JP2000328109A - Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance - Google Patents

Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance

Info

Publication number
JP2000328109A
JP2000328109A JP14437499A JP14437499A JP2000328109A JP 2000328109 A JP2000328109 A JP 2000328109A JP 14437499 A JP14437499 A JP 14437499A JP 14437499 A JP14437499 A JP 14437499A JP 2000328109 A JP2000328109 A JP 2000328109A
Authority
JP
Japan
Prior art keywords
base
free graphite
component
forming component
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14437499A
Other languages
Japanese (ja)
Inventor
Kunio Hanada
久仁夫 花田
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP14437499A priority Critical patent/JP2000328109A/en
Publication of JP2000328109A publication Critical patent/JP2000328109A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piston ring wear resistant ring excellent in wear resistance and also small in mating attackability. SOLUTION: This piston ring wear resistant ring is composed of a free graphite precipitated ferrous sintering material having a compsn. contg., by weight, 0.5 to 5% C as a free graphite forming component and a base strengthening component and 0.5 to 5% Cr, 0.2 to 1% Mn, 0.05 to 1% S, 0.05 to 1% B, 1 to 12% Ni, 0.5 to 5% Ti and 1 to 8% Cu as base forming components, contg., at need, 0.1 to 2% Mo, composed of one or >=two kinds among the carbides, nitrides and carbonitrides of the group 4a, 5a and 6a metals in the Periodic Table and>=two kinds of solid solutions thereof and contg. 0.1 to 5% hard metallic carbide-nitride particles showing 0.1 to 5 μm average particle size, and the balance Fe as a base forming component with inevitable impurities and having a structure in which the base is mainly composed of austenite, free graphite is not present on the base but present in a state of precipitately grown in the pores, and also, the hard metallic carbide-nitride particles are dispersedly distributed into the base.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ピストンにおけ
るトップリング溝が上方位置移動した条件での実用に際
しても、すぐれた耐摩耗性を発揮し、さらに相手攻撃性
(ピストンリング攻撃性)も小さい遊離黒鉛析出鉄系焼
結材料製ピストンリング耐摩環に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention exhibits excellent abrasion resistance even in practical use under the condition that a top ring groove of a piston is moved upward, and furthermore has a small opposing aggressiveness (piston ring aggressiveness). The present invention relates to a piston ring made of graphite-precipitated iron-based sintered material.

【0002】[0002]

【従来の技術】従来、例えば特公昭57−32743号
公報に記載されるように、例えばトラック・バス用ディ
ーゼルエンジンのピストンが、図1(a)の概略縦断面
図および同(b)の要部縦断面図で示される構造を有
し、かつ図示される通りトップランド部直下のトップリ
ング溝にはピストンリング耐摩環がピストン鋳物本体の
鋳造時に鋳ぐるまれて設けられた構造をもつことは良く
知られるところである。また、ピストン鋳物本体が、主
としてSi:8〜13重量%を含有したAl−Si系合
金で構成され、さらに上記ピストンリング耐摩環には、
良好な耐摩耗性と相手攻撃性の低いFe−Ni−Cu系
焼結材料(組成:Fe−8〜25%Ni−3.5〜10
%Cu−2.0%以下C)や、Ni−Cu−Cr系オー
ステナイト鋳鉄であるニレジスト鋳鉄(組成:Fe−
1.5〜3.5%Cr−0.8〜1.5%Mn−3%以
下C−13〜22%Ni−8%以下Cu−1.0〜2.
8%Si、以上重量%、以下%は重量%を示す)などが
広く用いられていることも良く知られるところである。
2. Description of the Related Art Conventionally, as described in, for example, Japanese Patent Publication No. 57-32743, a piston of a diesel engine for trucks and buses, for example, has a schematic longitudinal sectional view of FIG. Having a structure shown in the vertical sectional view of the part, and having a structure in which a piston ring wear ring is provided in the top ring groove immediately below the top land part as shown in the figure when the piston casting body is cast. It is well known. Further, the piston casting main body is mainly composed of an Al—Si alloy containing 8 to 13% by weight of Si.
Fe-Ni-Cu based sintered material with good wear resistance and low aggressiveness to the partner (composition: Fe-8 to 25% Ni-3.5 to 10)
% Cu-2.0% or less C) or a Ni-resist cast iron (composition: Fe-
1.5-3.5% Cr-0.8-1.5% Mn-3% or less C-13-22% Ni-8% or less Cu-1.0-2.
It is also well known that 8% Si, more than% by weight, and less than% represents% by weight) are widely used.

【0003】[0003]

【発明が解決しようとする課題】一方、自動車に対する
排気ガス規制は年々厳しさを増す傾向にあり、この対応
手段の1つとして、トラック・バス用ディーゼルエンジ
ンでは、ピストンのトップランド部直下のトップリング
溝の位置を上方へ移動させてトップランド部外周面、ト
ップリング上面、およびシリンダー内周面で形成される
空隙の容量を小さくし、もって未燃焼のまま大気に排出
されてしまう前記空隙部分のガス量を少なくする試みも
なされているが、このようにトップリング溝の位置を上
方へ移動すると、トップリング溝の温度が急激に高くな
り、この結果ピストンリング耐摩環が上記のFe−Ni
−Cu系焼結材料やニレジスト鋳鉄で構成されていて
も、これの摩耗進行の急速な進行は避けられず、この摩
耗現象は近年のエンジンの高出力化および大型化に伴っ
て一段と加速され、この摩耗部分からガス漏れが発生す
るようになるのが現状である。
On the other hand, exhaust gas regulations for automobiles tend to be stricter year by year. One of the measures to cope with this problem is to use a diesel engine for trucks and buses with a top just below the top land of the piston. The position of the ring groove is moved upward to reduce the volume of the void formed by the outer peripheral surface of the top land portion, the top ring upper surface, and the inner peripheral surface of the cylinder, so that the void portion is discharged to the atmosphere without burning. Attempts have been made to reduce the gas amount of the top ring groove, but when the position of the top ring groove is moved upward in this way, the temperature of the top ring groove sharply increases, and as a result, the piston ring wear ring has the above-mentioned Fe-Ni
-Even if it is composed of Cu-based sintered material or Niresist cast iron, the rapid progress of wear is unavoidable, and this wear phenomenon is further accelerated with the recent increase in engine output and size, At present, gas leakage occurs from the worn portion.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、ピストンにおけるトップリング
溝の上方位置移動を可能にするピストンリング耐摩環を
開発すべく研究を行った結果、原料粉末として、基本的
にFeに、合金成分としてS(硫黄)成分、NiとS成
分、あるいはCrとMnとS成分、さらに必要に応じて
これらの成分に加えてMo成分をそれぞれ所定量含有さ
せてなるアトマイズFe合金粉末と、六方晶窒化ほう素
(以下、h−BNで示す)粉末および/またはほう酸粉
末を用い、さらに水素化チタン(以下、TiHx で示
す)粉末、Ni粉末、Mo粉末、Mn粉末、Cu粉末、
S(硫黄)粉末、および黒鉛粉末を用い、さらに加えて
例えばTiC、TiN、TiCN、ZrC、HfN、V
C、WC、Mo2 C、Cr32 、(Zr,Cr)C、
(Ta,Nb)N、および(Ti,Mo)CNなどの化
学記号で表される周期律表の4a、5a、および6a族
金属(Ti、Zr、Hf、Ta、Nb、V、Cr、M
o、およびW)の炭化物、窒化物、および炭窒化物、並
びにこれらの2種以上の固溶体からなり、かつ0.1〜
5μmの平均粒径を有する硬質金属炭・窒化物粉末を用
い、これら原料粉末を所定の配合組成に配合し、通常の
条件で混合し、圧粉体にプレス成形した状態で、前記圧
粉体を、還元性雰囲気中、相対的に高い焼結温度となる
1100〜1250℃の範囲内の所定温度に加熱し、所
定時間保持後、相対的に遅い冷却速度、望ましくは40
℃/分以下の冷却速度で、少なくとも600℃まで冷却
の条件で焼結して、遊離黒鉛形成成分および素地強化成
分として、C:0.5〜5%、いずれも素地形成成分と
して、 Cr:0.5〜5%、%、 Mn:0.2〜1%、 S:0.05〜1%、 B:0.05〜1%、 Ni:1〜12%、 Ti:0.5〜5%、 Cu:1〜8%、 を含有し、さらに必要に応じて、 Mo:0.1〜2%、 を含有し、さらに、周期律表の4a、5a、および6a
族金属(Ti、Zr、Hf、Ta、Nb、V、Cr、M
o、およびW)の炭化物、窒化物、および炭窒化物、並
びにこれらの2種以上の固溶体のうちの1種または2種
以上からなり、電子顕微鏡による断面組織観察で0.1
〜5μmの平均粒径を示す硬質金属炭・窒化物粒子:
0.1〜5%、を含有し、残りが素地形成成分としての
Feと不可避不純物からなる組成を有し、かつ望ましく
は6.0〜7.2g/cm3 の密度、すなわち80〜9
5%の理論密度比、さらに言い換えれば光学顕微鏡によ
る断面組織観察で、組織全体に占める割合で5〜20面
積%の気孔をもった鉄系焼結材料でピストンリング耐摩
環を形成すると、このピストンリング耐摩環において
は、前記焼結温度で、素地を形成する上記Fe合金粉末
にC成分(黒鉛粉末)が固溶し、この固溶したC成分が
上記h−BN粉末およびほう酸粉末のB成分と前記Fe
合金粉末中に固溶のS成分の共働作用で、冷却過程で気
孔内に遊離黒鉛として析出し、成長して、すぐれた耐焼
付性と高温潤滑性を示すようになり、一方素地は、析出
遊離黒鉛が実質的に存在しないので、著しく強化される
ようになるばかりでなく、Ni、Cr,Mn、およびT
i成分、さらに必要に応じてMo成分が固溶して、主体
が耐熱性のすぐれたオーステナイトとなって、低い相手
攻撃性で、かつすぐれた耐熱塑性変形性を発揮し、この
結果ピストンにおけるトップリング溝を上方位置移動し
ても、前記素地に分散分布する上記のビッカース硬さ
(Hv )で1800〜3200の高硬度を有する硬質金
属炭・窒化物粒子による耐摩耗性向上効果と相まって、
すぐれた耐摩耗性を長期に亘って発揮するようになると
いう研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of research to develop a piston ring wear ring that enables the piston to move upward in the top ring groove, as a result, the raw material powder is basically Fe and the alloy component is S (sulfur). ) Component, Ni and S components, or Cr, Mn and S components, and further, if necessary, an atomized Fe alloy powder containing a predetermined amount of a Mo component in addition to these components; , H-BN) powder and / or boric acid powder, and titanium hydride (hereinafter, referred to as TiHx) powder, Ni powder, Mo powder, Mn powder, Cu powder,
S (sulfur) powder and graphite powder are used, and for example, TiC, TiN, TiCN, ZrC, HfN, V
C, WC, Mo 2 C, Cr 3 C 2 , (Zr, Cr) C,
Group 4a, 5a, and 6a metals (Ti, Zr, Hf, Ta, Nb, V, Cr, M) of the periodic table represented by chemical symbols such as (Ta, Nb) N and (Ti, Mo) CN.
o, and W) carbides, nitrides, and carbonitrides, and two or more of these solid solutions, and
Using a hard metal charcoal / nitride powder having an average particle size of 5 μm, blending these raw material powders in a predetermined composition, mixing them under ordinary conditions, and pressing them into a green compact. Is heated in a reducing atmosphere to a predetermined temperature within a range of 1100 to 1250 ° C. at which a relatively high sintering temperature is obtained, and after holding for a predetermined time, a relatively slow cooling rate, preferably 40
Sintering at a cooling rate of not more than 600 ° C./min at least to 600 ° C., as a free graphite forming component and a base reinforcing component, C: 0.5 to 5%, both as a base forming component, 0.5 to 5%,%, Mn: 0.2 to 1%, S: 0.05 to 1%, B: 0.05 to 1%, Ni: 1 to 12%, Ti: 0.5 to 5 %, Cu: 1 to 8%, and if necessary, Mo: 0.1 to 2%, and 4a, 5a, and 6a of the periodic table.
Group metals (Ti, Zr, Hf, Ta, Nb, V, Cr, M
o) and one or more of the carbides, nitrides, and carbonitrides of W), and two or more of these solid solutions, and the cross-sectional structure is observed by an electron microscope with a cross-sectional structure of 0.1%.
Hard metal charcoal / nitride particles exhibiting an average particle size of μ5 μm:
0.1 to 5%, with the balance having a composition comprising Fe as a base forming component and unavoidable impurities, and desirably a density of 6.0 to 7.2 g / cm 3, that is, 80 to 9 g / cm 3.
Observation of the cross-sectional structure by an optical microscope at a theoretical density ratio of 5%, in other words, when the piston ring wear ring is formed of an iron-based sintered material having pores of 5 to 20 area% in the entire structure, this piston In the ring bearing ring, at the sintering temperature, the C component (graphite powder) is dissolved in the Fe alloy powder forming the base, and the dissolved C component is the B component of the h-BN powder and the boric acid powder. And the Fe
By the synergistic action of the S component dissolved in the alloy powder, it precipitates as free graphite in the pores during the cooling process, grows, and exhibits excellent seizure resistance and high-temperature lubrication. The substantial absence of precipitated free graphite not only results in significant strengthening, but also Ni, Cr, Mn, and T
The i component and, if necessary, the Mo component form a solid solution, and the main component becomes austenite having excellent heat resistance, exhibiting low aggressiveness and exhibiting excellent heat plastic deformation, resulting in the top of the piston. Even when the ring groove is moved upward, the hard metal carbon / nitride particles having a high hardness of 1800 to 3200 with the above Vickers hardness (Hv) dispersed and distributed on the substrate are combined with the wear resistance improving effect,
The research results show that excellent wear resistance will be exhibited over a long period of time.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、遊離黒鉛形成成分および素地強化
成分として、C:0.5〜5%、いずれも素地形成成分
として、 Cr:0.5〜5%、%、 Mn:0.2〜1%、 S:0.05〜1%、 B:0.05〜1%、 Ni:1〜12%、 Ti:0.5〜5%、 Cu:1〜8%、 を含有し、さらに必要に応じて、 Mo:0.1〜2%、 を含有し、さらに、周期律表の4a、5a、および6a
族金属(Ti、Zr、Hf、Ta、Nb、V、Cr、M
o、およびW)の炭化物、窒化物、および炭窒化物、並
びにこれらの2種以上の固溶体のうちの1種または2種
以上からなり、電子顕微鏡による断面組織観察で0.1
〜5μmの平均粒径を示す硬質金属炭・窒化物粒子:
0.1〜5%、を含有し、残りが素地形成成分としての
Feと不可避不純物からなる組成、並びに素地の主体が
実質的にオーステナイトからなり、遊離黒鉛は、前記素
地には実質的に存在せず、気孔内に析出して成長した状
態で存在し、かつ前記素地には上記の硬質金属炭・窒化
物粒子が分散分布した組織を有する遊離黒鉛析出鉄系焼
結材料で構成してなる、相手攻撃性が小さく、かつピス
トンにおけるトップリング溝の上方位置移動によっても
すぐれた耐摩耗性を発揮する遊離黒鉛析出鉄系焼結材料
製ピストンリング耐摩環に特徴を有するものである。
The present invention has been made on the basis of the above research results, and contains 0.5 to 5% of C as a free graphite forming component and a base strengthening component, and Cr: 0 as a base forming component. 0.5-5%,%, Mn: 0.2-1%, S: 0.05-1%, B: 0.05-1%, Ni: 1-12%, Ti: 0.5-5% , Cu: 1 to 8%, and if necessary, Mo: 0.1 to 2%, and further, 4a, 5a, and 6a of the periodic table.
Group metals (Ti, Zr, Hf, Ta, Nb, V, Cr, M
o) and one or more of carbides, nitrides, and carbonitrides of W), and two or more of these solid solutions.
Hard metal charcoal / nitride particles exhibiting an average particle size of μ5 μm:
0.1 to 5%, with the balance being Fe as a base forming component and unavoidable impurities, and the base is substantially composed of austenite, and free graphite is substantially present in the base. The hard metal carbon / nitride particles are present in a state where they are deposited and grown in the pores without being grown, and the base is composed of a free graphite precipitated iron-based sintered material having a structure in which the hard metal carbon / nitride particles are dispersed and distributed. The piston ring wear ring made of free graphite-precipitated iron-based sintered material, which has low aggressiveness and exhibits excellent wear resistance even when the top ring groove of the piston is moved upward, is characterized.

【0006】つぎに、この発明のピストンリング耐摩環
において、これを構成する遊離黒鉛析出鉄系焼結材料の
成分組成を上記の通りに限定した理由を説明する。 (a)C C成分には、素地に固溶して強度を向上させるほか、上
記の通りBおよびS成分の共存作用で気孔内に遊離黒鉛
として析出して耐焼付性および潤滑性を向上させ、もっ
て耐摩耗性の向上に寄与すると共に、相手攻撃性を緩和
する作用をもつが、その含有量が0.5%未満では前記
作用に所望の向上効果が得られず、一方その含有量が5
%を越えると、強度に急激な低下傾向が現れるようにな
ることから、その含有量を0.5〜5%、望ましくは1
〜3%と定めた。
Next, the reason why the component composition of the free graphite-precipitated iron-based sintered material constituting the piston ring wear ring of the present invention is limited as described above will be described. (A) CC In addition to improving the strength of the C component by dissolving it in the base material, it also precipitates as free graphite in the pores due to the coexistence of the B and S components as described above to improve seizure resistance and lubricity. Thus, while contributing to the improvement of wear resistance and having an action of alleviating the aggressiveness of the partner, if the content is less than 0.5%, a desired improvement effect cannot be obtained in the above-mentioned action. 5
%, The strength tends to sharply decrease, so the content is 0.5 to 5%, preferably 1%.
33%.

【0007】(b)Cr Cr成分は、オーステナイトを主体とする素地に固溶し
て、これの耐熱性および耐熱塑性変形性を向上させ、も
ってピストンリング耐摩環の耐摩耗性向上に寄与する作
用をもつが、その含有量が0.5%未満では前記作用に
所望の向上効果が得られず、一方その含有量が5%を越
えると、B成分およびS成分による黒鉛の析出および成
長作用が抑制されるようになることから、その含有量を
0.5〜5%、望ましくは1〜3%と定めた。
(B) Cr The Cr component forms a solid solution in a matrix mainly composed of austenite to improve its heat resistance and heat plastic deformation, thereby contributing to the improvement of the wear resistance of the piston ring wear ring. However, if the content is less than 0.5%, a desired improvement effect on the above-mentioned effect cannot be obtained. On the other hand, if the content exceeds 5%, the precipitation and growth of graphite by the B component and the S component will be impaired. Therefore, the content is determined to be 0.5 to 5%, preferably 1 to 3%.

【0008】(c)Mn Mn成分は、素地に固溶して強度を向上させる作用をも
つが、その含有量が0.2%未満では所望の強度向上効
果が得られず、一方その含有量が1%を越えると、B成
分およびS成分による黒鉛化が著しく阻害されるように
なることから、その含有量を0.2〜1%、望ましくは
0.4〜0.8%と定めた。
(C) Mn The Mn component has a function of improving the strength by forming a solid solution in the base material, but if its content is less than 0.2%, the desired effect of improving the strength cannot be obtained. Exceeds 1%, the graphitization by the B component and the S component is significantly inhibited. Therefore, the content is set to 0.2 to 1%, preferably 0.4 to 0.8%. .

【0009】(d)SおよびB これらの成分は、共働作用により固溶したC成分を冷却
過程で微細な遊離黒鉛として気孔内に積極的に析出さ
せ、成長させる作用をもち、このような黒鉛化作用は、
S成分については、原則として予めFe、Fe−Ni合
金やFe−Ni−Mo合金、さらにFe−Cr−Mn合
金やFe−Cr−Mn−Mo合金にそれぞれ所定量のS
成分を含有させた溶湯をアトマイズして形成したFe合
金粉末、また、B成分については、ほう素源としてh−
BN粉末およびほう酸粉末をそれぞれ原料粉末として用
いることにより一段と促進されるものであるが、その含
有量が、SおよびB成分のいずれかでも0.05%未満
になると、所望の黒鉛化を図ることができず、この結果
耐焼付性および潤滑性の向上、すなわち耐摩耗性の向上
が不十分となるばかりでなく、硬質のセメンタイト(F
e3 C)が析出するようになって、相手攻撃性(ピスト
ンリング攻撃性)が増大するようになり、一方その含有
量が、SおよびB成分のいずれかでも1%を越えると、
焼結性が低下し、所望の強度を確保することができなく
なるばかりでなく、素地にフェライトが出現するように
なり、この結果オーステナイトが減少するようになって
所望の耐熱塑性変形性を確保することができなくなるこ
とから、その含有量を、それぞれS:0.05〜1%、
望ましくは0.1〜0.5%、B:0.05〜1%、望
ましくは0.1〜0.5%と定めた。
(D) S and B These components have the function of positively precipitating and growing the solid solution C component as fine free graphite in the pores during the cooling process by the synergistic action. Graphitization is
As for the S component, a predetermined amount of S is in principle added to Fe, Fe—Ni alloy, Fe—Ni—Mo alloy, and further to Fe—Cr—Mn alloy or Fe—Cr—Mn—Mo alloy, respectively.
Fe alloy powder formed by atomizing the molten metal containing the component, and for the B component, h-
The use of BN powder and boric acid powder as raw material powders is further promoted, but if the content of any of the S and B components is less than 0.05%, desired graphitization can be achieved. As a result, the seizure resistance and lubricity, that is, the abrasion resistance, are not sufficiently improved, and hard cementite (F
e3 C) starts to precipitate and the aggressiveness of the opponent (piston ring aggressiveness) increases. On the other hand, when the content of any of the S and B components exceeds 1%,
Not only does the sinterability deteriorate, and the desired strength cannot be ensured, but also ferrite appears on the base material, and as a result, austenite decreases to secure the desired heat-resistant plastic deformability. Can no longer be obtained, the content is S: 0.05-1%,
Desirably, 0.1 to 0.5%, B: 0.05 to 1%, desirably 0.1 to 0.5%.

【0010】(e)NiおよびTi これらの成分は、共に素地に固溶してオーステナイトの
形成を促進し、かつ上記の通りCr成分との共存固溶に
よって素地の耐熱性および耐熱塑性変形性を向上させ、
もって耐摩耗性の向上に寄与する作用をもつが、その含
有量が、それぞれNi:1%未満、Ti:0.5%未満
では前記作用に所望の向上効果が得られず、一方その含
有量が、Niにあっては前記オーステナイトが主体の素
地の形成には12%で十分であり、またTiにあっては
5%を越えると強度が低下するようになることから、そ
の含有量を、それぞれNi:1〜12%、望ましくは3
〜8%、Ti:0.5〜5%、望ましくは1〜3%と定
めた。なお、Ti成分に関しては、原料粉末としてTi
Hx 粉末を用い、焼結の活性化を図ると共に、焼結に際
して分解水素による強力な還元作用を発揮させるように
するのが望ましい。
(E) Ni and Ti These components form a solid solution with the matrix to promote the formation of austenite, and as described above, co-solve with the Cr component to improve the heat resistance and the heat plastic deformation resistance of the matrix. Improve
Therefore, it has the effect of contributing to the improvement of abrasion resistance. However, if the content is less than 1% of Ni and less than 0.5% of Ti, a desired improvement effect cannot be obtained in the above-mentioned effect. However, for Ni, 12% is sufficient for forming the base material mainly composed of austenite, and for Ti, if it exceeds 5%, the strength is reduced. Ni: 1 to 12%, preferably 3
-8%, Ti: 0.5-5%, preferably 1-3%. As for the Ti component, as a raw material powder,
It is desirable to use Hx powder to activate the sintering and to exert a strong reducing action by decomposed hydrogen during sintering.

【0011】(f)Cu Cu成分は、所定の強度を確保するのに不可欠な液相焼
結のために必要な成分であるが、その含有量が1%未満
では十分な焼結性が得られず、したがって所望の強度を
確保することができず、一方所望の良好な焼結性は8%
までの含有で十分であることから、その含有量を1〜8
%、望ましくは2〜4%と定めた。
(F) Cu The Cu component is a component necessary for liquid phase sintering, which is indispensable for securing a predetermined strength. If its content is less than 1%, sufficient sinterability can be obtained. And therefore the desired strength cannot be ensured, while the desired good sinterability is 8%
Is sufficient, the content should be 1 to 8
%, Preferably 2 to 4%.

【0012】(g)硬質金属炭・窒化物粒子 硬質金属炭・窒化物粒子は、いずれもHv :1800〜
3200の範囲内の所定の高硬度を有し、耐摩耗性向上
に寄与するが、その含有割合が0.1%未満では所望の
すぐれた耐摩耗性を確保することができず、一方その含
有割合が5%を越えると、相手部材であるボールスタッ
ドに対する攻撃性が増大し、ボールスタッドの摩耗が著
しく促進されるようになることから、その含有割合を
0.1〜5%、望ましくは0.3〜4%と定めた。ま
た、この場合硬質金属炭・窒化物粒子の平均粒径を0.
1μm未満にするには、原料粉末として平均粒径:0.
1μm未満の硬質金属炭・窒化物粉末を用いる必要があ
るが、平均粒径:0.1μm未満の硬質金属炭・窒化物
粉末の調整はコスト高の原因となるばかりでなく、平均
粒径が0.1μm未満になると、所望のすぐれた耐摩耗
性向上効果を得るのが困難になり、一方平均粒径が5μ
mを越えると、素地の強度低下は免れず、しかも相手部
材であるボールスタッドに対する攻撃性も増大するよう
になることから、その平均粒径を0.1〜5μm、望ま
しくは0.5〜4μmと定めた。
(G) Hard metal charcoal / nitride particles Hard metal charcoal / nitride particles are all Hv: 1800
Although it has a predetermined high hardness in the range of 3200 and contributes to improvement of wear resistance, if its content is less than 0.1%, it is not possible to secure desired excellent wear resistance. If the proportion exceeds 5%, the aggressiveness against the ball stud as the mating member increases, and the wear of the ball stud is remarkably promoted. Therefore, the content is 0.1 to 5%, preferably 0%. 3-4%. In this case, the average particle size of the hard metal carbon / nitride particles is set to 0.1.
In order to reduce the particle diameter to less than 1 μm, the raw material powder has an average particle diameter of 0.1 μm.
It is necessary to use a hard metal charcoal / nitride powder having a particle diameter of less than 1 μm. However, adjusting the average particle diameter of the hard metal charcoal / nitride powder having a particle diameter of less than 0.1 μm not only causes an increase in cost but also increases the average particle diameter. When the average particle diameter is less than 0.1 μm, it is difficult to obtain a desired excellent effect of improving wear resistance.
If it exceeds m, the strength of the base material is inevitably reduced, and the aggressiveness against the ball stud as a mating member is also increased. Therefore, the average particle size is 0.1 to 5 μm, preferably 0.5 to 4 μm. It was decided.

【0013】(h)Mo Mo成分は、素地に固溶して強度を向上させる作用をも
つので、必要に応じて含有されるが、その含有量が0.
1%未満では所望の強度向上効果が得られず、一方その
含有量が2%を越えると、原料粉末(混合粉末)のプレ
ス成形性(圧縮性)が低下し、この結果焼結材料の密度
が6.0g/cm3 未満となってしまい、望ましい密度
である6.0〜7.2g/cm3 の密度が得られず、所
望の強度を確保することができなくなることから、その
含有量を0.1〜2%、望ましくは0.5〜1.5%と
定めた。
(H) Mo Mo component is contained as needed, since it has a function of improving the strength by dissolving in the base material.
If the content is less than 1%, the desired strength-improving effect cannot be obtained, while if the content exceeds 2%, the press formability (compressibility) of the raw material powder (mixed powder) is reduced, and as a result, the density of the sintered material is reduced. Is less than 6.0 g / cm @ 3, and the desired density of 6.0 to 7.2 g / cm @ 3 cannot be obtained, and the desired strength cannot be ensured. 0.1 to 2%, preferably 0.5 to 1.5%.

【0014】[0014]

【発明の実施の形態】この発明のピストンリング耐摩環
を実施例により具体的に説明する。原料粉末として、い
ずれも10〜150μmの範囲内の所定の平均粒径を有
するアトマイズFe−S合金粉末(S:0.32%含
有)、アトマイズFe−Ni−Mo−S合金粉末(N
i:4.2%、Mo:1.5%、S:0.13%含
有)、アトマイズFe−Cr−Mn−S合金粉末(C
r:2.1%、Mn:0.75%、S:0.22%含
有)、TiHx 粉末、Ni粉末、Mo粉末、Mn粉末、
Cu粉末、S(硫黄)粉末、黒鉛粉末、h−BN粉末、
およびほう酸粉末、さらに硬質金属炭・窒化物粒子形成
用原料粉末として、いずれも0.1〜5μmの範囲内の
所定の平均粒径を有するTiC粉末、TiN粉末、Ti
CN粉末、ZrC粉末、HfN粉末、VC粉末、WC粉
末、Mo2 C粉末、Cr32 粉末、(Zr,Cr)C
[重量比で(以下、同じ)、ZrC/Cr32 =1/
2]粉末、(Ta,Nb)N[TaN/NbN=2/
1]粉末、および(Ti,Mo)CN[TiN/Mo2
C=1/3]粉末を用意し、これら原料粉末を表1、2
に示される配合組成に配合し、潤滑材としてステアリン
酸亜鉛を0.7%添加してV型ミキサーで30分間混合
し、6ton/cm2 の圧力で圧粉体にプレス成形し、
この圧粉体をアンモニア分解ガス雰囲気中、温度:11
40℃に1時間保持した後、35℃/分の冷却速度で5
50℃まで徐冷後放冷の条件で焼結することにより表
1、2に示される配合組成と実質的に同じ成分組成を有
し、かつ外径:120mm×内径:102mm×厚さ:
7mmの寸法をもった本発明ピストンリング耐摩環(以
下、本発明耐摩環と云う)1〜29をそれぞれ製造し
た。上記本発明耐摩環1〜29は、いずれも6.2〜
7.1g/cm3 の範囲内の密度を有し、その任意断面
を光学および電子顕微鏡を用いて、組織観察したとこ
ろ、素地がオーステナイト、あるいは主体がオーステナ
イトで僅かなパーライトが存在する素地からなり、かつ
気孔内に遊離黒鉛が析出成長し、前記素地には実質的に
遊離黒鉛の析出がなく、さらに前記素地には金属炭・窒
化物粒子が分散分布する組織を示し、さらに光学顕微鏡
(倍率:100倍)および電子顕微鏡(倍率:1000
0倍)で観察した組織写真により、組織全体に占める気
孔(遊離黒鉛)の割合および硬質金属炭・窒化物粒子の
平均粒径を計測したところ、表3に示される結果を示し
た。また、比較の目的で、通常の高周波溶解炉にて、同
じく表2に示される成分組成をもったニレジスト鋳鉄の
溶湯を調製し、これをシェルモールド鋳型に鋳造して、
同じ寸法をもった従来ピストンリング耐摩環(以下、従
来耐摩環と云う)を製造した。
BEST MODE FOR CARRYING OUT THE INVENTION The piston ring wear ring of the present invention will be specifically described with reference to examples. As raw material powders, atomized Fe-S alloy powder (containing 0.32% of S) and atomized Fe-Ni-Mo-S alloy powder (N
i: 4.2%, Mo: 1.5%, S: 0.13%), atomized Fe-Cr-Mn-S alloy powder (C
r: 2.1%, Mn: 0.75%, S: 0.22%), TiHx powder, Ni powder, Mo powder, Mn powder,
Cu powder, S (sulfur) powder, graphite powder, h-BN powder,
And boric acid powder, and as raw material powders for forming hard metal carbon / nitride particles, TiC powder, TiN powder, TiN powder each having a predetermined average particle size in the range of 0.1 to 5 μm.
CN powder, ZrC powder, HfN powder, VC powder, WC powder, Mo 2 C powder, Cr 3 C 2 powder, (Zr, Cr) C
[By weight ratio (hereinafter the same), ZrC / Cr 3 C 2 = 1 /
2] powder, (Ta, Nb) N [TaN / NbN = 2 /
1] Powder and (Ti, Mo) CN [TiN / Mo 2
C = 1/3] powder, and these raw material powders are shown in Tables 1 and 2
And 0.7% of zinc stearate was added as a lubricant, mixed with a V-type mixer for 30 minutes, and pressed into a green compact at a pressure of 6 ton / cm @ 2.
This green compact is heated in an ammonia decomposition gas atmosphere at a temperature of 11
After holding at 40 ° C. for 1 hour, cooling at 35 ° C./min.
By sintering under the condition of gradually cooling to 50 ° C. and then allowing to cool, it has substantially the same composition as the composition shown in Tables 1 and 2, and has an outer diameter of 120 mm × an inner diameter of 102 mm × thickness:
Piston ring wear rings of the present invention (hereinafter referred to as the present invention wear rings) 1 to 29 having a size of 7 mm were produced, respectively. Each of the above wear-resistant rings 1 to 29 of the present invention is 6.2 to 6.2.
It has a density in the range of 7.1 g / cm 3, and its arbitrary cross section is observed for its structure using an optical and an electron microscope. As a result, the base material is made of austenite, or the base material is austenite and a slight pearlite is present, In addition, free graphite precipitates and grows in the pores, substantially no free graphite is deposited on the substrate, and the substrate shows a structure in which metal carbon / nitride particles are dispersed and distributed. Further, an optical microscope (magnification: 100 times) and an electron microscope (magnification: 1000)
The ratio of pores (free graphite) in the whole structure and the average particle size of the hard metal carbon / nitride particles were measured based on the structure photograph observed at 0 ×), and the results shown in Table 3 were shown. Further, for the purpose of comparison, in a normal high-frequency melting furnace, a melt of niresist cast iron having the same component composition as shown in Table 2 was prepared and cast into a shell mold.
A conventional piston ring wear ring having the same dimensions (hereinafter referred to as a conventional wear ring) was manufactured.

【0015】ついで、上記の各種耐摩環を、通常の条件
で前処理、すなわち脱脂、乾燥、および温度:700℃
の後述の鋳造Al−Si系合金と同じ組成をもったAl
−Si系合金溶湯中に5分間浸漬の前処理を施した状態
で、それぞれピストン精密鋳造金型内に設置し、これに
Al−12.1%Si−1.05%Cu−0.96%M
g−1.12%Niの組成をもったAl−Si系合金溶
湯を鋳造してピストン本体を形成すると共に、前記耐摩
環を鋳包み、ついで前記耐摩環に切削加工にて外周面に
沿って溝深さ:7mm×溝幅:3mmの寸法のトップリ
ング溝を形成することにより、トップランド部上面とト
ップリング溝上面間の距離を5mm(この種のピストン
で従来採用されている前記距離は通常15mm)とした
トップリング溝上方位置移動のAl−Si系合金製ピス
トンをそれぞれ製造した。
Next, the above-mentioned various wear rings are pretreated under ordinary conditions, ie, degreasing, drying, and temperature: 700 ° C.
Having the same composition as the cast Al-Si alloy described below
-Pretreated by immersion in a molten Si-based alloy for 5 minutes, each was placed in a piston precision casting mold, and Al-12. 1% Si- 1.05% Cu- 0.96% M
The piston body is formed by casting a molten Al-Si alloy having a composition of g-1.12% Ni, and the wear ring is wrapped around. Then, the wear ring is cut along the outer circumferential surface. By forming a top ring groove having a dimension of groove depth: 7 mm × groove width: 3 mm, the distance between the top land portion upper surface and the top ring groove upper surface is 5 mm (the distance conventionally used in this type of piston is: A piston made of an Al-Si alloy and moved to a position above the top ring groove (usually 15 mm) was manufactured.

【0016】さらに、これらのピストンを、排気量:8
200ccの直列6気筒直噴ディーゼルエンジンに組み
込み、回転数:3400rpm、エンジンの冷却温度:
90℃、運転モード:500時間連続運転、負荷:フル
出力の条件で加速運転試験を行ない、試験後の耐摩環の
トップリング溝の溝幅を外周面にそって測定し、この測
定結果より算出した最大摩耗量(試験後の最大溝幅−試
験前の溝幅)をもって耐摩耗性を評価し、また上記トッ
プリング溝に嵌合されたピストンリング(Fe−2.7
%Si−3.5%Cの組成を有する球状黒鉛鋳鉄製でC
rメッキしたもの)の上下面における最大摩耗深さを測
定することにより相手攻撃性を評価した。これらの測定
結果を表3に示した。
Further, these pistons are provided with a displacement of 8
Built into a 200cc direct-injection 6-cylinder diesel engine, rotation speed: 3400 rpm, engine cooling temperature:
An acceleration operation test is performed under the conditions of 90 ° C., operation mode: continuous operation for 500 hours, and load: full output, and the groove width of the top ring groove of the wear-resistant ring after the test is measured along the outer peripheral surface, and calculated from the measurement result. The wear resistance was evaluated based on the maximum wear amount (the maximum groove width after the test—the groove width before the test), and the piston ring (Fe-2.7) fitted in the top ring groove was used.
% Si-3.5% C made of spheroidal graphite cast iron
The aggressiveness of the partner was evaluated by measuring the maximum abrasion depth on the upper and lower surfaces of the r-plated one. Table 3 shows the results of these measurements.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】表3に示される結果から、本発明耐摩環
1〜29は、いずれもトップリング溝の上方位置移動に
もかかわらず、これを構成する遊離黒鉛析出鉄系焼結材
料のもつ、素地には遊離黒鉛が存在せず、実質的に気孔
内にのみ遊離黒鉛が析出して成長し、かつ前記素地中に
硬質金属炭・窒化物粒子が分散分布した組織によって、
すぐれた耐摩耗性を示し、かつ相手攻撃性もきわめて小
さいのに対して、ニレジスト鋳鉄からなる従来耐摩環は
十分な耐摩耗性を具備するものでないために、トップリ
ング溝の上方位置移動によって摩耗進行が著しく加速さ
れるようになることが明らかである。上述のように、こ
の発明のピストンリング耐摩環は、トップリング溝の位
置を上方へ移動した状態でAl−Si系合金製ピストン
に適用しても小さい相手攻撃性で、すぐれた耐摩耗性を
発揮することから、エンジンの排気ガス規制に十分満足
に対応することができるものである。
According to the results shown in Table 3, all of the wear rings 1 to 29 of the present invention have the free graphite-precipitated iron-based sintered material constituting the top ring groove despite the upward movement of the top ring groove. Free graphite does not exist in the base material, free graphite substantially only precipitates and grows in pores, and hard metal carbon / nitride particles are dispersed and distributed in the base material,
While it shows excellent wear resistance and has extremely low aggressiveness, the conventional wear ring made of niresist cast iron does not have sufficient wear resistance. It is evident that the progression becomes markedly accelerated. As described above, the piston ring wear ring of the present invention has a small aggressiveness even when applied to an Al-Si alloy piston in a state where the position of the top ring groove is moved upward, and has excellent wear resistance. As a result, it is possible to sufficiently satisfy the exhaust gas regulations of the engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ディーゼルエンジンのピストンを例示する概略
縦断面図(a)および同要部縦断面図(b)である。
FIG. 1A is a schematic longitudinal sectional view illustrating a piston of a diesel engine, and FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02F 3/00 302 F02F 3/00 302Z F16J 1/01 F16J 1/01 9/00 9/00 A // C22C 33/02 103 C22C 33/02 103E 103B Fターム(参考) 3J044 AA02 BA03 BA09 CA07 DA09 4K018 AA29 AA30 AA32 AB02 AB03 AC01 BA02 BA03 BA04 BA15 BB04 BC12 CA11 DA21 DA31 KA09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02F 3/00 302 F02F 3/00 302Z F16J 1/01 F16J 1/01 9/00 9/00 A // C22C 33/02 103 C22C 33/02 103E 103B F term (reference) 3J044 AA02 BA03 BA09 CA07 DA09 4K018 AA29 AA30 AA32 AB02 AB03 AC01 BA02 BA03 BA04 BA15 BB04 BC12 CA11 DA21 DA31 KA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 遊離黒鉛形成成分および素地強化成分として、C:0.
5〜5%、 いずれも素地形成成分として、 Cr:0.5〜5%、 Mn:0.2〜1%、 S:0.05〜1%、 B:0.05〜1%、 Ni:1〜12%、 Ti:0.5〜5%、 Cu:1〜8%、 を含有し、さらに、 周期律表の4a、5a、および6a族金属の炭化物、窒
化物、および炭窒化物、並びにこれらの2種以上の固溶
体のうちの1種または2種以上からなり、電子顕微鏡に
よる断面組織観察で0.1〜5μmの平均粒径を示す硬
質金属炭・窒化物粒子:0.1〜5%、を含有し、残り
が素地形成成分としてのFeと不可避不純物からなる組
成、並びに素地の主体が実質的にオーステナイトからな
り、遊離黒鉛は、前記素地には実質的に存在せず、気孔
内に析出して成長した状態で存在し、かつ前記素地には
上記の硬質金属炭・窒化物粒子が分散分布した組織を有
する遊離黒鉛析出鉄系焼結材料で構成したことを特徴と
する耐摩耗性のすぐれた遊離黒鉛析出鉄系焼結材料製ピ
ストンリング耐摩環。
1. The composition according to claim 1, wherein the free graphite forming component and the base reinforcing component are:
5 to 5%, each as a base forming component, Cr: 0.5 to 5%, Mn: 0.2 to 1%, S: 0.05 to 1%, B: 0.05 to 1%, Ni: 1 to 12%, Ti: 0.5 to 5%, Cu: 1 to 8%, and carbides, nitrides, and carbonitrides of metals of Groups 4a, 5a, and 6a of the periodic table; Hard metal carbon / nitride particles consisting of one or more of these two or more solid solutions and exhibiting an average particle size of 0.1 to 5 μm by cross-sectional structure observation with an electron microscope: 0.1 to 5%, with the balance being Fe as a base forming component and unavoidable impurities, and the main constituent of the base is substantially composed of austenite, free graphite is substantially not present in the base, Exists in a state of being precipitated and growing in the inside, and the hard metal Wear resistance of the excellent free graphite precipitation iron-base sintered material manufactured piston rings ring carrier, characterized in that is constituted by free graphite precipitation iron-based sintered material having a structure in which objects particles are dispersed distribution.
【請求項2】 重量%で、 遊離黒鉛形成成分および素地強化成分として、C:0.
5〜5%、 いずれも素地形成成分として、 Cr:0.5〜5%、 Mn:0.2〜1%、 S:0.05〜1%、 B:0.05〜1%、 Ni:1〜12%、 Ti:0.5〜5%、 Cu:8.5〜20%、 Mo:0.1〜2%、 を含有し、さらに、 周期律表の4a、5a、および6a族金属の炭化物、窒
化物、および炭窒化物、並びにこれらの2種以上の固溶
体のうちの1種または2種以上からなり、電子顕微鏡に
よる断面組織観察で0.1〜5μmの平均粒径を示す硬
質金属炭・窒化物粒子:0.1〜5%、を含有し、残り
が素地形成成分としてのFeと不可避不純物からなる組
成、並びに素地の主体が実質的にオーステナイトからな
り、遊離黒鉛は、前記素地には実質的に存在せず、気孔
内に析出して成長した状態で存在し、かつ前記素地には
上記の硬質金属炭・窒化物粒子が分散分布した組織高合
金硬質粒子が分散分布した組織を有する遊離黒鉛析出鉄
系焼結材料で構成したことを特徴とする耐摩耗性のすぐ
れた遊離黒鉛析出鉄系焼結材料製ピストンリング耐摩
環。
2. In% by weight, as a free graphite forming component and a base reinforcing component, C: 0.
5 to 5%, each as a base forming component, Cr: 0.5 to 5%, Mn: 0.2 to 1%, S: 0.05 to 1%, B: 0.05 to 1%, Ni: 1 to 12%, Ti: 0.5 to 5%, Cu: 8.5 to 20%, Mo: 0.1 to 2%, and metals of groups 4a, 5a, and 6a of the periodic table. Consisting of one or more of carbides, nitrides, and carbonitrides, and two or more of these solid solutions, and exhibiting an average particle size of 0.1 to 5 μm by cross-sectional structure observation with an electron microscope. Metal carbon / nitride particles: 0.1 to 5%, the balance being Fe as a base forming component and inevitable impurities, and the main body of the base is substantially composed of austenite. Substantially not present in the substrate, existing in a state of being deposited and grown in pores, and Excellent wear resistance, characterized by being composed of free graphite-precipitated iron-based sintered material having a structure in which the above-mentioned hard metal carbon / nitride particles are dispersed and distributed. Piston ring wear ring made of free graphite precipitated iron-based sintered material.
JP14437499A 1999-05-25 1999-05-25 Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance Withdrawn JP2000328109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14437499A JP2000328109A (en) 1999-05-25 1999-05-25 Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14437499A JP2000328109A (en) 1999-05-25 1999-05-25 Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance

Publications (1)

Publication Number Publication Date
JP2000328109A true JP2000328109A (en) 2000-11-28

Family

ID=15360647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14437499A Withdrawn JP2000328109A (en) 1999-05-25 1999-05-25 Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance

Country Status (1)

Country Link
JP (1) JP2000328109A (en)

Similar Documents

Publication Publication Date Title
JP3191665B2 (en) Metal sintered body composite material and method for producing the same
JP5992402B2 (en) Manufacturing method of nitrided sintered component
US4388114A (en) Anti-wear sintered alloy
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
US4518563A (en) Method for manufacturing a slide member
JPS59104454A (en) Anti-wear sintered alloy
JP6431012B2 (en) Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP2000337511A (en) Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance and heat conductivity
JP3434527B2 (en) Sintered alloy for valve seat
JP3749809B2 (en) Piston ring composite wear-resistant ring with cooling cavity with excellent high-temperature wear resistance and thermal conductivity
JP3470595B2 (en) Al-Si alloy piston that can be installed above the top ring groove
JP2000328109A (en) Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance
JP3346270B2 (en) Piston ring wear ring made of free graphite precipitated iron-based sintered material with excellent high temperature wear resistance
JP2001158934A (en) Method for producing wear resistant ferrous sintered alloy
JP2000337512A (en) Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance
JP2000282192A (en) Wear resistant ring for piston ring made of free graphite precipitated ferrous sintering material excellent in wear resistance
JP2000282166A (en) Wear resistant ring for piston ring, made of free graphite precipitated ferrous sintered material, excellent in wear resistance and thermal conductivity
JP2000337510A (en) Piston-ring abrasion-resistant ring made of free-graphite- precipitated iron system sintered material excellent in abrasion resistance and thermal conductivity
JP2001073100A (en) Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact
KR0183227B1 (en) A metal sintered body composite material and method for producing the same
JP2000282194A (en) Wear resistant ring for piston ring made of free graphite precipitated ferrous sintering material excellent in wear resistance
JP2000282193A (en) Wear resistant ring for piston ring made of free graphite precipitated ferrous sintering material excellent in wear resistance and thermal conductivity
JPH11279719A (en) Wear resistant piston ring made of free graphite-precipitated iron series sintering material excellent in high temperature wear resistance and thermal conductivity
JPH11269619A (en) Piston ring wear resistant ring made of free graphite-precipitated iron base sintering material excellent in high temperature wear resistance and thermal conductivity
JP2594505B2 (en) Rocker arm

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801