JP2000311685A - Manufacture of lithium-manganese composite oxide for secondary battery - Google Patents

Manufacture of lithium-manganese composite oxide for secondary battery

Info

Publication number
JP2000311685A
JP2000311685A JP11119800A JP11980099A JP2000311685A JP 2000311685 A JP2000311685 A JP 2000311685A JP 11119800 A JP11119800 A JP 11119800A JP 11980099 A JP11980099 A JP 11980099A JP 2000311685 A JP2000311685 A JP 2000311685A
Authority
JP
Japan
Prior art keywords
lithium
particles
manganese dioxide
oxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11119800A
Other languages
Japanese (ja)
Other versions
JP3564322B2 (en
Inventor
Hisashi Takahashi
恒 高橋
Hiroki Hashiba
裕樹 橋場
Takashi Endo
孝志 遠藤
Takumi Murai
匠 村井
Masaya Ootani
賢哉 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP11980099A priority Critical patent/JP3564322B2/en
Publication of JP2000311685A publication Critical patent/JP2000311685A/en
Application granted granted Critical
Publication of JP3564322B2 publication Critical patent/JP3564322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an advantageous manufacturing method of a lithium- manganese oxide excellent in battery characteristics such as a filling property to a positive electrode, initial discharge capacity and a cycle life. SOLUTION: Mn substituted metal oxide particles of submicron order are deposited on the surfaces of electrolytic manganese dioxide particles and inside the particles by mixing the electrolytic manganese dioxide particles with an aqueous solution of a Mn substituted metal element, and thereafter drying and heating them to thermally decompose a metal salt, and thereafter, LiMnx-yMyO4 (in the formula, M is Al or a transition metal excluding Mn) is synthesized by mixing them with lithium hydroxide or a salt containing lithium and thereafter baking them and thus, a lithium-manganese composite oxide for a secondary battery is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池用リチウ
ムマンガン複合酸化物の製造方法に関し、特に、リチウ
ム二次電池の正極材として好適に用いられる高密度スピ
ネル型リチウムマンガン酸化物の製造方法についての提
案である。
The present invention relates to a method for producing a lithium manganese composite oxide for a secondary battery, and more particularly to a method for producing a high density spinel type lithium manganese oxide suitably used as a positive electrode material of a lithium secondary battery. It is a proposal about.

【0002】[0002]

【従来の技術】リチウムマンガン酸化物、LiMn2O4 は、
スピネル型のマンガン化合物であり、資源量が豊富で価
格面からも有利なマンガン化合物を原料とするので、高
電圧・高エネルギー密度型のリチウム二次電池用正極材
であるLiCoO2の代替材料として、最近とくに注目を浴び
ているものである。
2. Description of the Related Art Lithium manganese oxide, LiMn 2 O 4
Since it is a spinel-type manganese compound, which is a manganese compound with abundant resources and advantageous in terms of price, it is used as a substitute for LiCoO 2 , a positive electrode material for high-voltage, high-energy-density lithium secondary batteries. Recently, it has been particularly noticed.

【0003】しかしながら、LiMn2O4 は、電池サイクル
特性がLiCoO2よりも劣る。そのため、最近では、その電
池サイクル特性を改善した元素置換型リチウムマンガン
酸化物 (LiMnx-y y O4) が提案されている。このLiMn
x-y y O4の合成方法としては、リチウムの塩または酸
化物と二酸化マンガンおよび周期律表IIIa, IIIbの元
素、例えば、Ba, Al, Sc, Ga, Y などの塩または酸化物
とを混合し、酸化性雰囲気中で 300〜500 ℃の温度に焼
成して合成する方法が提案されている (特開平2−2786
61号公報参照) 。
[0003] However, LiMn 2 O 4 has inferior battery cycle characteristics to LiCoO 2 . Therefore, recently, element substitution type lithium manganese oxide to improve its battery cycle characteristics (LiMn xy M y O 4) have been proposed. This LiMn
The synthetic method of the xy M y O 4, a mixture of lithium salt or oxide and manganese dioxide, and the periodic table IIIa, IIIb elements such, Ba, Al, Sc, Ga, and salts or oxides, such as Y In addition, there has been proposed a method of firing and synthesizing at a temperature of 300 to 500 ° C. in an oxidizing atmosphere (JP-A-2-2786).
No. 61).

【0004】[0004]

【発明が解決しようとする課題】しかし、このような方
法により得られる元素置換型リチウムマンガン酸化物
は、確かに電池サイクル特性は向上するものの、粉体と
しての充填性、タップ密度が約10%程度低下するため実
用電池に使用することが困難であった。また、この方法
では、出発原料粉を固体−固体間において乾式で混合す
ることから、原子あるいは分子レベルでのミクロ的な均
一混合が不可能で、それ故に結晶構造が不安定になりや
すく、生成酸化物中に欠陥が生じやすいという欠点があ
った。つまり、こうした従来技術の下では、十分な充放
電サイクル特性を有する酸化物の製造が困難であった。
However, although the element-substituted lithium manganese oxide obtained by such a method certainly improves the battery cycle characteristics, the filling property as a powder and the tap density are about 10%. However, it was difficult to use the battery for a practical use because of the degree of reduction. Also, in this method, since the starting material powder is dry-mixed between solid and solid, it is not possible to perform microscopic uniform mixing at the atomic or molecular level, and therefore the crystal structure tends to be unstable, and There is a disadvantage that defects are easily generated in the oxide. That is, it is difficult to produce an oxide having sufficient charge / discharge cycle characteristics under such a conventional technique.

【0005】すなわち、このような方法によって得られ
たリチウムマンガン酸化物は、酸化物粒子表面に配位す
るMn置換金属元素の粉末が、マンガン酸化物粒子表面に
付着し、内部に拡散吸収されることなく残るために突起
物を形成し、その後に行う焼成によってリチウムマンガ
ン酸化物を生成する段階においても、その突起物がその
まま痕跡として表面に残るのが特徴である。
That is, in the lithium manganese oxide obtained by such a method, the powder of the Mn-substituted metal element coordinated on the surface of the oxide particles adheres to the surface of the manganese oxide particles and is diffused and absorbed inside. It is characterized in that even in the stage of forming a lithium manganese oxide by subsequent baking to form a lithium manganese oxide in order to remain without being generated, the protrusion remains as a trace on the surface as it is.

【0006】本発明は、従来技術が抱えている上述した
課題を解決するためになされたものであり、その主たる
目的は、充填性および電池特性に優れるスピネル型LiMn
x-yy O4を提供することにある。即ち、本発明は、粒
子表面に配位させる金属元素に起因する突起物を極力少
なくすることにより、嵩密度を大きくして電池の正極へ
の充填密度を向上させ、ひいては初期放電容量やサイク
ル寿命を低下させることなく、二次電池の体積容量を向
上させることを解決課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and a main object of the present invention is to provide a spinel type LiMn having excellent fillability and battery characteristics.
xy M y O 4 . That is, the present invention increases the bulk density to improve the packing density of the battery in the positive electrode by minimizing the number of protrusions caused by the metal element coordinated on the particle surface, thereby improving the initial discharge capacity and cycle life. It is an object of the present invention to improve the volume capacity of the secondary battery without lowering the battery capacity.

【0007】[0007]

【課題を解決するための手段】発明者らは、上掲の目的
の実現に向け鋭意研究を行った。その結果、充填性低下
の原因が粒子表面に形成された約1〜3μmの大きさの
微小突起であることを解明した。この微小突起は二酸化
マンガン粒子表面に付着した置換元素化合物粉末が反応
後もその形状を保ったまま残存するため生成するもので
あると考えられた。そこで、元素置換を置換元素化合物
粉末ではなく、置換元素塩の水溶液で行うことにより、
微小突起の形成を抑制できること、また、反応性も高く
なり、より均一な元素置換型リチウムマンガン酸化物が
得られ、電池特性が向上することを知見し、本発明を開
発するに到った。
Means for Solving the Problems The present inventors have conducted intensive studies for realizing the above-mentioned object. As a result, it was clarified that the cause of the decrease in the filling property was minute projections having a size of about 1 to 3 μm formed on the particle surface. It was considered that the fine projections were formed because the replacement element compound powder attached to the surface of the manganese dioxide particles remained in its shape even after the reaction. Therefore, by performing the element substitution with an aqueous solution of a substitution element salt instead of the substitution element compound powder,
The inventors have found that the formation of fine projections can be suppressed, the reactivity is increased, a more uniform element-substituted lithium manganese oxide can be obtained, and the battery characteristics are improved, and the present invention has been developed.

【0008】すなわち、本発明は、電解二酸化マンガン
粒子と、Mn置換金属塩水溶液とを混合し、その後乾燥、
加熱して金属塩を熱分解させることにより、電解二酸化
マンガン粒子表面および該粒子内部にサブミクロンオー
ダーのMn置換金属酸化物粒子を析出させ、その後、水酸
化リチウムまたはリチウムを含む塩とを混合したのち焼
成することにより、LiMnx-y y O4 (式中、Mは、Al、
またはMn以外の遷移金属) を合成させることを特徴とす
る二次電池用リチウムマンガン複合酸化物の製造方法を
要旨構成とする。
That is, according to the present invention, electrolytic manganese dioxide particles and an aqueous solution of a Mn-substituted metal salt are mixed, and then dried,
By heating to thermally decompose the metal salt, Mn-substituted metal oxide particles of submicron order were deposited on the surface of the electrolytic manganese dioxide particles and inside the particles, and then mixed with lithium hydroxide or a salt containing lithium. by firing later, LiMn xy M y O 4 (wherein, M is, Al,
Or a transition metal other than Mn) is synthesized.

【0009】[0009]

【発明の実施の形態】本発明にかかる製造方法の実施に
よって得られるリチウムマンガン酸化物は、下記一般式
に表されるものとする。 一般式:LiMnx-y y O4 x:1.8 〜2.1 y:0.01〜0.1 M:Mn置換金属塩 (AlまたはMnを除く遷移金属、例え
ば、Ti, Ge, Fe, Co, Cr, Zn, Ni)
BEST MODE FOR CARRYING OUT THE INVENTION The lithium manganese oxide obtained by carrying out the production method according to the present invention is represented by the following general formula. General formula: LiMn xy M y O 4 x : 1.8 ~2.1 y: 0.01~0.1 M: Mn substituted metal salts (transition metal excluding Al or Mn, for example, Ti, Ge, Fe, Co , Cr, Zn, Ni)

【0010】上記リチウムマンガン酸化物の製造に当た
っては、出発原料として、電解二酸化マンガン粉末とMn
置換金属塩水溶液とを用いる。ここで、電解二酸化マン
ガンとは、硫酸酸性の硫酸マンガン水溶液中で陽極板に
チタン、陰極板に黒鉛を用い、一定の電流密度の直流で
電気分解し、陽極板のチタン表面にマンガンを電析させ
ることにより得られる二酸化マンガンである。
In producing the lithium manganese oxide, electrolytic manganese dioxide powder and Mn are used as starting materials.
An aqueous solution of a substituted metal salt is used. Here, electrolytic manganese dioxide refers to the use of titanium for the anode plate and graphite for the cathode plate in a sulfuric acid acidic manganese sulfate aqueous solution, electrolysis with a direct current of a constant current density, and depositing manganese on the titanium surface of the anode plate. Is manganese dioxide obtained by the reaction.

【0011】また、Mn置換金属塩水溶液としては、Alや
Cr, Feなどの金属塩水溶液、なかでも後処理をも考慮す
ると硝酸塩 (Al(NO3) ・9H2O、Cr(NO3)3・9H2O、Fe(N
O3)3・6H2O) などがとりわけ好ましい。
The aqueous solution of the Mn-substituted metal salt includes Al and
In the case of aqueous solutions of metal salts such as Cr and Fe, especially considering post-treatment, nitrates (Al (NO 3 ) 9H 2 O, Cr (NO 3 ) 3 9H 2 O, Fe (N
O 3) 3 · 6H 2 O ) , etc. are especially preferred.

【0012】この水溶液と二酸化マンガンとの混合比率
は、水溶液の濃度や二酸化マンガンの粒度にもよるが、
二酸化マンガンに対して水溶液は5〜15wt%が好まし
い。この理由として、5wt%以下では二酸化マンガン粒
子の全体に引用が行き渡らず不均一となる。また、15wt
%以上では混合時に粘土状あるいはスラリー状となり、
それを乾燥させるとMn置換金属塩が部分的に偏析し不均
一となるからである。
The mixing ratio between the aqueous solution and manganese dioxide depends on the concentration of the aqueous solution and the particle size of the manganese dioxide.
The aqueous solution is preferably 5 to 15% by weight based on manganese dioxide. The reason for this is that if the content is less than 5 wt%, the entire manganese dioxide particles cannot be quoted and the manganese dioxide particles are not uniform. Also, 15wt
% Or more becomes a clay or slurry when mixed,
This is because when it is dried, the Mn-substituted metal salt partially segregates and becomes non-uniform.

【0013】本発明において、Mn置換金属元素を、硝酸
塩水溶液などとして提供する理由は、基本的には電解二
酸化マンガン粒子の表面にこれらの金属塩水溶液を被覆
して薄膜を形成させ、その後金属塩薄膜で被覆された電
解二酸化マンガンを 200℃以上の温度に加熱して金属塩
を熱分解させ、電解二酸化マンガン粒子および内部にサ
ブミクロンオーダーの金属酸化物粒子を析出させること
により、該粒子表面に1〜3μmの大きさの微突起をも
たない平滑な表面をもつマンガン酸化物を得るのに好都
合だからである。
In the present invention, the reason why the Mn-substituted metal element is provided as an aqueous nitrate solution is basically that the surface of electrolytic manganese dioxide particles is coated with the aqueous solution of these metal salts to form a thin film, and then the metal salt is formed. The electrolytic manganese dioxide coated with the thin film is heated to a temperature of 200 ° C. or more to thermally decompose the metal salt, thereby depositing the electrolytic manganese dioxide particles and the metal oxide particles of the order of submicron inside, thereby forming a surface of the electrolytic manganese dioxide particles. This is because it is convenient for obtaining a manganese oxide having a smooth surface without fine projections having a size of 1 to 3 μm.

【0014】このようにして電解二酸化マンガン粒子表
面にMn置換金属塩の薄膜を被成したのち、この粒子を10
0 ℃以上の温度で乾燥し、引き続き200 ℃以上の温度に
加熱して、上記金属塩を熱分解させ、得られたその熱分
解酸化物粒子の表面および内部に、サブミクロンオーダ
ーの金属酸化物を析出させたマンガン酸化物粒子とす
る。
After forming a thin film of the Mn-substituted metal salt on the surface of the electrolytic manganese dioxide particles in this way, the particles are
It is dried at a temperature of 0 ° C. or more, and subsequently heated to a temperature of 200 ° C. or more to thermally decompose the metal salt, and to form a submicron-order metal oxide on the surface and inside of the obtained thermally decomposed oxide particles. Is deposited as manganese oxide particles.

【0015】次に、上記金属酸化物が含浸したマンガン
酸化物粒子と水酸化リチウム (LiOH)またはリチウムを
含む塩とを混合する。上記リチウムを含む塩としては、
炭酸リチウムや硝酸リチウム、硫酸リチウム、塩化リチ
ウムなどを用いることができ、好ましくは炭酸リチウム
を用いる。この理由は、炭酸イオンはCO2 として分解す
るために他のアニオン (硫酸イオン、塩素イオンなど)
と比較して除去が容易であり、焼成品中に残らないため
有利だからである。
Next, the manganese oxide particles impregnated with the metal oxide are mixed with lithium hydroxide (LiOH) or a salt containing lithium. Examples of the lithium-containing salt include:
Lithium carbonate, lithium nitrate, lithium sulfate, lithium chloride, or the like can be used, and lithium carbonate is preferably used. The reason for this is that other anions to the carbonate ion to decompose as CO 2 (sulfate ion, such as chloride ion)
This is because it is easier to remove than in the case of and is advantageous because it does not remain in the fired product.

【0016】次に、かかるマンガン酸化物の熱分解粒子
とリチウム塩等との混合物を、約750 〜900 ℃×5〜3
時間程度の条件で焼成し、完全なスピネル形態としたの
ち、二次電池用正極材とする。
Next, a mixture of the pyrolytic particles of manganese oxide and a lithium salt or the like is heated to a temperature of about 750 to 900 ° C. × 5 to 3 ° C.
After sintering to complete spinel form for about a time, it is used as a positive electrode material for a secondary battery.

【0017】[0017]

【実施例】実施例1 まず、Mn原料として平均粒径15μmの電解二酸化マンガ
ン (EMD)を用い、これに硝酸アルミニウム水溶液を
EMDに対して10wt%割合で添加し混合した。この時の
MnとAlのモル比率は1.95:0.05となるように水溶液濃度
を調整した。その後、100 ℃, 2時間で乾燥し、さらに
250 ℃, 5時間で硝酸塩の熱分解を行った (熱分解粒子
の生成) 。この操作により、EMD粒子表面および内部
にサブミクロンオーダーの酸化アルミニウムが均一に析
出した状態となった。次に、炭酸リチウムと上記熱分解
粒子とをLiとM(Mn+Al) のモル比率で1.12:2.0 とな
るように充分混合した。その後、大気中で 750℃、20時
間の焼成を行い、サンプルを得た。
Example 1 First, electrolytic manganese dioxide (EMD) having an average particle size of 15 μm was used as a raw material of Mn, and an aqueous solution of aluminum nitrate was added thereto at a ratio of 10 wt% to EMD and mixed. At this time
The concentration of the aqueous solution was adjusted so that the molar ratio of Mn to Al was 1.95: 0.05. Then, it is dried at 100 ℃ for 2 hours.
The nitrate was pyrolyzed at 250 ° C. for 5 hours (formation of pyrolyzed particles). By this operation, submicron-order aluminum oxide was uniformly deposited on the surface and inside of the EMD particles. Next, lithium carbonate and the pyrolyzed particles were sufficiently mixed so that the molar ratio of Li and M (Mn + Al) was 1.12: 2.0. After that, baking was performed at 750 ° C. for 20 hours in the air to obtain a sample.

【0018】実施例2 まず、Mn原料として平均粒径15μmの電解二酸化マンガ
ン (EMD)を用い、これに硝酸鉄(III) 水溶液をEM
Dに対して10wt%の割合で添加・混合した。この時のMn
とFeのモル比率は1.95:0.05となるように水溶液濃度を
調整した。その後、100 ℃で2時間の乾燥を行い、さら
に250 ℃, 5時間の条件で硝酸塩の熱分解を行った (熱
分解粒子の生成) 。次に、炭酸リチウムと上記マンガン
酸化物とをLiとM(Mn+Fe) のモル比率で1.12:2.0 と
なるように充分に混合した。その後、大気中で 750℃、
20時間の焼成を行い、サンプルを得た。
Example 2 First, electrolytic manganese dioxide (EMD) having an average particle size of 15 μm was used as a raw material of Mn, and an aqueous solution of iron (III) nitrate was added to the EM.
D was added and mixed at a ratio of 10 wt% to D. Mn at this time
The concentration of the aqueous solution was adjusted so that the molar ratio between Fe and Fe was 1.95: 0.05. Thereafter, drying was performed at 100 ° C. for 2 hours, and further, nitrate was thermally decomposed at 250 ° C. for 5 hours (generation of pyrolyzed particles). Next, lithium carbonate and the manganese oxide were sufficiently mixed so that the molar ratio of Li and M (Mn + Fe) was 1.12: 2.0. Then, at 750 ° C in air,
Sintering was performed for 20 hours to obtain a sample.

【0019】比較例1 まず、Mn原料として平均粒径15μmの電解二酸化マンガ
ン (EMD)を用い、これに平均粒子径1μmの酸化ア
ルミニウムと炭酸リチウムとをMnとAlのモル比率は1.9
5:0.05とし、LiとM(Mn+Al) のモル比率で1.12:2.0
となるようにして充分混合した。その後、大気中で 75
0℃、20時間の焼成を行い、サンプルを得た。
Comparative Example 1 First, electrolytic manganese dioxide (EMD) having an average particle size of 15 μm was used as a Mn raw material, and aluminum oxide and lithium carbonate having an average particle size of 1 μm were mixed with a molar ratio of Mn and Al of 1.9.
5: 0.05, and the molar ratio of Li and M (Mn + Al) is 1.12: 2.0
And mixed well. Then in air 75
The sample was baked at 0 ° C. for 20 hours to obtain a sample.

【0020】比較例2 まず、Mn原料として平均粒径15μmの電解二酸化マンガ
ン (EMD)を用い、これに平均粒子径0.9 μmの三酸
化二鉄と炭酸リチウムとをMnとFeのモル比率は1.95:0.
05とし、LiとM(Mn+Fe) のモル比率で1.12:2.0 とな
るようにして充分混合した。その後、大気中で 750℃、
20時間の焼成を行い、サンプルを得た。
Comparative Example 2 First, electrolytic manganese dioxide (EMD) having an average particle size of 15 μm was used as a Mn raw material, and diiron trioxide and lithium carbonate having an average particle size of 0.9 μm were mixed with a molar ratio of Mn to Fe of 1.95. : 0.
05 and sufficiently mixed such that the molar ratio of Li and M (Mn + Fe) was 1.12: 2.0. Then, at 750 ° C in air,
Sintering was performed for 20 hours to obtain a sample.

【0021】比較例3 まず、Mn原料として平均粒径15μmの電解二酸化マンガ
ン (EMD)を用い、これに炭酸リチウムをLiとMnのモ
ル比率は1.12:2.0 となるようにして充分混合した。そ
の後、大気中で 750℃、20時間の焼成を行い、サンプル
を得た。
Comparative Example 3 First, electrolytic manganese dioxide (EMD) having an average particle size of 15 μm was used as a raw material of Mn, and lithium carbonate was sufficiently mixed with the mixture so that the molar ratio of Li to Mn was 1.12: 2.0. After that, baking was performed at 750 ° C. for 20 hours in the air to obtain a sample.

【0022】上記各実施例、比較例につき、タップ密度
と25℃での初期放電容量、30回繰返し使用後の放電容量
につき比較試験を行った。そして、実施例1と比較例1
の粒子表面形状のSEM写真をとって比較した。その結
果、実施品は比較品に比べると、タップ密度が大きく充
填特性に優れることが判明すると共に、表中の容量維持
率に明らかなように、優れた電池特性を示すことがわか
った。なお、タップ密度は、サンプル5gを10mlメスシ
リンダーに入れ、100 回のタッピングを行なって最終の
充填体積により算出した値である。
For each of the above Examples and Comparative Examples, comparative tests were conducted on the tap density, the initial discharge capacity at 25 ° C., and the discharge capacity after repeated use 30 times. Then, Example 1 and Comparative Example 1
SEM photographs of the surface shapes of the particles were compared. As a result, it was found that the actual product had a large tap density and excellent filling characteristics as compared with the comparative product, and also showed excellent battery characteristics as evident from the capacity retention ratio in the table. The tap density is a value calculated by placing 5 g of a sample in a 10 ml measuring cylinder, performing tapping 100 times, and calculating the final filling volume.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、粒
子表面がなめらかで、充填性および電池特性に優れたス
ピネル型リチウムマンガン酸化物を提供することができ
る。
As described above, according to the present invention, it is possible to provide a spinel-type lithium manganese oxide having a smooth particle surface and having excellent filling properties and battery characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたLiMn1.95Al0.05O4の写真で
ある。
FIG. 1 is a photograph of LiMn 1.95 Al 0.05 O 4 obtained in Example 1.

【図2】比較例1で得られたLiMn1.95Al0.05O4の写真で
ある。
FIG. 2 is a photograph of LiMn 1.95 Al 0.05 O 4 obtained in Comparative Example 1.

フロントページの続き (72)発明者 遠藤 孝志 茨城県つくば市東光台5−9−6 日本重 化学工業株式会社筑波研究所内 (72)発明者 村井 匠 富山県高岡市吉久1−1−1 日本重化学 工業株式会社高岡事業所内 (72)発明者 大谷 賢哉 富山県高岡市吉久1−1−1 日本重化学 工業株式会社高岡事業所内 Fターム(参考) 4G048 AA04 AB05 AC06 AD04 AD06 AE05 5H003 AA01 BA01 BA03 BB05 BC01 BC06 BD00 Continued on the front page (72) Inventor Takashi Endo 5-9-6 Tokodai, Tsukuba-shi, Ibaraki Nippon Heavy Industries, Ltd. Inside Tsukuba Research Laboratory (72) Inventor Takumi Murai 1-1-1 Yoshihisa, Takaoka-shi, Toyama Nippon Heavy Industries (72) Inventor Kenya Otani 1-1-1 Yoshihisa, Takaoka-shi, Toyama F-term (reference) 4G048 AA04 AB05 AC06 AD04 AD06 AE05 5H003 AA01 BA01 BA03 BB05 BC01 BC06 BD00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解二酸化マンガン粒子と、Mn置換金属
塩水溶液とを混合し、その後乾燥、加熱して金属塩を熱
分解させることにより、電解二酸化マンガン粒子表面お
よび該粒子内部にサブミクロンオーダーのMn置換金属酸
化物粒子を析出させ、その後、水酸化リチウムまたはリ
チウムを含む塩とを混合したのち焼成することにより、
LiMnx-y y O4 (式中、Mは、Al、またはMn以外の遷移
金属)を合成させることを特徴とする二次電池用リチウ
ムマンガン複合酸化物の製造方法。
An electrolytic manganese dioxide particle is mixed with an aqueous solution of a Mn-substituted metal salt, and then dried and heated to thermally decompose the metal salt. By precipitating the Mn-substituted metal oxide particles, and then mixing with lithium hydroxide or a salt containing lithium, followed by firing,
(Wherein, M is, Al or a transition metal other than Mn,) LiMn xy M y O 4 method of manufacturing a secondary battery for a lithium-manganese composite oxide, characterized in that to synthesize.
JP11980099A 1999-04-27 1999-04-27 Method for producing lithium manganese composite oxide for secondary battery Expired - Fee Related JP3564322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11980099A JP3564322B2 (en) 1999-04-27 1999-04-27 Method for producing lithium manganese composite oxide for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11980099A JP3564322B2 (en) 1999-04-27 1999-04-27 Method for producing lithium manganese composite oxide for secondary battery

Publications (2)

Publication Number Publication Date
JP2000311685A true JP2000311685A (en) 2000-11-07
JP3564322B2 JP3564322B2 (en) 2004-09-08

Family

ID=14770546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11980099A Expired - Fee Related JP3564322B2 (en) 1999-04-27 1999-04-27 Method for producing lithium manganese composite oxide for secondary battery

Country Status (1)

Country Link
JP (1) JP3564322B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330579C (en) * 2005-04-12 2007-08-08 武汉理工大学 Preparation of spinel type Li-Mn-oxide lithium ion screening materials by hydrothermal method
JP2008285361A (en) * 2007-05-17 2008-11-27 Tosoh Corp Al-SUBSTITUTED ELECTROLYTIC MANGANESE DIOXIDE AND POSITIVE ELECTRODE MATERIAL FOR BATTERY USING IT
JP2011057523A (en) * 2009-09-14 2011-03-24 Tosoh Corp Electrolytic manganese dioxide and method for producing lithium manganate using the same
CN106848388A (en) * 2017-04-05 2017-06-13 欣旺达电子股份有限公司 Sodium-ion battery and its negative pole mend sodium method
CN106848453A (en) * 2017-03-10 2017-06-13 欣旺达电子股份有限公司 Sodium-ion battery mends the method and sodium-ion battery of sodium
CN106876781A (en) * 2017-03-10 2017-06-20 欣旺达电子股份有限公司 Sodium-ion battery and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330579C (en) * 2005-04-12 2007-08-08 武汉理工大学 Preparation of spinel type Li-Mn-oxide lithium ion screening materials by hydrothermal method
JP2008285361A (en) * 2007-05-17 2008-11-27 Tosoh Corp Al-SUBSTITUTED ELECTROLYTIC MANGANESE DIOXIDE AND POSITIVE ELECTRODE MATERIAL FOR BATTERY USING IT
JP2011057523A (en) * 2009-09-14 2011-03-24 Tosoh Corp Electrolytic manganese dioxide and method for producing lithium manganate using the same
CN106848453A (en) * 2017-03-10 2017-06-13 欣旺达电子股份有限公司 Sodium-ion battery mends the method and sodium-ion battery of sodium
CN106876781A (en) * 2017-03-10 2017-06-20 欣旺达电子股份有限公司 Sodium-ion battery and preparation method thereof
CN106848453B (en) * 2017-03-10 2019-02-19 欣旺达电子股份有限公司 The method and sodium-ion battery of sodium-ion battery benefit sodium
CN106848388A (en) * 2017-04-05 2017-06-13 欣旺达电子股份有限公司 Sodium-ion battery and its negative pole mend sodium method

Also Published As

Publication number Publication date
JP3564322B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
KR101071336B1 (en) Olivine type positive active material precursor for lithium battery, and method for preparing the same
JP6176109B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
TWI584520B (en) Li-Ni composite oxide particles and nonaqueous electrolyte batteries
TWI549343B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
JP2009120480A (en) Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
US11239463B2 (en) Process for producing cathode active material, cathode active material, positive electrode, and lithium ion secondary battery
JPH10316431A (en) Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
WO2019168160A1 (en) Li-ni composite oxide particle powder and nonaqueous electrolyte secondary battery
KR20240019205A (en) Composite Transition Metal Precursor for Cathode Active Material and Cathode Active Material for Secondary Battery Prepared from the Same
CN117080412A (en) Sodium ion battery positive electrode material, preparation method, positive electrode plate and sodium ion battery
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
KR102096889B1 (en) Nickel-based cathode material and method of manufacturing the same
JP3564322B2 (en) Method for producing lithium manganese composite oxide for secondary battery
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
KR100805875B1 (en) Olivine type positive active material precursor for lithium battery, and method for preparing the same
KR20060122452A (en) Manganese oxides by co-precipitation method, spinel type cathode active material for lithium secondary batteries using thereby and preparation of the same
JP7476344B2 (en) Method for solid-phase synthesis of single particles of high-nickel-content lithium composite transition metal oxide positive electrode active material, single particles of high-nickel-content lithium composite transition metal oxide positive electrode active material formed by the method, and positive electrode and lithium secondary battery including the same
JP6717311B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JPH10233212A (en) Electrode active material for nonaqueous battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees