JP2000310615A - Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same - Google Patents

Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same

Info

Publication number
JP2000310615A
JP2000310615A JP11093453A JP9345399A JP2000310615A JP 2000310615 A JP2000310615 A JP 2000310615A JP 11093453 A JP11093453 A JP 11093453A JP 9345399 A JP9345399 A JP 9345399A JP 2000310615 A JP2000310615 A JP 2000310615A
Authority
JP
Japan
Prior art keywords
electrophoresis
plate
groove
holes
electrophoresis chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11093453A
Other languages
Japanese (ja)
Inventor
Kenji Watanabe
健二 渡辺
Kazuhiko Obara
和彦 小原
Takashi Shimayama
隆 嶋山
Hiroo Watanabe
博夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP11093453A priority Critical patent/JP2000310615A/en
Publication of JP2000310615A publication Critical patent/JP2000310615A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a chip for electrophoresis which is suitable for the separation of chargeable materials, can be handled easily, and has high reproducibility, by connecting through holes made through a platy member to each other with grooves and forming electrodes on the internal surfaces of the through holes and/or around the through holes on the surface of the platy member opposite to the groove forming surface, and then, joining a sealing member to the groove forming surface. SOLUTION: A platy member 1 has two or more through holes 4 made through the member 1 in the thickness direction and one or more grooves 3 which are formed on one surface to connect the through holes 4 to each other. Electrodes 6 are formed on the internal surfaces of the through holes 4 and/or around the through holes 4 on the groove forming surface of the platy member 1, and a sealing member 2 is joined to the groove forming surface. The members 1 and 2 are made of an acrylic resin or styrene resin and the member 2 is formed in a film-like state. The electrodes 6 are formed by printing, vacuum deposition, sputtering, or ion plating. In addition, an electric circuit is formed adjacently to the electrodes 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はキャピラリー電気泳
動に利用される電気泳動用チップとその製造方法、該電
気泳動用チップを用いた電気泳動装置及び荷電性物質の
分離方法に関する。
The present invention relates to an electrophoresis chip used for capillary electrophoresis, a method for producing the same, an electrophoresis apparatus using the electrophoresis chip, and a method for separating a charged substance.

【0002】[0002]

【従来の技術】イオン、有機酸、アミノ酸、タンパク
質、核酸、糖、ウイルス、細胞等の荷電性物質を分離す
る一般的な方法として電気泳動法が広く利用されてい
る。特に核酸やタンパク質等の生体物質やその他の低分
子物質といったごく微量物質を分離同定する手法として
キャピラリー電気泳動法がある。これは、内径が100
ミクロン以下程度のガラス細管(キャピラリー)を用
い、この中に電気泳動用緩衝液や分子ふるい用ポリマ等
の分離用媒体を充填し、キャピラリーの一端に試料を導
入した後その両端に高電圧を印加して試料をキャピラリ
ー内で移動させ、その電荷や分子量の差などにより分離
し、これをUV吸収や蛍光などにより検出するものであ
る。このキャピラリー電気泳動法は長所として、1)必
要試料量がごく微量で済む、2)分離特性に優れる、
3)高速分離が可能、4)様々の分離モードにより幅広
い試料分析に対応可能、などが挙げられるが、従来、キ
ャピラリーは内径が100ミクロン以下程度のファイバ
ー状であるためその強度は非常に低く、キャピラリーの
交換等の作業は極めて取り扱いにくいものであった。ま
た、複数回キャリピラリを使用するためにはその度に洗
浄する必要もあり、分析方法としてはユーザの簡便性の
面でも問題があった。
2. Description of the Related Art Electrophoresis is widely used as a general method for separating charged substances such as ions, organic acids, amino acids, proteins, nucleic acids, sugars, viruses and cells. In particular, there is a capillary electrophoresis method as a technique for separating and identifying very small amounts of substances such as biological substances such as nucleic acids and proteins and other low molecular substances. This means that the inner diameter is 100
Using a micron-sized glass capillary (capillary), filling it with a separation medium such as an electrophoresis buffer or a polymer for molecular sieving, introducing a sample into one end of the capillary, and then applying a high voltage to both ends. Then, the sample is moved in the capillary, separated by a difference in charge or molecular weight, and detected by UV absorption or fluorescence. The advantages of this capillary electrophoresis method are 1) the required sample amount is very small, and 2) excellent separation characteristics.
3) High-speed separation is possible. 4) A wide range of sample analysis can be supported by various separation modes. However, conventionally, the capillary is in the form of a fiber with an inner diameter of about 100 μm or less, so its strength is extremely low. Work such as capillary exchange was extremely difficult to handle. In addition, in order to use the capillary a plurality of times, it is necessary to wash each time, and there is a problem in terms of the analysis method in terms of the simplicity of the user.

【0003】これに対し、キャピラリー電気泳動法の概
念をさらに推し進めた一般に「マイクロチップケミスト
リー」と呼ばれる手法が提案されている(D.J.Harriso
n.ら:Analytical Chemistry,1992年,64巻,1926-1932
頁)。これは、ガラス基板上に微細溝をつくり、それを
もう一枚の基板と貼り合わせることによりキャピラリー
を形成させて、この流路中でキャピラリー電気泳動を行
うというというものである。このキャピラリーを内在し
たガラス基板を貼り合わせたものがマイクロチップと呼
ばれている。構造としては、2枚のガラス基板を張り合
わせて形成されたキャピラリー部の端部に、電気泳動用
緩衝液や分子ふるい用ポリマ、及び分析試料を供給する
ための液溜め部を有したものが一般的である。
[0003] On the other hand, a technique generally called "microchip chemistry" has been proposed which further advances the concept of capillary electrophoresis (DJ Harriso).
n. Et al .: Analytical Chemistry, 1992, 64, 1926-1932
page). In this method, a capillary is formed by forming a fine groove on a glass substrate and bonding the groove to another substrate, and performing capillary electrophoresis in this flow path. A glass substrate in which the capillary is embedded is called a microchip. The structure generally has a buffer for electrophoresis, a polymer for molecular sieving, and a reservoir for supplying an analysis sample at the end of a capillary formed by laminating two glass substrates. It is a target.

【0004】[0004]

【発明が解決しようとする課題】上記のマイクロチップ
ケミストリーという手法では、キャピラリーがマイクロ
チップ内に形成されたことで、取り扱い性は従来のキャ
ピラリー電気泳動法に比べ大きく改善されたが、簡便性
の面では、分析作業における電圧印加の為の電極接合や
装置への固定といった面倒な付随作業が伴い、十分なも
のではない。例えば、電極接合は、分析装置或いは高電
圧電源からの電気端子の白金線を液溜まり部に挿入固定
するという作業が必要で、高価な白金線を分析毎に洗浄
して使うといった面倒さがあり、この洗浄作業が不十分
であると分析対象物質以外のコンタミの心配があった。
また、ガラス基板の孔加工の難しさから、従来のチップ
は、キャピラリー形成のための2枚のガラス基板のうち
の一方の基板部材に溝を、他方の基板部材に液溜まり用
孔を設けていた。このため、それぞれの部材が構造体と
しての必要強度から、厚さが1mm程で剛性が高いこと
が必要であり、貼り合わせ時に密着不足が生じ易くエア
の巻き込み等の問題があり、品質の再現性が低かった。
In the above-mentioned technique of microchip chemistry, the handling property is greatly improved as compared with the conventional capillary electrophoresis method because the capillary is formed in the microchip. On the surface side, there are troublesome accompanying operations such as electrode bonding for application of a voltage and fixing to an apparatus in the analysis operation, which is not sufficient. For example, electrode bonding requires the work of inserting and fixing a platinum wire of an electrical terminal from an analyzer or a high-voltage power supply into a liquid reservoir, and has the trouble of washing and using an expensive platinum wire for each analysis. However, if the washing operation was insufficient, there was a concern about contamination other than the substance to be analyzed.
In addition, due to the difficulty in forming holes in the glass substrate, the conventional chip has a groove in one of the two glass substrates for forming a capillary and a hole for a liquid reservoir in the other substrate. Was. For this reason, it is necessary that each member has a thickness of about 1 mm and high rigidity due to the required strength as a structure, and there is a problem of insufficient adhesion at the time of bonding and there is a problem such as air entrapment. Sex was low.

【0005】本発明はかかる状況に鑑みなされたもの
で、荷電性物質の分離に適し、取り扱い性と簡便性とを
合わせ持ち、しかも再現性と生産性の良いキャピラリー
を内在する電気泳動用チップとその製造方法、その電気
泳動用チップを用いた電気泳動装置及び荷電性物質の分
離方法を提供するものである。
The present invention has been made in view of the above circumstances, and has been developed for an electrophoresis chip having a capillary which is suitable for separating charged substances, has both ease of handling and simplicity, and has good reproducibility and productivity. An object of the present invention is to provide a manufacturing method thereof, an electrophoresis apparatus using the electrophoresis chip, and a method of separating a charged substance.

【0006】[0006]

【課題を解決するための手段】発明者らは上記の課題を
解決するために鋭意検討を重ねた結果、貫通孔、溝及び
電極を有する板状部材とシール部材とを接合した電気泳
動用チップを作製することにより上記の目的を達成し得
ることを見い出し、本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an electrophoresis chip in which a plate-like member having through holes, grooves, and electrodes is joined to a sealing member. It has been found that the above-mentioned object can be achieved by preparing the above, and the present invention has been completed.

【0007】すなわち、本発明は、(1)板状部材
(A)とシール部材(B)とからなり、板状部材(A)
が、板厚方向に貫通した2個以上の貫通孔(C)と、一
方の面に形成される該貫通孔(C)を連結する1本以上
の溝(D)と、該貫通孔(C)の内壁及び/又は該溝が
形成された反対面の貫通孔の周辺部に形成された電極
(E)、とを有し、シール部材(B)が板状部材(A)
の溝形成面に接合されていることを特徴とする電気泳動
用チップ、(2)貫通孔(C)を4個以上、溝(D)を
2本以上有し、かつ溝(D)のうちの少なくとも2本が
交差していることを特徴とする上記(1)記載の電気泳
動用チップ、(3)板状部材(A)がさらに電気回路
(F)を有することを特徴とする上上記(1)又は上記
(2)記載の電気泳動用チップ、(4)板状部材(A)
及び/又はシール部材(B)がアクリル系樹脂又はスチ
レン系樹脂製であることを特徴とする上記(1)〜
(3)記載のいずれかの電気泳動用チップ、(5)シー
ル部材(B)がフィルム状であることを特徴とする上記
(1)〜(4)記載のいずれかの電気泳動用チップ、
(6)板状部材(A)が電気泳動用装置に位置決めされ
るための突起、凹み及び穴のうちのいずれかひとつ以上
を有することを特徴とする上記(1)〜(5)記載のい
ずれかの電気泳動用チップ、(7)板厚方向に貫通する
2個以上の貫通孔(C)と、片面上に貫通孔(C)を連
結する1本以上の溝(D)とを形成した板状部材(A)
を、溝(D)形成面を内側にしてシール部材(B)と接
合し、次に電極(E)を板状部材(A)の貫通孔(C)
の内壁及び/又は溝(D)形成面の反対面の貫通孔
(C)周辺部に形成して、製造することを特徴とする電
気泳動用チップの製造方法、(8)電極(E)を印刷、
真空蒸着、スパッタリング及びイオンプレーティングの
いずれかにより形成することを特徴とする上記(7)記
載の電気泳動用チップの製造方法、(9)板厚方向に貫
通する2個以上の貫通孔(C)と、片面上に貫通孔
(C)を連結する1本以上の溝(D)とを形成した板状
部材(A)を、溝(D)形成面を内側にしてシール部材
(B)と接合し、次に電極(E)及び電気回路(F)を
板状部材(A)の貫通孔(C)の内壁及び/又は溝
(D)形成面の反対面の貫通孔(C)周辺部に形成し
て、製造することを特徴とする電気泳動用チップの製造
方法、(10)電極(E)及び電気回路(F)を印刷、
真空蒸着、スパッタリング及びイオンプレーティングの
いずれかにより形成することを特徴とする上記(9)記
載の電気泳動用チップの製造方法、(11)板状部材
(A)とシール部材(B)との接合が熱融着によりなさ
れることを特徴とする上記(7)〜(10)記載のいず
れかの電気泳動用チップの製造方法、(12)上記
(1)〜(6)記載のいずれかの電気泳動用チップ若し
くは請求上記(7)〜(11)記載のいずれかの製造方
法により得られる電気泳動用チップを用いる電気泳動用
装置、(13)上記(1)〜(6)記載のいずれかの電
気泳動用チップ若しくは請求上記(7)〜(11)記載
のいずれかの製造方法により得られる電気泳動用チップ
を用いることを特徴とする荷電性物質の分離方法。(1
4)上記(12)記載の電気泳動用装置を用いることを
特徴とする荷電性物質の分離方法、(15)荷電性物質
が荷電性分子又は荷電性粒子である上記(13)又は上
記(14)記載の荷電性物質の分離方法、(16)荷電
性分子がイオン、有機酸、アミノ酸、タンパク質、核酸
及び糖のいずれかで、荷電性粒子がウイルス又は細胞で
ある上記(15)記載の荷電性物質の分離方法、(1
7)分離用媒体として高分子ゲルを用いることを特徴と
する上記(13)〜上記(16)記載のいずれかの荷電
性物質の分離方法、(18)高分子ゲルが非交差型高分
子ゲルであることを特徴とする上記(17)記載の荷電
性物質の分離方法、(19)非交差型高分子ゲルが直鎖
状ポリアクリルアミド、直鎖状ハイドロキシエチルセル
ロース、直鎖状ハイドロキシプロピルメチルセルロー
ス、直鎖状ハイドロキシプロピルセルロース、直鎖状メ
チルセルロース、直鎖状ポリエチレングリコール及び直
鎖状ポリエチレンオキサイドのいずれかである上記(1
8)記載の荷電性物質の分離方法、である。
That is, the present invention provides (1) a plate-like member (A) and a seal member (B),
Has two or more through holes (C) penetrating in the thickness direction, one or more grooves (D) connecting the through holes (C) formed on one surface, and the through holes (C). ), And / or an electrode (E) formed on the periphery of the through hole on the opposite surface on which the groove is formed, wherein the sealing member (B) is a plate-like member (A).
(2) having at least four through holes (C), at least two grooves (D), and among the grooves (D), Wherein at least two of them intersect, the chip for electrophoresis according to the above (1), and (3) the plate-like member (A) further comprises an electric circuit (F). (1) The chip for electrophoresis according to the above (2), (4) a plate-like member (A)
And / or the sealing member (B) is made of an acrylic resin or a styrene resin.
(5) The electrophoresis chip according to any one of (1) to (4), wherein the sealing member (B) is in the form of a film.
(6) Any one of the above (1) to (5), wherein the plate-shaped member (A) has at least one of a projection, a dent, and a hole for positioning in the electrophoresis apparatus. (7) Two or more through-holes (C) penetrating in the plate thickness direction and one or more grooves (D) connecting the through-holes (C) on one surface. Plate member (A)
Is bonded to the sealing member (B) with the groove (D) forming surface inside, and then the electrode (E) is connected to the through-hole (C) of the plate-like member (A).
And (8) a method for manufacturing an electrophoresis chip, wherein the electrode (E) is formed by forming an inner wall and / or a peripheral portion of a through hole (C) opposite to a surface on which a groove (D) is formed. printing,
(9) The method for producing an electrophoresis chip according to the above (7), which is formed by any one of vacuum deposition, sputtering, and ion plating. (9) Two or more through-holes (C) penetrating in the plate thickness direction. ) And one or more grooves (D) for connecting the through-holes (C) on one surface to form a sealing member (B) with the grooves (D) formed on the inside. After joining, the electrode (E) and the electric circuit (F) are connected to the inner wall of the through-hole (C) of the plate-like member (A) and / or the peripheral portion of the through-hole (C) opposite to the surface on which the groove (D) is formed. And (10) printing an electrode (E) and an electric circuit (F).
(9) The method for producing an electrophoresis chip according to the above (9), which is formed by any one of vacuum deposition, sputtering, and ion plating. The method for producing an electrophoresis chip according to any one of the above (7) to (10), wherein the joining is performed by heat fusion; (12) any one of the above (1) to (6). An electrophoresis device using an electrophoresis chip or an electrophoresis chip obtained by the method according to any one of the above (7) to (11), (13) any one of the above (1) to (6) A method for separating a charged substance, comprising using the chip for electrophoresis of (1) or the chip for electrophoresis obtained by the production method according to any one of (7) to (11). (1
4) A method for separating a charged substance, characterized by using the apparatus for electrophoresis according to the above (12), (15) The above (13) or (14), wherein the charged substance is a charged molecule or a charged particle. The method according to (15), wherein the charged molecule is any of ions, organic acids, amino acids, proteins, nucleic acids, and sugars, and the charged particles are viruses or cells. Method for separating active substances, (1
7) The method for separating a charged substance according to any one of the above items (13) to (16), wherein a polymer gel is used as a separation medium; and (18) the polymer gel is a non-crossing type polymer gel. (19) The method for separating a charged substance according to the above (17), wherein (19) the non-crossing type polymer gel is a linear polyacrylamide, a linear hydroxyethyl cellulose, a linear hydroxypropyl methylcellulose, The above (1) which is any of linear hydroxypropylcellulose, linear methylcellulose, linear polyethylene glycol and linear polyethylene oxide
8) The method for separating a charged substance according to the above.

【0008】[0008]

【発明の実施の形態】本発明において用いられる板状部
材(A)は、板厚方向に貫通した貫通孔(C)とその貫
通孔(C)を連結する溝(D)及び電極(E)を有する
部材である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A plate-like member (A) used in the present invention has a through hole (C) penetrating in the thickness direction, a groove (D) connecting the through hole (C) and an electrode (E). It is a member which has.

【0009】板状部材(A)に用いられる材料は、UV
吸収や蛍光などにより検出することを考慮し透明又は半
透明の材料であることが必要であるが、特に限定される
ものではない。再現性向上の観点からは、注型可能なガ
ラス、熱硬化性樹脂、熱可塑性樹脂等の型で成形可能な
ものが好ましい。絶縁性や成形の自由度から樹脂材料で
あることがより好ましい。また、樹脂材料は、弾力性が
あるために接触面積が面圧により確保でき、ガラス基材
のものより有利な電気条件となり好ましい。特に熱可塑
性樹脂材料は生産性の面からも有効であり、ポリメチル
メタクリレート、ポリアクリレート等のアクリル系樹
脂、ポリスチレン、スチレンコポリマ等のスチレン系樹
脂、ポリカーボネート、ナイロン6、ナイロン66、ポ
リエチレンテレフタレートなどが好ましい。中でも、透
明性及び蛍光特性の面で、アクリル系樹脂とスチレン系
樹脂がより好ましく、ポリメチルメタクリレート、ポリ
スチレンがさらに好ましい。また、本発明の電気泳動用
チップは生産性が高く化学的検体を扱うために、使い捨
て製品として使用されることも考えられ、このような観
点からは生分解性プラスチックであることが好ましい。
生分解性プラスチックとしては、例えば、マタービー
(ノバモント社(伊)製商品名)等の澱粉を利用したポ
リマ、セルグリーンP−CA(ダイセル化学工業株式会
社製商品名)、ルナーレZT(日本触媒化学工業株式会
社製商品名)等のセルロースエステル系ポリマ、ビオノ
ーレ(昭和高分子社製商品名)等の脂肪族ポリエステル
系ポリマ、エコプレ(カーギル社(米)製商品名)等の
ポリ乳酸系ポリマ、ポリヒドロキシブチレート/バリレ
ート等の微生物ポリエステルなどが挙げられる。
The material used for the plate member (A) is UV
It is necessary that the material be transparent or translucent in consideration of detection by absorption or fluorescence, but is not particularly limited. From the viewpoint of improvement in reproducibility, a moldable material such as a castable glass, a thermosetting resin, or a thermoplastic resin is preferable. It is more preferable to use a resin material from the standpoint of insulation and freedom of molding. Further, since the resin material has elasticity, the contact area can be ensured by the surface pressure, and the resin material has more advantageous electric conditions than that of the glass base material, which is preferable. In particular, a thermoplastic resin material is effective from the viewpoint of productivity, and acrylic resins such as polymethyl methacrylate and polyacrylate, styrene resins such as polystyrene and styrene copolymer, polycarbonate, nylon 6, nylon 66, and polyethylene terephthalate. preferable. Above all, in terms of transparency and fluorescent characteristics, acrylic resins and styrene resins are more preferable, and polymethyl methacrylate and polystyrene are more preferable. In addition, the electrophoresis chip of the present invention is considered to be used as a disposable product in order to handle a chemical sample with high productivity, and from such a viewpoint, it is preferable to use a biodegradable plastic.
Examples of the biodegradable plastic include polymers using starch such as Matterby (product name, manufactured by Novamont (Italy)), Cell Green P-CA (product name, manufactured by Daicel Chemical Industries, Ltd.), and Lunare ZT (product name: Nippon Shokubai Chemical Co., Ltd.) Cellulose ester-based polymers such as Kogyo Co., Ltd.), aliphatic polyester-based polymers such as Bionole (trade name of Showa Kogaku Co.), polylactic acid-based polymers such as Ecopre (trade name manufactured by Cargill (US)), Microbial polyesters such as polyhydroxybutyrate / valerate and the like.

【0010】板状部材(A)のサイズは、片手で取り扱
い易いように10mm角〜150mm角程度の大きさが
好ましく、20mm角〜100mm角がより好ましく、
電気泳動装置小型化の観点からは30mm角〜50mm
角がさらに好ましい。また、板状部材(A)の板厚は、
成形性、取り扱い性の観点から0.2mm〜5mm程度
が好ましく、1mm〜2mmがより好ましい。板状部材
(A)の成形方法は特に限定するものではないが、例え
ば、金型を用いて射出成形、注入成形、プレス成形等で
成形する方法や、機械加工で成形する方法などが挙げら
れるが、金型を用いる方法が寸法、形状共に再現性が高
いものが得られるために好ましい。
The size of the plate-shaped member (A) is preferably about 10 mm square to 150 mm square, more preferably 20 mm square to 100 mm square so that it can be easily handled with one hand.
30 mm square to 50 mm from the viewpoint of miniaturization of the electrophoresis device
Corners are more preferred. The plate thickness of the plate member (A) is
From the viewpoint of moldability and handleability, it is preferably about 0.2 mm to 5 mm, more preferably 1 mm to 2 mm. The method for forming the plate-shaped member (A) is not particularly limited, and examples thereof include a method of forming by injection molding, injection molding, press molding, and the like using a mold, and a method of forming by mechanical processing. However, a method using a mold is preferable because a material having high reproducibility in both dimensions and shape can be obtained.

【0011】板状部材(A)に形成される貫通孔(C)
は、電気泳動用緩衝液、分子ふるい用ポリマ等の分離用
媒体を含む泳動液や分析対象物質を含む試料液等の供給
や排出のための液溜め部であり、板厚方向に貫通した形
で2個以上の孔が形成されることが必要である。貫通孔
(C)のサイズは、泳動液や試料液が注入、排出できる
大きさであれば特に制限はないが、注入作業の観点から
内径が0.5〜10mmの範囲に設定されることが好ま
しく、1〜5mmがより好ましい。
[0011] A through hole (C) formed in the plate member (A)
Is a reservoir for supplying and discharging the electrophoresis buffer containing electrophoresis buffer, separation medium such as polymer for molecular sieving, and the sample solution containing the substance to be analyzed. It is necessary that two or more holes be formed. The size of the through-hole (C) is not particularly limited as long as the electrophoresis running solution and the sample solution can be injected and discharged, but the inner diameter may be set in the range of 0.5 to 10 mm from the viewpoint of the injection operation. Preferably, it is 1 to 5 mm.

【0012】板状部材(A)に形成される溝(D)は、
分析対象試料や電気泳動用緩衝液や分子ふるい用ポリマ
等の分離用媒体を含む泳動液を導入したり、分離したり
するための流路(導入流路または分離流路)となるため
のもので、貫通孔(C)同士を連結するよう形成される
ことが必要である。試料を分離するための分離流路は必
ず必要であるが、この分離流路は分析対象試料や電気泳
動用緩衝液や分子ふるい用ポリマ等の分離用媒体を含む
泳動液を導入するための導入流路を兼ねることができる
ので、溝(D)は板状部材(A)に少なくとも1本は形
成されることが必要である。分離流路と導入流路とは兼
用が可能であるが、分析精度の観点からは、分離流路と
導入流路とを互いに接する別々の溝とすることが好まし
い。分析精度の向上には、分析対象試料液の容量を制御
する手法が有効であるが、試料の導入流路と分離流路と
が同一の溝で構成される場合は分離流路中に導入される
試料液の容量の制御が難しい。分離流路と導入流路とを
互いに接する別々の溝とした場合には、導入された試料
液の一部を分離流路に導入することが可能であるため、
試料液量の制御が容易で分析精度が向上する。試料液量
の制御の観点からは、分離流路と導入流路とは互いに交
差していることがより好ましく、交差角は特に限定はな
いが、交差部の試料液が分離流路に導入されることを鑑
みると、交差空間は菱形形状よりも直方形状の方が泳動
像がよりシャープになり好ましいので、交差角は直角に
近いほうが好ましい。また、分離流路と導入流路を別に
設けることも、分離流路と導入流路をそれぞれ複数設け
ることも可能であるので、溝(D)は2本以上の複数形
成されていてもよい。分離流路を複数設けた場合、複数
の分析対象物質を同時に分離分析することが可能とな
る。分離流路となる複数の溝(D)は、それぞれ並列に
形成され、ほぼ平行に並んでいることが、分析感度の観
点から好ましい。複数の分析対象物質を同時に分離分析
する場合、分析対象物質を含む試料液の供給や排出のた
めの液溜め部である貫通孔(C)は、分析対象物質ごと
に別々に用意されることが好ましいので、分離流路が試
料の導入流路を兼ねている2本以上の溝(D)には、そ
れぞれ両端に独立した別個の貫通孔(C)が連結してい
ることが好ましい。試料の導入流路が分離流路とは別に
用意されいる場合は、導入流路となる2本以上の溝
(D)には、それぞれの両端に独立した別個の貫通孔
(C)が連結していることが好ましいが、分離流路とな
る2本以上の(C)にはそれぞれ独立した別個の貫通孔
(C)を用意しなくてもよい。すなわち、2個の貫通孔
(C)を連結する溝(D)が2本以上あって、別個の溝
(D)が同じ貫通孔(C)を共有する場合があってもか
まわない。この場合、2本以上の溝(D)に連結した貫
通孔(C)は、泳動液の導入又は排出のための液溜り部
として使用することができるが、分析対象物質を含む試
料液の導入用の液溜り部として使用することは好ましく
ない。溝(D)の形状は、分析の精度、形態により任意
に設計でき、例えば、直線状でも、ループ状でも、くの
字型でも、複雑に折れ曲がった形状でもかまわない。複
数の溝を形成させる場合には、溝同士を平行に並列して
も、交差させても、並列と交差が混在していてもよく、
いかなる設計も可能であるが、取り扱い性と分析精度の
観点からは、上述のように分析試料の分離流路と導入路
とを別々の溝として、それらを直交するよう設計するこ
とが好ましい。溝(D)のサイズは分析対象の物質が分
離できれば特に限定はなく任意に設計できるが、取り扱
い性、成形性、電気泳動装置の小型化の観点から、幅は
10〜2000μmが好ましく、20〜1000μmが
より好ましく、30μm〜500μmがさらに好まし
い。深さは5〜1000μmが好ましく、5〜500μ
mがより好ましく、10μm〜100μmがさらに好ま
しい。長さは5mm〜150mm程度が好ましく、より
好ましくは10mm〜100mm、さらに好ましくは、
15〜50mmである。
The groove (D) formed in the plate member (A) is
To be a flow path (introduction flow path or separation flow path) for introducing or separating an electrophoresis running solution containing a separation medium such as a sample to be analyzed, an electrophoresis buffer, or a polymer for molecular sieving. Therefore, the through holes (C) need to be formed to connect with each other. A separation channel for separating the sample is always necessary, but this separation channel is used to introduce the sample to be analyzed and the electrophoresis buffer containing the separation medium such as the electrophoresis buffer and the polymer for molecular sieving. At least one groove (D) needs to be formed in the plate-like member (A) because it can also serve as a flow path. The separation channel and the introduction channel can be used for both purposes, but from the viewpoint of analysis accuracy, it is preferable that the separation channel and the introduction channel be separate grooves that contact each other. A method of controlling the volume of the sample liquid to be analyzed is effective for improving the analysis accuracy.However, when the sample introduction channel and the separation channel are configured with the same groove, the sample is introduced into the separation channel. It is difficult to control the volume of the sample solution. When the separation channel and the introduction channel are separate grooves that are in contact with each other, it is possible to introduce a part of the introduced sample liquid into the separation channel,
The control of the sample liquid volume is easy and the analysis accuracy is improved. From the viewpoint of controlling the amount of the sample solution, it is more preferable that the separation channel and the introduction channel intersect each other, and the intersection angle is not particularly limited, but the sample solution at the intersection is introduced into the separation channel. In view of this, the crossing angle is preferably closer to a right angle because the electrophoresis image becomes sharper in a rectangular shape than in a rhombus shape because the electrophoretic image becomes sharper. In addition, since the separation channel and the introduction channel can be provided separately or a plurality of separation channels and a plurality of introduction channels can be provided, two or more grooves (D) may be formed. When a plurality of separation channels are provided, it becomes possible to simultaneously separate and analyze a plurality of analytes. The plurality of grooves (D) serving as separation channels are preferably formed in parallel and arranged substantially in parallel from the viewpoint of analysis sensitivity. When a plurality of analytes are simultaneously separated and analyzed, a through-hole (C) serving as a reservoir for supplying and discharging a sample solution containing the analytes may be separately prepared for each analyte. It is preferable that two or more grooves (D) in which the separation channel also serves as the sample introduction channel have independent through holes (C) connected to both ends thereof. When the sample introduction channel is provided separately from the separation channel, two or more grooves (D) serving as the introduction channel are connected to independent through holes (C) at both ends thereof. However, it is not necessary to provide independent through holes (C) for two or more (C) serving as separation channels. That is, there may be two or more grooves (D) connecting the two through holes (C), and the separate grooves (D) may share the same through hole (C). In this case, the through-hole (C) connected to the two or more grooves (D) can be used as a liquid reservoir for introducing or discharging the electrophoresis running solution. It is not preferable to use it as a liquid reservoir. The shape of the groove (D) can be arbitrarily designed depending on the accuracy and form of the analysis, and may be, for example, a straight line, a loop, a dogleg, or a complicatedly bent shape. In the case of forming a plurality of grooves, the grooves may be arranged in parallel and parallel to each other, or may intersect, and the parallel and intersection may be mixed,
Although any design is possible, it is preferable to design the separation flow path and the introduction path of the analysis sample as separate grooves and to make them orthogonal to each other, from the viewpoints of handleability and analysis accuracy. The size of the groove (D) is not particularly limited as long as the substance to be analyzed can be separated, and can be arbitrarily designed. From the viewpoint of handleability, moldability, and miniaturization of the electrophoresis apparatus, the width is preferably 10 to 2000 μm, and 20 to 20 μm. 1000 μm is more preferred, and 30 μm to 500 μm is even more preferred. The depth is preferably 5-1000 μm, and 5-500 μm
m is more preferable, and 10 μm to 100 μm is further preferable. The length is preferably about 5 mm to 150 mm, more preferably 10 mm to 100 mm, and still more preferably,
15 to 50 mm.

【0013】貫通孔(C)及び溝(D)の形成方法は特
に限定するものではないが、例えば、金型を用い、射出
成形や注入成形、プレス成形といった生産性の高い工法
を適用することで寸法、形状共に再現性が高いものが得
られるが機械加工で形成することもできる。貫通孔
(C)と溝(D)の形成は、それぞれべつべつにどちら
を先に行ってもかまわないが、1回の成形で両者を同時
に行う手法が工程が少なくなり簡便である。
The method of forming the through-holes (C) and the grooves (D) is not particularly limited. For example, using a mold and applying a highly productive method such as injection molding, injection molding or press molding. Can be obtained with high reproducibility in both dimensions and shape, but can also be formed by machining. The formation of the through hole (C) and the formation of the groove (D) may be carried out separately for each of them. However, the method of performing both simultaneously by one molding reduces the number of steps and is simple.

【0014】板状部材(A)に形成される電極(E)
は、電圧印加して電位差により分析対象試料を溝(D)
によって形成された流路(キャピラリー)を移動させる
ことにより、試料を分離するために使用するもので、試
料や泳動液の導入流路及び分離流路の両端の液溜め部す
なわち貫通孔(C)の周辺に形成されることが必要であ
る。本発明においては、成形性、取り扱い性の観点から
電極(E)は貫通孔(C)の内壁及び/又は溝(D)が
形成されたのとは反対面の貫通孔(C)の周辺部に形成
される。少量の試料を分離分析するためには、電極
(F)は、少なくとも貫通孔(C)の内壁に形成される
ことが好ましい。電極(F)への導電を外部からの配線
等により行う場合には、分析対象物質を含む試料液に配
線等を接触させないようにするために、電極(F)は、
貫通孔(C)の内壁だけでなく、溝(D)形成面とは反
対側の板状部材(A)の片面上にも形成されることが好
ましい。
Electrode (E) formed on plate member (A)
Is to apply a voltage and subject the sample to be analyzed to a groove by a potential difference (D).
Is used to separate the sample by moving the flow path (capillary) formed by the flow path. The liquid reservoirs at both ends of the sample and electrophoresis liquid introduction flow paths and the separation flow path, that is, through holes (C) Must be formed around the periphery of In the present invention, from the viewpoints of moldability and handleability, the electrode (E) has the inner wall of the through hole (C) and / or the peripheral portion of the through hole (C) on the opposite side to the groove (D). Formed. In order to separate and analyze a small amount of sample, the electrode (F) is preferably formed at least on the inner wall of the through hole (C). When conducting to the electrode (F) by an external wiring or the like, the electrode (F) is provided in order to prevent the wiring or the like from contacting the sample liquid containing the substance to be analyzed.
It is preferably formed not only on the inner wall of the through hole (C) but also on one surface of the plate-like member (A) on the opposite side to the groove (D) formation surface.

【0015】電極(E)への電圧印加には、パワーサプ
ライ等の高電圧供給源から白金等の配線を用いて行うこ
とが可能であるが、操作の簡便性の観点から、板状部材
(A)にさらに電気回路(F)を形成することが好まし
い。電気回路(F)は、電極(E)に密接するように形
成されることが必要である。本発明においては、溝
(D)形成面にシール部材(B)が接合しており、この
面に回路形成するとシールが不完全となる場合が生じ、
液漏れの不具合を招き易いため、電気回路(F)は溝
(D)形成面とは反対側の板状部材(A)の片面上に形
成されることが好ましい。また、溝(D)形成面と反対
面上及び貫通孔(C)内壁に形成されていてもよい。
The voltage application to the electrode (E) can be performed by using a wiring such as platinum from a high voltage supply source such as a power supply. It is preferable to further form an electric circuit (F) in A). The electric circuit (F) needs to be formed so as to be in close contact with the electrode (E). In the present invention, the seal member (B) is joined to the surface on which the groove (D) is formed, and if a circuit is formed on this surface, the sealing may be incomplete,
The electric circuit (F) is preferably formed on one surface of the plate-like member (A) on the opposite side to the surface on which the groove (D) is formed, since the problem of liquid leakage is likely to occur. Further, it may be formed on the surface opposite to the surface on which the groove (D) is formed and on the inner wall of the through hole (C).

【0016】電極(E)及び電気回路(F)の形成方法
としては、特に限定はなく、メッキ工法、印刷工法、蒸
着工法等従来からある種々の工法が適用できるが、メッ
キ工法は板状部材(A)が透明樹脂の場合は薬液に対す
る保護等の面で取り扱いが難しく、生産性の観点から印
刷工法又は蒸着工法が好ましい。特に、貫通孔(C)内
壁に形成する場合には真空蒸着、スパッタリング、イオ
ンプレーティング等の蒸着工法が好ましい。電極(E)
及び電気回路(F)は、両者が一体化した形の一体化物
として形成してもよい。電極(E)及び電気回路(F)
の材質は、導電性のある材料であれば特に限定はなく、
例えば、金、銀、銅、白金、アルミニウム、カーボン等
が挙げられる。中でも、電極(E)の材質は、電極表面
部での液による腐食等で接触電気抵抗が変化すると泳動
条件に悪影響を及ぼす可能性があるため、金、銀、白
金、カーボン等の耐食性の良い材料が好ましい。電気回
路(F)の材質は、価格や使い易さの観点から銀、白
金、銅、アルミニウムが好ましく、銀、白金がより好ま
しい。板状部材(A)及び/又はシール部材(B)が樹
脂製の場合には、この樹脂と密着性のよい樹脂系のバイ
ンダーを用いた銀ペースト等が好ましい。電極(E)及
び電気回路(F)の厚みは、通電に支障がなければ特に
限定されるものではないが、印刷工法の導電膜の場合、
1〜100μmが好ましく、5μm〜50μmがより好
ましい。スパッタリングまたはイオンプレーティングの
金属膜の場合、0.005μm〜20μmが好ましく、
0.01μm〜5μmがより好ましい。電極(E)及び
電気回路(F)の幅は、0.1mm〜20mmが好まし
く、0.5mm〜10mmがより好ましく、1〜5mm
がさらに好ましい。
The method for forming the electrode (E) and the electric circuit (F) is not particularly limited, and various conventional methods such as a plating method, a printing method, and a vapor deposition method can be applied. When (A) is a transparent resin, handling is difficult in terms of protection against chemicals and the like, and a printing method or a vapor deposition method is preferred from the viewpoint of productivity. In particular, when it is formed on the inner wall of the through hole (C), an evaporation method such as vacuum evaporation, sputtering, or ion plating is preferable. Electrode (E)
The electric circuit (F) and the electric circuit (F) may be formed as an integrated product in which both are integrated. Electrode (E) and electric circuit (F)
The material is not particularly limited as long as it is a conductive material,
For example, gold, silver, copper, platinum, aluminum, carbon and the like can be mentioned. Among them, the material of the electrode (E) has good corrosion resistance of gold, silver, platinum, carbon, and the like because a change in contact electric resistance due to corrosion by a liquid on the surface of the electrode may adversely affect electrophoretic conditions. Materials are preferred. The material of the electric circuit (F) is preferably silver, platinum, copper, or aluminum, and more preferably silver or platinum, from the viewpoint of cost and ease of use. When the plate-shaped member (A) and / or the sealing member (B) are made of a resin, a silver paste or the like using a resin-based binder having good adhesion to the resin is preferable. The thicknesses of the electrode (E) and the electric circuit (F) are not particularly limited as long as they do not hinder energization.
It is preferably from 1 to 100 μm, more preferably from 5 to 50 μm. In the case of a metal film of sputtering or ion plating, the thickness is preferably 0.005 μm to 20 μm,
0.01 μm to 5 μm is more preferable. The width of the electrode (E) and the electric circuit (F) is preferably 0.1 mm to 20 mm, more preferably 0.5 mm to 10 mm, and 1 to 5 mm
Is more preferred.

【0017】板状部材(A)に電極(E)が形成される
ことで、従来の煩わしい電極接続作業をすることなく、
簡単に電気泳動チップ上の電極と配線とを接触させるこ
とができる。また、電気回路(F)が形成されることで
配線もさらに簡便化され、試料液に配線が直接触れない
ために分析毎の洗浄も不要となる。
By forming the electrode (E) on the plate-like member (A), the conventional troublesome electrode connection work can be performed without any troublesome work.
The electrodes on the electrophoresis chip can be easily brought into contact with the wiring. Further, the formation of the electric circuit (F) further simplifies the wiring, and the wiring does not directly touch the sample solution, so that cleaning for each analysis is not required.

【0018】本発明において用いられるシール部材
(B)は、キャピラリーを形成するために、板状部材
(A)の溝(D)が形成されている面に接合させること
が必要である。
The seal member (B) used in the present invention needs to be joined to the surface of the plate member (A) on which the groove (D) is formed in order to form a capillary.

【0019】シール部材(B)の材料は、UV吸収や蛍
光などにより検出することを考慮し透明又は半透明の材
料で、シールしやすいようフィルム状に成形できる樹脂
材料が好ましい。特に熱可塑性樹脂材料は生産性の面か
らも有効であり、ポリメチルメタクリレート、ポリアク
リレート等のアクリル系樹脂、ポリスチレン、スチレン
コポリマ等のスチレン系樹脂、ポリカーボネート、ナイ
ロン6、ナイロン66、ポリエチレンテレフタレートな
どが好ましい。中でも、透明性及び蛍光特性の面で、ア
クリル系樹脂とスチレン系樹脂がより好ましく、ポリメ
チルメタクリレート、ポリスチレンがさらに好ましい。
また、使い捨て製品として使用される場合は、生分解性
プラスチックが好ましい。生分解性プラスチックとして
は、例えば、マタービー(ノバモント社(伊)製商品
名)等の澱粉を利用したポリマ、セルグリーンP−CA
(ダイセル化学工業株式会社製商品名)、ルナーレZT
(日本触媒化学工業株式会社製商品名)等のセルロース
エステル系ポリマ、ビオノーレ(昭和高分子社製商品
名)等の脂肪族ポリエステル系ポリマ、エコプレ(カー
ギル社(米)製商品名)等のポリ乳酸系ポリマ、ポリヒ
ドロキシブチレート/バリレート等の微生物ポリエステ
ルなどが挙げられる。
The material of the sealing member (B) is preferably a transparent or translucent material in consideration of detection by UV absorption or fluorescence, and is preferably a resin material which can be formed into a film so as to be easily sealed. In particular, a thermoplastic resin material is effective from the viewpoint of productivity, and acrylic resins such as polymethyl methacrylate and polyacrylate, styrene resins such as polystyrene and styrene copolymer, polycarbonate, nylon 6, nylon 66, and polyethylene terephthalate. preferable. Above all, in terms of transparency and fluorescent characteristics, acrylic resins and styrene resins are more preferable, and polymethyl methacrylate and polystyrene are more preferable.
When used as a disposable product, a biodegradable plastic is preferable. As the biodegradable plastic, for example, a polymer using starch such as Matterby (trade name, manufactured by Novamont (Italy)), Cell Green P-CA
(Trade name, manufactured by Daicel Chemical Industries, Ltd.), Lunar ZT
Cellulose ester polymers such as Nippon Shokubai Chemical Co., Ltd., aliphatic polyester polymers such as Bionore (Showa Kogaku Co., Ltd.), and polymers such as Ecopre (Cargill (US)) Examples include lactic acid-based polymers and microbial polyesters such as polyhydroxybutyrate / valerate.

【0020】シール部材(B)と板状部材(A)とを接
合させる方法としては、両者が密着して溝(D)の開口
部がシール部材によって封鎖されてキャピラリーが形成
され、貫通孔(C)の開口部の片側がシール部材によっ
て封鎖されて液溜め部が形成される方法であれば特に限
定はないが、例えば、機械的に対向する面を圧接させる
ように接合させる方法、接着剤を用いる方法、熱融着に
よる方法等が挙げられる。シール部材(B)が弾力性を
持つ場合は、別の部材を介してシール部材(B)を板状
部材(A)に押し付け固定するか、または、シール部材
を変移(圧縮)させた状態で固定する等の方法により、溝
(D)、電極(E)及び電気回路(F)の周りでの密着
したシールが容易にでき、キャピラリー形成ができる。
接着剤を用いてシール部材(B)と板状部材(A)とを
接合させる場合は、溝(D)のサイズによっては接着剤
が流れ込み管路が消失或いは大きく変化する心配があ
り、微細な溝には適用が難しい。本発明の板状部材
(A)は、液溜まり用の貫通孔(C)と溝(D)の両方
を有するので、従来の溝を有する部材と液溜まり孔を有
する部材とを貼り合わせたマイクロチップと比較して溝
と孔の位置を合わせるなどの手間が省け、シール部材
(B)を板状部材(A)に接合する際の位置決めが容易
で、自由度の高い設計、選択ができる。また、再現性が
高く、分析精度が向上する利点を有する。
As a method for joining the seal member (B) and the plate-like member (A), the two are brought into close contact with each other, the opening of the groove (D) is closed by the seal member, a capillary is formed, and the through hole ( There is no particular limitation as long as one side of the opening of C) is closed by a sealing member to form a liquid reservoir, but, for example, a method of mechanically joining the opposing surfaces in pressure contact, an adhesive And a method by heat fusion. When the seal member (B) has elasticity, the seal member (B) is pressed and fixed to the plate-shaped member (A) via another member, or the seal member (B) is displaced (compressed). By a method such as fixing, a tight seal around the groove (D), the electrode (E) and the electric circuit (F) can be easily formed, and a capillary can be formed.
When the sealing member (B) and the plate-shaped member (A) are joined by using an adhesive, there is a concern that the adhesive may flow in depending on the size of the groove (D), and the conduit may be lost or greatly changed. Difficult to apply to grooves. Since the plate-shaped member (A) of the present invention has both the through hole (C) for liquid pool and the groove (D), the conventional member having the groove and the member having the liquid hole are bonded together. Compared with the chip, the trouble of adjusting the position of the groove and the hole can be omitted, the positioning when the sealing member (B) is joined to the plate-like member (A) is easy, and the design and selection with high flexibility can be performed. In addition, there is an advantage that reproducibility is high and analysis accuracy is improved.

【0021】シール部材(B)の形状は、シールできる
形状であれば特に限定はなく、板状、フィルム状等が挙
げられるが、成形性の観点からは、フィルム状が好まし
い。特に、シール部材(B)と板状部材(A)とを熱融
着により接合させる場合は、フィルム状のシール部材を
用いることが好ましい。フィルムは薄くすることで低い
熱量で熱融着でき、しかも低熱量であるために溝(D)
を変形させることも少ない。また、蛍光やUV吸光によ
る検出時のノイズ低減の観点からもフィルム状であるこ
とが好ましい。溝(D)が微細な溝の場合にもフィルム
状のシール部材が好適である。シール部材(B)のサイ
ズは、接合する板状部材(A)と同程度の大きさが好ま
しい。また、シール部材(B)の厚みは、フィルム状の
場合は、成形性、密着性の観点から、1〜250μm程
度が好ましく、5〜100μmがより好ましく、10μ
m〜80μmがさらに好ましい。板状の場合は、成形
性、取り扱い性の観点から0.05mm〜10mm程度
の厚さが好ましく、0.2mm〜5mmがより好まし
く、0.5mm〜2mmがさらに好ましい。
The shape of the sealing member (B) is not particularly limited as long as it can be sealed, and includes a plate shape and a film shape. From the viewpoint of moldability, a film shape is preferable. In particular, when the sealing member (B) and the plate-shaped member (A) are joined by heat fusion, it is preferable to use a film-shaped sealing member. The film can be heat-sealed with a low calorie by making it thin, and the groove (D)
Is less likely to deform. Further, it is preferably in the form of a film from the viewpoint of reducing noise during detection by fluorescence or UV absorption. Even when the groove (D) is a fine groove, a film-shaped sealing member is suitable. The size of the sealing member (B) is preferably the same size as the plate-like member (A) to be joined. In the case of a film, the thickness of the sealing member (B) is preferably about 1 to 250 μm, more preferably 5 to 100 μm, and more preferably 10 μm, from the viewpoint of moldability and adhesion.
m to 80 μm is more preferred. In the case of a plate shape, the thickness is preferably about 0.05 mm to 10 mm, more preferably 0.2 mm to 5 mm, and still more preferably 0.5 mm to 2 mm from the viewpoints of moldability and handleability.

【0022】シール部材(B)の成形方法は、シールし
やすい形に成形されれば特に限定はないが、例えば、金
型を用いて射出成形、注入成形、プレス成形等で成形す
る方法や、機械加工で成形する方法、インフレーション
成形、カレンダー成形、ダイ押出成形等のフィルム状に
成形される方法などが挙げられ、中でもフィルム状に成
形される方法が好ましい。板状に成形する場合には、金
型を用いる方法が寸法、形状共に再現性が高いものが得
られるために好ましい。また、フィルム状に成形された
市販の材料をシール部材(B)として用いることもでき
る。
The method of forming the seal member (B) is not particularly limited as long as it is formed into a shape that is easy to seal. For example, a method of molding by injection molding, injection molding, press molding or the like using a mold, Examples thereof include a method of forming by a mechanical process, a method of forming into a film such as inflation molding, calendering, and die extrusion, among which a method of forming into a film is preferable. In the case of molding into a plate shape, a method using a metal mold is preferable because a material having high reproducibility in both dimensions and shape can be obtained. Further, a commercially available material formed into a film shape can be used as the sealing member (B).

【0023】本発明の電気泳動用チップは、板状部材
(A)とシール部材(B)とを、板状部材(A)の溝
(D)形成面を内側にして接合し、溝(D)の開口部が
シール部材によって封鎖されてキャピラリーが形成され
ればよく、いかなる方法においても製造することができ
るが、例えば次のような方法が挙げられる。貫通孔
(C)、溝(D)及び電極(E)を形成した板状部材
(A)とシール部材(B)とを接合する方法、貫通孔
(C)、溝(D)、電極(E)及び電気回路(F)を形
成した板状部材(A)とシール部材(B)とを接合する
方法、貫通孔(C)、溝(D)、を形成した板状部材
(A)とシール部材(B)を接合した後に、板状部材
(A)の接合面とは反対面に電極(E)を形成する方
法、貫通孔(C)、溝(D)、を形成した板状部材
(A)とシール部材(B)を接合した後に、板状部材
(A)の接合面とは反対面に電極(E)及び電気回路
(F)を形成する方法等が挙げられる。ここで、電極
(E)及び電気回路(F)の形成は、回路保護の観点か
ら、板状部材(A)とシール部材(B)とを接合した後
の最後の工程として行うことが好ましい。本発明の電気
泳動用チップは、電気泳動用緩衝液や分子ふるい用ポリ
マ等の分離用媒体があらかじめ充填されていてもよい。
In the electrophoresis chip of the present invention, the plate member (A) and the sealing member (B) are joined with the groove (D) forming surface of the plate member (A) inside, and the groove (D) is formed. It is sufficient that the opening is closed by a sealing member to form a capillary, and the capillary can be manufactured by any method. For example, the following method can be used. A method of joining the plate member (A) having the through hole (C), the groove (D) and the electrode (E) to the sealing member (B), the through hole (C), the groove (D), and the electrode (E). ) And a method of joining the plate member (A) formed with the electric circuit (F) to the seal member (B), the plate member (A) formed with the through hole (C) and the groove (D), and the seal. After joining the member (B), a method of forming an electrode (E) on the surface opposite to the joining surface of the plate-like member (A), a plate-like member (A) having a through hole (C) and a groove (D) formed thereon After joining A) and the sealing member (B), a method of forming an electrode (E) and an electric circuit (F) on the surface opposite to the joining surface of the plate-like member (A) may be used. Here, the formation of the electrode (E) and the electric circuit (F) is preferably performed as the last step after joining the plate member (A) and the seal member (B) from the viewpoint of circuit protection. The electrophoresis chip of the present invention may be pre-filled with a separation medium such as an electrophoresis buffer or a polymer for molecular sieving.

【0024】本発明の電気泳動用チップを用いて分析を
行う電気泳動用装置は、分析対象物質を含む試料の導入
流路または分離流路の両端に電位差を与えて分析対象物
質を電気泳動させるために電極(E)又は電気回路
(F)に電圧を印加するための手段、分析対象物質に光
を照射するための手段、分析対象物質からの検出光を測
定するための手段、電気泳動用チップを位置決めする手
段とを備えるものである。
The electrophoresis apparatus for performing an analysis using the electrophoresis chip of the present invention provides an electric potential difference to both ends of an introduction channel or a separation channel of a sample containing an analyte and causes the analyte to be electrophoresed. For applying a voltage to the electrode (E) or the electric circuit (F), means for irradiating the analyte with light, means for measuring the detection light from the analyte, and electrophoresis Means for positioning the chip.

【0025】電圧を印加するための手段は、パワーサプ
ライ等の電圧を発生させるための電源と配線を備えるも
ので、電源は装置と一体化したものでなくてもよいが、
装置を小型化する観点からは装置の中に一体に組み込ま
れたものが好ましい。
The means for applying a voltage includes a power supply and a wiring for generating a voltage such as a power supply. The power supply may not be integrated with the apparatus.
From the viewpoint of reducing the size of the device, it is preferable that the device is integrated into the device.

【0026】分析対象物質に光を照射するための手段
は、少なくとも光を発生するための光源を備えるもの
で、光源から発せられる光を効率的に照射するためには
集光手段も備えていることが好ましい。光源としては特
に制限はないが、例えば、水銀ランプ、QIランプ(石
英ーヨウ素ランプ)、フォトダイオード、発光ダイオー
ド(LED)、EL(electroluminescence)等が挙げ
られる。また、レーザ光源も用いることができる。集光
手段も特に制限はないが、例えば、ダイクロイックミラ
ー、光フィルタ、対物レンズ、プリズムレンズ等のレン
ズ、マイクロレンズ、光ファイバーなどが挙げられ、こ
れらを1種あるいは2種以上組み合わせて用いることが
できる。集光手段としてレンズを用いる場合、球面レン
ズと非球面レンズのどちらを用いてもかまわないが、焦
点の合わせやすさの観点から集光面積が小さい場合には
非球面レンズが好ましく、これらレンズは集光面積に応
じて1枚又は2枚以上複数重ねて用いることができる。
励起光を照射する場合には、ダイクロイックミラーや光
フィルタを用いることが好ましい。レーザ光源を用いる
場合には、複数のプリズムレンズを備えてドット状のレ
ーザ光源を拡大して全走査線を含有するようにすること
が好ましい。
The means for irradiating the substance to be analyzed with light includes at least a light source for generating light, and also includes a condensing means for efficiently irradiating light emitted from the light source. Is preferred. The light source is not particularly limited, and examples thereof include a mercury lamp, a QI lamp (quartz-iodine lamp), a photodiode, a light emitting diode (LED), and an EL (electroluminescence). Further, a laser light source can also be used. There is no particular limitation on the light condensing means, and examples thereof include dichroic mirrors, optical filters, objective lenses, lenses such as prism lenses, microlenses, optical fibers, and the like. These can be used alone or in combination of two or more. . When a lens is used as the light condensing means, either a spherical lens or an aspherical lens may be used, but an aspherical lens is preferable when the light condensing area is small from the viewpoint of ease of focusing. One or two or more sheets can be used in accordance with the condensing area.
When irradiating with excitation light, it is preferable to use a dichroic mirror or an optical filter. When a laser light source is used, it is preferable to provide a plurality of prism lenses and enlarge the dot laser light source so as to include all scanning lines.

【0027】分析対象物質からの検出光を測定するため
の手段は、少なくとも光検出器を備えるもので、測定感
度の観点からは集光手段を備えていることが好ましい。
励起光が照射される場合には検出する光は蛍光となる。
光検出器は特に限定はないが、例えば、蛍光検出器、光
電子倍増管(フォトマル)、CCD、フォトダイオード
等が挙げられる。集光手段も特に制限はないが、例え
ば、ダイクロイックミラー、光フィルタ、球面又は非球
面のレンズ、マイクロレンズ等が挙げられる。電気泳動
用チップを位置決めする手段としては特に制限はない
が、例えば、電気泳動用チップの形状に合うように設計
された突起、凹み、穴、ピン等の位置決め用の型や、コ
イル、バネ状物質等を挙げることができる。これらは1
種類1個でも複数でも、複数種類の手段を併設してもよ
く、必要に応じて用いることができる。
The means for measuring the detection light from the substance to be analyzed includes at least a photodetector, and preferably includes a light collecting means from the viewpoint of measurement sensitivity.
When the excitation light is applied, the light to be detected becomes fluorescent light.
The photodetector is not particularly limited, and examples thereof include a fluorescence detector, a photomultiplier (photomultiplier), a CCD, and a photodiode. The light collecting means is not particularly limited, and examples thereof include a dichroic mirror, an optical filter, a spherical or aspherical lens, and a micro lens. The means for positioning the electrophoresis chip is not particularly limited. For example, a positioning mold such as a protrusion, a dent, a hole, or a pin designed to match the shape of the electrophoresis chip, a coil, a spring, or the like. Substances and the like. These are 1
One type, a plurality of types, or a plurality of types of means may be provided side by side and can be used as needed.

【0028】本発明の電気泳動用装置は、電気泳動用チ
ップを移動させての分析も可能なように電気泳動用チッ
プの移動手段を備えていてもよい。また、光照射部や検
出部の位置を変更可能なように光を照射するための手段
及び/又は検出光を測定するための手段に移動手段を備
えていてもよい。測定した検出光を分析するための解析
器を装置の内部に一体化して、または外部に接続して備
えていてもよい。
The electrophoresis apparatus of the present invention may include a means for moving the electrophoresis chip so that the analysis can be performed by moving the electrophoresis chip. Further, a moving unit may be provided in a unit for irradiating light and / or a unit for measuring detection light so that the positions of the light irradiation unit and the detection unit can be changed. An analyzer for analyzing the measured detection light may be provided integrally with the inside of the apparatus or connected to the outside.

【0029】本発明の電気泳動用チップは、電気泳動装
置に簡便にセット位置決めされることが好ましい。電気
泳動用チップは、前記の電気泳動用装置の位置決め手段
に板状部材(A)の端面を接触することにより通常位置
決めされる。電気泳動用チップを測定時に動かないよう
固定するためには、電気泳動装置側だけでなく、電気泳
動用チップ側にも位置決めの手段を有していることが好
ましい。この場合、電気泳動用装置の位置決め手段と電
気泳動用チップの位置決め手段の形状との一致している
ことが有効である。電気泳動用チップの位置決め手段と
しては特に限定はないが、板状部材(A)に位置決めの
ための突起、凹み及び穴のうちいずれか1つ以上を有し
ていることが好ましい。この突起、凹み及び穴のサイズ
は任意に設計できるが、単一の形状であれば内径1〜5
mm程度のもの、ライン状の形状であれば幅1〜3mm
程度のものが好ましい。
It is preferable that the electrophoresis chip of the present invention is easily set and positioned in an electrophoresis apparatus. The chip for electrophoresis is usually positioned by bringing the end surface of the plate-shaped member (A) into contact with the positioning means of the apparatus for electrophoresis. In order to fix the electrophoresis chip so as not to move at the time of measurement, it is preferable to have a positioning means not only on the electrophoresis apparatus side but also on the electrophoresis chip side. In this case, it is effective that the shape of the positioning means of the electrophoresis apparatus matches the shape of the positioning means of the electrophoresis chip. The means for positioning the electrophoresis chip is not particularly limited, but it is preferable that the plate-shaped member (A) has at least one of a projection, a dent, and a hole for positioning. The size of the projections, dents and holes can be arbitrarily designed.
mm, a width of 1 to 3 mm for a linear shape
Are preferred.

【0030】本発明の電気泳動用チップは、イオン、有
機酸、アミノ酸等の低分子や、タンパク質、核酸、糖等
の高分子からなる荷電性分子、ウイルス、細胞等の荷電
性粒子、などの荷電性物質を分離して、対象物質を分析
するのに有効な手段として用いることができる。また、
本発明の電気泳動用チップは、荷電性ラテックスビーズ
を利用して間接的に分析対象物質を分析する方法にも利
用可能である。具体的には、本発明の電気泳動用チップ
の溝(D)の中に分離用緩衝液、分離用高分子ゲル、分
離用等電性フォーカッシング緩衝液等の分離用媒体を充
填させて、分析対象物質を含む試料を注入し、溝(D)
の両端に電圧を印加することによって、分離用媒体中で
分析対象物質を電位差で移動させて分離することができ
る。
The chip for electrophoresis according to the present invention can be used to charge small molecules such as ions, organic acids and amino acids, charged molecules composed of macromolecules such as proteins, nucleic acids and sugars, and charged particles such as viruses and cells. The charged substance can be separated and used as an effective means for analyzing the target substance. Also,
The chip for electrophoresis of the present invention can also be used for a method of indirectly analyzing a substance to be analyzed using charged latex beads. Specifically, the grooves (D) of the electrophoresis chip of the present invention are filled with a separation medium such as a separation buffer, a separation polymer gel, a separation isoelectric focusing buffer, and the like. A sample containing the substance to be analyzed is injected, and the groove (D)
By applying a voltage to both ends of the sample, the analyte can be moved by a potential difference in the separation medium and separated.

【0031】分離用媒体を電気泳動用チップの溝(D)
に充填するためには、貫通孔(C)の液溜まり部に分離
用媒体を介して溝(D)に注入すればよい。注入方法と
しては特に制限はないが、例えば、毛細管現象を利用す
る方法、注射筒等を用いる加圧注入法、一方の液溜まり
部に滴下した媒体をもう一方の液溜まり部から水流ポン
プ、真空ポンプ等を用いて減圧することによって注入す
る減圧注入法などが挙げられる。この際、気泡やホコリ
等のその他の夾雑物が溝(D)に入らないようにするこ
とが重要である。
The separation medium is inserted into the groove (D) of the electrophoresis chip.
In order to fill the groove (D), it is only necessary to inject the liquid into the groove (D) through the separating medium into the liquid reservoir of the through hole (C). Although there is no particular limitation on the injection method, for example, a method utilizing a capillary phenomenon, a pressure injection method using a syringe, etc., a medium dropped into one liquid reservoir from the other liquid reservoir, a water flow pump, a vacuum There is a reduced pressure injection method in which injection is performed by reducing the pressure using a pump or the like. At this time, it is important to prevent other contaminants such as bubbles and dust from entering the groove (D).

【0032】荷電性物質等の分離対象物質は、分離流路
用の溝(D)に一定量導入されることが必要である。分
離対象物質を溝(D)に導入する方法としては、例え
ば、動電学的導入法(electrokinetic injection)や動水
力学的導入法(hydrodynamic injection)等が挙げられ
る。動電学的導入法は、試料の導入流路と分離流路とを
別にして、試料導入用液溜まり部に荷電性物質を含む試
料溶液を少量滴下し、この液溜まり部と導入流路を挟ん
で逆端に位置する液溜まり部とに適当な電界をかけるこ
とによって、試料を導入流路と直交する分離流路の溝交
差部に移動させて、試料を導入する方法である。この方
法は、シャープな検出像が得られるので好ましい。本電
気泳動用チップを用いて電気泳動分離した荷電性物質
は、その光学的特性や電気化学的特性等を利用して検出
することができる。例えば、核酸分子の有するUV吸収
特性を利用して吸光度を測定したり、核酸分子に蛍光色
素を標識して蛍光を測定することにより検出することが
可能で、DNAやRNAのような核酸断片を分離してそ
の断片の大きさを分析することができる。
It is necessary that a certain amount of a substance to be separated such as a charged substance be introduced into the groove (D) for the separation channel. Examples of a method for introducing the substance to be separated into the groove (D) include an electrokinetic injection method and a hydrodynamic injection method. In the electrokinetic introduction method, a small amount of a sample solution containing a charged substance is dropped into a sample introduction liquid reservoir separately from a sample introduction channel and a separation channel, and the liquid reservoir and the introduction channel are separated. In this method, a sample is introduced by applying an appropriate electric field to a liquid reservoir located at the opposite end with respect to the sample, thereby moving the sample to a groove intersection of a separation channel orthogonal to the introduction channel. This method is preferable because a sharp detection image can be obtained. A charged substance electrophoretically separated using the present electrophoresis chip can be detected by utilizing its optical characteristics, electrochemical characteristics, and the like. For example, it is possible to measure absorbance using the UV absorption properties of nucleic acid molecules, or to detect nucleic acids by labeling nucleic acid molecules with a fluorescent dye and measuring fluorescence, and to detect nucleic acid fragments such as DNA and RNA. Separated and the size of the fragments can be analyzed.

【0033】[0033]

【実施例】次に、実施例により本発明を説明するが、本
発明の範囲はこれら実施例に限定されるものではない。
EXAMPLES Next, the present invention will be described with reference to examples, but the scope of the present invention is not limited to these examples.

【0034】実施例1 電気泳動用チップの作製1 50トン射出成形機で、成形温度240℃、射出圧力4
00kg/cm2の成形条件で透明樹脂材料であるPM
MA(ポリメチルメタクリレート)樹脂(三菱レーヨン
株式会社製アクリペットVH)を成形し、内径1mmの
4個の貫通孔4(4a〜4d)と、片側表面に100μm
幅、40μm深の直交する2本の溝3(3a、3b)を有
する、外形寸法20mm×75mm×1mm厚の図1に
示す板状部材1を得た。溝3の長さは、長い方の3aが
45mm、短い方の3bが6mmで、3aと3bの交差
部から4a、4cの外周部までの長さはそれぞれ3mm
である。外形成形及び溝3と貫通孔4の形成は、一度の
射出成形で同時に行った。次に、シール部材(B)とし
てPMMA製の50μmフィルム2(三菱レーヨン株式
会社製アクリプレン)を用いて、プレス圧1kg/cm
2、104℃の条件で、板状部材1の溝3がある平面側
に熱融着させることによって接合させて、図2に示す接
合体を得た。その後、図3及び図4に示すように、フィ
ルム貼り付け面とは反対面に15μm厚の電気回路5と
20μm厚の電極6とを形成させて、電気泳動用チップ
7を得た。電気回路5の形成は銀ペースト印刷によって
行い、電極6の形成はカーボンペースト印刷によって行
った。
Example 1 Preparation of Electrophoresis Chip 1 Using a 50-ton injection molding machine, a molding temperature of 240 ° C. and an injection pressure of 4
PM which is a transparent resin material under the molding condition of 00 kg / cm 2
MA (polymethyl methacrylate) resin (Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.) was molded, and four through holes 4 (4a to 4d) having an inner diameter of 1 mm and 100 μm on one side surface were formed.
The plate-shaped member 1 shown in FIG. 1 having two outer dimensions of 20 mm × 75 mm × 1 mm and having two orthogonal grooves 3 (3a, 3b) having a width of 40 μm and a depth of 40 μm was obtained. The length of the groove 3 is 45 mm for the longer 3a and 6 mm for the shorter 3b, and the length from the intersection of 3a and 3b to the outer periphery of 4a and 4c is 3 mm each.
It is. The outer shape molding and the formation of the groove 3 and the through hole 4 were simultaneously performed by one injection molding. Next, using a 50 μm film 2 made of PMMA (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.) as a sealing member (B), a pressing pressure of 1 kg / cm 2
2 , bonding was performed by heat-sealing the plate-shaped member 1 on the flat surface side where the groove 3 was formed at 104 ° C. to obtain a bonded body shown in FIG. Thereafter, as shown in FIGS. 3 and 4, an electric circuit 5 having a thickness of 15 μm and an electrode 6 having a thickness of 20 μm were formed on the surface opposite to the surface to which the film was attached, thereby obtaining an electrophoresis chip 7. The electric circuit 5 was formed by silver paste printing, and the electrode 6 was formed by carbon paste printing.

【0035】実施例2 電気泳動用チップの作製2 実施例1と同様にして図5に示す板状部材8を得た。板
状部材8には電気泳動装置に位置決めするための貫通孔
9が設けてある。貫通孔9の形成も射出成形により、外
形成形及び溝3と貫通孔4の形成と同時に行い、貫通孔
4及び貫通孔9の内径は3mmとした。次に、シール部
材(B)として位置決め孔用逃げ形状11を設けたフィ
ルム2を用いた以外は実施例1と同様にして板状部材8
とシール部材との接合を行い、図5に示す接合体を得
た。その後、図6及び図7に示すように、フィルム貼り
付け面とは反対面上から貫通孔の内面に向けて白金のス
パッタリングによって電極と電気回路が一体となった一
体化物10(0.02μm厚)を形成させて、電気泳動
用チップ12を得た。
Example 2 Preparation of Electrophoresis Chip 2 A plate member 8 shown in FIG. 5 was obtained in the same manner as in Example 1. The plate member 8 is provided with a through hole 9 for positioning in the electrophoresis apparatus. The through hole 9 was also formed by injection molding at the same time as the outer shape forming and the formation of the groove 3 and the through hole 4, and the inner diameters of the through hole 4 and the through hole 9 were 3 mm. Next, the plate member 8 was formed in the same manner as in Example 1 except that the film 2 provided with the relief shape 11 for the positioning hole was used as the seal member (B).
And the sealing member were joined to obtain a joined body shown in FIG. Then, as shown in FIG. 6 and FIG. 7, the electrode and the electric circuit are integrated with each other by sputtering of platinum from the surface opposite to the film application surface to the inner surface of the through hole 10 (0.02 μm thick). ) Was formed to obtain an electrophoresis chip 12.

【0036】実施例3 ΦX174HaeIII分解断片
DNAの分離 5g/Lハイドロキシプロピルメチルセルロース(Aldri
ch社製、平均分子量90,000)、5mg/Lエチジウム
ブロマイド、44.75mM TRIS(2−アミノー
2−ヒドロキシメチルー1,3−プロパンジオール)、
44.75mMホウ酸(pH8.2)を含む分離用ゲル
緩衝液を用いてΦX174(DNA)のHaeIII分解
断片DNAを分離した。ΦX174のHaeIII分解断
片は、DNA鎖長で72bpから1353bpの11個
の断片から構成されている。分離は実施例1で作製した
電気泳動用チップ7を用いて行った。2本の溝3のう
ち、3aを分離流路、3bを試料導入流路として使用し
た。まず、上記分離用ゲル緩衝液を、泳動液導入用液溜
まり4dに5μl、4cと4bに各3μl滴下し、毛細
管現象を利用して分離流路3a及び試料導入流路3bに
緩衝液を充填した。次に、ΦX174のHaeIII分解
断片を上記分離用ゲル緩衝液に40μg/ml濃度に溶
解した試料液3μLを試料導入用液溜まり4aに滴下
し、試料導入用溝3bの両端に1000V/cmの電圧
を印加して、試料を溝交差部まで移動させて分離用溝3
aに導入し、続けて分離用溝3aの両端に400V/c
mの電圧を印加して電気泳動を実施し、DNA断片を分
離した。分離したDNA断片の検出は水銀ランプ、ダイ
クロイックミラー、対物レンズを有する蛍光顕微鏡(オ
リンパス光学工業株式会社製)と光電子倍増管(Photon T
echnology International社製)を組み合わせた検出系で
検出した。水銀ランプからダイクロイックミラー、対物
レンズを通して545nmの励起光を分離用溝3aの溝
交差部から2.5cm離れた位置に照射し、DNAにイ
ンターカレートしたエチジウムブロマイドの蛍光を蛍光
フィルタを通して光電子倍増管に送り検出した検出結果
を図8に示す。
Example 3 Separation of ΦX174 HaeIII digested fragment DNA 5 g / L hydroxypropyl methylcellulose (Aldri
ch company, average molecular weight 90,000), 5 mg / L ethidium bromide, 44.75 mM TRIS (2-amino-2-hydroxymethyl-1,3-propanediol),
The HaeIII-degraded fragment DNA of ΦX174 (DNA) was separated using a separation gel buffer containing 44.75 mM boric acid (pH 8.2). The HaeIII-degraded fragment of ΦX174 is composed of 11 fragments having a DNA chain length of 72 bp to 1353 bp. Separation was performed using the electrophoresis chip 7 prepared in Example 1. Of the two grooves 3, 3a was used as a separation channel and 3b was used as a sample introduction channel. First, 5 μl of the above separation gel buffer is dropped into the electrophoresis liquid introduction reservoir 4 d, 3 μl each into 4 c and 4 b, and the separation channel 3 a and the sample introduction channel 3 b are filled with buffer using capillary action. did. Next, 3 μL of a sample solution obtained by dissolving the HaeIII fragment of ΦX174 at a concentration of 40 μg / ml in the above-mentioned gel buffer for separation was dropped into the sample introduction reservoir 4 a, and a voltage of 1000 V / cm was applied to both ends of the sample introduction groove 3 b. Is applied to move the sample to the groove intersection, and the separation groove 3
a at 400 V / c at both ends of the separation groove 3a.
An electrophoresis was performed by applying a voltage of m to separate DNA fragments. Detection of the separated DNA fragment was performed by using a fluorescence microscope (manufactured by Olympus Optical Co., Ltd.) having a mercury lamp, a dichroic mirror, and an objective lens and a photomultiplier tube (Photon T
(echnology International). Excitation light of 545 nm is irradiated from the mercury lamp through a dichroic mirror and an objective lens to a position 2.5 cm away from the intersection of the separation grooves 3a, and the fluorescence of ethidium bromide intercalated into DNA is passed through a fluorescence filter through a photomultiplier tube. FIG. 8 shows the detection result of the feed detection.

【0037】実施例4 細胞抽出総RNAの分離1 ヒト肺ガン細胞CRL5800株培養細胞から全自動R
NA抽出機(MFX−2000、東洋紡績株式会社製商
品名)を用いて総RNAを抽出した。抽出RNAをジエ
チルピロカーボネート(RNase阻害剤)処理して、4
g/Lハイドロキシプロピルメチルセルロース(Aldrich
社製、平均分子量90,000)、5mg/Lエチジウムブ
ロマイド、44.75mM TRIS、44.75mM
ホウ酸(pH8.2)を含む分離用ゲル緩衝液に25μ
g/ml濃度となるよう溶解した試料液とし、分離用溝
3aの両端に印加する電圧を235V/cmとし、蛍光
照射位置(検出位置)を溝交差部から1cmとした以外
は実施例3と同様にして電気泳動による分離を行い、検
出した。検出結果を図9に示す。
Example 4 Isolation of Total RNA from Cell Extraction 1 Fully automatic R from human lung cancer cell line CRL5800
Total RNA was extracted using an NA extractor (MFX-2000, trade name, manufactured by Toyobo Co., Ltd.). The extracted RNA is treated with diethyl pyrocarbonate (RNase inhibitor) to give 4
g / L hydroxypropyl methylcellulose (Aldrich
Co., Ltd., average molecular weight 90,000), 5 mg / L ethidium bromide, 44.75 mM TRIS, 44.75 mM
25 μl of gel buffer for separation containing boric acid (pH 8.2)
Example 3 except that the sample solution was dissolved to a concentration of g / ml, the voltage applied to both ends of the separation groove 3a was 235 V / cm, and the fluorescence irradiation position (detection position) was 1 cm from the groove intersection. Similarly, separation by electrophoresis was performed and detected. FIG. 9 shows the detection results.

【0038】実施例5 電気泳動用チップの作製3 50トン射出成形機で、成形温度240℃、射出圧力4
00kg/cm2の成形条件で透明樹脂材料であるPM
MA(ポリメチルメタクリレート)樹脂(三菱レーヨン
(株)製アクリペットVH)を成形し、内径4mmの4個
の貫通孔4(4a〜4d)と、片側表面に100μm幅、
40μm深の直交する2本の溝3(3a、3b)を有す
る、外形寸法20mm×33mm×1mm厚の図1に示
す板状部材1を得た。溝3の長さは、長い方の3aが1
6mm、短い方の3bが6mmで、3aと3bの交差部
から4a、4cの外周部までの長さはそれぞれ3mmで
ある。外形成形及び溝3と貫通孔4の形成は、一度の射
出成形で同時に行った。次に、シール部材(B)として
PMMA製の50μmフィルム(三菱レーヨン(株)製ア
クリプレン)を用いて、プレス圧1kg/cm2、10
4℃の条件で、板状部材の溝3がある平面側に熱融着さ
せることによって接合させた。その後、図10及び図1
1に示すように、フィルム貼り付け面とは反対面上から
貫通孔の内面に向けて白金パラジウム(白金:パラジウ
ム=98:2)のスパッタリングによって電極と電気回
路が一体となった一体化物10(0.02μm厚)を形
成させて、電気泳動用チップを得た。
Example 5 Preparation of Electrophoresis Chip 3 Using a 50-ton injection molding machine, a molding temperature of 240 ° C. and an injection pressure of 4
PM which is a transparent resin material under the molding condition of 00 kg / cm 2
MA (polymethyl methacrylate) resin (Mitsubishi Rayon
(Acrypet VH manufactured by Co., Ltd.), and four through-holes 4 (4a to 4d) having an inner diameter of 4 mm, a 100 μm width on one surface,
The plate-like member 1 shown in FIG. 1 having two outer dimensions of 20 mm × 33 mm × 1 mm having two orthogonal grooves 3 (3a, 3b) having a depth of 40 μm was obtained. The length of the groove 3 is such that the longer 3a is 1
6 mm, the shorter 3b is 6 mm, and the length from the intersection of 3a and 3b to the outer periphery of 4a and 4c is 3 mm each. The outer shape molding and the formation of the groove 3 and the through hole 4 were simultaneously performed by one injection molding. Next, a 50 μm film made of PMMA (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.) was used as the sealing member (B), and a pressure of 1 kg / cm 2 and a pressure of 10 kg were used.
Under the condition of 4 ° C., the plate-shaped members were joined by heat fusion to the flat surface where the grooves 3 exist. Then, FIG. 10 and FIG.
As shown in FIG. 1, an electrode and an electric circuit are integrally formed by sputtering platinum palladium (platinum: palladium = 98: 2) from the surface opposite to the film attachment surface toward the inner surface of the through hole. 0.02 μm thick) to obtain an electrophoresis chip.

【0039】実施例6 電気泳動用チップの作製4 実施例5と同様にして、図12に示すような内径4mm
の4個の貫通孔4(4a〜4d)と、100μm幅、40
μm深の2本の溝3(3a、3b)を有する、外形寸法3
0mm×50mm×1mm厚の電気泳動用チップを得
た。
Example 6 Preparation of Electrophoresis Chip 4 In the same manner as in Example 5, the inner diameter was 4 mm as shown in FIG.
4 through holes 4 (4a to 4d), 100 μm width, 40
External dimensions 3 having two grooves 3 (3a, 3b) with a depth of μm
An electrophoresis chip having a thickness of 0 mm × 50 mm × 1 mm was obtained.

【0040】実施例7 細胞抽出総RNAの分離2 実施例5で作成した電気泳動用チップを用いて、泳動液
導入用液溜まり4d、4c、4bに滴下する分離用緩衝
液の量を各12.5μlとし、分離用溝3aの両端に印
加する電圧を250V/cmとした以外は実施例4と同
様にして、実施例4で抽出したヒト肺ガン細胞CRL5
800株の総RNAを電気泳動して分離、検出した。検
出結果を図13に示す。
Example 7 Separation of Total RNA Extracted from Cells 2 Using the electrophoresis chip prepared in Example 5, the amount of the separation buffer dropped into the electrophoresis liquid introduction reservoirs 4d, 4c and 4b was adjusted to 12 0.5 μl, and the human lung cancer cell CRL5 extracted in Example 4 was prepared in the same manner as in Example 4 except that the voltage applied to both ends of the separation groove 3 a was 250 V / cm.
800 total RNAs were separated and detected by electrophoresis. FIG. 13 shows the detection results.

【0041】実施例8 細胞抽出総RNAの分離3 実施例6で作成した電気泳動用チップを用いて、実施例
7と同様にして実施例4で抽出したヒト肺ガン細胞CR
L5800株の総RNAを電気泳動して分離、検出し
た。検出結果を図14に示す。
Example 8 Separation of Total RNA Extracted from Cells 3 The human lung cancer cell CR extracted in Example 4 in the same manner as in Example 7 using the electrophoresis chip prepared in Example 6.
Total RNA of the L5800 strain was separated and detected by electrophoresis. FIG. 14 shows the detection results.

【0042】実施例1、実施例2、実施例5及び実施例
6で作製された電気泳動用チップは、キャピラリーが内
蔵された板状形態であるので、取り扱いが簡便で、容易
に電気泳動装置にセットすることが可能である。また、
電極及び電気回路を備えているので、電気泳動装置に用
意された電極とコンタクトプローブ等で接触させるなど
して、高電圧供給源と接続するだけで容易に電気泳動に
供することができ、従来の接続配線等の洗浄作業が不要
となり、配線等が直接試料に触れない構造なので、ここ
からのコンタミの心配もなくなった。また、実施例1、
実施例5及び実施例6で作製した電気泳動用チップを使
用して、実施例3、実施例4、実施例7及び実施例8で
示したように、DNA、RNAといった核酸の分離分析
を簡便に行うことができた。RNAの分析に際しては、
RNase(RNA分解酵素)による分解に特に注意が
必要であるが、本発明の電気泳動用チップは上述したよ
うにコンタミを受けにくい構造のため、分析の過程での
RNaseコンタミによる分解が起こりにくくなってい
る。実施例3では、図8に示したように、ΦX174H
aeIII分解断片DNAの全ての断片の分離が確認でき
た。271bpと281bpのHaeIII分解断片DN
Aが分離できているので、10bp以上の分離解像度
(検出感度)が得られた。実施例4、実施例7及び実施
例8では、図9、図13及び図14に示したように、5
s、18s及び28sのリボゾームRNAの分離が確認
できた。これらの分離は、1cmの泳動距離で十分可能
でであった。
The electrophoresis chips manufactured in Examples 1, 2, 5, and 6 are in a plate-like form having a built-in capillary, so that they are easy to handle and easy to use. Can be set to Also,
Since it is equipped with electrodes and an electric circuit, it can be easily used for electrophoresis simply by connecting it to a high-voltage supply source, for example, by contacting an electrode prepared in an electrophoresis apparatus with a contact probe or the like. Cleaning work for the connection wiring and the like is not required, and since the wiring and the like do not directly touch the sample, there is no need to worry about contamination from here. Example 1,
Using the electrophoresis chips prepared in Examples 5 and 6, the separation and analysis of nucleic acids such as DNA and RNA are easily performed as shown in Examples 3, 4, 7, and 8. Could be done. When analyzing RNA,
Special attention must be paid to the degradation by RNase (RNA degrading enzyme). However, since the electrophoresis chip of the present invention is hardly contaminated as described above, degradation by RNase contamination in the analysis process is less likely to occur. ing. In the third embodiment, as shown in FIG.
Separation of all fragments of the aeIII-degraded fragment DNA was confirmed. HaeIII digestion fragment DN of 271 bp and 281 bp
Since A was separated, a separation resolution (detection sensitivity) of 10 bp or more was obtained. In the fourth, seventh, and eighth embodiments, as shown in FIGS. 9, 13, and 14, 5
Separation of ribosomal RNAs of s, 18s and 28s was confirmed. These separations were possible with a migration distance of 1 cm.

【0043】[0043]

【発明の効果】実施例に示したように、本発明によって
取り扱い易く、しかも再現性と生産性の良い電気泳動用
チップの製造が可能となり、またこの電気泳動用チップ
を用いることによってDNA、RNA等の核酸などの荷
電性物質を簡便に分離分析することができるので、その
工業的価値は大である。最近、メッセンジャーRNAを
用いた遺伝子解析が多く実施されているが、メッセンジ
ャーRNAは極微量しか存在しないために、生体試料等
から抽出したメッセンジャーRNAがRNaseによる
分解をうけていないことの確認が困難である。本発明の
電気泳動用チップを用いた分離を行えば、実施例で示し
たように微量の試料で高感度の分析が可能であるので、
メッセンジャーRNAを直接分析することにより、ある
いはメッセンジャーRNAと共存する大過剰のリボゾー
ムRNAを分析することにより間接的に、簡便にメッセ
ンジャーRNAの分解の有無を調べることが可能とな
り、この分野における利用も期待できる。
As shown in the examples, the present invention makes it possible to manufacture an electrophoresis chip which is easy to handle and has good reproducibility and productivity. Since such charged substances such as nucleic acids can be easily separated and analyzed, their industrial value is great. Recently, many gene analyzes using messenger RNA have been performed. However, since only a very small amount of messenger RNA is present, it is difficult to confirm that messenger RNA extracted from a biological sample or the like has not been degraded by RNase. is there. If the separation using the electrophoresis chip of the present invention is performed, high-sensitivity analysis is possible with a small amount of sample as shown in the Examples,
By directly analyzing messenger RNA, or indirectly by analyzing a large excess of ribosome RNA coexisting with messenger RNA, it is possible to easily check the presence or absence of messenger RNA degradation, and it is expected to be used in this field. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で作製した板状部材の全体像を示す斜
視図
FIG. 1 is a perspective view showing an overall image of a plate-like member manufactured in Example 1.

【図2】実施例1で作製した板状部材とシール部材との
接合体の一部を示す拡大断面図
FIG. 2 is an enlarged cross-sectional view showing a part of a joined body of a plate member and a seal member manufactured in Example 1.

【図3】実施例1で作製した電気泳動用チップの電極及
び電気回路の印刷形状を示す平面図
FIG. 3 is a plan view showing a printed shape of an electrode and an electric circuit of the electrophoresis chip manufactured in Example 1.

【図4】実施例1で作製した電気泳動用チップの一部を
示す拡大断面図
FIG. 4 is an enlarged cross-sectional view showing a part of the electrophoresis chip manufactured in Example 1.

【図5】実施例2で作製した板状部材の全体像を示す斜
視図
FIG. 5 is a perspective view showing an overall image of a plate-like member manufactured in Example 2.

【図6】実施例2で作製した電気泳動用チップの電極及
び電気回路の印刷形状を示す斜視図
FIG. 6 is a perspective view showing a printed shape of an electrode and an electric circuit of an electrophoresis chip manufactured in Example 2.

【図7】実施例2で作製した電気泳動用チップの一部を
示す拡大断面図
FIG. 7 is an enlarged cross-sectional view showing a part of the electrophoresis chip manufactured in Example 2.

【図8】実施例3のΦX174HaeIII分解断片の検
出結果を示す図
FIG. 8 is a view showing the detection results of ΦX174HaeIII-degraded fragments of Example 3.

【図9】実施例4の細胞抽出総RNAの検出結果を示す
FIG. 9 is a view showing the detection results of total RNA extracted from cells in Example 4.

【図10】実施例5で作製した電気泳動用チップの電極
及び電気回路の印刷形状を示す平面図
FIG. 10 is a plan view showing printed shapes of electrodes and an electric circuit of the electrophoresis chip manufactured in Example 5.

【図11】実施例5で作製した電気泳動用チップの一部
を示す拡大断面図
FIG. 11 is an enlarged cross-sectional view showing a part of the electrophoresis chip manufactured in Example 5.

【図12】実施例6で作製した電気泳動用チップを示す
平面図
FIG. 12 is a plan view showing an electrophoresis chip manufactured in Example 6.

【図13】実施例7の細胞抽出総RNAの検出結果を示
す図
FIG. 13 is a view showing the detection results of total RNA extracted from cells in Example 7.

【図14】実施例8の細胞抽出総RNAの検出結果を示
す図
FIG. 14 is a view showing the detection results of total RNA extracted from cells in Example 8.

【符号の説明】[Explanation of symbols]

1:板状部材(A) 2:シール部材(B) 3(3a、3b):溝(C) 4(4a〜4d):貫通孔(D) 5:電気回路(F) 6:電極(E) 7:実施例1の電気泳動用チップ 8:実施例2の板状部材(A) 9:位置決め用貫通孔 10:電極(E)及び電気回路(F)の一体化物 11:実施例2のシール部材の位置決め貫通孔用の逃げ
形状 12:実施例2の電気泳動用チップ
1: Plate member (A) 2: Seal member (B) 3 (3a, 3b): Groove (C) 4 (4a to 4d): Through hole (D) 5: Electric circuit (F) 6: Electrode (E) 7) Electrophoresis chip of Example 1 8: Plate-like member (A) of Example 2 9: Through hole for positioning 10: Integrated product of electrode (E) and electric circuit (F) 11: Example 2 Relief shape for positioning through hole of sealing member 12: Electrophoresis chip of Example 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嶋山 隆 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 渡辺 博夫 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takashi Shimayama 48 Wadai, Tsukuba, Ibaraki Prefecture Within Tsukuba Development Laboratory, Hitachi Chemical Co., Ltd. Inside the development laboratory

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】板状部材と(A)シール部材(B)とから
なり、板状部材(A)が、板厚方向に貫通した2個以上
の貫通孔(C)と、一方の面に形成される該貫通孔
(C)を連結する1本以上の溝(D)と、該貫通孔
(C)の内壁及び/又は該溝が形成された反対面の貫通
孔の周辺部に形成された電極(E)、とを有し、シール
部材(B)が板状部材(A)の溝形成面に接合されてい
ることを特徴とする電気泳動用チップ。
1. A plate-like member comprising a plate-like member and (A) a seal member (B), wherein the plate-like member (A) has two or more through-holes (C) penetrating in the plate thickness direction and one side thereof. One or more grooves (D) connecting the formed through-holes (C), and an inner wall of the through-hole (C) and / or a peripheral portion of the through-hole on the opposite surface where the grooves are formed. And an electrode (E), wherein the sealing member (B) is joined to the groove forming surface of the plate member (A).
【請求項2】貫通孔(C)を4個以上、溝(D)を2本
以上有し、かつ溝(D)のうちの少なくとも2本が交差
していることを特徴とする請求項1記載の電気泳動用チ
ップ。
2. The method according to claim 1, wherein at least four through holes (C) and at least two grooves (D) are provided, and at least two of the grooves (D) intersect. The chip for electrophoresis according to the above.
【請求項3】板状部材(A)がさらに電気回路(F)を
有することを特徴とする請求項1又は請求項2記載の電
気泳動用チップ。
3. The electrophoresis chip according to claim 1, wherein the plate-shaped member (A) further has an electric circuit (F).
【請求項4】板状部材(A)及び/又はシール部材
(B)がアクリル系樹脂又はスチレン系樹脂製であるこ
とを特徴とする請求項1〜3記載のいずれかの電気泳動
用チップ。
4. The electrophoresis chip according to claim 1, wherein the plate member (A) and / or the sealing member (B) are made of an acrylic resin or a styrene resin.
【請求項5】シール部材(B)がフィルム状であること
を特徴とする請求項1〜4記載のいずれかの電気泳動用
チップ。
5. The electrophoresis chip according to claim 1, wherein the sealing member (B) is in the form of a film.
【請求項6】板状部材(A)が電気泳動用装置に位置決
めされるための突起、凹み及び穴のうちのいずれかひと
つ以上を有することを特徴とする請求項1〜5記載のい
ずれかの電気泳動用チップ。
6. The plate-like member (A) according to claim 1, wherein the plate-like member (A) has at least one of a projection, a dent, and a hole for positioning in the electrophoresis apparatus. Electrophoresis chip.
【請求項7】板厚方向に貫通する2個以上の貫通孔
(C)と、片面上に貫通孔(C)を連結する1本以上の
溝(D)とを形成した板状部材(A)を、溝(D)形成
面を内側にしてシール部材(B)と接合し、次に電極
(E)を板状部材(A)の貫通孔(C)の内壁及び/又
は溝(D)形成面の反対面の貫通孔(C)周辺部に形成
して、製造することを特徴とする電気泳動用チップの製
造方法。
7. A plate-like member (A) having at least two through holes (C) penetrating in the thickness direction and at least one groove (D) connecting the through holes (C) on one surface. ) Is bonded to the sealing member (B) with the groove (D) forming surface inside, and then the electrode (E) is connected to the inner wall of the through hole (C) of the plate-like member (A) and / or the groove (D). A method for manufacturing an electrophoresis chip, wherein the chip is formed around a through hole (C) on a surface opposite to a forming surface and manufactured.
【請求項8】電極(E)を印刷、真空蒸着、スパッタリ
ング及びイオンプレーティングのいずれかにより形成す
ることを特徴とする請求項7記載の電気泳動用チップの
製造方法。
8. The method for producing an electrophoresis chip according to claim 7, wherein the electrode (E) is formed by any one of printing, vacuum deposition, sputtering and ion plating.
【請求項9】板厚方向に貫通する2個以上の貫通孔
(C)と、片面上に貫通孔(C)を連結する1本以上の
溝(D)とを形成した板状部材(A)を、溝(D)形成
面を内側にしてシール部材(B)と接合し、次に電極
(E)及び電気回路(F)を板状部材(A)の貫通孔
(C)の内壁及び/又は溝(D)形成面の反対面の貫通
孔(C)周辺部に形成して、製造することを特徴とする
電気泳動用チップの製造方法。
9. A plate-like member (A) having at least two through holes (C) penetrating in the thickness direction and at least one groove (D) connecting the through holes (C) on one surface. ) Is bonded to the sealing member (B) with the groove (D) forming surface inside, and then the electrode (E) and the electric circuit (F) are connected to the inner wall of the through hole (C) of the plate member (A) and A method for producing an electrophoresis chip, wherein the method is carried out by forming the film on the periphery of the through hole (C) on the surface opposite to the surface on which the groove (D) is formed.
【請求項10】電極(E)及び電気回路(F)を印刷、
真空蒸着、スパッタリング及びイオンプレーティングの
いずれかにより形成することを特徴とする請求項9記載
の電気泳動用チップの製造方法。
10. An electrode (E) and an electric circuit (F) are printed.
The method for producing an electrophoresis chip according to claim 9, wherein the method is performed by any one of vacuum deposition, sputtering, and ion plating.
【請求項11】板状部材(A)とシール部材(B)との
接合が熱融着によりなされることを特徴とする請求項7
〜10記載のいずれかの電気泳動用チップの製造方法。
11. The bonding between the plate member (A) and the sealing member (B) is performed by heat fusion.
11. The method for producing an electrophoresis chip according to any one of items 10 to 10.
【請求項12】請求項1〜6記載のいずれかの電気泳動
用チップ若しくは請求項7〜11記載のいずれかの製造
方法により得られる電気泳動用チップを用いる電気泳動
用装置。
12. An electrophoresis apparatus using an electrophoresis chip according to any one of claims 1 to 6 or an electrophoresis chip obtained by the production method according to any one of claims 7 to 11.
【請求項13】請求項1〜6記載のいずれかの電気泳動
用チップ若しくは請求項7〜11記載のいずれかの製造
方法により得られる電気泳動用チップを用いることを特
徴とする荷電性物質の分離方法。
13. A charged substance characterized by using the electrophoresis chip according to any one of claims 1 to 6 or the electrophoresis chip obtained by the production method according to any one of claims 7 to 11. Separation method.
【請求項14】請求項12記載の電気泳動用装置を用い
ることを特徴とする荷電性物質の分離方法。
14. A method for separating a charged substance, comprising using the apparatus for electrophoresis according to claim 12.
【請求項15】荷電性物質が荷電性分子又は荷電性粒子
である請求項13又は請求項14記載の荷電性物質の分
離方法。
15. The method for separating a charged substance according to claim 13, wherein the charged substance is a charged molecule or a charged particle.
【請求項16】荷電性分子がイオン、有機酸、アミノ
酸、タンパク質、核酸及び糖のいずれかで、荷電性粒子
がウイルス又は細胞である請求項15記載の荷電性物質
の分離方法。
16. The method for separating a charged substance according to claim 15, wherein the charged molecule is any one of an ion, an organic acid, an amino acid, a protein, a nucleic acid and a sugar, and the charged particle is a virus or a cell.
【請求項17】分離用媒体として高分子ゲルを用いるこ
とを特徴とする請求項13〜16記載のいずれかの荷電
性物質の分離方法。
17. The method for separating a charged substance according to claim 13, wherein a polymer gel is used as a separation medium.
【請求項18】高分子ゲルが非交差型高分子ゲルである
ことを特徴とする請求項17記載の荷電性物質の分離方
法。
18. The method according to claim 17, wherein the polymer gel is a non-crossing type polymer gel.
【請求項19】非交差型高分子ゲルが直鎖状ポリアクリ
ルアミド、直鎖状ハイドロキシエチルセルロース、直鎖
状ハイドロキシプロピルメチルセルロース、直鎖状ハイ
ドロキシプロピルセルロース、直鎖状メチルセルロー
ス、直鎖状ポリエチレングリコール及び直鎖状ポリエチ
レンオキサイドのいずれかである請求項18記載の荷電
性物質の分離方法。
19. The non-crossing type high molecular gel comprises a linear polyacrylamide, a linear hydroxyethyl cellulose, a linear hydroxypropylmethylcellulose, a linear hydroxypropylcellulose, a linear methylcellulose, a linear polyethylene glycol and 19. The method for separating a charged substance according to claim 18, wherein the charged substance is any one of linear polyethylene oxides.
JP11093453A 1999-02-26 1999-03-31 Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same Pending JP2000310615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11093453A JP2000310615A (en) 1999-02-26 1999-03-31 Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5148299 1999-02-26
JP11-51482 1999-02-26
JP11093453A JP2000310615A (en) 1999-02-26 1999-03-31 Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same

Publications (1)

Publication Number Publication Date
JP2000310615A true JP2000310615A (en) 2000-11-07

Family

ID=26392029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11093453A Pending JP2000310615A (en) 1999-02-26 1999-03-31 Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same

Country Status (1)

Country Link
JP (1) JP2000310615A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149252A (en) * 2001-11-16 2003-05-21 Starlite Co Ltd Chemical micro-device
JP2007078543A (en) * 2005-09-15 2007-03-29 Shimadzu Corp Electrode for microdevice and its manufacturing method
WO2008139866A1 (en) * 2007-04-27 2008-11-20 Arkray, Inc. Electrophoresis chip and electrophoresis apparatus
WO2008139867A1 (en) * 2007-04-27 2008-11-20 Arkray, Inc. Analysis chip and analysis apparatus
WO2009034819A1 (en) * 2007-09-11 2009-03-19 Konica Minolta Medical & Graphic, Inc. Microchip manufacturing method, microchip and vacuum bonding apparatus
WO2010021264A1 (en) * 2008-08-21 2010-02-25 コニカミノルタオプト株式会社 Process for producing microchannel chip and microchannel chip
WO2012057101A1 (en) * 2010-10-29 2012-05-03 コニカミノルタオプト株式会社 Microchip, microchip shaping die, and manufacturing apparatus for manufacturing microchip
JP2015114150A (en) * 2013-12-10 2015-06-22 株式会社島津製作所 Electrophoretic separation method
WO2019013087A1 (en) * 2017-07-12 2019-01-17 アルプス電気株式会社 Flow path chip
US11745189B2 (en) 2017-10-26 2023-09-05 Nec Corporation Nanocarbon separation device and nanocarbon separation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178897A (en) * 1994-12-27 1996-07-12 Shimadzu Corp Electrophoresis apparatus
JPH08327594A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Capillary electrophoretic chip
JPH08334505A (en) * 1995-06-07 1996-12-17 Hewlett Packard Co <Hp> Miniaturized total analysis system
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
JPH10148628A (en) * 1996-11-19 1998-06-02 Shimadzu Corp Microchip electrophoresis device
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
WO1998045693A1 (en) * 1997-04-04 1998-10-15 Aclara Biosciences Methods for fabricating enclosed microchannel structures
JPH11183437A (en) * 1997-12-22 1999-07-09 Shimadzu Corp Electrophoresis member and electrophoresis device using same
JP2001520377A (en) * 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178897A (en) * 1994-12-27 1996-07-12 Shimadzu Corp Electrophoresis apparatus
JPH08327594A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Capillary electrophoretic chip
JPH08334505A (en) * 1995-06-07 1996-12-17 Hewlett Packard Co <Hp> Miniaturized total analysis system
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
JPH10148628A (en) * 1996-11-19 1998-06-02 Shimadzu Corp Microchip electrophoresis device
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
WO1998045693A1 (en) * 1997-04-04 1998-10-15 Aclara Biosciences Methods for fabricating enclosed microchannel structures
JP2001520377A (en) * 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device
JPH11183437A (en) * 1997-12-22 1999-07-09 Shimadzu Corp Electrophoresis member and electrophoresis device using same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149252A (en) * 2001-11-16 2003-05-21 Starlite Co Ltd Chemical micro-device
JP2007078543A (en) * 2005-09-15 2007-03-29 Shimadzu Corp Electrode for microdevice and its manufacturing method
JP4665682B2 (en) * 2005-09-15 2011-04-06 株式会社島津製作所 Microdevice electrode manufacturing method and microdevice electrode
JP5064497B2 (en) * 2007-04-27 2012-10-31 アークレイ株式会社 Electrophoresis chip and electrophoresis apparatus
WO2008139866A1 (en) * 2007-04-27 2008-11-20 Arkray, Inc. Electrophoresis chip and electrophoresis apparatus
WO2008139867A1 (en) * 2007-04-27 2008-11-20 Arkray, Inc. Analysis chip and analysis apparatus
JP5600434B2 (en) * 2007-04-27 2014-10-01 アークレイ株式会社 Analysis chip and analyzer
CN103487491A (en) * 2007-04-27 2014-01-01 爱科来株式会社 Analysis chip and analysis apparatus
CN103487490A (en) * 2007-04-27 2014-01-01 爱科来株式会社 Analysis chip and analysis apparatus
WO2009034819A1 (en) * 2007-09-11 2009-03-19 Konica Minolta Medical & Graphic, Inc. Microchip manufacturing method, microchip and vacuum bonding apparatus
JPWO2010021264A1 (en) * 2008-08-21 2012-01-26 コニカミノルタオプト株式会社 Microchannel chip manufacturing method and microchannel chip
US20110151198A1 (en) * 2008-08-21 2011-06-23 Takashi Washizu Micro-Channel Chip and Manufacturing Method and Micro-Channel Chip
WO2010021264A1 (en) * 2008-08-21 2010-02-25 コニカミノルタオプト株式会社 Process for producing microchannel chip and microchannel chip
WO2012057101A1 (en) * 2010-10-29 2012-05-03 コニカミノルタオプト株式会社 Microchip, microchip shaping die, and manufacturing apparatus for manufacturing microchip
US9238322B2 (en) 2010-10-29 2016-01-19 Wako Pure Chemical Industries, Ltd. Microchip, molding die for microchip, and manufacturing apparatus for manufacturing microchip
JP2015114150A (en) * 2013-12-10 2015-06-22 株式会社島津製作所 Electrophoretic separation method
WO2019013087A1 (en) * 2017-07-12 2019-01-17 アルプス電気株式会社 Flow path chip
JP2019020155A (en) * 2017-07-12 2019-02-07 アルプス電気株式会社 Flow channel chip
US11745189B2 (en) 2017-10-26 2023-09-05 Nec Corporation Nanocarbon separation device and nanocarbon separation method

Similar Documents

Publication Publication Date Title
JP4178653B2 (en) Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
US6974526B2 (en) Plastic microfluidics enabling two-dimensional protein separations in proteome analysis
US7641780B2 (en) Two-dimensional microfluidics for protein separations and gene analysis
US8778155B2 (en) Disposible bio-analysis cartridge and instrument for conducting bio-analysis using same
US20110256572A1 (en) Biological sample discrimination apparatus, biological sample discrimination method, and biological sample discrimination plate
CN1942761A (en) Substrate for labo-on-a-chip
JP2000310615A (en) Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP2004151041A (en) Biochip and biochip manufacturing method
JP3034770B2 (en) Capillary electrophoresis device
US20080075632A1 (en) Biological Sample Analysis Plate
JP4178654B2 (en) Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
US8784626B2 (en) Bio-analysis using ball-ended incident and output optical fibers
JP5685601B2 (en) Nanofluidic biosensor and its utilization and method for rapid measurement of biomolecule interactions in solution
US7527720B2 (en) Device for electrophoresis, electrophoresis equipment, electrophoretic method, and specimen detection method
US20030087290A1 (en) Bio-affinity porous matrix in microfluidic channels
CN1544923A (en) Preparing method of integrated capillary electrophoresis electrochemical luminescence detecting chip
WO2004038399A1 (en) Method of controlling migration of substance
JP4415612B2 (en) Bonding method and bonding substrate for plastic substrate
WO2007095285A2 (en) Variable geometry electrophoresis chips, modules and systems
JP2007075051A (en) Plate for judging biological sample
US8178295B2 (en) Analyte evaluation apparatus
JP3991008B2 (en) Electrophoresis apparatus, capillary array, and electrophoresis method
JP2006242612A (en) Plate for discriminating biological sample
JP5953128B2 (en) Method for producing capillary array for assay
KR100531787B1 (en) Device and method for antigen detection using electrochemiluminescence type intercalators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111