JP2001073100A - Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact - Google Patents

Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact

Info

Publication number
JP2001073100A
JP2001073100A JP24614299A JP24614299A JP2001073100A JP 2001073100 A JP2001073100 A JP 2001073100A JP 24614299 A JP24614299 A JP 24614299A JP 24614299 A JP24614299 A JP 24614299A JP 2001073100 A JP2001073100 A JP 2001073100A
Authority
JP
Japan
Prior art keywords
sintered body
powder
phase
weight
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24614299A
Other languages
Japanese (ja)
Inventor
Takeo Hisada
建男 久田
Kenji Watabe
健司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP24614299A priority Critical patent/JP2001073100A/en
Publication of JP2001073100A publication Critical patent/JP2001073100A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferrous sintered compact hardly causing red brittleness and capable of attaining uniform superior lubricating property. SOLUTION: By sintering a powder composed essentially of Fe and containing 1-4 wt.% S component and 18-30 wt.% Mo component, a sintered compact structure in which S-enriched phases are dispersedly formed can be easily obtained. By achieving the ferrous sintered compact structure in which S-enriched phases are dispersedly formed, uniform and superior lubricating property can be attained on application of the sintered compact to bearing, machine sliding parts, etc. Because, unlike FeS in a cast material, the S-enriched phases 52 do not precipitate in netlike (reticular) form but exist in the form of dispersion, the problem of red brittleness is hardly brought about when hot working is further applied to the sintered compact. Further, as an alloy composition, a composition containing 1-4 wt.% S component and 18-30 wt.% Mo component and having relatively low S content is selected. By this procedure, the formation of the S-enriched phases composed essentially of Mo sulfides excellent in solid lubricity can be accelerated, and the ferrous sintered compact having superior lubricating property can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はFe系焼結体、F
e系焼結体製造用粉末、及びFe系焼結体の製造方法に
関する。
TECHNICAL FIELD The present invention relates to an Fe-based sintered body,
The present invention relates to a powder for producing an e-based sintered body and a method for producing an Fe-based sintered body.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】各種機
械構造部品、とりわけ自動車部品において、その構成材
の摩擦係数を低減することはメカニックロス(機械損
失)を低減し、エネルギーの有効利用を図る上で有用で
ある。機械構造部品の摩擦係数を低減する手段として、
その構成材中にMoxSy型の化合物を微細析出させ、そ
のMoxSyの潤滑作用に基づいて摩擦係数を低減するこ
とが考えられる。
2. Description of the Related Art Reducing the friction coefficient of the components of various mechanical structural parts, particularly automobile parts, reduces the mechanic loss (mechanical loss) and makes effective use of energy. Useful on As a means to reduce the coefficient of friction of mechanical structural parts,
It is conceivable that a MixSy-type compound is finely precipitated in the constituent material and the friction coefficient is reduced based on the lubricating action of the MixSy.

【0003】従来Fe−Mo−S系の鋳造材においてこ
の種MoxSy型の化合物の析出が認められており、一部
では摩擦係数の低減が認められている(例えば、日本金
属学会誌38(1974)206、213)。しかしな
がらかかる鋳造材の場合、図4(a)に示すように、同
時に、Fe系マトリックス相よりも融点の低いFeS相
151がネット状に形成され、そのネット状のFeS相
151が赤熱脆性の主原因となって、その後の熱間加工
を行うことができず、実際には工業的に利用されていな
いのが実情である。例えばFe−S二元系状態図から推
測すれば、FeS相とオーステナイト相とは共晶反応型
の疑似二元系を形成し、その共晶組成(Sが約30重量
%)よりもFeリッチ側では融液を冷却するに伴い、ま
ずFeの初晶を生じ、その初晶の成長に伴い残液中には
S成分が濃化されてゆく。S成分は周知の通りFe中で
は界面活性な元素であり、残液の固液境界付近に特に優
先的に集まりやすいと考えられる。そして、最終的に残
液は共晶温度にてオーステナイト相とFeS相とに共晶
分離するのであるが、残液は初晶結晶粒間の網目状空間
に押し込められる形となるので、形成されるFeS相も
ネット状になると考えることができる。いずれにしろ、
鋳造材の場合、凝固時におけるこのようなネット状のF
eS相が必ず生じ、その後の熱処理により過飽和のS成
分をマトリックス中に分散析出させてもネット状のFe
S相は消滅せず、赤熱脆性の問題は避けがたいのであ
る。
[0003] Conventionally, precipitation of this type of MoxSy type compound has been observed in Fe-Mo-S-based cast materials, and a reduction in the friction coefficient has been observed in some cases (for example, Journal of the Japan Institute of Metals 38 (1974)). ) 206, 213). However, in the case of such a cast material, as shown in FIG. 4 (a), at the same time, the FeS phase 151 having a lower melting point than the Fe-based matrix phase is formed in a net shape, and the net-shaped FeS phase 151 is mainly composed of red-hot embrittlement. As a cause, subsequent hot working cannot be performed, and the fact is that it is not actually used industrially. For example, when inferred from the Fe—S binary system phase diagram, the FeS phase and the austenite phase form a eutectic reaction type pseudo binary system, and the Fe-rich phase is more Fe-rich than its eutectic composition (S is about 30% by weight). On the side, primary crystals of Fe are generated as the melt is cooled, and the S component is concentrated in the remaining liquid as the primary crystals grow. As is well known, the S component is a surface-active element in Fe, and it is considered that it is likely to preferentially gather near the solid-liquid boundary of the residual liquid. Finally, the residual liquid is eutectic-separated into an austenite phase and an FeS phase at the eutectic temperature, but the residual liquid is formed because it is pressed into the network space between the primary crystal grains. The FeS phase can also be considered to be net-like. in any case,
In the case of a cast material, such a net-like F
An eS phase always occurs, and even if a supersaturated S component is dispersed and precipitated in the matrix by a subsequent heat treatment, a net-like Fe
The S phase does not disappear, and the problem of red embrittlement is inevitable.

【0004】そこで、上記の問題を解決するために、特
開平10−317002号公報には、重量%で、S:1
〜10%,Mo:3〜25%で1.67S+1≦Mo≦
1.67S+7を満たし、残部不可避的不純物及びFe
からなることを特徴とする低摩擦係数粉末を用いてFe
系焼結体を製造する技術が開示されている。焼結材の場
合、FeS相は融液の凝固反応が主体とならないので、
鋳造材のようなネット状形成は生じにくく、マトリック
ス中に分散形成され、結果として赤熱脆性が非常に生じ
にくくなる。これは、鋳造材と本質的に異なる点であ
る。
[0004] In order to solve the above problem, Japanese Patent Application Laid-Open No. Hei 10-317002 discloses that S: 1
-10%, Mo: 1.67S + 1 ≦ Mo ≦ at 3-25%
1.67S + 7 is satisfied, the balance is inevitable impurities and Fe
Fe powder using a low coefficient of friction powder characterized by comprising
A technique for manufacturing a sintered body is disclosed. In the case of a sintered material, the FeS phase does not mainly involve the solidification reaction of the melt,
A net-like formation such as a cast material is unlikely to occur, and is dispersed and formed in a matrix. As a result, red-hot brittleness is extremely unlikely to occur. This is essentially different from the cast material.

【0005】しかし、該公報に開示された組成範囲で
は、1.67S+1≦Mo≦1.67S+7の制約があ
るために、Mo含有量と連動してSの含有量も増加せざ
るを得ない事情がある。例えばS含有量を最大に近い1
0重量%まで増加させたときに、許容されるMoの含有
量の上限は24重量%程度である。そして、本発明者等
が鋭意検討した結果、Moに対するSの相対含有量が増
え過ぎると、S成分は、FeS等のFe系硫化物(固体
潤滑効果をあまり期待できない)の生成に消費され、結
果として固体潤滑に効果的なMoxSyを必要十分な量に
て形成できず、性能的に不十分なものしか得られないこ
とがわかった。
However, in the composition range disclosed in the publication, there is a restriction of 1.67S + 1 ≦ Mo ≦ 1.67S + 7, so that the S content must be increased in conjunction with the Mo content. There is. For example, if the S content is
When it is increased to 0% by weight, the upper limit of the allowable Mo content is about 24% by weight. As a result of intensive studies by the present inventors, if the relative content of S with respect to Mo is excessively increased, the S component is consumed for generation of Fe-based sulfides such as FeS (solid lubricating effect is not expected much), As a result, it was found that a necessary and sufficient amount of MoxSy effective for solid lubrication could not be formed, and only those having insufficient performance could be obtained.

【0006】本発明の課題は、MoxSy等、潤滑作用を
有するSリッチ相を分散形成した組織が容易に得られ、
ひいては赤熱脆性を生じにくく、かつ均一で良好な潤滑
性能を達成することができるFe系焼結体と、その製造
に使用する粉末、さらにはその粉末を用いたFe系焼結
体の製造方法ならびに粉末の製造方法とを提供すること
にある。
An object of the present invention is to easily obtain a structure in which an S-rich phase having a lubricating action such as MoxSy is dispersed and formed,
Further, an Fe-based sintered body that hardly causes red-hot brittleness and can achieve uniform and good lubricating performance, a powder used for the production thereof, and a method for producing an Fe-based sintered body using the powder, and And a method for producing a powder.

【0007】[0007]

【課題を解決するための手段及び作用・効果】上記の課
題を解決するために、本発明のFe系焼結体は、Feを
主成分とし、S成分を1〜4重量%、Mo成分を18〜
30重量%含有するとともに、Feを主成分とする金属
マトリックス相中に、平均的なS成分濃度が前記金属マ
トリックス相よりも高くなるSリッチ相が分散形成され
ていることを特徴とする。なお、本明細書にて、「主成
分」(「主体」あるいは「主に」等も同義)とは、着目
している物質において、含有率の最も高い成分を意味す
る。なお、「成分」は、元素のほか、必要に応じ物質あ
るいは相を指すものとし、比率の単位は、「重量%」、
「体積%」、「面積比率%」など、個々に定めるものと
する。
Means for Solving the Problems and Actions / Effects In order to solve the above-mentioned problems, the Fe-based sintered body of the present invention contains Fe as a main component, an S component of 1 to 4% by weight, and a Mo component. 18 ~
An S-rich phase having an average S component concentration higher than that of the metal matrix phase is dispersed and formed in a metal matrix phase containing 30% by weight and Fe as a main component. In this specification, “main component” (also synonymous with “subject” or “mainly”) means a component having the highest content of the substance of interest. The term “component” refers to a substance or a phase as necessary in addition to an element. The unit of the ratio is “% by weight”,
"Volume%", "area ratio%", etc. shall be determined individually.

【0008】また、本発明のFe系焼結体製造用粉末
は、Feを主成分とし、S成分を0.5〜4重量%、M
o成分を18〜30重量%含有することを特徴とする。
この粉末を焼結することにより、上記本発明のFe系焼
結体を製造することができる。
The powder for producing an Fe-based sintered body of the present invention contains Fe as a main component, an S component of 0.5 to 4% by weight,
The o-component is characterized by containing 18 to 30% by weight.
By sintering this powder, the Fe-based sintered body of the present invention can be manufactured.

【0009】なお、Sリッチ相は、例えば金属マトリッ
クス相中に分散析出した金属硫化物相を主体に形成され
るものである。
The S-rich phase is formed mainly of, for example, a metal sulfide phase dispersed and precipitated in a metal matrix phase.

【0010】Feを主成分とし、S成分を1〜4重量
%、Mo成分を18〜30重量%含有する焼結体製造用
粉末の焼結により、Feを主成分とする金属マトリック
ス相中に、Sリッチ相が分散形成された焼結体組織を容
易に得ることができる。すなわち、潤滑作用を有するS
リッチ相を分散形成したFe系焼結体組織を実現するこ
とで、これを軸受けや機械摺動部品等に適用した場合
に、均一で良好な潤滑性能を達成することができる。ま
た、鋳造材におけるFeSのようにSリッチ相がネット
状(網状)に析出せず、分散形態で存在するので、焼結
体にさらに熱間加工を施したりする際に赤熱脆性の問題
も生じにくい。
By sintering a powder for producing a sintered body containing Fe as a main component, S component at 1 to 4% by weight and Mo component at 18 to 30% by weight, a metal matrix phase containing Fe as a main component is obtained. And a sintered body structure in which the S-rich phase is dispersedly formed can be easily obtained. That is, S having lubricating action
By realizing the Fe-based sintered body structure in which the rich phase is dispersedly formed, when this is applied to a bearing, a mechanical sliding part, or the like, uniform and good lubrication performance can be achieved. Further, since the S-rich phase does not precipitate in the form of a net (like a net) like FeS in the cast material but exists in a dispersed form, there arises a problem of red hot brittleness when further performing hot working on the sintered body. Hateful.

【0011】さらに、焼結体の組成を、Mo成分を18
〜30重量%に対し、S成分を1〜4重量%と、特開平
10−317002号公報に記載された発明よりS含有
量が相対的に低い組成を選択することにより、固体潤滑
性に優れたMo系硫化物を主体とするSリッチ相の形成
が促進され、良好な潤滑性能を有するFe系焼結体が得
られるようになる。なお、参考のため、特開平10−3
17002号公報のMo及びSの組成範囲PAと、本発
明のMo及びSの組成範囲TIとを図1に示している。
Further, the composition of the sintered body was changed to 18
Excellent solid lubricity by selecting a composition in which the S component is relatively lower than that of the invention described in Japanese Patent Application Laid-Open No. 10-317002, with the S component being 1 to 4% by weight with respect to 30% by weight. The formation of an S-rich phase mainly composed of Mo-based sulfide is promoted, and an Fe-based sintered body having good lubrication performance can be obtained. For reference, see Japanese Patent Application Laid-Open No. 10-3
FIG. 1 shows the composition range PA of Mo and S in 17002 and the composition range TI of Mo and S of the present invention.

【0012】S成分の含有量が1重量%未満であると、
後述のMo系Sリッチ相あるいはMo−Fe系Sリッチ
相の形成が不十分となり、焼結体の固体潤滑性能が損な
われることにつながる。他方、S成分が4重量%を超え
ると、FeS等の固体潤滑に寄与しない硫化物生成が多
く生じ、焼結体の固体潤滑性能が同様に損なわれるほ
か、合金溶解時にS成分を均一に分布させることが困難
となる。なお、S成分の含有量はより望ましくは1〜3
重量%とするのがよい。
When the content of the S component is less than 1% by weight,
The formation of the Mo-based S-rich phase or Mo-Fe-based S-rich phase described below becomes insufficient, leading to impaired solid lubrication performance of the sintered body. On the other hand, if the S component exceeds 4% by weight, a large amount of sulfides not contributing to solid lubrication such as FeS are generated, and the solid lubrication performance of the sintered body is similarly impaired, and the S component is uniformly distributed during melting of the alloy. It will be difficult to do so. The content of the S component is more desirably 1 to 3.
% By weight.

【0013】他方、Mo成分が18重量%未満になる
と、後述のMo系Sリッチ相あるいはMo−Fe系Sリ
ッチ相の形成が不十分となり、焼結体の固体潤滑性能が
損なわれることにつながる。他方、30重量%以上Mo
を配合しても、硫化物相の形成量が飽和し、ひいては焼
結体の固体潤滑性能のそれ以上の向上が見込めなくなる
ため、高価なMo成分が増える分だけコストアップを招
くことにつながる。さらに、Mo量が増加すると、焼結
温度によっては、焼結時の収縮量が大きくなり過ぎ、得
られる焼結部材の寸法精度の低下を来たしやすくなる。
なお、Mo成分の含有量はより望ましくは20〜28重
量%とするのがよい。
On the other hand, if the Mo content is less than 18% by weight, the formation of the Mo-based S-rich phase or Mo-Fe-based S-rich phase described below becomes insufficient, and the solid lubrication performance of the sintered body is impaired. . On the other hand, 30% by weight or more of Mo
Even if it is blended, the formation amount of the sulfide phase is saturated, and further improvement in the solid lubrication performance of the sintered body cannot be expected. Therefore, the increase in the expensive Mo component leads to an increase in cost. Further, when the amount of Mo increases, the amount of shrinkage during sintering becomes too large depending on the sintering temperature, and the dimensional accuracy of the obtained sintered member tends to be reduced.
The content of the Mo component is more desirably 20 to 28% by weight.

【0014】また、Mo含有量として、18〜30重量
%を採用することで、焼結体の収縮が促進され、その密
度及び強度を一層高めることが可能である。ただし、前
記した通り、Mo量が30重量%を超えると収縮が進行
し過ぎ、また、焼結体の強度を担うFe量が不足して、
却って強度低下を招くことがある。
Further, by adopting the Mo content of 18 to 30% by weight, the shrinkage of the sintered body is promoted, and the density and strength thereof can be further increased. However, as described above, if the Mo amount exceeds 30% by weight, the shrinkage proceeds excessively, and the amount of Fe, which is responsible for the strength of the sintered body, is insufficient.
On the contrary, the strength may be reduced.

【0015】なお、焼結体製造用粉末は、Feを主成分
とし、S成分を1〜4重量%、Mo成分を18〜30重
量%含有する組成となるように合金原料を溶解した後、
その原料を急冷する工程を経て製造された主要粉末を使
用することが望ましい。粉末製造に際して合金溶湯を急
冷することにより、鋳造材等におけるネット状のFeS
相形成が効果的に抑制され、図2に示すように、粉末粒
子60’中においてSリッチ相60bが金属マトリック
ス相60a中に分散した形態で析出させることができ
る。このような粉末は焼結後においても、図4(c)に
示すように、例えば金属マトリックス結晶相粒子51中
にSリッチ相52が分散した状態、あるいは図4(d)
又は(e)に示すように、金属マトリックス相結晶粒子
51に対し、Sリッチ相結晶粒子52が等軸晶的に分散
した状態(あるいは、(c)と(d)あるいは(e)と
が混在した状態)となるなど、金属マトリックス相51
中にSリッチ相52が分散した組織を維持しやすい。従
って、仮にFeSが析出したとしても、粒界部等に偏在
した状態が形成されにくいので赤熱脆性が効果的に抑制
され、焼結体を加工する際にも容易にこれをなすことが
でき、目的とする形状を得ることができるのである。も
っとも粉末の場合、焼結に際して最終形状(ネットシェ
イプ)ないしこれに近い形状(ニアネットシェイプ)に
焼結することが可能であり、この場合には赤熱脆性自体
が問題とならない。
The powder for producing a sintered body is prepared by dissolving an alloy material so as to have a composition containing Fe as a main component, an S component of 1 to 4% by weight, and a Mo component of 18 to 30% by weight.
It is desirable to use the main powder produced through the step of quenching the raw material. By quenching the molten alloy at the time of powder production, a net-like FeS
Phase formation is effectively suppressed, and as shown in FIG. 2, the S-rich phase 60b can be precipitated in the powder particles 60 ′ in a form dispersed in the metal matrix phase 60a. Even after sintering, such a powder is in a state in which the S-rich phase 52 is dispersed in the metal matrix crystal phase particles 51 as shown in FIG.
Or, as shown in (e), a state in which the S-rich phase crystal particles 52 are equiaxially dispersed in the metal matrix phase crystal particles 51 (or (c) and (d) or (e) are mixed) The metal matrix phase 51
It is easy to maintain a structure in which the S-rich phase 52 is dispersed. Therefore, even if FeS is precipitated, red-hot brittleness is effectively suppressed since a state unevenly distributed in a grain boundary portion or the like is not easily formed, and this can be easily performed even when processing a sintered body, The desired shape can be obtained. However, in the case of powder, it is possible to sinter to a final shape (net shape) or a shape close to this (near net shape) at the time of sintering, and in this case, red hot brittleness itself does not matter.

【0016】また、さらに重要な点は、本発明に特有の
高Moの合金組成では、急冷法を採用することで、固体
潤滑に寄与しないFeSの析出が抑制される一方、代わ
って固体潤滑に有効なMo−S系あるいはMo−Fe−
S系の硫化物の析出が促進され、一層潤滑性の良好な焼
結体の製造が可能となることである。これは、固溶限を
超えるMoの存在がMo系硫化物の形成・析出を促すた
め、Fe系硫化物の形成に寄与するS成分が目減りして
Fe系硫化物の形での析出が抑制される、あるいはFe
系硫化物がMo系硫化物の成長のために分解されるため
であると推測される。
More importantly, in the high Mo alloy composition peculiar to the present invention, by employing the quenching method, precipitation of FeS which does not contribute to solid lubrication is suppressed, while solid lubrication is used instead. Effective Mo-S system or Mo-Fe-
Precipitation of S-based sulfide is promoted, and the production of a sintered body having better lubricity becomes possible. This is because the presence of Mo exceeding the solid solubility limit promotes the formation and precipitation of Mo-based sulfides, so the S component contributing to the formation of Fe-based sulfides is reduced, and the precipitation in the form of Fe-based sulfides is suppressed. Or Fe
This is presumed to be because the system sulfide is decomposed due to the growth of the Mo system sulfide.

【0017】具体的には、急冷工程は、図2に示すよう
に、合金溶湯71を液体冷却媒及び/又は気体冷却媒7
9とともに噴霧する噴霧工程を採用できる。例えば、同
軸的に配置された内ノズル78と外ノズル77からなる
噴霧ノズルに対し、内ノズル78内に合金溶湯71を供
給し、先端側の開口部71aから流出させながら、両ノ
ズル78,77間の隙間79を経て不活性ガスあるいは
水等の噴霧媒体を開口部77aから噴射することによ
り、合金溶湯を噴霧・凝固させる。これにより得られる
噴霧粉末粒子60’は粒径が概ね10〜300μm程度
であるが、さらに細かい粉末が必要な場合は、図2
(c)に示すように、さらに粉砕(あるいは分級)して
二次粉末61’となすこともできる。なお、噴霧法以外
では合金電極を消耗電極として高速回転させ、陰極(例
えばタングステン系金属製のもの)からのアークにより
部分溶解して飛散させる回転電極法を採用することもで
きる。さらに、ロール急冷法、スプラット急冷法等によ
り合金溶湯をリボン状あるいはフレーク状に凝固させ、
これを粉砕して粉末化する方法も可能である。
Specifically, in the quenching step, as shown in FIG. 2, the molten alloy 71 is cooled by a liquid cooling medium and / or a gas cooling medium 7.
A spraying step of spraying with 9 can be adopted. For example, the alloy melt 71 is supplied into the inner nozzle 78 to the spray nozzle composed of the inner nozzle 78 and the outer nozzle 77 which are coaxially arranged, and flows out from the opening 71a on the distal end side while the two nozzles 78, 77 are being discharged. The molten alloy is sprayed and solidified by injecting a spray medium such as an inert gas or water from the opening 77a through the gap 79 between them. The sprayed powder particles 60 'thus obtained have a particle size of about 10 to 300 μm, but if a finer powder is required, FIG.
As shown in (c), it can be further pulverized (or classified) to form the secondary powder 61 '. In addition to the spraying method, a rotating electrode method in which an alloy electrode is rotated at high speed as a consumable electrode and partially melted and scattered by an arc from a cathode (for example, a tungsten-based metal) may be employed. Further, the alloy melt is solidified into a ribbon or flake by a roll quenching method, a splat quenching method, or the like.
It is also possible to pulverize and pulverize this.

【0018】焼結体組織中におけるSリッチ相は、Mo
及びSの含有量が、それらの組織全体の平均的な含有量
よりも大きくなるMo系Sリッチ相と、Mo及びSの含
有量が、それらの組織全体の平均的な含有量よりも大き
くなり、かつFeを含有するのMo−Fe系Sリッチ相
との、少なくともいずれかを主体とするものとなる。前
者は例えばMoxSy型のMo硫化物相であり、焼結体組
織表面における成分濃度分析を電子プローブ微小解析
(EPMA)により行ったときに、Moの特性X線とS
の特性X線とが同時に観測されるとともに、観測される
特性X線はこれら両元素からのものが主となる領域であ
る。一方、後者は、焼結体組織表面における成分濃度分
析をEPMAにより同様に行ったときに、Moの特性X
線とSの特性X線のほかFeの特性X線が、前記したM
o系Sリッチ相よりも高いレベルにて同時に観測される
領域である。これは、MoxSy型硫化物相あるいはFe
xSy型硫化物相にFeあるいはMoが固溶したものであ
るか、あるいはEPMA等では識別が困難な2μm以下
の微細な結晶形態にて、MoxSy型硫化物相とFexSy
型硫化物相とが混在したもの、あるいはそれら両者のい
ずれとも異なるMo−Fe系複合硫化物のいずれかであ
ると推測される。なお、Mo系Sリッチ相及びMo−F
e系Sリッチ相はいずれも、これらの固体潤滑性能が著
しく損なわれない範囲にて、他の合金元素あるいは不可
避不純物が含有されていてもよい。
The S-rich phase in the structure of the sintered body is Mo
And the S-rich phase in which the contents of S and S are larger than the average content of the entire structure, and the contents of Mo and S are higher than the average content of the entire structure. And at least one of a Mo-Fe-based S-rich phase containing Fe. The former is, for example, a MoSy type Mo sulfide phase. When the component concentration analysis on the surface of the sintered body structure is performed by electron probe microanalysis (EPMA), the characteristic X-rays of Mo and S
Characteristic X-rays are simultaneously observed, and the observed characteristic X-rays are regions mainly from these two elements. On the other hand, in the latter, when the component concentration analysis on the surface of the sintered body structure was similarly performed by EPMA, the characteristic X
The characteristic X-ray of Fe in addition to the characteristic X-ray of
This is a region that is simultaneously observed at a higher level than the o-based S-rich phase. This is due to the fact that the MoxSy type sulfide phase or Fe
Fe or Mo is dissolved in xSy-type sulfide phase, or it is difficult to distinguish by EPMA or the like.
It is presumed to be either a mixture of the sulfide type and the Mo-Fe-based composite sulfide different from both of them. The Mo-based S-rich phase and Mo-F
Any of the e-based S-rich phases may contain other alloying elements or unavoidable impurities as long as the solid lubrication performance is not significantly impaired.

【0019】なお、Mo系Sリッチ相及びMo−Fe系
Sリッチ相の焼結体組織中の面積比率は、焼結体の表面
を研磨してEPMAの面分析を行い、Mo、Fe及びS
の特性X線強度(これは各成分の濃度を反映した指標で
ある)の分布をマッピングするとともに、そのマッピン
グ結果を合成することによりMo系Sリッチ相領域とM
o−Fe系Sリッチ相領域とを画像的に識別して、各々
面積計算することにより求めることができる。なお、S
リッチ相は、組織全体の平均的なS濃度レベルよりもS
濃度の高い領域として定め、Mo系Sリッチ相及びMo
−Fe系Sリッチ相は、Fe濃度、Mo濃度及びS濃度
が、それぞれ組織全体の平均的Fe濃度、Mo濃度及び
S濃度レベルよりも高い領域として識別可能である。な
お、組織全体の平均的なMo濃度及びS濃度レベルより
もMo濃度及びS濃度が高くなる領域において、その平
均的なFe濃度よりもFe濃度が高いか否かにより、M
o−Fe系Sリッチ相及びMo系Sリッチ相を互いに識
別することができる。
The area ratio of the Mo-based S-rich phase and the Mo-Fe-based S-rich phase in the structure of the sintered body was determined by polishing the surface of the sintered body and analyzing the surface of EPMA to determine the Mo, Fe and S contents.
The distribution of the characteristic X-ray intensity (this is an index reflecting the concentration of each component) is mapped, and the mapping result is synthesized to obtain the Mo-based S-rich phase region and M
The o-Fe-based S-rich phase region can be image-wise identified and calculated by calculating the area of each. Note that S
The rich phase has a higher S concentration than the average S concentration level in the whole tissue.
Defined as a region with high concentration, Mo-based S-rich phase and Mo-based
The Fe-based S-rich phase can be identified as a region where the Fe concentration, the Mo concentration, and the S concentration are higher than the average Fe concentration, the Mo concentration, and the S concentration level of the entire tissue, respectively. Note that, in a region where the Mo concentration and the S concentration are higher than the average Mo concentration and the S concentration level of the entire tissue, M is determined depending on whether the Fe concentration is higher than the average Fe concentration.
The o-Fe-based S-rich phase and the Mo-based S-rich phase can be distinguished from each other.

【0020】いずれにせよ、Sリッチ相は、これらMo
系Sリッチ相とMo−Fe系Sリッチ相とが主体となる
場合に、良好な固体潤滑性能を有するFe系焼結体が実
現されるのである。具体的には、焼結体組織の断面にて
観察されるMo系Sリッチ相とMo−Fe系Sリッチ相
との合計の面積比率が12%〜50%となっているのが
よい。該面積比率が12%未満では、焼結体の固体潤滑
性能が損なわれることにつながる。他方、Mo系Sリッ
チ相とMo−Fe系Sリッチ相との合計が40%以上に
なると、焼結体の強度あるいは靭性が却って損なわれる
場合がある。上記の面積比率は、望ましくは12〜40
%となっているのがよい。
In any case, the S-rich phase is composed of these Mo
When the system-S rich phase and the Mo-Fe-based S-rich phase are mainly used, an Fe-based sintered body having good solid lubrication performance is realized. Specifically, the total area ratio of the Mo-based S-rich phase and the Mo-Fe-based S-rich phase observed in the cross section of the sintered body structure is preferably 12% to 50%. If the area ratio is less than 12%, the solid lubrication performance of the sintered body will be impaired. On the other hand, if the total of the Mo-based S-rich phase and the Mo-Fe-based S-rich phase is 40% or more, the strength or toughness of the sintered body may be impaired. The area ratio is desirably 12 to 40.
It is better to be%.

【0021】一方、焼結体の固体潤滑性能をさらに良好
なものとするには、Mo−Fe系Sリッチ相が形成され
ていることが望ましく、焼結体組織に占めるMo−Fe
系Sリッチ相の面積比率を特に2%〜20%となすこと
が、上記の観点において特に望ましい。
On the other hand, in order to further improve the solid lubrication performance of the sintered body, it is desirable that a Mo-Fe-based S-rich phase is formed, and that the Mo-Fe
It is particularly desirable from the above viewpoint that the area ratio of the system S-rich phase is particularly 2% to 20%.

【0022】次に、本発明の粉末を用いてFe系焼結合
金を製造することの利点は、焼結条件や焼結後の熱処理
条件を変更することにより、析出するSリッチ相の量
や、金属マトリックス相あるいはSリッチ相の結晶粒径
分布など、その組織を目的に応じて自由に設定できる点
である。例えば、図4(c)は、比較的低温にて焼結を
行っうか、あるいは焼結時に蒸発あるいは分解してキャ
ビティを形成する高分子材料フィラーを配合して焼結を
行った場合で、組織中にはキャビティが残留し、焼結体
の密度も低くなる。ただし、これが連通気孔である場合
には、ここに潤滑油や潤滑高分子材料を含浸すること
で、一層潤滑性能に優れた部材を得ることができる。こ
の場合、図3に示すように粉末60を、プレス等により
成型体61となし、その成形体61を焼結して焼結体6
2とする一般的な方法のほか、空隙率を高めるために、
セラミックコンテナ等に充填するのみで、特に圧縮成型
せずに焼結を行うこともできる。なお、潤滑高分子材料
として、例えばポリ四フッ化エチレン(PTFE、商品
名:テフロン)等のフッ素樹脂を例示することができる
が、これに限られるものではない。
Next, the advantage of producing an Fe-based sintered alloy using the powder of the present invention is that the amount of the precipitated S-rich phase can be reduced by changing the sintering conditions and the heat treatment conditions after sintering. In addition, the structure such as the crystal grain size distribution of the metal matrix phase or the S-rich phase can be freely set according to the purpose. For example, FIG. 4C shows a case where sintering is performed at a relatively low temperature or a polymer material filler that evaporates or decomposes at the time of sintering to form a cavity is mixed and sintered. Cavities remain therein, and the density of the sintered body decreases. However, when this is a continuous ventilation hole, a member having more excellent lubrication performance can be obtained by impregnating it with a lubricating oil or a lubricating polymer material. In this case, as shown in FIG. 3, the powder 60 is formed into a molded body 61 by pressing or the like, and the molded body 61 is sintered to form a sintered body 6.
In addition to the general method of 2, to increase the porosity,
Sintering can also be performed by merely filling a ceramic container or the like without performing compression molding. In addition, as the lubricating polymer material, for example, a fluororesin such as polytetrafluoroethylene (PTFE, trade name: Teflon) can be exemplified, but it is not limited thereto.

【0023】焼結温度が低い場合(例えば1000〜1
150℃)は、図2(b)において粉末粒子中60’中
に析出しているSリッチ相60bが、図4(c)に示す
ように、比較的微細なまま焼結後の組織にも引き継がれ
る場合がある。その後、比較的低温にて熱処理を行えば
(例えば800〜1000℃)、微細析出したSリッチ
相52の量をさらに増やすことも可能である。他方、焼
結温度を比較的高く設定した場合(例えば1150〜1
300℃)、あるいは焼結後に熱処理を施した場合(例
えば800〜1000℃)は、図4(d)及び(e)に
示すように、元のSリッチ相から周辺にS成分が拡散し
て拡がり、Sリッチ相の量(面積比率あるいは体積比
率)を多くすることができる。
When the sintering temperature is low (for example, 1000 to 1)
(150 ° C.) indicates that the S-rich phase 60b precipitated in the powder particles 60 ′ in FIG. 2 (b) has a relatively fine structure after sintering as shown in FIG. 4 (c). May be taken over. Thereafter, if heat treatment is performed at a relatively low temperature (for example, 800 to 1000 ° C.), the amount of the finely precipitated S-rich phase 52 can be further increased. On the other hand, when the sintering temperature is set relatively high (for example, 1150 to 1
When the heat treatment is performed after sintering (for example, 800 to 1000 ° C.), as shown in FIGS. 4D and 4E, the S component diffuses from the original S-rich phase to the periphery. Spreading can increase the amount (area ratio or volume ratio) of the S-rich phase.

【0024】なお、焼結方法は、常圧焼結法のほか、高
密度化が必要な場合は、ホットプレス法や熱間等方圧プ
レス(HIP)の採用も可能である。また、Fe系焼結
体製造用粉末を一次圧縮及び一次焼結処理した後、再圧
縮及び再焼結処理して最終の焼結体を得るようにするこ
とも、焼結体の高密度化を図る上で有効である。このよ
うにした場合、比摩耗量をより効果的に少なくできるこ
とが確認されている。尚本発明の粉末は、これを用いて
溶射による被覆やPPW(プラズマパウダー溶接)等の
肉盛溶接を行うことも可能である。他方、Fe系焼結体
製造用粉末を、ビレット等の一次素材形状に成形及び焼
結した後、その一次素材に鍛造、圧延等の塑性加工を施
すことにより線材、棒材及び板材等の二次素材形状を得
る方法も可能である。後者の場合、本発明の採用により
焼結後の熱間加工時の赤熱脆性が回避できる利点がある
ことは、既に説明した通りである。
As the sintering method, in addition to the normal pressure sintering method, when high density is required, a hot press method or a hot isostatic pressing (HIP) can be adopted. In addition, after the powder for producing an Fe-based sintered body is subjected to primary compression and primary sintering, recompression and resintering is performed to obtain a final sintered body. It is effective in aiming at. In this case, it has been confirmed that the specific wear amount can be reduced more effectively. The powder of the present invention can be used for coating by thermal spraying or overlay welding such as PPW (plasma powder welding). On the other hand, after forming and sintering the powder for producing an Fe-based sintered body into a primary material shape such as a billet, the primary material is subjected to plastic working such as forging or rolling to obtain a secondary material such as a wire, a rod and a plate. A method of obtaining the next material shape is also possible. In the latter case, as described above, there is an advantage that adoption of the present invention can avoid red hot brittleness during hot working after sintering.

【0025】なお、Sリッチ相の分散性を高めて固体潤
滑性能を均一で良好なものとする観点においては、Sリ
ッチ相の平均粒径を0.5〜50μm程度とすることが
望ましい。なお、本明細書にてSリッチ相の平均粒径と
は、焼結体組織表面にてSリッチ相の結晶粒がエッチン
グ等により明確に観察できる場合は、その組織写真上に
多数の測定ラインを引き、各結晶粒領域が切り取る測定
ラインの長さの平均値にて表すものとする(いわゆるラ
インインターセプト法)。他方、走査型電子顕微鏡(S
EM)に組み込まれたEPMAを用いて面分析を行い、
そのマッピング結果から画像化されるSリッチ相領域
に、SEM写真から求められる結晶粒界位置を重ね合わ
せ、同様にラインインターセプタ法を用いて測定する方
法もある。
From the viewpoint of enhancing the dispersibility of the S-rich phase to make the solid lubrication performance uniform and good, it is desirable that the average particle size of the S-rich phase is about 0.5 to 50 μm. In the present specification, the average particle size of the S-rich phase is defined as the number of measurement lines on the structure photograph when crystal grains of the S-rich phase can be clearly observed on the surface of the sintered structure by etching or the like. , And expressed as an average value of the length of the measurement line cut out by each crystal grain region (so-called line intercept method). On the other hand, a scanning electron microscope (S
Surface analysis is performed using EPMA incorporated in EM),
There is also a method in which a crystal grain boundary position obtained from an SEM photograph is superimposed on an S-rich phase region imaged from the mapping result, and measurement is similarly performed using a line interceptor method.

【0026】また、潤滑油等の含浸を行う場合は別とし
て、焼結体に一層十分な強度を付与したい場合には、焼
結体の密度を5.5g/cm以上としておくことが望
ましい。
Apart from the case where lubricating oil or the like is impregnated, when it is desired to impart more sufficient strength to the sintered body, it is desirable to set the density of the sintered body to 5.5 g / cm 3 or more. .

【0027】本発明に従って粉末製造し、焼結すること
によって機械構造部品等を製造する場合、低摩擦係数特
性を更に高めたり或いは他の特性を容易に付与できる利
点が得られる。即ち、先ず粉末製造してその焼結により
機械構造部品等を製造する場合、粉末ないし粉末焼結の
利点を最大限に利用して粉末に黒鉛等のCの粉末を添加
混合し、以て焼結体中に炭化物形成及び母相の硬さを向
上させることができる。
In the case of producing mechanical structural parts by producing and sintering powder according to the present invention, there is obtained an advantage that the low friction coefficient characteristic can be further enhanced or other characteristics can be easily imparted. That is, in the case of first producing powder and sintering to produce mechanical structural parts, etc., the powder or C powder such as graphite is added to and mixed with the powder by making the most of the advantages of the powder or powder sintering. It is possible to improve the formation of carbides and the hardness of the matrix in the binder.

【0028】本発明においては、粉末ひいてはそれによ
って製造される焼結体に、C(C粉末の形で添加できる
ことを既に説明した)、Si、Mn、V、W、Ni及び
Crの1種又は2種以上を含有させることができる。そ
れらの望ましい含有範囲と、その理由について以下に詳
述する。 (1)C:0.05〜1.2重量% Cは強度を確保するのに有用な元素である。但し0.0
5%未満では効果が乏しく、逆に過剰添加はMo炭化物
の析出を過度に促進し、Mo硫化物の形成に悪影響を与
えるため上限を1.2%とする。 (2)Si:≦2.0重量% Siは溶鋼中の酸素低減に有効で湯流れを改善し、焼結
体の生地を強化する元素である。2.0%でその効果が
飽和するのでこれを上限とする。なお、一定の効果を期
待する場合は、0.1重量%以上は含有されていること
が望ましい。
In the present invention, one kind of C (as already described that it can be added in the form of C powder), Si, Mn, V, W, Ni and Cr is added to the powder and the sintered body produced therefrom. Two or more can be contained. The desirable content ranges and the reasons are described in detail below. (1) C: 0.05 to 1.2% by weight C is an element useful for securing strength. However 0.0
If it is less than 5%, the effect is poor. Conversely, excessive addition excessively promotes the precipitation of Mo carbide and adversely affects the formation of Mo sulfide, so the upper limit is made 1.2%. (2) Si: ≦ 2.0% by weight Si is an element that is effective in reducing oxygen in molten steel, improves the flow of molten metal, and strengthens the material of the sintered body. Since the effect is saturated at 2.0%, the upper limit is set. When a certain effect is expected, it is desirable that the content is 0.1% by weight or more.

【0029】(3)Mn:≦2.0重量% Mnは鋼の焼入れ性を確保するのに有効な元素である
が、過度の添加は粉末の酸化を促進するため上限を2.
0重量%とする。なお、一定の効果を期待する場合は、
0.05重量%以上は含有されていることが望ましい。 (4)Ni:≦5.0重量% Niは焼入れ性を与え、焼入れ・焼戻し後の機械的性質
を向上させる。但し過度の添加は残留オーステナイト生
成の原因となり、硬さを低下させるので上限を5.0重
量%とする。なお、一定の効果を期待する場合は、0.
5重量%以上は含有されていることが望ましい。 (5)Cr:≦1.50重量% Crは鋼の焼入れ性を確保するのに有効であるが、過度
の添加はMoと副炭化物を作り、Mo硫化物の生成に悪
影響を与えるので上限を1.50重量%とする。なお、
一定の効果を期待する場合は、0.3重量%以上は含有
されていることが望ましい。
(3) Mn: ≦ 2.0% by weight Mn is an effective element for securing the hardenability of steel, but excessive addition promotes oxidation of the powder.
0% by weight. If you expect a certain effect,
It is desirable that the content be 0.05% by weight or more. (4) Ni: ≦ 5.0% by weight Ni gives quenchability and improves mechanical properties after quenching and tempering. However, excessive addition causes generation of residual austenite and lowers the hardness, so the upper limit is made 5.0 wt%. In addition, when a certain effect is expected, 0.
It is desirable to contain 5% by weight or more. (5) Cr: ≦ 1.50 wt% Cr is effective for securing the hardenability of steel, but excessive addition forms Mo and a sub-carbide and adversely affects the formation of Mo sulfide. 1.50% by weight. In addition,
When a certain effect is expected, it is desirable to contain 0.3% by weight or more.

【0030】(6)V:≦3.0重量% Vは単独でVCを形成し、耐摩耗性を与えるのに有効で
ある。但し過度の添加は粉末製造時の注湯ノズル閉塞等
のトラブルの要因となるので上限を3.0重量%とす
る。なお、一定の効果を期待する場合は、0.3重量%
以上は含有されていることが望ましい。 (7)W:≦1.0重量% Wは炭化物を形成して耐摩耗性を与えるのに有効であ
る。但し過度の添加はMoと副炭化物を作り、Mo硫化
物の生成に悪影響を与えるので上限を1.0重量%とす
る。なお、一定の効果を期待する場合は、0.1重量%
以上は含有されていることが望ましい。
(6) V: ≦ 3.0% by weight V alone forms VC and is effective in giving abrasion resistance. However, excessive addition may cause troubles such as clogging of a pouring nozzle during powder production, so the upper limit is set to 3.0% by weight. If a certain effect is expected, 0.3% by weight
It is desirable that the above be contained. (7) W: ≦ 1.0% by weight W is effective for forming carbides to give abrasion resistance. However, excessive addition produces Mo and secondary carbides and adversely affects the formation of Mo sulfide, so the upper limit is made 1.0% by weight. If a certain effect is expected, 0.1% by weight
It is desirable that the above be contained.

【0031】例えば、焼結体(あるいは、後述の主要組
織構成相)の具体的な組成として、C、Si、Mn、
V、W、Ni及びCrの1種又は2種以上を上記の範囲
にて含有し、残部Feと不可避不純物とからなる組成を
例示できる。
For example, specific compositions of a sintered body (or a main structural constituent phase described later) include C, Si, Mn,
One or more of V, W, Ni and Cr are contained in the above range, and a composition comprising the balance of Fe and unavoidable impurities can be exemplified.

【0032】次に、本発明においては、Feを主成分と
し、S成分を0.5〜4重量%、Mo成分を18〜30
重量%含有する上記の合金粉末を主要粉末として、その
主要粉末に、その主要粉末とは異なる材質にて構成され
る補助粉末を2〜41体積%の範囲内にて配合すること
も可能である。得られる焼結体は、Feを主成分とし、
S成分を1〜4重量%、Mo成分を18〜30重量%含
有するとともに、Feを主成分とする金属マトリックス
相中に、平均的なS成分濃度が金属マトリックス相より
も高くなるSリッチ相が分散形成された組織を主要組織
構成相として、その主要組織構成相とは異なる材質にて
構成される補助組織構成相を、焼結体組織の断面にて観
察される面積率にて7〜55%の範囲内にて含有するも
のとなる。補助粉末の配合により、主要組織構成相の特
性に補助組織構成相に基づく種々の特性を付加すること
ができ、材料の応用範囲をさらに広げることができる。
Next, in the present invention, Fe is the main component, the S component is 0.5-4% by weight, and the Mo component is 18-30%.
It is also possible to mix the above-mentioned alloy powder containing 10% by weight as a main powder with an auxiliary powder composed of a material different from that of the main powder within a range of 2 to 41% by volume. . The obtained sintered body has Fe as a main component,
An S-rich phase containing 1 to 4% by weight of the S component and 18 to 30% by weight of the Mo component and having an average S component concentration higher than that of the metal matrix phase in the metal matrix phase mainly containing Fe. Is defined as a main structural constituent phase, and an auxiliary structural constituent phase made of a material different from that of the main structural constituent phase is formed at an area ratio of 7 to 7 observed at a cross section of the sintered body structure. It will be contained within the range of 55%. By blending the auxiliary powder, various characteristics based on the auxiliary structural constituent phase can be added to the characteristics of the main structural constituent phase, and the application range of the material can be further expanded.

【0033】なお、SおよびMoの必須添加元素成分
と、及びC、Si、Mn、V、W、Ni及びCr等の任
意添加元素成分の焼結体あるいは粉末中の望ましい含有
範囲、さらには焼結体中の各種Sリッチ相の望ましい含
有範囲は既に説明した通りであるが、補助粉末の配合に
伴い焼結体中に補助組織構成相が形成される場合は、上
記添加元素成分の粉末中あるいは焼結体中の望ましい含
有範囲、さらには焼結体中のSリッチ相の望ましい含有
範囲は、各々、主要粉末中あるいは主要組織構成相中の
含有範囲として成立していることが望ましい。なお、補
助粉末が、上記の必須添加元素成分あるいは任意添加元
素成分を含有する結果、補助粉末に含有されるそれら成
分が、主要組織構成相(すなわち、Fe系マトリックス
相+Sリッチ相)の形成に関与する場合があり、他方、
Cの配合により金属炭化物が形成される場合は、その炭
化物は補助組織構成相に属するものと考える。
The desirable content range of the essential additive element components of S and Mo and the optional additive component components such as C, Si, Mn, V, W, Ni and Cr in the sintered body or powder, and further, The desirable content range of the various S-rich phases in the sintered body is as described above. However, when the auxiliary structural constituent phase is formed in the sintered body with the blending of the auxiliary powder, the content of the above-mentioned additional element component powder Alternatively, the desirable content range in the sintered body and the desirable content range of the S-rich phase in the sintered body are desirably established as the content range in the main powder or the main structural constituent phase, respectively. In addition, as a result of the auxiliary powder containing the above-mentioned essential additive element component or optional additive element component, those components contained in the auxiliary powder are converted into a main structural constituent phase (that is, Fe-based matrix phase + S-rich phase). May be involved,
When a metal carbide is formed by the blending of C, the carbide is considered to belong to the auxiliary structural constituent phase.

【0034】補助粉末は、例えば、Al系合金粉末、C
u系合金粉末及びFe系合金粉末の少なくともいずれか
を主体とするものを採用できる。これに対応して補助組
織構成相も、Al系合金相及びCu系合金相の少なくと
もいずれかを主体とするものとすることができる(Fe
系合金粉末は、Fe系マトリックス相の形成に主に寄与
する)。Al系合金相からなる補助組織構成相は、焼結
材料の軽量化と伝熱性向上等に寄与する。Cu系合金相
からなる補助組織構成相は、Al系合金相以上に焼結材
料の伝熱性向上に寄与する。なお、Al系合金粉末及び
Cu系合金粉末は、主要粉末に対する配合量によっては
押出成形による連続製造も可能となり、生産性向上にも
寄与する。他方、Fe系合金粉末は、例えばステンレス
鋼や系耐熱合金等で構成することができる。これによ
り、焼結部材の耐食性や耐熱性の向上を図ることが可能
となる。なお、補助組織構成相をなすAl系合金相ある
いはCu系合金相は、固体潤滑相として機能する場合が
ある。また、以下に説明する固体潤滑剤粒子相や無機耐
摩耗粒子相も、補助組織構成相の一種であり、その形成
に使用する固体潤滑剤粉末及び無機耐摩耗粒子は補助粉
末の一種である。
The auxiliary powder is, for example, Al alloy powder, C
A powder mainly composed of at least one of a u-based alloy powder and an Fe-based alloy powder can be employed. Correspondingly, the auxiliary structure constituent phase can be mainly composed of at least one of the Al-based alloy phase and the Cu-based alloy phase (Fe
The alloy powder mainly contributes to the formation of the Fe matrix phase. The auxiliary structural constituent phase composed of the Al-based alloy phase contributes to the reduction of the weight of the sintered material and the improvement of the heat conductivity. The auxiliary structure constituent phase composed of the Cu-based alloy phase contributes to the improvement of the heat conductivity of the sintered material more than the Al-based alloy phase. The Al-based alloy powder and the Cu-based alloy powder can be continuously manufactured by extrusion molding depending on the compounding amount with respect to the main powder, which contributes to an improvement in productivity. On the other hand, the Fe-based alloy powder can be made of, for example, stainless steel or a heat-resistant alloy. This makes it possible to improve the corrosion resistance and heat resistance of the sintered member. Note that the Al-based alloy phase or Cu-based alloy phase serving as an auxiliary structure constituent phase may function as a solid lubricating phase. The solid lubricant particle phase and the inorganic wear-resistant particle phase described below are also a kind of auxiliary structure constituent phase, and the solid lubricant powder and the inorganic wear-resistant particles used for the formation thereof are a kind of auxiliary powder.

【0035】すなわち、窒化硼素、二硫化モリブデン、
雲母、黒鉛等の固体潤滑剤粉末を所定量添加することに
よって、焼結体の摩擦係数を更に一段と低減することが
容易に実現できる。他方、焼結温度を低く設定すること
により、固体潤滑剤粉末としてフッ素樹脂(例えば、ポ
リテトラフルオロエチレンなど)の粉末を採用すること
も可能である(なお、前記した連通気孔に含浸されるフ
ッ素樹脂は当然に補助組織構成相とみなす)。固体潤滑
剤粒子は、粉末中に2〜41体積%の範囲内にて含有さ
せることにより、焼結体中にも同様の割合で含有させる
ことができる。2体積%未満では潤滑性向上効果が顕著
でなく、41体積%を超えると混合が難しいため、分布
が偏在化して焼結体の強度低下を来す場合がある。な
お、体積含有率は、組織中に占める面積比率とも対応
し、該面積比率の範囲は7〜55%とすることが望まし
い。なお、二硫化モリブデンを固体潤滑剤粉末として使
用した焼結体では、二硫化モリブデン粉末粒子はMo系
Sリッチ相の形成に与る形となる。
That is, boron nitride, molybdenum disulfide,
By adding a predetermined amount of solid lubricant powder such as mica, graphite, etc., it is possible to easily further reduce the friction coefficient of the sintered body. On the other hand, by setting the sintering temperature low, it is also possible to employ a powder of a fluororesin (for example, polytetrafluoroethylene) as the solid lubricant powder (the fluorine impregnated in the above-mentioned interconnected pores). The resin is of course considered the constituent phase of the auxiliary tissue). By including the solid lubricant particles in the powder in the range of 2 to 41% by volume, the same ratio can be contained in the sintered body. If it is less than 2% by volume, the effect of improving lubricity is not remarkable, and if it exceeds 41% by volume, mixing is difficult, so that the distribution may be unevenly distributed and the strength of the sintered body may be reduced. The volume content corresponds to the area ratio in the tissue, and the range of the area ratio is desirably 7 to 55%. In a sintered body using molybdenum disulfide as the solid lubricant powder, the molybdenum disulfide powder particles take a form that contributes to the formation of the Mo-based S-rich phase.

【0036】一方、金属炭化物、金属窒化物、金属炭窒
化物及び金属酸化物の少なくともいずれかを主体とする
無機耐摩耗粒子を所定量、例えば2〜41体積%の範囲
内にて添加することによって、焼結体の耐摩耗性を効果
的に高めることが容易に実現できる。2体積%未満では
耐摩耗性向上効果が顕著でなく、41体積%を超えると
混合が難しいため、分布が偏在化して焼結体の強度低下
を来す場合がある。なお、この場合も体積含有率は、組
織中に占める面積比率とも対応し、該面積比率の範囲は
7〜55%とすることが望ましい。
On the other hand, inorganic wear-resistant particles mainly composed of at least one of a metal carbide, a metal nitride, a metal carbonitride and a metal oxide are added in a predetermined amount, for example, in the range of 2 to 41% by volume. Accordingly, it is possible to easily increase the wear resistance of the sintered body effectively. If it is less than 2% by volume, the effect of improving the wear resistance is not remarkable, and if it exceeds 41% by volume, mixing is difficult, so that the distribution may be unevenly distributed and the strength of the sintered body may be reduced. In this case, the volume content also corresponds to the area ratio in the tissue, and the range of the area ratio is desirably 7 to 55%.

【0037】本発明においては固体潤滑剤粉末及び無機
耐摩耗粒子の2種類以上のものを複合で添加混合するこ
とももちろん可能である。この場合において固体潤滑剤
粉末、無機耐摩耗粒子の添加量はそれぞれ上記範囲と
し、かつそれらの合計量で添加量が41体積%以下とす
るのがよい。また、固体潤滑剤粉末及び/又は無機耐摩
耗粒子と、前記のCの粉末とを複合で添加混合すること
も可能である。
In the present invention, it is of course possible to add and mix two or more solid lubricant powders and inorganic wear-resistant particles in a composite form. In this case, the addition amounts of the solid lubricant powder and the inorganic wear-resistant particles are preferably in the above ranges, and the total amount thereof is preferably 41% by volume or less. It is also possible to add and mix the solid lubricant powder and / or the inorganic wear-resistant particles and the powder of C in a composite manner.

【0038】[0038]

【実験例】以下、本発明の効果を確認するために以下の
実験を行った。まず、30kg誘導炉にて合金原料を溶
解し、これを水噴霧装置にて噴霧することにより、表1
に示す各種組成の合金粉末を主要粉末として製造した。
EXPERIMENTAL EXAMPLES The following experiments were conducted to confirm the effects of the present invention. First, the alloy raw material was melted in a 30 kg induction furnace, and sprayed with a water spray device, thereby obtaining Table 1.
Alloy powders of various compositions shown in Table 1 were produced as main powders.

【0039】[0039]

【表1】 [Table 1]

【0040】得られた粉末は乾燥後、60メッシュ以下
に分級するとともに、還元性の雰囲気中で焼鈍を施した
後、試験に供した。そして、該焼鈍後の粉末に潤滑剤と
してステアリン酸亜鉛を0.5重量%添加・混合して原
料粉末とした。なお、番号13〜22については、上記
の合金粉末(主要粉末)に対し、補助粉末として固体潤
滑材粉末粒子あるいは無機耐摩耗粒子を各種体積含有率
にて配合した。原料粉末は、金型を用いて7t/cm
の圧力で成形し、その圧粉体を1200℃で1hr、水
素ガス中で焼結した。なお、成型体の寸法は10mm×
10mm×50mmの直方体状であり、焼結体としたと
きの寸法変化から収縮率を算出した。その結果、Mo量
が30重量%未満の焼結体では収縮率は10%以下であ
ったのに対し、30重量%を超える番号5の試料では1
2%と大きくなっていた。焼結体は、800〜1000
℃にて2時間、真空中で熱処理(焼鈍)し、さらに切削
及び砥石研磨加工により、表面粗さ2μmRa程度の粗
さとなるように仕上げた。また比較のために鋳造材と市
販のS45C材を用い、削り出しによって同形状の試験
片を得た。
The obtained powder was dried, classified to 60 mesh or less, annealed in a reducing atmosphere, and then subjected to a test. Then, 0.5% by weight of zinc stearate as a lubricant was added to and mixed with the annealed powder to obtain a raw material powder. In addition, with respect to Nos. 13 to 22, solid lubricant powder particles or inorganic wear-resistant particles were mixed at various volume contents as auxiliary powders with the above-mentioned alloy powder (main powder). The raw material powder is 7 t / cm 2 using a mold.
The compact was sintered at 1200 ° C. for 1 hour in hydrogen gas. The size of the molded body is 10 mm x
The shrinkage ratio was calculated from the dimensional change when the sintered body was a rectangular parallelepiped of 10 mm x 50 mm. As a result, the shrinkage rate was 10% or less for the sintered body having the Mo amount of less than 30% by weight, whereas the shrinkage rate was 1% for the sample of No.
It was 2%. The sintered body is 800 to 1000
Heat treatment (annealing) was performed at a temperature of 2 ° C. for 2 hours in a vacuum, followed by cutting and grinding with a grindstone to finish to a surface roughness of about 2 μmRa. For comparison, a cast material and a commercially available S45C material were used, and a test piece having the same shape was obtained by cutting.

【0041】番号1〜4の組成については焼結後、10
00℃にて2時間熱処理したものについて、表面をバフ
研磨し、ナイタールにてエッチング後、組織の光学顕微
鏡写真を倍率400倍にて撮影した。結果を図5〜図8
に示す(番号1〜4にそれぞれ対応)。写真中、白く表
れているのがFeあるいはMoを主体とする金属マトリ
ックス相であり、黒あるいは濃いグレーにて表れている
のが硫化物相(Sリッチ相)である。いずれも硫化物相
が組織中に分散形成されていることがわかるが、Mo含
有量の少ない番号1(図5)の組織では、硫化物相の量
がやや少なくなっている。また、Mo含有量が比較的多
い番号3、4(図7,8)では、硫化物相が非常に細か
く分散形成されていることがわかる。
After sintering, the compositions of Nos. 1 to 4
After heat treatment at 00 ° C. for 2 hours, the surface was buffed and etched with nital, and an optical microscope photograph of the structure was taken at 400 × magnification. The results are shown in FIGS.
(Corresponding to numbers 1 to 4, respectively). In the photograph, white is the metal matrix phase mainly composed of Fe or Mo, and black or dark gray is the sulfide phase (S-rich phase). In each case, it is found that the sulfide phase is dispersed and formed in the structure. However, in the structure of No. 1 (FIG. 5) having a small Mo content, the amount of the sulfide phase is slightly reduced. In addition, it can be seen that the sulfide phases are very finely dispersed and formed in Nos. 3 and 4 (FIGS. 7 and 8) in which the Mo content is relatively large.

【0042】また、同じ番号1〜4の組成について、熱
処理前後に焼結体組織表面における成分濃度分析を電子
プローブ微小解析(EPMA)により行い、Mo−Fe
系Sリッチ相(略号:MoFeS、Mo含有量:30重
量%以上、Fe含有量:45重量%以上、S含有量:
3.0重量%以上)、Fe系Sリッチ相(略号:Fe
S、Fe含有量:45重量%以上、S含有量:3.0重
量%以上)、Mo系Sリッチ相(略号:MoS、Mo含
有量:30重量%以上、S含有量:3.0重量%以
上)、Mo−Fe系マトリックス相(略号:MoFe、
Mo含有量:30重量%以上、Fe含有量:45重量%
以上)、遊離S相(略号:S、Sが3重量%以上)、F
e系相(略号:Fe、Feが45重量%以上)、Mo系
相(略号:Mo、Moが30重量%以上)を、その元素
分布マッピングから識別してそれぞれの面積率を求め
た。結果を表2及び図9に示す。なお、各写真からライ
ンインターセプト法により求めた硫化物相の平均粒径
は、番号1が約10μm、番号2が約3μm、番号3が
約2μm、番号4が約1.6μmであった。
With respect to the same compositions of Nos. 1 to 4, component concentration analysis on the surface of the sintered body structure was performed by electron probe microanalysis (EPMA) before and after the heat treatment.
S-rich phase (abbreviation: MoFeS, Mo content: 30% by weight or more, Fe content: 45% by weight or more, S content:
3.0 wt% or more), Fe-based S-rich phase (abbreviation: Fe
S, Fe content: 45% by weight or more, S content: 3.0% by weight or more, Mo-based S-rich phase (abbreviation: MoS, Mo content: 30% by weight or more, S content: 3.0% by weight) %), A Mo—Fe-based matrix phase (abbreviation: MoFe,
Mo content: 30% by weight or more, Fe content: 45% by weight
Above), free S phase (abbreviation: S, S is 3% by weight or more), F
The e-phase (abbreviation: Fe, Fe is 45% by weight or more) and the Mo-based phase (abbreviation: Mo, Mo is 30% by weight or more) were identified from their element distribution mappings, and the respective area ratios were determined. The results are shown in Table 2 and FIG. The average particle size of the sulfide phase obtained from each photograph by the line intercept method was about 10 μm for No. 1, about 3 μm for No. 2, about 2 μm for No. 3, and about 1.6 μm for No. 4.

【0043】[0043]

【表2】 [Table 2]

【0044】Mo量が増加するに従い、Mo−Fe系S
リッチ相及びMo系Sリッチ相の面積率が増大している
ことがわかる。また、熱処理によりMo−Fe系Sリッ
チ相及びMo系Sリッチ相(特に前者)の成長がさらに
促進される一方、Fe系Sリッチ相の量は逆に減少して
いることもわかる。なお、Mo−Fe系マトリックス相
は、FeMoあるいはFeMo等の金属化合物を主
体に構成されていると考えられる。これらの金属関化合
物相は焼結材料の耐摩耗性を向上させる効果を有してい
る。
As the amount of Mo increases, the Mo—Fe based S
It can be seen that the area ratios of the rich phase and the Mo-based S-rich phase are increasing. It can also be seen that the heat treatment further promotes the growth of the Mo-Fe-based S-rich phase and the Mo-based S-rich phase (particularly the former), while the amount of the Fe-based S-rich phase is reduced. It is considered that the Mo—Fe-based matrix phase mainly includes a metal compound such as Fe 2 Mo or Fe 3 Mo. These metal-related compound phases have an effect of improving the wear resistance of the sintered material.

【0045】次に、番号1〜4の組成について、熱処理
前後の硬度及び密度レベルを、ロックウェルBスケール
硬度計(圧子:1.6mm球状、荷重100kgf)に
て測定した。硬度の測定結果を表3及び図10に示す。
Next, for the compositions of Nos. 1 to 4, the hardness and density level before and after the heat treatment were measured with a Rockwell B scale hardness meter (indenter: 1.6 mm spherical, load: 100 kgf). The measurement results of the hardness are shown in Table 3 and FIG.

【0046】[0046]

【表3】 [Table 3]

【0047】この結果によると、800℃熱処理では硬
度が上昇し、900℃ないし1000℃熱処理では、硬
度が逆に減少している。これは、800℃(範囲では、
750〜850℃)熱処理では、マトリックス相中に過
飽和固溶していたS成分がSリッチ相として微細に析出
するため、その析出強化効果により硬度が上昇したもの
と考えられる。他方、900℃以上ではSリッチ相がオ
ストワルト成長し、却って硬度が低下したものと考えら
れる。一方、いずれの熱処理条件においても、Moの含
有量が22〜29重量%において、硬度が顕著に増大し
ていることがわかる。
According to the results, the hardness increases with the heat treatment at 800 ° C., and decreases with the heat treatment at 900 ° C. to 1000 ° C. This is 800 ° C (in the range,
In the heat treatment at 750 to 850 ° C., the supersaturated S component in the matrix phase is finely precipitated as an S-rich phase, and it is considered that the hardness is increased due to the precipitation strengthening effect. On the other hand, at 900 ° C. or higher, it is considered that the S-rich phase grew Ostwald and the hardness was rather lowered. On the other hand, under any of the heat treatment conditions, it can be seen that the hardness is significantly increased when the Mo content is 22 to 29% by weight.

【0048】また、密度の結果を表4及び図11に示
す。熱処理品については、熱処理温度が900℃と10
00℃とで密度がわずかに低下している。これについて
は、前述のオストワルト成長に起因するものと考えられ
る。
The results of the density are shown in Table 4 and FIG. For heat-treated products, the heat treatment temperature is 900 ° C and 10 ° C.
The density slightly decreased at 00 ° C. This is considered to be due to the Ostwald growth described above.

【0049】[0049]

【表4】 [Table 4]

【0050】次に、摩擦係数及び摩耗量の測定を以下の
ようにして行った。まず、本発明材として、組成は表5
に示すものにて焼結後、1000℃で2時間熱処理した
試験片を用意した。なお、比較のために、同一成分の鋳
造材と市販の炭素鋼(S45C)とを用い、削り出しに
よって同形状の試験片も合わせて作成した)。そして定
荷重、往復運動下における摩擦係数測定を無潤滑と油塗
布(油含浸)の条件下で測定した。ここで荷重は10k
g/mm,摩擦係数測定は100往復後の安定した時
点で行った。また油含浸材については、焼結体の空孔の
効果を確認するために室温と300℃の2つの温度条件
下で測定を行った。結果を表5に示す。
Next, the measurement of the coefficient of friction and the amount of wear were performed as follows. First, the composition of the material of the present invention is shown in Table 5
And then heat-treated at 1000 ° C. for 2 hours to prepare test pieces. Note that, for comparison, a test piece having the same shape was also prepared by cutting out a cast material having the same component and a commercially available carbon steel (S45C). Then, the coefficient of friction under a constant load and reciprocating motion was measured under conditions of no lubrication and oil application (oil impregnation). Here the load is 10k
g / mm 2 , the coefficient of friction was measured at a stable point after 100 reciprocations. Further, the oil impregnated material was measured under two temperature conditions of room temperature and 300 ° C. in order to confirm the effect of pores in the sintered body. Table 5 shows the results.

【0051】[0051]

【表5】 [Table 5]

【0052】この結果から、本発明材は比較材(S45
C)よりも摩擦係数が低くなっていることがわかる。ま
た同一成分の鋳造材と本発明材とは、無潤滑下ではほぼ
同じ摩擦係数であるものの、油を含浸させた条件下では
その含油効果により、本発明材が鋳造材に比べて摩擦係
数が小さく、特に300℃の下では鋳造材に比べて本発
明材の方が著しく含油効果が高いことが分かる。
From the results, the material of the present invention was compared with the comparative material (S45).
It can be seen that the coefficient of friction is lower than that of C). Although the cast material of the same component and the material of the present invention have almost the same friction coefficient under no lubrication, the oil of the present invention has a coefficient of friction that is lower than that of the cast material due to its oil impregnating effect under oil impregnated conditions. It can be seen that the material of the present invention is remarkably higher in oil-impregnating effect at 300 ° C., especially at 300 ° C. than the cast material.

【0053】次に、表1の番号1〜22の全組成におい
て焼結後、1000℃で2時間熱処理した各種試験片を
用意し、摩擦係数の測定と耐摩耗性の評価を次の条件で
行った。すなわち、摩擦係数の測定は定荷重、往復運動
下における摩擦係数を無潤滑で測定することにより行っ
た。このときの荷重は10kg/mmであり、また摩
擦係数は100往復後の安定した時点で測定した。さら
に、耐摩耗性評価は、相手材SKD11(焼入れ焼き戻
し材:ロックウェルCスケール硬度HRC=58)、荷重
2kg、摩擦距離100m、無潤滑の条件で大越式摩耗
試験により行った。ここで比摩耗量とは、相手材SKD
11から成る直径30mmφ,厚みt=3mmの円盤を
供試材に荷重2kgで押し付けた状態で円盤を回転さ
せ、供試材表面に生じた窪みの大きさ(面積)を表わし
たものである。結果を表1に示す。本発明に属する焼結
体として構成した試験片では、摩擦係数及び摩耗量のい
ずれも小さく、良好な潤滑性能が得られていることがわ
かる。
Next, after sintering all the compositions of Nos. 1 to 22 in Table 1, various test pieces were prepared which were heat-treated at 1000 ° C. for 2 hours, and the friction coefficient was measured and the wear resistance was evaluated under the following conditions. went. That is, the coefficient of friction was measured by measuring the coefficient of friction under constant load and reciprocating motion without lubrication. The load at this time was 10 kg / mm 2 , and the coefficient of friction was measured at a stable point after 100 reciprocations. Further, the abrasion resistance was evaluated by the Ogoshi type abrasion test under the conditions of a mating material SKD11 (hardened and tempered material: Rockwell C scale hardness HRC = 58), a load of 2 kg, a friction distance of 100 m, and no lubrication. Here, the specific wear amount is defined as the mating material SKD
11 shows the size (area) of a depression formed on the surface of a test material by rotating the disk in a state where a disk made of No. 11 having a diameter of 30 mmφ and a thickness t = 3 mm is pressed against the test material under a load of 2 kg. Table 1 shows the results. In the test piece constituted as a sintered body belonging to the present invention, both the coefficient of friction and the amount of wear are small, and it can be seen that good lubrication performance is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のFe系焼結合金の組成範囲を示す図。FIG. 1 is a view showing a composition range of an Fe-based sintered alloy of the present invention.

【図2】噴霧法により急冷粉末を製造する方法を模式的
に示す図。
FIG. 2 is a view schematically showing a method for producing a quenched powder by a spray method.

【図3】粉末を焼結して焼結体を製造する様子を示す
図。
FIG. 3 is a view showing a state in which powder is sintered to produce a sintered body.

【図4】焼結合金の組織を鋳造剤の組織と対比させて示
す模式図。
FIG. 4 is a schematic diagram showing the structure of a sintered alloy in comparison with the structure of a casting agent.

【図5】実験例の番号1の組成の焼結体試料の組織を示
す光学顕微鏡写真。
FIG. 5 is an optical micrograph showing the structure of a sintered body sample having a composition of No. 1 in an experimental example.

【図6】同じく番号2の組成の焼結体試料の組織を示す
光学顕微鏡写真。
FIG. 6 is an optical micrograph showing the structure of a sintered body sample having the composition of No. 2;

【図7】同じく番号3の組成の焼結体試料の組織を示す
光学顕微鏡写真。
FIG. 7 is an optical microscope photograph showing the structure of a sintered body sample having the composition of No. 3;

【図8】同じく番号4の組成の焼結体試料の組織を示す
光学顕微鏡写真。
FIG. 8 is an optical micrograph showing the structure of a sintered body sample having the composition of No. 4;

【図9】硫化物の面積率の測定結果を示すグラフ。FIG. 9 is a graph showing the measurement results of the area ratio of sulfide.

【図10】焼結体中のMo含有量と硬度測定結果を示す
グラフ。
FIG. 10 is a graph showing the Mo content in a sintered body and the results of hardness measurement.

【図11】焼結体中のMo含有量と密度測定結果を示す
グラフ。
FIG. 11 is a graph showing Mo content and density measurement results in a sintered body.

【符号の説明】[Explanation of symbols]

60’,61’ Fe系焼結体製造用粉末 62 Fe系焼結体 60 ', 61' Powder for producing Fe-based sintered body 62 Fe-based sintered body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 33/02 C22C 33/02 B 103 103A Fターム(参考) 4K017 AA04 BA06 BB04 BB15 EK01 4K018 AA24 AB01 AB02 AB03 AB04 AB05 AB07 AB10 AC01 BA02 BA08 BA16 EA51 FA01 FA47 KA02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C22C 33/02 C22C 33/02 B 103 103A F term (reference) 4K017 AA04 BA06 BB04 BB15 EK01 4K018 AA24 AB01 AB02 AB03 AB04 AB05 AB07 AB10 AC01 BA02 BA08 BA16 EA51 FA01 FA47 KA02

Claims (30)

【特許請求の範囲】[Claims] 【請求項1】 Feを主成分とし、S成分を1〜4重量
%、Mo成分を18〜30重量%含有するとともに、F
eを主成分とする金属マトリックス相中に、平均的なS
成分濃度が前記金属マトリックス相よりも高くなるSリ
ッチ相が分散形成されていることを特徴とするFe系焼
結体。
1. An alloy containing Fe as a main component, an S component in an amount of 1 to 4% by weight, a Mo component in an amount of 18 to 30% by weight, and an F component.
In the metal matrix phase containing e as the main component, the average S
An Fe-based sintered body, wherein an S-rich phase having a component concentration higher than that of the metal matrix phase is dispersed and formed.
【請求項2】 Feを主成分とし、S成分を1〜4重量
%、Mo成分を18〜30重量%含有するとともに、F
eを主成分とする金属マトリックス相中に、平均的なS
成分濃度が前記金属マトリックス相よりも高くなるSリ
ッチ相が分散形成された組織を主要組織構成相として、
その主要組織構成相とは異なる材料系にて構成される補
助組織構成相を、焼結体組織の断面にて観察される面積
率にて7〜55%の範囲内にて含有することを特徴とす
るFe系焼結体。
2. An alloy containing Fe as a main component, an S component in an amount of 1 to 4% by weight, a Mo component in an amount of 18 to 30% by weight, and an F component.
In the metal matrix phase containing e as the main component, the average S
The structure in which the S-rich phase in which the component concentration is higher than the metal matrix phase is dispersedly formed is defined as a main structural constituent phase,
It is characterized by containing an auxiliary structure constituent phase composed of a material system different from the main structure constituent phase within a range of 7 to 55% in an area ratio observed in a cross section of the sintered body structure. Fe-based sintered body.
【請求項3】 前記Sリッチ相は、前記金属マトリック
ス相中に分散析出した金属硫化物相を主体に形成される
請求項1又は2に記載のFe系焼結体。
3. The Fe-based sintered body according to claim 1, wherein the S-rich phase is formed mainly of a metal sulfide phase dispersed and precipitated in the metal matrix phase.
【請求項4】 前記Sリッチ相は、Mo及びSの含有量
が、それらの組織全体の平均的な含有量よりも大きくな
るMo系Sリッチ相と、Mo及びSの含有量が、それら
の組織全体の平均的な含有量よりも大きくなり、かつF
eを含有するのMo−Fe系Sリッチ相との、少なくと
もいずれかを主体とするものである請求項3記載のFe
系焼結体。
4. The S-rich phase has a Mo-based S-rich phase in which the contents of Mo and S are larger than the average content of the whole structure thereof, and a content of Mo and S in which the contents of Mo and S are Greater than the average content of the whole tissue and F
4. The Fe according to claim 3, which is mainly composed of at least one of a Mo-Fe-based S-rich phase containing e.
Series sintered body.
【請求項5】 焼結体組織の断面にて観察されるMo系
Sリッチ相とMo−Fe系Sリッチ相との合計の面積比
率が12%〜40%である請求項4記載のFe系焼結
体。
5. The Fe-based alloy according to claim 4, wherein the total area ratio of the Mo-based S-rich phase and the Mo—Fe-based S-rich phase observed in the cross section of the sintered body structure is 12% to 40%. Sintered body.
【請求項6】 焼結体組織の断面にて観察されるMo−
Fe系Sリッチ相の面積比率が2%〜20%である請求
項4又は5に記載のFe系焼結体。
6. Mo- observed in a cross section of a sintered body structure.
The Fe-based sintered body according to claim 4 or 5, wherein an area ratio of the Fe-based S-rich phase is 2% to 20%.
【請求項7】 焼結体組織の断面にて観察される前記S
リッチ相の平均粒径が0.5〜50μmである請求項1
ないし6のいずれかに記載のFe系焼結体。
7. The method according to claim 1, wherein said S is observed in a cross section of a sintered body structure.
The average particle size of the rich phase is 0.5 to 50 µm.
7. The Fe-based sintered body according to any one of items 1 to 6.
【請求項8】 C含有量が0.05〜1.2重量%であ
る請求項1ないし7のいずれかに記載のFe系焼結体。
8. The Fe-based sintered body according to claim 1, wherein the C content is 0.05 to 1.2% by weight.
【請求項9】 2重量%以下のSiと、2重量%以下の
Mnと、3.0重量以下のVと、1重量%以下のWと、
5.0重量%以下のNiと、1.50重量%以下のCr
との1種又は2種以上を含有する請求項1ないし8のい
ずれかに記載のFe系焼結体。
9. up to 2% by weight of Si, up to 2% by weight of Mn, up to 3.0% by weight of V, up to 1% by weight of W;
5.0% by weight or less of Ni and 1.50% by weight or less of Cr
The Fe-based sintered body according to any one of claims 1 to 8, comprising at least one of the following.
【請求項10】 前記補助組織構成相として、前記Sリ
ッチ相とは異なる組成を有する固体潤滑剤粒子相を、焼
結体組織の断面にて観察される面積率にて7〜55%の
範囲内で含有する請求項2ないし9のいずれかに記載の
Fe系焼結体。
10. A solid lubricant particle phase having a composition different from that of the S-rich phase as the auxiliary structure constituent phase in a range of 7 to 55% in area ratio observed in a cross section of the sintered body structure. The Fe-based sintered body according to any one of claims 2 to 9, wherein the sintered body is contained.
【請求項11】 前記固体潤滑剤粒子相は、窒化硼素、
雲母、黒鉛及びフッ素樹脂の少なくともいずれかを主体
とするものである請求項10記載のFe系焼結体。
11. The solid lubricant particle phase comprises boron nitride,
The Fe-based sintered body according to claim 10, which is mainly composed of at least one of mica, graphite, and a fluororesin.
【請求項12】 前記補助組織構成相としての無機耐摩
耗粒子相を、焼結体組織の断面にて観察される面積率に
て7〜55%の範囲内にて含有する請求項2ないし11
のいずれかに記載のFe系焼結体。
12. The inorganic wear-resistant particle phase as the auxiliary structure constituting phase is contained within a range of 7 to 55% in terms of an area ratio observed in a cross section of the sintered body structure.
The Fe-based sintered body according to any one of the above.
【請求項13】 前記無機耐摩耗粒子相は、金属炭化
物、金属窒化物、金属炭窒化物及び金属酸化物の少なく
ともいずれかを主体とするものである請求項12記載の
Fe系焼結体。
13. The Fe-based sintered body according to claim 12, wherein the inorganic wear-resistant particle phase is mainly composed of at least one of a metal carbide, a metal nitride, a metal carbonitride, and a metal oxide.
【請求項14】 前記補助組織構成相は、Al系合金相
及びCu系合金相の少なくともいずれかを主体とするも
のである請求項2ないし13のいずれかに記載のFe系
焼結体。
14. The Fe-based sintered body according to claim 2, wherein the auxiliary structure constituent phase is mainly composed of at least one of an Al-based alloy phase and a Cu-based alloy phase.
【請求項15】 焼結体に形成される連通気孔に潤滑油
又は潤滑高分子材料を含浸した請求項1ないし14のい
ずれかに記載のFe系焼結体。
15. The Fe-based sintered body according to claim 1, wherein a continuous vent formed in the sintered body is impregnated with a lubricating oil or a lubricating polymer material.
【請求項16】 Feを主成分とし、S成分を0.5〜
4重量%、Mo成分を18〜30重量%含有することを
特徴とするFe系焼結体製造用粉末。
16. An alloy containing Fe as a main component and an S component of 0.5 to
A powder for producing an Fe-based sintered body, comprising 4% by weight and 18 to 30% by weight of a Mo component.
【請求項17】 Feを主成分とし、S成分を0.5〜
4重量%、Mo成分を18〜30重量%含有する主要粉
末に、その主要粉末とは異なる材質の補助粉末を2〜4
1体積%の範囲内にて配合したことを特徴とするFe系
焼結体製造用粉末。
17. An alloy containing Fe as a main component and an S component of 0.5 to
A main powder containing 4% by weight and an Mo component of 18 to 30% by weight, and an auxiliary powder having a material different from that of the main powder in 2-4%
A powder for producing an Fe-based sintered body, wherein the powder is blended within a range of 1% by volume.
【請求項18】 C含有量が、0.05〜1.2重量%
である請求項16又は17に記載のFe系焼結体製造用
粉末。
18. The C content is 0.05 to 1.2% by weight.
The powder for producing an Fe-based sintered body according to claim 16 or 17, wherein
【請求項19】 2重量%以下のSiと、2重量%以下
のMnと、3.0重量以下のVと、1重量%以下のW
と、5.0重量%以下のNiと、1.50重量%以下の
Crとの1種又は2種以上を含有する請求項16ないし
18のいずれかに記載のFe系焼結体製造用粉末。
19. up to 2% by weight of Si, up to 2% by weight of Mn, up to 3.0% of V and up to 1% by weight of W
19. The powder for producing an Fe-based sintered body according to claim 16, wherein the powder contains one or more of Ni, 5.0% by weight or less, and Cr, 1.50% by weight or less. .
【請求項20】 前記補助粉末としての固体潤滑剤粒子
を2〜41体積%の範囲内にて含有する請求項17ない
し19のいずれかに記載のFe系焼結体製造用粉末。
20. The powder for producing an Fe-based sintered body according to claim 17, further comprising solid lubricant particles as the auxiliary powder in a range of 2 to 41% by volume.
【請求項21】 前記固体潤滑剤粒子は、窒化硼素、二
硫化モリブデン、雲母、黒鉛及びフッ素樹脂の少なくと
もいずれかを主体とするものである請求項20記載のF
e系焼結体製造用粉末。
21. The F according to claim 20, wherein the solid lubricant particles are mainly composed of at least one of boron nitride, molybdenum disulfide, mica, graphite and fluororesin.
Powder for manufacturing e-based sintered bodies.
【請求項22】 前記補助粉末としての無機耐摩耗粒子
を2〜41体積%の範囲内にて含有する請求項17ない
し21のいずれかに記載のFe系焼結体製造用粉末。
22. The powder for producing an Fe-based sintered body according to claim 17, wherein said auxiliary powder contains inorganic wear-resistant particles in a range of 2 to 41% by volume.
【請求項23】 前記無機耐摩耗粒子は、金属炭化物、
金属窒化物、金属炭窒化物及び金属酸化物の少なくとも
いずれかを主体とするものである請求項22記載のFe
系焼結体製造用粉末。
23. The inorganic wear-resistant particles are metal carbide,
23. The Fe according to claim 22, which is mainly composed of at least one of a metal nitride, a metal carbonitride and a metal oxide.
Powder for manufacturing sintered compacts.
【請求項24】 前記補助粉末は、Al系合金粉末、C
u系合金粉末及びFe系合金粉末の少なくともいずれか
を主体とするものである請求項23記載のFe系焼結体
製造用粉末。
24. The auxiliary powder comprises an Al-based alloy powder,
24. The powder for producing an Fe-based sintered body according to claim 23, wherein the powder mainly comprises at least one of a u-based alloy powder and an Fe-based alloy powder.
【請求項25】 請求項1ないし15のいずれかに記載
のFe系焼結体の製造方法であって、請求項16ないし
24のいずれかに記載のFe系焼結体製造用粉末を焼結
する工程を含むことを特徴とするFe系焼結体の製造方
法。
25. The method for producing an Fe-based sintered body according to any one of claims 1 to 15, wherein the powder for producing an Fe-based sintered body according to any one of claims 16 to 24 is sintered. A method for producing a Fe-based sintered body, comprising:
【請求項26】 前記Fe系焼結体製造用粉末を一次圧
縮及び一次焼結処理した後、再圧縮及び再焼結処理して
最終の焼結体を得る請求項25記載のFe系焼結体の製
造方法。
26. The Fe-based sintering according to claim 25, wherein the powder for producing an Fe-based sintered body is subjected to primary compression and primary sintering, followed by recompression and resintering to obtain a final sintered body. How to make the body.
【請求項27】 前記Fe系焼結体製造用粉末を、ビレ
ット等の一次素材形状に成形及び焼結した後、その一次
素材に鍛造、圧延等の塑性加工を施すことにより線材、
棒材及び板材等の二次素材形状を得る請求項25又は2
6に記載の焼結体の製造方法。
27. After forming and sintering the powder for producing an Fe-based sintered body into a primary material such as a billet, the primary material is subjected to plastic working such as forging or rolling to obtain a wire rod.
26. A secondary material shape such as a bar or a plate is obtained.
7. The method for producing a sintered body according to item 6.
【請求項28】 前記焼結体を連通気孔を有する多孔質
体として製造し、その連通気孔に潤滑油又は潤滑高分子
材料を含浸させる請求項27記載のFe系焼結体の製造
方法。
28. The method according to claim 27, wherein the sintered body is manufactured as a porous body having continuous vents, and the continuous vents are impregnated with a lubricating oil or a lubricating polymer material.
【請求項29】 Feを主成分とし、S成分を1〜4重
量%、Mo成分を18〜30重量%含有する組成となる
ように合金原料を溶解した後、その原料を急冷する工程
を含むことを特徴とするFe系焼結体製造用粉末の製造
方法。
29. A method comprising the steps of: melting an alloy raw material so as to have a composition containing Fe as a main component, an S component of 1 to 4% by weight, and a Mo component of 18 to 30% by weight, and quenching the raw material. A method for producing a powder for producing an Fe-based sintered body, characterized in that:
【請求項30】 前記急冷工程は噴霧急冷工程を含む請
求項29記載にFe系焼結体製造用粉末の製造方法。
30. The method according to claim 29, wherein the quenching step includes a spray quenching step.
JP24614299A 1999-08-31 1999-08-31 Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact Withdrawn JP2001073100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24614299A JP2001073100A (en) 1999-08-31 1999-08-31 Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24614299A JP2001073100A (en) 1999-08-31 1999-08-31 Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact

Publications (1)

Publication Number Publication Date
JP2001073100A true JP2001073100A (en) 2001-03-21

Family

ID=17144119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24614299A Withdrawn JP2001073100A (en) 1999-08-31 1999-08-31 Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact

Country Status (1)

Country Link
JP (1) JP2001073100A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007176A (en) * 2008-05-27 2010-01-14 Jfe Steel Corp Iron-based powdery mixture for powder metallurgy
JP2013028846A (en) * 2011-07-29 2013-02-07 Nippon Telegr & Teleph Corp <Ntt> Delayed fracture prevention steel
CN105772704A (en) * 2016-03-16 2016-07-20 苏州莱特复合材料有限公司 Ferrotungsten-based powder metallurgy material and preparation method thereof
JP2020066778A (en) * 2018-10-25 2020-04-30 株式会社神戸製鋼所 Iron powder for polluted water treatment, and method for producing iron powder for polluted water treatment
CN112387975A (en) * 2020-11-27 2021-02-23 合肥工业大学 Lead-free copper-based self-lubricating composite bearing material and preparation method thereof
US20210316364A1 (en) * 2018-08-29 2021-10-14 Showa Denko Materials Co., Ltd. Iron-based sintered sliding material and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007176A (en) * 2008-05-27 2010-01-14 Jfe Steel Corp Iron-based powdery mixture for powder metallurgy
JP2013028846A (en) * 2011-07-29 2013-02-07 Nippon Telegr & Teleph Corp <Ntt> Delayed fracture prevention steel
CN105772704A (en) * 2016-03-16 2016-07-20 苏州莱特复合材料有限公司 Ferrotungsten-based powder metallurgy material and preparation method thereof
US20210316364A1 (en) * 2018-08-29 2021-10-14 Showa Denko Materials Co., Ltd. Iron-based sintered sliding material and method for producing the same
JP2020066778A (en) * 2018-10-25 2020-04-30 株式会社神戸製鋼所 Iron powder for polluted water treatment, and method for producing iron powder for polluted water treatment
WO2020084997A1 (en) * 2018-10-25 2020-04-30 株式会社神戸製鋼所 Iron powder for treating contaminated water, and method for manufacturing iron powder for treating contaminated water
CN112469518A (en) * 2018-10-25 2021-03-09 株式会社神户制钢所 Iron powder for treating contaminated water and method for producing iron powder for treating contaminated water
KR20210046719A (en) * 2018-10-25 2021-04-28 가부시키가이샤 고베 세이코쇼 Iron powder for contaminated water treatment and method of manufacturing iron powder for contaminated water treatment
KR102414870B1 (en) 2018-10-25 2022-06-29 가부시키가이샤 고베 세이코쇼 Method of manufacturing iron powder for treatment of contaminated water and iron powder for treatment of contaminated water
CN112469518B (en) * 2018-10-25 2023-02-17 株式会社神户制钢所 Iron powder for treating contaminated water and method for producing iron powder for treating contaminated water
CN112387975A (en) * 2020-11-27 2021-02-23 合肥工业大学 Lead-free copper-based self-lubricating composite bearing material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0732417B1 (en) A metal sintered body composite material
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
EP1768803A1 (en) Stainless steel powder
WO2009040369A1 (en) Metallurgical powder composition and method of production
CA3125489A1 (en) Hard powder particles with improved compressibility and green strength
GB2105752A (en) A method for manufacturing a slide member
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JP2001073100A (en) Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JPH09235646A (en) Sintered sliding member and its production
Šuštaršič et al. The influence of MoS2 additions on the densification of water-atomized HSS powders
JP3517505B2 (en) Raw material powder for sintered wear resistant material
JP2001158934A (en) Method for producing wear resistant ferrous sintered alloy
JPH10317002A (en) Powder with low coefficient of friction, its sintered compact, and production of sintered compact
JP4277264B2 (en) Tool member with excellent high-temperature strength characteristics and method for producing the same
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP2000337511A (en) Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance and heat conductivity
Kumar et al. Physical and Mechanical Properties of Powder-Metallurgy-Processed Titanium Alloys and Composites: A Comparative Analysis
Madej Tungsten carbide as an addition to high speed steel based composites
JP7147963B2 (en) Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy and sintered compact
KR0183227B1 (en) A metal sintered body composite material and method for producing the same
JPS635441B2 (en)
JPH11140603A (en) Wear resistant sintered alloy material for part of compressor
JP2001172756A (en) Sliding member with ferrous lubrication coating layer, material for forming ferrous thermally sprayed layer, and method of manufacturing for sliding member with ferrous lubrication coating layer
JP3763605B2 (en) Sintered alloy material for valve seats

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070107