JP2000310502A - Device for detecting position of lens - Google Patents

Device for detecting position of lens

Info

Publication number
JP2000310502A
JP2000310502A JP12109899A JP12109899A JP2000310502A JP 2000310502 A JP2000310502 A JP 2000310502A JP 12109899 A JP12109899 A JP 12109899A JP 12109899 A JP12109899 A JP 12109899A JP 2000310502 A JP2000310502 A JP 2000310502A
Authority
JP
Japan
Prior art keywords
phase
sensor
lens
converted
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12109899A
Other languages
Japanese (ja)
Inventor
Hideki Sano
英樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP12109899A priority Critical patent/JP2000310502A/en
Publication of JP2000310502A publication Critical patent/JP2000310502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Lens Barrels (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the manufacturing cost and detect the position of a lens with a high linearlity without dispersion due to setting error by providing a computing means by which a difference among the outputs of three-phase detected signals becomes a specific formula. SOLUTION: First, an output signal from an MR sensor is read, and two sine waves having a desired phase difference are outputted from the output signal. An output of two-phase MR sensor having a desired phase difference θ is converted into a two- phase wave having a phase difference λ/4 through a computing means 7. Further, the two-phase sine wave is converted into a three-phase sine wave having a phase difference that is shown by a formula, n*λ/4 (n: integer). The converted three-phase sine wave is used to extract a phase at the intermediate position of the three-phase potential order at the respective positions, thereby picking up a sawtooth wave. Next, a phase signal corresponding to a tilt side is picked up from the voltage order of an output signal of a three-phase MR sensor, and a desired relative position in one tilt side is calculated according to the in-advance measured voltage at a cross point. Furthermore, an absolute position is obtained as a distance from an input end by using a total sum of all the relative positions. Thus, the position of lens can be detected accurately and in a high resolution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビデオカメラの内
部のカメラレンズ鏡筒に配設されたズームレンズなどの
位置を磁気抵抗(MR)素子を用いて位置検出する装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting the position of a zoom lens or the like provided in a camera lens barrel inside a video camera using a magnetoresistive (MR) element.

【0002】[0002]

【従来の技術】3相の位置検出信号を用いた位置検出装
置の公知技術として、特開平4−236302号公報が
知られている。これをレンズ位置を検出する装置で説明
すると図3に示すブロック図に置換される。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 4-236302 is known as a known technique of a position detecting device using three-phase position detecting signals. This will be replaced with a block diagram shown in FIG. 3 when an apparatus for detecting the lens position is described.

【0003】図3に従来例のブロック図及び、図2にレ
ンズとMRセンサ及び位置マグネットの接続構造図を記
す。
FIG. 3 shows a block diagram of a conventional example, and FIG. 2 shows a connection structure diagram of a lens, an MR sensor, and a position magnet.

【0004】図2に於いて、(1)は可動するレンズ、
(2)は可動レンズと連動する所定のピッチで磁化され
ている位置検出用マグネット、(3)は(2)の位置検
出用マグネットの磁場を読み取り、3相の正弦波を出力
する為の磁気抵抗(MR)センサ、図3に於いて、
(4)はセンサからの出力をアンプする回路、(5)は
アンプされた信号を量子化するADコンバータ回路で、
量子化された信号はそれぞれコンパレータ(8)により
比較され、信号をスイッチ(9)する。
In FIG. 2, (1) is a movable lens,
(2) is a position detecting magnet magnetized at a predetermined pitch interlocked with the movable lens, and (3) is a magnet for reading the magnetic field of the position detecting magnet of (2) and outputting a three-phase sine wave. Resistance (MR) sensor, in FIG.
(4) is a circuit for amplifying the output from the sensor, (5) is an AD converter circuit for quantizing the amplified signal,
The quantized signals are respectively compared by a comparator (8), and the signals are switched (9).

【0005】図3に基づき動作説明を行う。まず、MR
センサ(3)からの出力信号を読み取る。MRセンサ
(3)からの出力信号は図4の上部波形のとおり、A相
・B相・C相の3つ相を持ち、その位相差は夫々120
度ずつずれていると設定する。
The operation will be described with reference to FIG. First, MR
The output signal from the sensor (3) is read. The output signal from the MR sensor (3) has three phases of A phase, B phase and C phase as shown in the upper waveform of FIG.
Set to deviate by degrees.

【0006】各相の電圧を比較することで図4の下部波
形のように、直線性のとれたのこぎり状の波形を抜き取
ることができる。
By comparing the voltages of the respective phases, it is possible to extract a sawtooth waveform having a high linearity as shown in a lower waveform of FIG.

【0007】こののこぎり波の一斜辺の下点から上点ま
での距離は、位置検出用マグネットの所定のピッチ幅の
1/3の距離に相当し、下点から上点の間は直線性が保
たれている為、その電圧を読み取ることで分解能の高い
位置検出を可能である。
The distance from the lower point to the upper point of one oblique side of this sawtooth wave corresponds to a distance of 1/3 of the predetermined pitch width of the position detecting magnet, and the linearity is between the lower point and the upper point. Since the voltage is maintained, the position can be detected with high resolution by reading the voltage.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
装置では、MRセンサの信号出力が3相必要であり、形
状も大きく、信号数も多い。
However, in the above-described apparatus, three phases of signal output of the MR sensor are required, the shape is large, and the number of signals is large.

【0009】また、MRセンサ出力の感度やオフセット
には、個々によりばらつきが大きく、さらには、MRセ
ンサ自身をを位置検出用マグネットに対して平行ではな
く斜めに取り付けてしまうことにより、3相の各センサ
と位置検出用マグネットとのギャップ長がそれぞれ異な
り、結果、出力信号の振幅差を生んでしまい、できるだ
け信号数が少ないことが、ばらつきの吸収や、安定した
信号を抽出する為にも、求められている。
Further, the sensitivity and offset of the output of the MR sensor vary greatly from one to another, and furthermore, the MR sensor itself is mounted not obliquely but parallel to the position detecting magnet, so that a three-phase MR sensor is mounted. The gap length between each sensor and the position detecting magnet is different, and as a result, an amplitude difference of the output signal is generated, and the fact that the number of signals is as small as possible is necessary to absorb the variation and to extract a stable signal. It has been demanded.

【0010】[0010]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、レンズを構成する光学素子を、リニア
アクテュエータを用いて光軸方向に移動させることがで
きるレンズ駆動装置において、前記光学素子の位置情報
を示す所定の着磁ピッチを有する位置検出マグネット
と、前記位置検出マグネットの磁場を検出して位相の異
なる2相の検出信号を出力するセンサと、前記センサ出
力の検出信号をもとに、3つの位相差を有する3相の検
出信号を出力する手段と、前記3相の検出信号出力の位
相差が夫々、n*λ/3(n=整数)となる演算手段と
を備えたことを特徴とする。
According to the present invention, there is provided a lens driving apparatus capable of moving an optical element constituting a lens in an optical axis direction by using a linear actuator. A position detection magnet having a predetermined magnetization pitch indicating position information of the optical element, a sensor for detecting a magnetic field of the position detection magnet and outputting two-phase detection signals having different phases, and detecting the sensor output Means for outputting a three-phase detection signal having three phase differences based on the signals, and arithmetic means for making the phase difference between the three-phase detection signal outputs n * λ / 3 (n = integer) And characterized in that:

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態の一例
を、図面に基づいて説明する。本発明によるレンズ位置
検出装置の実施の形態の一例を図1乃至図8に基づいて
以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings. An embodiment of a lens position detecting device according to the present invention will be described below with reference to FIGS.

【0012】図1に本発明のブロック図、及び、図7に
本発明のフローチャートを示す。
FIG. 1 is a block diagram of the present invention, and FIG. 7 is a flowchart of the present invention.

【0013】図1に於いて、(3)は、位置検出用マグ
ネットから、所定の分解能で、2相の正弦波状に、位置
検出信号を出力しうるセンサ、(4)はセンサからの信
号レベルを増幅するアンプ回路、(5)は増幅された2
相の正弦波出力レベルを量子化しうるA/Dコンバータ
回路、(7)は、2相のMRセンサ出力を所定の位相差
を持つ3相の正弦波に変換する演算器である。
In FIG. 1, (3) is a sensor capable of outputting a position detection signal in a two-phase sine wave form at a predetermined resolution from a position detection magnet, and (4) is a signal level from the sensor. (5) is the amplified 2
An A / D converter circuit capable of quantizing a phase sine wave output level, (7) is a calculator for converting a two-phase MR sensor output into a three-phase sine wave having a predetermined phase difference.

【0014】それぞれ量子化された信号は、コンパレー
タ(8)で3つの位相の順序を識別し、その位相順序の
中間にくる位相をスイッチング(8)で選択し出力す
る。
Each of the quantized signals is discriminated by a comparator (8) in the order of three phases, and a phase located in the middle of the phase order is selected and output by a switching (8).

【0015】図2に於いて、リニアアクチュエータに与
えられた力がレンズ(1)のとりつけられた可動体を動
かし、その位置検出として、位置検出用マグネット
(2)からの磁力を、MRセンサ(3)が読み取り、任
意の位相差を持つ2相の正弦波を出力する。
In FIG. 2, a force applied to a linear actuator moves a movable body on which a lens (1) is attached, and a magnetic force from a position detecting magnet (2) is used to detect the position of the movable body. 3) reads and outputs a two-phase sine wave having an arbitrary phase difference.

【0016】位置検出用マグネットは、可動体がメカ端
(6)から最大移動量を網羅する全長を有している。
The position detecting magnet has a full length that covers the maximum amount of movement of the movable body from the mechanical end (6).

【0017】図8に於いては、本発明の信号の流れをフ
ローチャート化したものである。まず、MRセンサから
の出力信号を読み取る(S1)。この出力信号は、任意
の位相差を持つ2本の正弦波が出力される。
FIG. 8 is a flow chart showing the signal flow of the present invention. First, an output signal from the MR sensor is read (S1). As this output signal, two sine waves having an arbitrary phase difference are output.

【0018】次に、この任意の位相差(θ)の2相のM
Rセンサ出力を演算器にて、λ/4の位相差の2相の正
弦波に変換する。変換式(1)は下記の通りである。
Next, the two-phase M of this arbitrary phase difference (θ)
The output of the R sensor is converted into a two-phase sine wave having a phase difference of λ / 4 by a computing unit. The conversion formula (1) is as follows.

【0019】[0019]

【数1】 さらに、この2相の正弦波を、位相差がn*λ/4(n
は整数)の3相の正弦波に変換する(S2)。
(Equation 1) Further, the two-phase sine wave is converted into a phase difference of n * λ / 4 (n
Is converted to an integer) three-phase sine wave (S2).

【0020】2相から3相への変換式(2)は下記のと
おりである。
The conversion equation (2) from two-phase to three-phase is as follows.

【0021】[0021]

【数2】 変換された3相の正弦波を用い、それぞれの場所におけ
る3相の電位順序の中間に当たる相を抽出することによ
り図4のようなのこぎり状の波形を取り出す(S3)。
(Equation 2) Using the converted three-phase sine wave, a phase corresponding to the middle of the potential sequence of the three phases at each location is extracted to extract a sawtooth waveform as shown in FIG. 4 (S3).

【0022】現在の任意の位置を算出する為に、3相の
MRセンサ出力信号の電圧順序から斜辺に相当する相の
信号を抜き出し、あらかじめ測定した交点電圧から一斜
辺中の任意の相対位置を算出する(S4)。
In order to calculate the current arbitrary position, a signal of a phase corresponding to the hypotenuse is extracted from the voltage sequence of the three-phase MR sensor output signal, and an arbitrary relative position in one hypotenuse is determined from the intersection voltage measured in advance. It is calculated (S4).

【0023】さらに、いままでの相対位置の総和により
絶対位置をメカ端(図2の6)からの距離として算出す
る(S5)。
Further, the absolute position is calculated as the distance from the mechanical end (6 in FIG. 2) based on the sum of the relative positions so far (S5).

【0024】これによりレンズの正確で分解能の高い位
置検出が実現でき、位置制御を可能とする(S6)。
As a result, accurate and high-resolution position detection of the lens can be realized, and position control is enabled (S6).

【0025】図7の従来フローチャートと比較すると、
従来例では、MRセンサ出力信号が、位相差120度を
持つ3本の正弦波が出力される。
When compared with the conventional flowchart of FIG.
In the conventional example, three sine waves having a phase difference of 120 degrees are output from the MR sensor output signal.

【0026】この場合、センサからの出力が3相ある
為、変換する必要はないが、その反面、3本のセンサを
要し、形状も大きく、信号数も多い。
In this case, there is no need for conversion because the output from the sensor has three phases. However, on the other hand, three sensors are required, the shape is large, and the number of signals is large.

【0027】また、MRセンサ出力の感度やオフセット
には、個々によりばらつきが大きく、さらには、MRセ
ンサ自身をを位置検出用マグネットに対して平行ではな
く斜めに取り付けてしまうことによる、3相の各センサ
と位置検出用マグネットとのギャップ長がそれぞれ異な
る症状となり、結果、出力信号の振幅差を生んでしま
う。
Also, the sensitivity and offset of the output of the MR sensor vary greatly from one another, and furthermore, the MR sensor itself is mounted obliquely instead of parallel to the position detecting magnet. The gap length between each sensor and the position detecting magnet is different from each other, and as a result, an amplitude difference between output signals is generated.

【0028】このようなデメリットから、センサの本数
はできるだけ少ない方が好ましく、MRセンサの出力信
号を2本にし、1本減らす事で、ばらつきの吸収や、安
定した信号の抽出をはかる。
From these disadvantages, it is preferable that the number of sensors is as small as possible. By reducing the number of output signals of the MR sensor to two, the variation can be absorbed and a stable signal can be extracted.

【0029】しかし、2本の出力信号をそのまま使用す
ると、図5のように、のこぎり波を抽出した場合、3相
と比較して直線近似が難しくなる。
However, if the two output signals are used as they are, a straight line approximation becomes more difficult when a sawtooth wave is extracted as shown in FIG.

【0030】結果、3相を使用した場合より、リニアリ
ティが下がってしまう。そこで、変換式(1)(2)の
ように、任意の位相差(θ)のある2本の正弦波を位相
差がn*λ/4(nは整数)の3本の正弦波に変換する
ことで3相のMRセンサを使用した場合と等価のリニア
リティの高い位置検出精度を得ることができる。
As a result, the linearity is lower than when three phases are used. Therefore, as in the conversion equations (1) and (2), two sine waves having an arbitrary phase difference (θ) are converted into three sine waves having a phase difference of n * λ / 4 (n is an integer). By doing so, it is possible to obtain position detection accuracy with high linearity equivalent to the case where a three-phase MR sensor is used.

【0031】図6は、式(1)及び式(2)による演算
シミュレーション結果であり、2相のMRセンサ出力が
3相に変換されていることがわかる。
FIG. 6 is a calculation simulation result by the equations (1) and (2). It can be seen that the outputs of the two-phase MR sensor are converted into three phases.

【0032】[0032]

【発明の効果】以上説明したとおり、レンズを構成する
光学素子を、リニアアクテュエータを用いて光軸方向に
移動させることができるレンズ駆動装置であって、3相
の位置件検出信号を任意の位相差をもった2相の検出信
号から作成するので、製造コストを押さえられると同時
に、センサーの取付け工程も少なくなるため取付け誤差
によるばらつきをなくしリニアリティの良いレンズ位置
検出が可能となった。
As described above, the present invention is directed to a lens driving device capable of moving an optical element constituting a lens in the direction of the optical axis by using a linear actuator. Since it is created from the two-phase detection signals having the above phase difference, the manufacturing cost can be suppressed, and at the same time, the sensor mounting process is reduced, so that the variation due to the mounting error is eliminated, and the lens position detection with good linearity can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のブロック図である。FIG. 1 is a block diagram of the present invention.

【図2】レンズおMRセンサ及び位置マグネットの接続
構造図である。
FIG. 2 is a connection structure diagram of a lens, an MR sensor, and a position magnet.

【図3】従来例のブロック図を示す。FIG. 3 shows a block diagram of a conventional example.

【図4】3相MRセンサによる位置検出波形である。FIG. 4 is a position detection waveform by a three-phase MR sensor.

【図5】2相MRセンサによる位置検出(変換なし)波
形である。
FIG. 5 is a waveform of position detection (without conversion) by a two-phase MR sensor.

【図6】式1及び式2による変換の演算結果の信号波形
を示す。
FIG. 6 shows a signal waveform of a calculation result of the conversion according to Expressions 1 and 2.

【図7】従来例のフローチャートである。FIG. 7 is a flowchart of a conventional example.

【図8】本発明のフローチャートである。FIG. 8 is a flowchart of the present invention.

【符号の説明】[Explanation of symbols]

(1) レンズ (2) 位置検出マグネット (3) MRセンサ (4) アンプ回路 (5) ADコンバータ (6) メカ端 (7) 演算器 (8) コンパレータ (9) スイッチ (10)制御回路 (1) Lens (2) Position detection magnet (3) MR sensor (4) Amplifier circuit (5) AD converter (6) Mechanical end (7) Computing unit (8) Comparator (9) Switch (10) Control circuit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F063 AA02 BA25 BA30 BC02 CA34 CB12 DA01 DD03 EA02 GA53 GA65 GA73 LA11 LA19 LA21 2F077 AA49 JJ03 JJ09 JJ23 NN17 PP14 TT05 TT21 TT32 UU19 VV21 2H044 DA02 DB04 DC01 DE06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F063 AA02 BA25 BA30 BC02 CA34 CB12 DA01 DD03 EA02 GA53 GA65 GA73 LA11 LA19 LA21 2F077 AA49 JJ03 JJ09 JJ23 NN17 PP14 TT05 TT21 TT32 UU19 VV21 2H044 DA02 DB04 DC01 DE06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レンズを構成する光学素子を、リニアア
クテュエータを用いて光軸方向に移動させることができ
るレンズ駆動装置において、 前記光学素子の位置情報を示す所定の着磁ピッチを有す
る位置検出マグネットと、 前記位置検出マグネットの磁場を検出して位相の異なる
2相の検出信号を出力するセンサと、 前記センサ出力の検出信号をもとに、3つの位相差を有
する3相の検出信号を出力する手段と、 前記3相の検出信号出力の位相差が夫々、 n*λ/3(n=整数) となる演算手段と、を備えたことを特徴とするレンズ位
置検出装置。
1. A lens driving device capable of moving an optical element constituting a lens in an optical axis direction using a linear actuator, wherein a position having a predetermined magnetization pitch indicating position information of the optical element. A detection magnet, a sensor that detects a magnetic field of the position detection magnet and outputs two-phase detection signals having different phases, and a three-phase detection signal having three phase differences based on the detection signal of the sensor output A lens position detecting device, comprising: a unit for outputting the detection signal; and a calculating unit for obtaining a phase difference between the three-phase detection signal outputs: n * λ / 3 (n = integer).
JP12109899A 1999-04-28 1999-04-28 Device for detecting position of lens Pending JP2000310502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12109899A JP2000310502A (en) 1999-04-28 1999-04-28 Device for detecting position of lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12109899A JP2000310502A (en) 1999-04-28 1999-04-28 Device for detecting position of lens

Publications (1)

Publication Number Publication Date
JP2000310502A true JP2000310502A (en) 2000-11-07

Family

ID=14802838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12109899A Pending JP2000310502A (en) 1999-04-28 1999-04-28 Device for detecting position of lens

Country Status (1)

Country Link
JP (1) JP2000310502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139739A (en) * 2005-10-20 2007-06-07 Denso Corp Device for detecting rotation angle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139739A (en) * 2005-10-20 2007-06-07 Denso Corp Device for detecting rotation angle

Similar Documents

Publication Publication Date Title
US5412317A (en) Position detector utilizing absolute and incremental position sensors in combination
KR0167777B1 (en) Mr position detecting device
US5859733A (en) Apparatus for detecting and displaying position of a lens on an optical axis
US8013596B2 (en) Position detector and positioning device
JP2006153879A (en) Linear position sensor
US20020011837A1 (en) Rotation angle sensor
JP5116751B2 (en) Magnetic detector
JP4508103B2 (en) Position detection method
US6856477B2 (en) Position detecting apparatus, and optical apparatus and position detecting method comprising this
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
CN107782415B (en) Liquid level detection device
JP4941108B2 (en) Position detecting device and positioning device
JP3047099B2 (en) Position detection device
JP5218418B2 (en) Position detector and positioning device
JP2000310502A (en) Device for detecting position of lens
JP3008503B2 (en) Position detection device
US6307366B1 (en) Object position sensor using magnetic effect device
JP3318843B2 (en) Position detector origin detection method and detection system
JP2000035527A (en) Lens driving device and lens driving method
JP3220278B2 (en) Position detection device
JP2006242709A (en) Position detection device and magnetometric sensor output signal detection method
JP4745051B2 (en) Magnetic line type position sensor
JP4464447B2 (en) Position detection device
JP2007178158A (en) Magnetic line type position sensor
JP3120454B2 (en) MR type position detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20031216

Free format text: JAPANESE INTERMEDIATE CODE: A02