 2016-04-07 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensionally shaped molding
JP2016108667A (en) * 2014-12-05 2016-06-20 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Additive manufacture system with containment chamber and low pressure operating atmosphere
CN105705275A (en) * 2013-09-06 2016-06-22 阿卡姆有限公司 Powder distribution in additive manufacturing of three dimensional/articles
JP5982046B1 (en) * 2015-08-31 2016-08-31 株式会社ソディック Additive manufacturing equipment
JP5982047B1 (en) * 2015-08-31 2016-08-31 株式会社ソディック Additive manufacturing equipment
US20160368214A1 (en) * 2015-06-22 2016-12-22 Ricoh Company, Ltd. Method and apparatus for fabricating three-dimensional object
WO2016205758A1 (en) 2015-06-19 2016-12-22 Applied Materials, Inc. Material dispensing and compaction in additive manufacturing
JP2017007321A (en) * 2015-06-22 2017-01-12 株式会社リコー Three-dimensional shaping apparatus, three-dimensional shaping method, and program
WO2017006610A1 (en) * 2015-07-06 2017-01-12 株式会社日立製作所 Powder material, lamination-fabricated article, and method for manufacturing lamination-fabricated article
JP2017078214A (en) * 2015-10-21 2017-04-27 トヨタ自動車株式会社 Lamination molding apparatus
TWI580556B (en) * 2015-06-11 2017-05-01 財團法人國家實驗研究院 3d printing powder paving device and method thereof
EP3165304A1 (en) * 2015-11-04 2017-05-10 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
JP2017154411A (en) * 2016-03-03 2017-09-07 日本電気株式会社 Lamination molding apparatus and lamination molding method
EP3222381A3 (en) * 2016-03-22 2017-12-13 National Chung-Hsing University Additive manufacturing method and additive manufacturing machine
JP2017537199A (en) * 2015-02-12 2017-12-14 ▲華▼中科技大学Huazhong University Of Science And Technology 3D printing manufacturing method of short fiber reinforced thermosetting resin composite product
CN107666999A (en) * 2015-05-29 2018-02-06 飞利浦照明控股有限公司 3D printing apparatus and method
JP2018040053A (en) * 2016-08-23 2018-03-15 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for the lamination figurative production of at least one three-dimensional object
FR3056426A1 (en) * 2016-09-29 2018-03-30 Safran Aircraft Engines TOOLING FOR MANUFACTURING PARTS THROUGH SELECTIVE FUSION OR POWDER BED SELECTIVE SINK, AND ASSOCIATED METHOD
JP2018123381A (en) * 2017-02-01 2018-08-09 三菱重工業株式会社 Mixed powder containing two powders of different particle sizes
JP2018130835A (en) * 2017-02-13 2018-08-23 株式会社ノリタケカンパニーリミテド Powder for lamination molding
WO2018181275A1 (en) * 2017-03-31 2018-10-04 セイコーエプソン株式会社 Three-dimensional object production method
JP2018158470A (en) * 2017-03-22 2018-10-11 日本電気株式会社 Laminating modeling apparatus and laminating modeling method
CN108788142A (en) * 2017-04-26 2018-11-13 株式会社捷太格特 The manufacturing method and manufacturing device of moulder is laminated
CN108941545A (en) * 2017-05-18 2018-12-07 通用电气公司 Power filling method and equipment
JP2018197000A (en) * 2016-07-22 2018-12-13 株式会社リコー Resin powder for solid fabrication, device for manufacturing solid fabrication object, and method of manufacturing solid fabrication object
WO2018235213A1 (en) * 2017-06-21 2018-12-27 福田金属箔粉工業株式会社 Copper powder for layer molding, and layer molded product thereof
WO2019016874A1 (en) * 2017-07-18 2019-01-24 福田金属箔粉工業株式会社 Copper powder for additive manufacturing, and additive manufactured product
CN110065234A (en) * 2018-01-24 2019-07-30 Cl产权管理有限公司 Manufacture to adding type the load generation device of the powder module of the equipment of three-dimension object
JP2019135092A (en) * 2018-02-05 2019-08-15 株式会社リコー Manufacturing method of three-dimensional object and manufacturing apparatus of three-dimensional object
WO2021074796A1 (en) * 2019-10-15 2021-04-22 Ao Technology Ag Patterning device for the preparation of three-dimensional structures and method for the production thereof
US11214002B2 (en) * 2019-10-18 2022-01-04 Hamilton Sundstrand Corporation Additively manufacturing of amorphous structures
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
CN115338425A (en) * 2022-08-19 2022-11-15 西安铂力特增材技术股份有限公司 Complex shape part composite manufacturing method
EP3482866B1 (en) * 2017-11-08 2022-11-23 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Method using a laser for welding between two metallic materials or for sintering of powder(s), application to the production of bipolar plates for pemfc cells
US11633912B2 (en) 2019-08-23 2023-04-25 Canon Kabushiki Kaisha Additive manufacturing apparatuses with movable roll supports and controller for cutting edge of sheet member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104589659B (en) * 2015-02-10 2017-03-01 西安赛隆金属材料有限责任公司 A kind of 3D printing feed mechanism
US10696036B2 (en) * 2016-03-01 2020-06-30 Ricoh Company, Ltd. Apparatus and method of fabricating three-dimensional object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183530A (en) * 1989-09-05 1991-08-09 Univ Texas Syst Device and method for manufacturing part
JPH08294785A (en) * 1995-04-21 1996-11-12 Eos Gmbh Electro Optical Syst Method and equipment for manufacturing three-dimensional object
JP2620353B2 (en) * 1986-10-17 1997-06-11 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム Method of manufacturing parts by selective sintering
JPH10506151A (en) * 1994-09-21 1998-06-16 アクティエボラゲット エレクトロルクス A method for producing pieces with good dimensional accuracy by laser sintering
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620353B2 (en) * 1986-10-17 1997-06-11 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム Method of manufacturing parts by selective sintering
JPH03183530A (en) * 1989-09-05 1991-08-09 Univ Texas Syst Device and method for manufacturing part
JPH10506151A (en) * 1994-09-21 1998-06-16 アクティエボラゲット エレクトロルクス A method for producing pieces with good dimensional accuracy by laser sintering
JPH08294785A (en) * 1995-04-21 1996-11-12 Eos Gmbh Electro Optical Syst Method and equipment for manufacturing three-dimensional object
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249804A (en) * 2001-02-22 2002-09-06 Hitachi Ltd Method for molding three-dimensional product
US7070734B2 (en) 2002-07-12 2006-07-04 The Ex One Company Blended powder solid-supersolidus liquid phase sintering
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder
JP2004175102A (en) * 2002-11-28 2004-06-24 Degussa Ag Sintering powder for selective laser sintering, producing method for the powder, its production method, and molded body
JP2009107352A (en) * 2003-08-25 2009-05-21 Hewlett-Packard Development Co Lp Method and system for three-dimensional free form fabrication utilizing non-reactive powder
JP2005067197A (en) * 2003-08-25 2005-03-17 Hewlett-Packard Development Co Lp Method and system for solid freeform fabrication using non-reactive powder
JP2006124732A (en) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd Apparatus for manufacturing article with three-dimensional shape
JP2009512579A (en) * 2006-05-18 2009-03-26 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for producing a three-dimensional object in a layer direction from a powdery forming material
JP4742148B2 (en) * 2006-05-18 2011-08-10 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for producing a three-dimensional object in a layer direction from a powdery forming material
US8658078B2 (en) 2006-05-18 2014-02-25 Eos Gmbh Electro Optical Systems Device and method for a layerwise manufacturing of a three-dimensional object from a building material in powder form
US8845316B2 (en) 2007-07-04 2014-09-30 Envisiontec Gmbh Process and device for producing a three-dimensional object
US9067361B2 (en) 2007-07-04 2015-06-30 Envisiontec Gmbh Process and device for producing a three-dimensional object
JP2011504819A (en) * 2007-07-04 2011-02-17 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Processes and devices for producing 3D objects
US10220565B2 (en) 2007-07-04 2019-03-05 Envisiontec Gmbh Process and device for producing a three-dimensional object
JP2010047813A (en) * 2008-08-22 2010-03-04 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped structure, apparatus for producing the same, and three-dimensionally shaped structure
JP2013505355A (en) * 2009-09-17 2013-02-14 フェニックス・システムズ Method and associated equipment for producing an object by laser treatment from at least two different powder materials
US9498921B2 (en) 2009-09-17 2016-11-22 Phenix Systems Method for creating an object, by means of laser treatment, from at least two different powder materials, and corresponding facility
JP2012024395A (en) * 2010-07-26 2012-02-09 Medeia Kk Method and system for manufacturing dental prosthesis, dental prosthesis, and apparatus for manufacturing dental prosthesis
BE1021001B1 (en) * 2013-05-13 2014-12-02 N V Quicktools4P Com GENERATOR OF THREE-DIMENSIONAL OBJECTS.
JP2018009245A (en) * 2013-09-06 2018-01-18 ア−カム アーベー Powder distribution in additive manufacturing of three-dimensional articles
JP2016534234A (en) * 2013-09-06 2016-11-04 ア−カム アーベー Powder distribution in additive manufacturing of 3D articles
CN105705275A (en) * 2013-09-06 2016-06-22 阿卡姆有限公司 Powder distribution in additive manufacturing of three dimensional/articles
EP3041625A2 (en) * 2013-09-06 2016-07-13 Arcam Ab Powder distribution in additive manufacturing of three dimensional/articles
EP2851145A1 (en) * 2013-09-18 2015-03-25 Siemens Aktiengesellschaft Device for layered generation of components by means of a generative production method, method and component
JP2015076611A (en) * 2013-10-07 2015-04-20 ザ・ボーイング・カンパニーTheBoeing Company Ecological method for constructing circuit boards
WO2015112422A1 (en) 2014-01-22 2015-07-30 United Technologies Corporation Additive manufacturing system and method of operation
EP3096906A4 (en) * 2014-01-22 2017-03-08 United Technologies Corporation Additive manufacturing system and method of operation
US20160332371A1 (en) * 2014-01-22 2016-11-17 United Technologies Corporation Additive manufacturing system and method of operation
JP2015147984A (en) * 2014-02-07 2015-08-20 セイコーエプソン株式会社 Sintering and molding material, sintering and molding method, sintering and molding article and sintering and molding apparatus
US10259076B2 (en) * 2014-03-31 2019-04-16 Kabushiki Kaisha Toshiba Device for manufacturing layered object and method of manufacturing layered object
US20160288265A1 (en) * 2014-03-31 2016-10-06 Kabushiki Kaisha Toshiba Device for manufacturing layered object and method of manufacturing layered object
JP2015196252A (en) * 2014-03-31 2015-11-09 株式会社東芝 Apparatus and method for production of laminated molding
WO2015151315A1 (en) * 2014-03-31 2015-10-08 株式会社 東芝 Device and method for manufacturing laminate molded object
JP2015227034A (en) * 2014-06-02 2015-12-17 株式会社リコー Liquid droplet discharging recording apparatus, liquid droplet discharging recording method, and program for controlling liquid droplet discharging recording apparatus
CN107073819B (en) * 2014-10-01 2020-09-25 松下知识产权经营株式会社 Method for manufacturing three-dimensional shaped object
WO2016051801A1 (en) * 2014-10-01 2016-04-07 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensionally shaped molding
KR101913979B1 (en) * 2014-10-01 2018-10-31 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing three-dimensionally shaped molding
JPWO2016051801A1 (en) * 2014-10-01 2017-08-10 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
TWI596001B (en) * 2014-10-01 2017-08-21 松下知識產權經營股份有限公司 Method for producing three-dimensional shaped object
CN107073819A (en) * 2014-10-01 2017-08-18 松下知识产权经营株式会社 The manufacture method of three dimensional structure
JP2016108667A (en) * 2014-12-05 2016-06-20 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Additive manufacture system with containment chamber and low pressure operating atmosphere
JP2017537199A (en) * 2015-02-12 2017-12-14 ▲華▼中科技大学Huazhong University Of Science And Technology 3D printing manufacturing method of short fiber reinforced thermosetting resin composite product
CN107666999A (en) * 2015-05-29 2018-02-06 飞利浦照明控股有限公司 3D printing apparatus and method
CN107666999B (en) * 2015-05-29 2020-05-19 飞利浦照明控股有限公司 3D printing apparatus and method
TWI580556B (en) * 2015-06-11 2017-05-01 財團法人國家實驗研究院 3d printing powder paving device and method thereof
WO2016205758A1 (en) 2015-06-19 2016-12-22 Applied Materials, Inc. Material dispensing and compaction in additive manufacturing
US10780497B2 (en) 2015-06-19 2020-09-22 Applied Materials, Inc. Material dispensing and compaction in additive manufacturing
CN107771109A (en) * 2015-06-19 2018-03-06 应用材料公司 Material distribution and compacting in increasing material manufacturing
EP3310561A4 (en) * 2015-06-19 2019-02-20 Applied Materials, Inc. Material dispensing and compaction in additive manufacturing
JP2017007321A (en) * 2015-06-22 2017-01-12 株式会社リコー Three-dimensional shaping apparatus, three-dimensional shaping method, and program
US10850444B2 (en) 2015-06-22 2020-12-01 Ricoh Company, Ltd. Method and apparatus for fabricating three-dimensional object
US20160368214A1 (en) * 2015-06-22 2016-12-22 Ricoh Company, Ltd. Method and apparatus for fabricating three-dimensional object
WO2017006610A1 (en) * 2015-07-06 2017-01-12 株式会社日立製作所 Powder material, lamination-fabricated article, and method for manufacturing lamination-fabricated article
JP5982047B1 (en) * 2015-08-31 2016-08-31 株式会社ソディック Additive manufacturing equipment
JP5982046B1 (en) * 2015-08-31 2016-08-31 株式会社ソディック Additive manufacturing equipment
JP2017078214A (en) * 2015-10-21 2017-04-27 トヨタ自動車株式会社 Lamination molding apparatus
EP3165304A1 (en) * 2015-11-04 2017-05-10 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
US10265769B2 (en) 2015-11-04 2019-04-23 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
JP2017154411A (en) * 2016-03-03 2017-09-07 日本電気株式会社 Lamination molding apparatus and lamination molding method
TWI637839B (en) * 2016-03-22 2018-10-11 國立中興大學 Laminated manufacturing method and processing machine thereof
EP3222381A3 (en) * 2016-03-22 2017-12-13 National Chung-Hsing University Additive manufacturing method and additive manufacturing machine
JP2018197000A (en) * 2016-07-22 2018-12-13 株式会社リコー Resin powder for solid fabrication, device for manufacturing solid fabrication object, and method of manufacturing solid fabrication object
JP2020105633A (en) * 2016-08-23 2020-07-09 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for the lamination figurative production of at least one three-dimensional object
JP2018040053A (en) * 2016-08-23 2018-03-15 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for the lamination figurative production of at least one three-dimensional object
FR3056426A1 (en) * 2016-09-29 2018-03-30 Safran Aircraft Engines TOOLING FOR MANUFACTURING PARTS THROUGH SELECTIVE FUSION OR POWDER BED SELECTIVE SINK, AND ASSOCIATED METHOD
JP2018123381A (en) * 2017-02-01 2018-08-09 三菱重工業株式会社 Mixed powder containing two powders of different particle sizes
JP2018130835A (en) * 2017-02-13 2018-08-23 株式会社ノリタケカンパニーリミテド Powder for lamination molding
JP2018158470A (en) * 2017-03-22 2018-10-11 日本電気株式会社 Laminating modeling apparatus and laminating modeling method
US11383303B2 (en) 2017-03-31 2022-07-12 Seiko Epson Corporation Production method for three-dimensional shaped article
WO2018181275A1 (en) * 2017-03-31 2018-10-04 セイコーエプソン株式会社 Three-dimensional object production method
JP2018172766A (en) * 2017-03-31 2018-11-08 セイコーエプソン株式会社 Manufacturing method for three-dimensional molded article
CN108788142A (en) * 2017-04-26 2018-11-13 株式会社捷太格特 The manufacturing method and manufacturing device of moulder is laminated
US11351605B2 (en) 2017-05-18 2022-06-07 General Electric Company Powder packing methods and apparatus
US11667095B2 (en) 2017-05-18 2023-06-06 General Electric Company Powder packing methods and apparatus
CN108941545A (en) * 2017-05-18 2018-12-07 通用电气公司 Power filling method and equipment
CN110740827B (en) * 2017-06-21 2022-03-01 福田金属箔粉工业株式会社 Copper powder for laminate molding and laminate molding
JPWO2018235213A1 (en) * 2017-06-21 2020-04-16 福田金属箔粉工業株式会社 Copper powder for additive manufacturing and additive manufacturing body thereof
CN110740827A (en) * 2017-06-21 2020-01-31 福田金属箔粉工业株式会社 Copper powder for laminate molding and laminate molding
EP3643428A4 (en) * 2017-06-21 2021-01-06 Fukuda Metal Foil & Powder Co., Ltd. Copper powder for layer molding, and layer molded product thereof
US11667991B2 (en) 2017-06-21 2023-06-06 Fukuda Metal Foil & Powder Co., Ltd. Lamination shaping copper powder and laminated and shaped product
WO2018235213A1 (en) * 2017-06-21 2018-12-27 福田金属箔粉工業株式会社 Copper powder for layer molding, and layer molded product thereof
JP7001685B2 (en) 2017-06-21 2022-01-19 福田金属箔粉工業株式会社 Copper powder for laminated molding and its manufacturing method
US11752556B2 (en) 2017-07-18 2023-09-12 Fukuda Metal Foil & Powder Co., Ltd. Lamination shaping copper powder and laminated and shaped product
JP7057784B2 (en) 2017-07-18 2022-04-20 福田金属箔粉工業株式会社 Copper powder for laminated modeling and its laminated modeling body
JPWO2019016874A1 (en) * 2017-07-18 2020-06-11 福田金属箔粉工業株式会社 Copper powder for additive manufacturing and its additive manufacturing body
WO2019016874A1 (en) * 2017-07-18 2019-01-24 福田金属箔粉工業株式会社 Copper powder for additive manufacturing, and additive manufactured product
EP3482866B1 (en) * 2017-11-08 2022-11-23 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Method using a laser for welding between two metallic materials or for sintering of powder(s), application to the production of bipolar plates for pemfc cells
US11648625B2 (en) 2017-11-08 2023-05-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method using a laser for welding between two metallic materials or for sintering of powder(s), application for making bipolar plates for PEM fuel cells
CN110065234A (en) * 2018-01-24 2019-07-30 Cl产权管理有限公司 Manufacture to adding type the load generation device of the powder module of the equipment of three-dimension object
JP2019127653A (en) * 2018-01-24 2019-08-01 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Load generation device for powder module of apparatus for additively manufacturing three-dimensional objects
JP2019135092A (en) * 2018-02-05 2019-08-15 株式会社リコー Manufacturing method of three-dimensional object and manufacturing apparatus of three-dimensional object
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
US11633912B2 (en) 2019-08-23 2023-04-25 Canon Kabushiki Kaisha Additive manufacturing apparatuses with movable roll supports and controller for cutting edge of sheet member
CN115003488A (en) * 2019-10-15 2022-09-02 Ao技术股份公司 Patterning device for the production of three-dimensional structures and method for the production thereof
WO2021074796A1 (en) * 2019-10-15 2021-04-22 Ao Technology Ag Patterning device for the preparation of three-dimensional structures and method for the production thereof
US11214002B2 (en) * 2019-10-18 2022-01-04 Hamilton Sundstrand Corporation Additively manufacturing of amorphous structures
US11701821B2 (en) 2019-10-18 2023-07-18 Hamilton Sundstrand Corporation Additively manufacturing of amorphous structures
CN115338425A (en) * 2022-08-19 2022-11-15 西安铂力特增材技术股份有限公司 Complex shape part composite manufacturing method

Also Published As

Publication number Publication date
JP3551838B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP3551838B2 (en) Manufacturing method of three-dimensional shaped object
JP2615429B2 (en) Creating 3D solid shapes
JP3021668B2 (en) Free-form-giving article by layer deposition
US5640667A (en) Laser-directed fabrication of full-density metal articles using hot isostatic processing
CN107262711B (en) Three-dimensional manufacturing method and three-dimensional manufacturing apparatus
CN110545939B (en) Method and system for additive manufacturing of materials using powders
JP6643631B2 (en) Manufacturing method of three-dimensional shaped object
WO2015032590A2 (en) Powder distribution in additive manufacturing of three dimensional/articles
JP2002038201A (en) Method and apparatus for producing three-dimensional shape molded article
JP2005171299A (en) Method for manufacturing three-dimensionally formed article
JP2015038237A (en) Laminated molding, powder laminate molding apparatus, and powder laminate molding method
JP2006200030A (en) Method and device for producing cubic molding
JP6836097B2 (en) Manufacturing method of 3D model and manufacturing equipment of 3D model
JP2008291318A (en) Method for producing three-dimensionally shaped object
JP6635227B1 (en) Manufacturing method of three-dimensional shaped object
JP2006257463A (en) Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor
EP1695778B1 (en) Laminate molding method and laminate molding device
KR102476579B1 (en) Printer for manufacturing three-dimensional object
JP6878364B2 (en) Movable wall for additional powder floor
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
JP2004058248A (en) Method and device for manufacturing three-dimensional structure body
JP2004232043A (en) Layering shaping method
CN111278589B (en) Method for manufacturing metal member
JP4340383B2 (en) Method and apparatus for manufacturing composite shaped body of metal and ceramics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

EXPY Cancellation because of completion of term