JP2000308386A - Motor drive control device - Google Patents

Motor drive control device

Info

Publication number
JP2000308386A
JP2000308386A JP11115098A JP11509899A JP2000308386A JP 2000308386 A JP2000308386 A JP 2000308386A JP 11115098 A JP11115098 A JP 11115098A JP 11509899 A JP11509899 A JP 11509899A JP 2000308386 A JP2000308386 A JP 2000308386A
Authority
JP
Japan
Prior art keywords
current
motor
phase
duty
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11115098A
Other languages
Japanese (ja)
Other versions
JP3309828B2 (en
Inventor
Satoshi Chin
慧 陳
Koji Matsuda
公二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP11509899A priority Critical patent/JP3309828B2/en
Priority to DE19981253T priority patent/DE19981253T1/en
Priority to PCT/JP1999/003021 priority patent/WO1999065138A1/en
Priority to US09/485,394 priority patent/US6400116B1/en
Priority to KR1020000020452A priority patent/KR100710515B1/en
Publication of JP2000308386A publication Critical patent/JP2000308386A/en
Application granted granted Critical
Publication of JP3309828B2 publication Critical patent/JP3309828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To control torque change by controlling a variation rate of an energizing signal to be switched during switching operation. SOLUTION: When the PWM drive duties (Duty 3, Duty 4) of the upper and lower values, for example, are different, a current variation rate of the rising phase Duty 1 and falling phase Duty 2 during the phase current switching period is controlled. Consequently, a motor current during phase switching can be kept constant, thereby controlling current variation and electromagnetic torque variation. In this case, a formula of the center voltage of motor coil is derived first and a voltage equation of each coil is obtained next using the center voltage. The application voltage of each coil in the voltage equation is expressed with the duty of PWM (Duty 3, Duty 1, Duty 2). Finally, in order to keep constant the total amount of the motor current, the formula of a duty (Duty 2) of the current transforming duty is obtained based on the voltage equation of each phase where the application voltage is expressed with duty. Moreover, the equation of the center voltage of motor is obtained with the four PWM ON/OFF power feeding patterns.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ブラシレスDCモ
ータ又はリニアモータ等のような複数の励磁相を有する
モータを矩形波を用いて駆動制御するのに好適なモータ
駆動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor drive control device suitable for driving and controlling a motor having a plurality of excitation phases, such as a brushless DC motor or a linear motor, using a rectangular wave.

【0002】[0002]

【従来の技術】例えば、自動車のパワーステアリング装
置の駆動源として用いられているブラシレスDCモータ
は、3相以上の励磁相を有するモータであり、その駆動
は矩形波状の励磁電流によって行われる。
2. Description of the Related Art For example, a brushless DC motor used as a driving source of a power steering device of an automobile is a motor having three or more exciting phases, and its driving is performed by a rectangular exciting current.

【0003】5相ブラシレスDCモータの場合、モータ
駆動回路(モータ駆動制御装置)は、モータの回転子
(ロータ)の外周面を電気角で72度ずつ隔離して取り
囲むように配設された5相(以下、これらをa相〜e相
という)の励磁コイルa〜eに対し、マイクロコンピュ
ータ等の制御回路による制御下で、4相同時に励磁する
4相励磁方式により、コイルを1相ずつ順次切り替えて
矩形波電流で励磁し、ロータを回転駆動させる。
[0003] In the case of a five-phase brushless DC motor, a motor drive circuit (motor drive control device) is provided so as to surround the outer peripheral surface of the rotor of the motor at an electrical angle of 72 degrees each. The excitation coils a to e of the three phases (hereinafter, referred to as a phase to e phase) are sequentially excited one by one by a four-phase excitation method in which four phases are simultaneously excited under the control of a control circuit such as a microcomputer. The rotor is switched to be excited by the rectangular wave current, and the rotor is driven to rotate.

【0004】[0004]

【発明が解決しようとする課題】図6は、5相ブラシレ
スモータの駆動回路の概要を示す回路図である。図7
は、図6に示す5相ブラシレスモータの駆動回路の各相
の励磁電流を示す波形図である。
FIG. 6 is a circuit diagram showing an outline of a drive circuit of a five-phase brushless motor. FIG.
7 is a waveform diagram showing an exciting current of each phase of the drive circuit of the five-phase brushless motor shown in FIG.

【0005】しかしながら、従来のモータ駆動回路によ
る励磁電流の制御では、切替える2つの相(例えば、図
7のa相とd相)の電流の立上がりと立下がりの変化率
が異なるため、切替えられない相(例えば、図7のb
相、c相、e相)の電流が変動し、それらの電流変動に
より過渡的なトルク変動が生じてしまう。
However, in the control of the exciting current by the conventional motor drive circuit, switching cannot be performed because the rising and falling rates of the currents of the two phases to be switched (for example, phase a and phase d in FIG. 7) are different. Phase (eg, b in FIG. 7)
Phase, c-phase, and e-phase) fluctuate, and these current fluctuations cause transient torque fluctuations.

【0006】このようなトルク変動を生じさせる相切替
時の電流変動を抑制するためには、各相の電流を制御す
ればよいが、その制御のために各相の電流を検出する必
要があり、2以上の電流検出回路が必要になる。特に、
5相ブラシレスモータの場合は、4相励磁方式を採用し
ていることから、モータ駆動回路に4つの電流検出回路
と4つの電流ループが必要であり、駆動回路の構成が複
雑化し、コストも高くなるという問題点があった。
In order to suppress the current fluctuation at the time of the phase switching that causes such a torque fluctuation, the current of each phase may be controlled, but it is necessary to detect the current of each phase for the control. And two or more current detection circuits are required. In particular,
In the case of a five-phase brushless motor, since the four-phase excitation method is adopted, four current detection circuits and four current loops are required in the motor drive circuit, which complicates the configuration of the drive circuit and increases the cost. There was a problem of becoming.

【0007】また、図7に示すような励磁電流の波形に
おいて+側(順方向電流)の駆動デューティ(例えば、
Duty1とする。これを「上段の駆動デューティ」と
いう。)と、−側(逆方向電流)の駆動デューティ(例
えば、Duty3とする。これを「下段の駆動デューテ
ィ」という。)とが異なる場合は、モータの駆動回路に
おいて1個の電流検出回路が設けられている場合に、相
切換時における2つの相の電流の立ち上がりと立ち下が
りの電流変化率が異なるので、相切換時に他の切替えを
していない相の電流が大きく変動してしまい、その電流
の変動により過渡的なトルク変動が生じてしまう。
Further, in the waveform of the exciting current shown in FIG. 7, the driving duty on the + side (forward current) (for example,
Duty1. This is called “upper drive duty”. ) Is different from the drive duty on the negative side (reverse current) (for example, Duty 3; this is called “lower drive duty”), one current detection circuit is provided in the motor drive circuit. When the phase is switched, the current change rates of the rising and falling currents of the two phases at the time of the phase switching are different, so that the current of the other phase that is not switched at the time of the phase switching greatly fluctuates, and Causes a transient torque fluctuation.

【0008】そのトルク変動は、モータ回転時の振動と
騒音の発生原因になる。また、パワーステアリング装置
用のブラシレスDCモータの場合は、ハンドルをゆっく
り回転させる時に、そのトルクの変動が操舵フィーリン
グに影響するとともに、騒音の発生原因になってしま
う。
[0008] The torque fluctuation causes vibration and noise during rotation of the motor. Further, in the case of a brushless DC motor for a power steering device, when the steering wheel is slowly rotated, the fluctuation of the torque affects the steering feeling and causes noise.

【0009】本発明は上述のような事情からなされたも
のであり、本発明の目的は、ブラシレスDCモータを矩
形波を用いて駆動制御する場合において、トルクの変動
を抑制することができるモータ駆動制御装置を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a motor drive capable of suppressing torque fluctuation when a brushless DC motor is driven and controlled using a rectangular wave. It is to provide a control device.

【0010】[0010]

【課題を解決するための手段】本発明は、モータの励磁
電流を検出する電流検出回路を2個以上使用せず、複数
の励磁相を有するモータを駆動制御するモータ駆動制御
装置に関し、本発明の上記目的は、前記モータの各励磁
相に供給する励磁信号を生成する駆動手段と、前記各励
磁相ごとに前記励磁信号の方向決定及びオンオフに切替
えを行う制御手段とを備え、前記制御手段は、前記切替
えの時にモータの前記各励磁相の励磁電流の合計値を一
定に保つように前記励磁信号を生成することによって達
成される。
SUMMARY OF THE INVENTION The present invention relates to a motor drive control device for controlling a motor having a plurality of excitation phases without using two or more current detection circuits for detecting the excitation current of the motor. The above object of the present invention comprises: a driving unit that generates an excitation signal to be supplied to each excitation phase of the motor; and a control unit that determines a direction of the excitation signal and switches on / off for each excitation phase; Is achieved by generating the excitation signal so as to keep the sum of the excitation currents of the respective excitation phases of the motor at the time of the switching.

【0011】また、本発明の上記目的は、前記制御手段
が、前記切替時に切り替えられる前記励磁信号の変化率
を制御することによってより効果的に達成される。
Further, the above object of the present invention is more effectively achieved by the control means controlling a rate of change of the excitation signal switched at the time of the switching.

【0012】また、本発明の上記目的は、前記駆動手段
は、前記励磁信号として前記モータの複数の励磁コイル
に供給する励磁電流を生成する駆動回路を有し、前記制
御手段は、前記励磁電流の切換時に前記励磁電流が立上
がる励磁相と立下がる励磁相の電流変化率を一致させる
か又は同程度にする駆動信号を前記駆動回路に供給する
ことによってより効果的に達成される。
Further, the above object of the present invention is such that the driving means has a driving circuit for generating an excitation current to be supplied to the plurality of excitation coils of the motor as the excitation signal, This is more effectively achieved by supplying a drive signal to the drive circuit to make the current change rates of the exciting phase in which the exciting current rises and the exciting phase in which the exciting current rises at the time of the switching of the same or approximately the same.

【0013】また、本発明の上記目的は、前記制御手段
は、前記励磁電流が切替えられない励磁相に対する上段
用(順方向電流用)の第1のPMW信号と下段用(逆方
向電流用)の第3のPMW信号と、前記励磁電流が立上
がる励磁相及び/又は立下がる励磁相に対する上段用
(順方向電流用)の第2のPWM信号と下段用(逆方向
電流用)の第4のPWM信号とを合成演算することによ
り、前記駆動信号を生成することによってより効果的に
達成される。
[0013] Further, the above object of the present invention is the control means, wherein the first stage PWM signal for the upper stage (for forward current) and the lower stage (for reverse current) for the exciting phase in which the exciting current is not switched. A third PWM signal for the upper stage (for forward current) and a fourth PWM signal for lower stage (for reverse current) with respect to the exciting phase in which the exciting current rises and / or the exciting phase in which the exciting current falls. This is more effectively achieved by generating the drive signal by performing a composite operation with the PWM signal of

【0014】また、本発明の上記目的は、前記第2のP
WM信号及び前記第4のPWM信号のデューティ比が、
前記切替時のモータ電流、前記第1のPWM信号及び前
記第3のPWM信号のデューティ比、モータの回転角速
度、モータの逆起電圧定数、モータ駆動回路に供給され
る電源電圧及びモータと駆動回路の等価電気回路の抵抗
成分の関数である、こととすることによってより効果的
に達成される。
Further, the above object of the present invention is to provide the above-mentioned second P
The duty ratio of the WM signal and the fourth PWM signal is
Motor current at the time of switching, duty ratios of the first PWM signal and the third PWM signal, a rotational angular velocity of the motor, a back electromotive force constant of the motor, a power supply voltage supplied to the motor drive circuit, and the motor and drive circuit , Which is a function of the resistance component of the equivalent electrical circuit.

【0015】[0015]

【発明の実施の形態】本実施の形態では、5相ブラシレ
スDCモータを例として説明する。3相ブラシレスDC
モータの場合でも同様に実施できる。上下段ともに同じ
PWMデューティで駆動する場合は、本実施形態の上段
用のPWMデューティ(Duty1)=下段用のPWM
デューティ(Duty3)として設定すればよい。そし
て、上下段ともに同じPWMデューティで駆動する場合
は、モータ駆動回路において、モータの各励磁相ごとに
供給する励磁電流の方向決定及びオンオフ切替えを制御
する制御手段を設ける。制御手段は、その切替え時に切
替えられる励磁電流の変化率を制御することにより、切
替えられる2つの相の電流変化率を一致させる(又は同
程度にする)。これにより、切替えない相の電流変動が
抑制されるので、簡易な回路で、前述の過渡的なトルク
変動を抑制する。一方、図7に示すような励磁電流の波
形において+側(順方向電流)の駆動デューティ(例え
ば、Duty1とする。これを「上段の駆動デューテ
ィ」という。)と、−側(逆方向電流)の駆動デューテ
ィ(例えば、Duty3とする。これを「下段の駆動デ
ューティ」という。)とが異なる場合は、電流変動によ
る過渡的なトルク変動を以下に示す方法で解消する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In this embodiment, a five-phase brushless DC motor will be described as an example. 3-phase brushless DC
The same can be applied to a motor. When the upper and lower stages are driven with the same PWM duty, the upper stage PWM duty (Duty1) of the present embodiment = the lower stage PWM
What is necessary is just to set as duty (Duty3). When the upper and lower stages are driven with the same PWM duty, the motor drive circuit is provided with control means for controlling the direction determination and on / off switching of the excitation current supplied for each excitation phase of the motor. The control means controls the rate of change of the exciting current switched at the time of the switching, so that the rates of current change of the two phases to be switched are made equal (or approximately equal). As a result, the current fluctuation of the phase which is not switched is suppressed, so that the above-mentioned transient torque fluctuation is suppressed with a simple circuit. On the other hand, in the waveform of the exciting current as shown in FIG. 7, the drive duty on the + side (forward current) (for example, Duty 1; this is called “upper drive duty”) and the negative side (reverse current) (For example, Duty 3; this is referred to as “lower drive duty”), transient torque fluctuation due to current fluctuation is eliminated by the following method.

【0016】以下、本発明の実施の形態を図面を参照し
て説明する。本実施形態は基本的に特願平10−160
641号(以下、「先行文献」という。)と同じように
説明する。ただし、違う所は、下記1)と2)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment is basically based on Japanese Patent Application No. Hei 10-160.
No. 641 (hereinafter referred to as “prior art document”). However, different points are 1) and 2) below.

【0017】1)先行文献の図3、図4、図5、図6に
おいて、上下段同じ駆動デューティDuty1を上段の
Duty1と下段のDuty3に分け、上下段同じ転流
相のデューティDuty2を上段のDuty2と下段の
Duty4に分ける。
1) In FIG. 3, FIG. 4, FIG. 5, and FIG. 6, the same drive duty Duty1 in the upper and lower stages is divided into Duty1 in the upper stage and Duty3 in the lower stage. It is divided into Duty2 and Duty4 in the lower stage.

【0018】2)先行文献の数18と数19から導いた
式は下記数52と下記数53、又は下記数54と下記5
5から導く。具体的には、先行文献の数20と数21は
下記数52と下記数53を使う。
2) Equations derived from Equations (18) and (19) of the preceding document are as follows: Equation (52) and Equation (53) or Equation (54) and Equation (5).
Lead from 5. Specifically, Equations 20 and 21 of the preceding document use Equations 52 and 53 below.

【0019】<上下段異なるデューティ(Duty1、
Duty3)駆動の場合、転流時にモータ電流の総和を
一定にするため、転流相の駆動デューティ(Duty
2、Duty4)式の導き>以下は、上段転流を例とし
て、Duty2の導き方を紹介する(上段はd相とe相
であり、下段はb相とc相であり、転流はd相からa相
である。)。上段転流と同じ導き方で、下段転流の場合
のDuty4の式が得られる。
<Upper and lower stages have different duties (Duty1, Duty1,
In the case of the (Duty3) drive, the driving duty (Duty) of the commutation phase is set in order to keep the sum of the motor currents constant during commutation.
2. Derivation of equation (2, Duty4)> The following introduces a method of deriving Duty2 by taking an upper stage commutation as an example (upper stage is d phase and e phase, lower stage is b phase and c phase, and commutation is d From phase a to phase a). With the same derivation method as in the upper stage commutation, the Duty 4 equation for the lower stage commutation is obtained.

【0020】上下段PWM駆動デューティが異なる場合
は、例として下段駆動デューティDuty3>=上段駆
動デューティDuty1の場合を示す。その逆の場合
(Duty3<=Duty1)も同じ導き方でDuty
2を求めることができる。
When the upper and lower PWM driving duties are different from each other, the lower driving duty DUTY3> = the upper driving duty DUTY1 is shown as an example. In the opposite case (Duty3 <= Duty1), the same derivation applies to Duty.
2 can be obtained.

【0021】上段転流時の立ち下がり相の駆動デューテ
ィはDuty2である。ここで、式の導きを容易にする
ため、立ち上がり相の駆動デューティをDuty1と設
定する。Duty3>=Duty1>=Duty2を例
として紹介する。
The drive duty of the falling phase during the upper stage commutation is Duty2. Here, in order to facilitate the derivation of the equation, the drive duty of the rising phase is set to Duty1. Duty3> = Duty1> = Duty2 is introduced as an example.

【0022】図1は、モータの励磁電流の波形図であ
り、Duty1、Duty3及びDuty2の3つのP
WM信号のデューティを示すものである。
FIG. 1 is a waveform diagram of the exciting current of the motor, and shows three Ps of Duty1, Duty3 and Duty2.
It shows the duty of the WM signal.

【0023】先ず、モータコイルの中心点の電圧vnの
式を導き、次に、その中心点電圧を用いて各コイルの電
圧方程式を求める。電圧方程式における各コイルの印加
電圧をPWMのデューティ(Duty3、Duty1、
Duty2)で表わす。最後に、モータ電流の総和を一
定にするために、印加電圧をデューティで表わした各相
の電圧方程式に基づいて、転流相のデューティ(Dut
y2)の式を求める。
First, an equation for the voltage vn at the center of the motor coil is derived, and then a voltage equation for each coil is determined using the voltage at the center. The voltage applied to each coil in the voltage equation is determined by the PWM duty (Duty3, Duty1,
Duty 2). Finally, in order to make the sum of the motor currents constant, the duty (Dut) of the commutation phase is determined based on the voltage equation of each phase in which the applied voltage is expressed by the duty.
y2) is obtained.

【0024】1、モータ中心点電圧vnの式の導き 図1に示す3つのPWM信号は4つのパターンに分けら
れる。以下、その4つのPWMのオン−オフ通電パター
ンでのモータ中心点電圧vnを求める。
1. Derivation of Equation of Motor Center Point Voltage vn The three PWM signals shown in FIG. 1 are divided into four patterns. Hereinafter, the motor center point voltages vn in the four PWM on-off energizing patterns are obtained.

【0025】(a) Duty1、Duty3、Dut
y2のPWMがオンの状態の場合 図2は、図6に示すブラシレスモータの駆動回路につい
ての本状態の等価回路を示す回路図である。図2に基づ
き、各コイルの電圧方程式は下記数1から数5となる。
また、駆動回路のDCラインの電流(2i1)と各相の
電流(ia,b,c,d,e)の関係は下記数6とな
る。
(A) Duty1, Duty3, Dut
FIG. 2 is a circuit diagram showing an equivalent circuit in this state for the drive circuit of the brushless motor shown in FIG. 6. Based on FIG. 2, the voltage equation of each coil is given by the following equations (1) to (5).
Also, DC-line current of the drive circuit (2i 1) and each phase current (i a, i b, i c, i d, i e) the relationship becomes below 6.

【0026】[0026]

【数1】 (Equation 1)

【数2】 (Equation 2)

【数3】 (Equation 3)

【数4】 (Equation 4)

【数5】 (Equation 5)

【数6】 ただし、Lm=L−M(Lは各相の自己インダクタン
ス、Mは複数相の間の相互インダクタンス)である。
(Equation 6) Here, Lm = LM (L is a self-inductance of each phase, and M is a mutual inductance between a plurality of phases).

【0027】矩形波電流駆動であり、励磁波形は電気角
度144度の略台形波形であるので、逆起電圧も近似的
に台形波となる。相切替時における各相の逆起電圧の絶
対値は、ほぼ等しくなる。すなわち、下記数7で示す状
態となる。
Since the drive is a rectangular wave current drive and the excitation waveform is a substantially trapezoidal waveform having an electrical angle of 144 degrees, the back electromotive voltage is also approximately a trapezoidal wave. The absolute value of the back electromotive voltage of each phase at the time of phase switching becomes substantially equal. That is, the state shown by the following equation 7 is obtained.

【0028】[0028]

【数7】 また、各相のコイル抵抗も同じ値となる。すなわち、下
記数8で示す状態となる。
(Equation 7) The coil resistance of each phase also has the same value. That is, the state shown by the following equation 8 is obtained.

【0029】[0029]

【数8】 ここで、数1から数3を加算して、数6から数8を代入
することにより、下記数9が導きられる。
(Equation 8) Here, the following Equation 9 is derived by adding Equations 1 to 3 and substituting Equations 6 to 8.

【0030】[0030]

【数9】 また、数4と数5を加算して、数6から数8を代入する
ことにより、下記数10が導きられる。
(Equation 9) Further, by adding Equations 4 and 5 and substituting Equations 6 to 8, Equation 10 below is derived.

【0031】[0031]

【数10】 上記数9と数10よりコイルの中心電圧Vn1をVbとE
で表すと、下記数11となる。
(Equation 10) From the above equations (9) and (10), the center voltage V n1 of the coil is defined as Vb and E.
The following equation (11) is obtained.

【0032】[0032]

【数11】 (b)Duty2のPWMがオフであり、かつDuty
1、Duty3のPWMがオンの状態の場合 図3は、図6に示すブラシレスモータの駆動回路図にお
ける本状態の等価回路を示す回路図である。図3に基づ
き、各コイルの電圧方程式は下記数12から数16とな
る。また、駆動回路のDCラインの電流電流(2i11
と各相の電流(ia,b,c,d,e)の関係は下記数
17となる。
[Equation 11] (B) Duty2 PWM is off and Duty2
1. When the PWM of Duty 3 is ON FIG. 3 is a circuit diagram showing an equivalent circuit in this state in the drive circuit diagram of the brushless motor shown in FIG. Based on FIG. 3, the voltage equation of each coil is represented by the following equations (12) to (16). Also, the current (2i 11 ) of the DC line of the drive circuit
And each phase current (i a, i b, i c, i d, i e) the relationship becomes below several 17.

【0033】[0033]

【数12】 (Equation 12)

【数13】 (Equation 13)

【数14】 [Equation 14]

【数15】 (Equation 15)

【数16】 (Equation 16)

【数17】 上記数12から数17及び上記数7、数8において、電
流に関連する項を削除し、コイルの中心電圧Vn11をV
bとEで表すと、下記数18となる。
[Equation 17] In the equations (12) to (17) and the equations (7) and (8), the term related to the current is deleted, and the center voltage V n11 of the coil is changed to V
When represented by b and E, the following Expression 18 is obtained.

【0034】[0034]

【数18】 (c)Duty1、Duty2のPWMがオフであり、
かつDuty3のPWMがオンの状態の場合 図4は、図6に示すブラシレスモータの駆動回路図にお
ける本状態の等価回路を示す回路図である。図4に基づ
き、各コイルの電圧方程式は下記数19から数23とな
る。また、駆動回路のDCラインの電流電流(2i12
と各相の電流(ia,b,c,d,e)の関係は下記数
24となる。
(Equation 18) (C) PWM of Duty1 and Duty2 is off,
FIG. 4 is a circuit diagram showing an equivalent circuit in this state in the drive circuit diagram of the brushless motor shown in FIG. Based on FIG. 4, the voltage equation of each coil is as shown in the following Expressions 19 to 23. Also, the current (2i 12 ) of the DC line of the drive circuit
And each phase current (i a, i b, i c, i d, i e) the relationship becomes the following Expression 24.

【0035】[0035]

【数19】 [Equation 19]

【数20】 (Equation 20)

【数21】 (Equation 21)

【数22】 (Equation 22)

【数23】 (Equation 23)

【数24】 上記数19から数24及び上記数7、数8において、電
流に関連する項を削除し、コイルの中心電圧Vn12をV
bとEで表すと、下記数25となる。
(Equation 24) In Equations 19 to 24 and Equations 7 and 8, the term related to the current is deleted, and the center voltage V n12 of the coil is set to V
When represented by b and E, the following equation 25 is obtained.

【0036】[0036]

【数25】 (d)Duty1、Duty2、Duty3のPWMが
オフの状態の場合 図5は、図6に示すブラシレスモータの駆動回路図にお
ける本状態の等価回路を示す回路図である。図5に基づ
き、各コイルの電圧方程式は下記数26から数30とな
る。また、駆動回路のDCラインの電流電流(2i2
と各相の電流(ia,b,c,d,e)の関係は下記数
31となる。
(Equation 25) (D) When PWM of Duty1, Duty2, and Duty3 is OFF FIG. 5 is a circuit diagram showing an equivalent circuit in this state in the brushless motor drive circuit diagram shown in FIG. Based on FIG. 5, the voltage equation of each coil is as shown in Equations 26 to 30 below. Also, the current (2i 2 ) of the DC line of the drive circuit
And each phase current (i a, i b, i c, i d, i e) the relationship becomes the following Expression 31.

【0037】[0037]

【数26】 (Equation 26)

【数27】 [Equation 27]

【数28】 [Equation 28]

【数29】 (Equation 29)

【数30】 [Equation 30]

【数31】 上記数26から数31及び上記数7、数8において、電
流に関連する項を削除し、コイルの中心電圧Vn2をVb
とEで表すと、下記数32となる。
(Equation 31) In Expressions 26 to 31 and Expressions 7 and 8, the term related to the current is deleted, and the center voltage V n2 of the coil is changed to Vb.
And E, the following equation 32 is obtained.

【0038】[0038]

【数32】 2、印加電圧をデューティで表す各相の電圧方程式の導
き 上述のコイルの中心電圧vnを示す数11、数18、数
25、数32とそれらの式の導き過程から分かるよう
に、図1に示した4つのPWMのオン−オフ通電パター
ンによってコイルの中心電圧と端子電圧は変動してい
る。その変化の周波数は、PWMの周波数程度である。
PWMの周期は、モータコイルの等価回路の電気的時定
数よりも十分小さいため、コイルの端子電圧と中心電圧
はPWMの一周期中のその電圧の平均値で表すことが妥
当である。
(Equation 32) 2. Derivation of the voltage equation of each phase that expresses the applied voltage by duty As can be seen from the above-described equations 11, 18, 18, 25, and 32 showing the center voltage vn of the coil and the derivation process of these equations, FIG. The center voltage and the terminal voltage of the coil fluctuate according to the on-off energization patterns of the four PWMs shown. The frequency of the change is about the frequency of PWM.
Since the PWM cycle is sufficiently smaller than the electric time constant of the equivalent circuit of the motor coil, it is appropriate that the terminal voltage and the center voltage of the coil be represented by the average value of the voltage during one PWM cycle.

【0039】上段のa相とe相のコイルにおけるa相の
電圧方程式の印加電圧を平均値で表すことを例として示
す。図1に示した4つのPWMのオン−オフ通電パター
ンのデューティは、 a) Duty2 b)(Duty1−Duty2) c)(Duty3−Duty1) d)(1−Duty3) である。各通電パターンのデューティを掛ける各パター
ンのa相の電圧方程式(数1、数12、数19、数2
6)の左辺の印加電圧項により、各パターン期間での印
加電圧は a) Duty2(Vb−Vn1) b)(Duty1−Duty2)(Vb−Vn1) c)(Duty3−Duty1)(−Vn12) d)(1−Duty3)(−Vn2) となる。これらa),b),c),d)の4つの印加電
圧の合計は、下記数33に示すように、PWM周期内の
平均印加電圧(Va−Vn)である。
An example in which the applied voltage of the a-phase voltage equation in the upper-stage a-phase and e-phase coils is represented by an average value will be described. The duty of the on-off energization pattern of the four PWMs shown in FIG. 1 is as follows: a) Duty2 b) (Duty1-Duty2) c) (Duty3-Duty1) d) (1-Duty3). The a-phase voltage equation of each pattern multiplied by the duty of each energization pattern (Equation 1, Equation 12, Equation 19, Equation 2)
The left side of the voltage applied section 6), the voltage applied in each pattern period a) Duty2 (Vb-V n1 ) b) (Duty1-Duty2) (Vb-V n1) c) (Duty3-Duty1) (- V n12) d) (1-Duty3 ) (- V n2) to become. The sum of the four applied voltages a), b), c) and d) is the average applied voltage (V a −V n ) within the PWM cycle, as shown in the following Expression 33.

【0040】[0040]

【数33】 各中心電圧(Vn1、n11、n12、n2)を上記数11、
数18、数25、数32に代入すると、印加電圧の平均
値はデューティとVb、Eで表すことができる。a相の
電圧方程式は下記数34となる。同様にe相の電圧方程
式は下記数35となる。
[Equation 33] Each of the center voltages (V n1, V n11, V n12, V n2 ) is calculated by the above equation (11).
By substituting into Equations 18, 25 and 32, the average value of the applied voltage can be expressed by duty, Vb, and E. The voltage equation for the a-phase is given by the following equation (34). Similarly, the voltage equation of the e-phase is given by the following equation 35.

【0041】[0041]

【数34】 (Equation 34)

【数35】 ただし、上段コイル端子の電圧平均値va、veとコイ
ル中心電圧の平均値vnは、下記数36と数37にな
る。
(Equation 35) However, the average voltage values va and ve of the upper coil terminals and the average value vn of the coil center voltage are represented by the following equations (36) and (37).

【0042】[0042]

【数36】 [Equation 36]

【数37】 オフ相コイル(d相)と下段コイル(b、c相)の電圧
方程式は、上述の上段コイルの電圧方程式の導き方と同
じ方法で求められる。オフ相の電圧方程式は下記数38
となり、上段コイルの方定式は下記数39、数40とな
る。
(37) The voltage equations for the off-phase coil (d phase) and the lower coil (b, c phase) are obtained in the same manner as the above-described method for deriving the voltage equation for the upper coil. The off-phase voltage equation is given by Equation 38 below.
And the equation for the upper coil is given by Equations 39 and 40 below.

【0043】[0043]

【数38】 (38)

【数39】 [Equation 39]

【数40】 ただし、オフ相の端子電圧の平均値vdと下段コイル端
子の電圧平均値vb、vcは、それぞれ下記数41と数
42で示すものとする。
(Equation 40) However, the average value vd of the terminal voltage in the off-phase and the average voltage values vb and vc of the lower coil terminals are represented by the following Expressions 41 and 42, respectively.

【0044】[0044]

【数41】 [Equation 41]

【数42】 2つの転流相(立下がりのd相と立ち上がりのa相)の
デューティDuty2をDuty21とDuty22、も
っと一般的な状態として設定する場合は、立下がり(オ
フ)相と立上がり相のコイル端子の電圧平均値vd、v
aは、下記数44と数43になる。また、中心電圧を示
す上記数37も変わることとなるが、その変わった中心
電圧を示す数式及びその説明は省略する。
(Equation 42) When the duties Duty2 of the two commutation phases (the falling d phase and the rising a phase) are set as Duty2 1 and Duty2 2 , or more general states, the coil terminals of the falling (off) phase and the rising phase Voltage average values vd, v
a becomes the following Expressions 44 and 43. In addition, the equation (37) indicating the center voltage also changes, but the mathematical expression indicating the changed center voltage and its description are omitted.

【0045】[0045]

【数43】 [Equation 43]

【数44】 3、モータ電流の総和を一定にするための、転流相のデ
ューティ(Duty2)の式の導き 上述の印加電圧をデューティで表した各相の電圧方程式
は、PWMの周期がコイルの等価回路の電気的時定数よ
りも十分小さいことを前提条件として導いた結果であ
る。したがって、数34から数42中の電流と電圧はP
WM周期内の平均値として扱う。上段転流(例えば、d
相からa相)の時は、上段各相の電流(ia,e、d
の合計と下段各相の電流(ib,c)の合計は、下記数
45に示すように等しくなる。
[Equation 44] 3. Derivation of equation of commutation phase duty (Duty2) for keeping the sum of motor current constant The voltage equation of each phase in which the applied voltage is represented by the duty is expressed by the following equation: This is a result derived on the premise that the electric time constant is sufficiently smaller than the electric time constant. Therefore, the current and voltage in Equations 34 to 42 are P
Treated as an average value within the WM cycle. Upper stage commutation (for example, d
When the phase of a phase), the upper phase currents (i a, i e, i d)
Is equal to the sum of the currents (i b, ic ) of the respective lower phases as shown in the following Expression 45.

【0046】[0046]

【数45】 ここで、Iはモータ電流であり、そのモータ電流は電流
検出手段によって検出する。
[Equation 45] Here, I is a motor current, and the motor current is detected by current detection means.

【0047】各コイルが対象になっているので、転流を
始める時(t=0)に上段コイルのd相とe相の電流が
同じ値であると仮定すると、a相の電流は零となる。
Since each coil is targeted, assuming that the currents of the d-phase and e-phase of the upper coil have the same value when commutation starts (t = 0), the current of the a-phase becomes zero. Become.

【0048】 ie(0)=id(0)=(1/2)I(0) ia(0)=0 転流の2相の電流の立上がりと立ち下がりの変化率が、
下記数46で表わすように、同じであるとすれば、転流
期間中に任意の時の電流ia(t)とid(t)の総和は
下記数46を積分することにより、下記数47で表わす
ように求められる。
Ie (0) = id (0) = (1/2) I (0) ia (0) = 0 The rising and falling rates of the two-phase current of commutation are
As expressed by the following Expression 46, if the same, the sum of the currents at any time during the commutation period i a (t) and i d (t) by integrating the following Expression 46, the number of the following 47.

【0049】[0049]

【数46】 [Equation 46]

【数47】 上記す47から分かるように、転流期間中に転流する2
相の電流の変化率を同じにすると、その2相の電流の総
和は一定に保たれる。したがって、転流期間中に上段の
転流していない相の電流ie(t)が変化しなければ、 ie(t)=ie(0)=(1/2)I(0) 上記数45より、 モータの総和電流I(t)=ia(t)+ie(t)+i
d(t)=I(0) が一定に保たれ、モータの電磁トルクも一定に保たれ
る。したがって、転流期間中は下記数48、数49が成
り立つ。
[Equation 47] As can be seen from FIG. 47, the commutation during the commutation period 2
If the rate of change of the phase current is the same, the sum of the currents of the two phases is kept constant. Therefore, if the current i e phases does not flow upper rolling (t) is changed during the commutation period, i e (t) = i e (0) = (1/2) I (0) the number of than 45, the motor of the total electric current I (t) = i a ( t) + i e (t) + i
d (t) = I (0) is kept constant, and the electromagnetic torque of the motor is also kept constant. Therefore, during the commutation period, the following Expressions 48 and 49 hold.

【0050】[0050]

【数48】 [Equation 48]

【数49】 モータの総和電流が一定に保たれる時の転流相のデュー
ティ(Duty2)を求めるために、転流する2相の電
圧方程式である数34と数38の両辺を足し算し、数7
及び数8と数48及び数49を代入すると、下記数50
が得られる。
[Equation 49] In order to obtain the commutation phase duty (Duty2) when the total current of the motor is kept constant, the two sides of equations (34) and (38), which are two-phase voltage equations for commutation, are added, and
Substituting Equation 8 and Equation 48 and Equation 49 gives the following Equation 50
Is obtained.

【0051】[0051]

【数50】 上段の転流していない相の電圧方程式である数35に数
7、数8と数48、数49を代入すると、下記数51が
得られる。
[Equation 50] By substituting Equation 7, Equation 8, Equation 48, and Equation 49 into Equation 35, which is the voltage equation of the upper non-commutated phase, Equation 51 below is obtained.

【0052】[0052]

【数51】 数50及び数51からRi項を削除し、さらに数36、
数37、数41を代入することにより、転流相のデュー
ティ(Duty2)が逆起電圧E(又は、モータの回転
角速度ω)、駆動回路に供給される電圧Vbと上下段の
デューティ(Duty1、Duty3)を用いて、下記
数52に表わすように求めることができる。
(Equation 51) The Ri term is deleted from Equations 50 and 51, and
By substituting Equations 37 and 41, the commutation phase duty (Duty2) is equal to the back electromotive voltage E (or the rotational angular velocity ω of the motor), the voltage Vb supplied to the drive circuit, and the upper and lower stages of the duty (Duty1, Duty1). Using Duty 3), it can be obtained as shown in the following Expression 52.

【0053】[0053]

【数52】 ただし、E=(1/2)Kmωであり、Km[volt・se
c]はモータの逆起電圧定数である。
(Equation 52) Here, E = (1/2) Kmω, and Km [volt · se
c] is the back electromotive force constant of the motor.

【0054】数50と数51からvnとE項を削除し、
数36、数41を代入することにより、転流相のデュー
ティ(Duty2)がモータ電流I、モータコイル、F
ET等の等価電気回路の抵抗R、駆動回路に供給される
電圧Vbと上段のデューティ(Duty1)を用いて、
下記数53に表わすように求めることができる。
The vn and E terms are deleted from Equations 50 and 51,
By substituting Equations 36 and 41, the duty (Duty2) of the commutation phase becomes the motor current I, motor coil, F
Using the resistance R of the equivalent electric circuit such as ET, the voltage Vb supplied to the drive circuit, and the upper-stage duty (Duty1),
It can be obtained as shown in the following Expression 53.

【0055】[0055]

【数53】 2つの転流相(立ち下がりのd相と立上がりのa相)の
デューティ(Duty2)をDuty21とDuty
2、もっと一般的な状態として設定する場合は、数3
6、数37、数38の代わりに、数43、数44と新た
な中心電圧vnの式を代入すれば、下記数54、数55
に表わすように、転流相のデューティ(Duty2)が
求められる。
(Equation 53) Duty two commutation phase (d phase and rise of a phase of the falling edge) the (Duty2) Duty2 1 and Duty
2 2 , to set as a more general state, Equation 3
By substituting equations (43) and (44) and a new equation of the center voltage vn instead of (6), (37) and (38), the following equations (54) and (55) are obtained.
, The commutation phase duty (Duty2) is determined.

【0056】[0056]

【数54】 (Equation 54)

【数55】 4、下段転流時、モータ電流の総和を一定にするため
の、転流相のデューティ(Duty4)の式の導き 上段転流時の導き方と同じように、各PWMのオン-オ
フ通電状態パターンでのモータ中心電圧vnの数式を求
め、その数式を用いて印加電圧をデューティで表わす各
相の電圧方程式を求める。最後に、モータ電流の総和を
一定にするため、転流相のデューティ(Duty4)を
求める。その結果は、下記数56、数57に表わすよう
になる。
[Equation 55] 4. Derivation of the equation of the duty (Duty4) of the commutation phase to keep the sum of the motor currents constant at the time of the lower stage commutation. An equation of the motor center voltage vn in the pattern is obtained, and a voltage equation of each phase expressing the applied voltage by the duty is obtained using the equation. Finally, the duty (Duty4) of the commutation phase is obtained in order to keep the sum of the motor currents constant. The result is as shown in the following Expressions 56 and 57.

【0057】[0057]

【数56】 [Equation 56]

【数57】 [Equation 57]

【0058】[0058]

【発明の効果】これらにより本発明によれば、1個の電
流検出回路を用いてモータを矩形波で駆動するものにお
ける、上段と下段のPMW駆動デューティが異なる場合
に、相電流切替え時の立上がり相と立ち下がり相の電流
変化率を制御するので、相切替え時のモータ電流を一定
に保つことができて、電流変動と電磁トルク変動を抑え
ることができ、安価で低電流変動、低トルク変動の高性
能サーボモータを実現するモータ駆動制御装置を提供す
ることができる。
As described above, according to the present invention, in the case where the motor is driven by a rectangular wave using one current detection circuit, when the upper and lower PWM driving duties are different, the rise at the time of phase current switching is performed. Controls the current change rate of the phase and the falling phase, so that the motor current at the time of phase switching can be kept constant, current fluctuations and electromagnetic torque fluctuations can be suppressed, and inexpensive low current fluctuations and low torque fluctuations And a motor drive control device that realizes the high-performance servomotor described above.

【0059】また、本発明に係るモータ駆動制御装置を
電動パワーステアリングの動力源として用いれば、ブラ
シレスDCモータの急激なトルク変動が小さいので、電
動パワーステアリングの操舵フィーリングを向上させる
ことができ、振動ノイズを低減することができる。
Further, when the motor drive control device according to the present invention is used as a power source of the electric power steering, the sharp torque fluctuation of the brushless DC motor is small, so that the steering feeling of the electric power steering can be improved. Vibration noise can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】デューティが異なる3つのPWM信号を示す波
形図である。
FIG. 1 is a waveform diagram showing three PWM signals having different duties.

【図2】Duty1、Duty3、Duty2のPWM
がオンの状態のブラシレスモータの駆動回路についての
等価回路を示す回路図である。
FIG. 2 PWM of Duty1, Duty3 and Duty2
FIG. 3 is a circuit diagram showing an equivalent circuit of a drive circuit of the brushless motor in a state where is turned on.

【図3】Duty2のPWMがオフであり、かつDut
y1、Duty3のPWMがオンの状態のブラシレスモ
ータの駆動回路についての等価回路を示す回路図であ
る。
FIG. 3 shows that the PWM of Duty2 is off, and
It is a circuit diagram showing an equivalent circuit about a drive circuit of a brushless motor in the state where PWM of y1 and Duty3 is ON.

【図4】Duty1、Duty2のPWMがオフであ
り、かつDuty3のPWMがオンの状態のブラシレス
モータの駆動回路についての等価回路を示す回路図であ
る。
FIG. 4 is a circuit diagram showing an equivalent circuit of a drive circuit of a brushless motor in a state where PWMs of Duty1 and Duty2 are off and a PWM of Duty3 is on.

【図5】Duty1、Duty3、Duty2のPWM
がオフの状態のブラシレスモータの駆動回路についての
等価回路を示す回路図である。
FIG. 5 shows PWM of Duty1, Duty3, and Duty2.
FIG. 3 is a circuit diagram showing an equivalent circuit of a drive circuit of the brushless motor in a state where is turned off.

【図6】5相ブラシレスモータの駆動回路の概要を示す
回路図である。
FIG. 6 is a circuit diagram illustrating an outline of a drive circuit of a five-phase brushless motor.

【図7】図6に示す5相ブラシレスモータの駆動回路の
各相の励磁電流を示す波形図である。
7 is a waveform diagram showing an exciting current of each phase of the drive circuit of the five-phase brushless motor shown in FIG.

【符号の説明】[Explanation of symbols]

vn モータ中心点電圧 Ea a相の逆起電圧 Eb b相の逆起電圧 Ec c相の逆起電圧 Ed d相の逆起電圧 Ee e相の逆起電圧 Lm 励磁コイルの等価回路におけるインダクタンス R 励磁コイルの等価回路における抵抗 Vb モータ駆動回路に供給される電源電圧 ia a相の励磁コイルの電流 ib b相の励磁コイルの電流 ic c相の励磁コイルの電流 id d相の励磁コイルの電流 ie e相の励磁コイルの電流 vn Motor center-point voltage Ea A phase back electromotive voltage Eb b phase back electromotive voltage Ec c phase back electromotive voltage Ed d phase back electromotive voltage Eee e phase back electromotive voltage Lm Inductance R in equivalent circuit of exciting coil Resistance in coil equivalent circuit Vb Power supply voltage supplied to motor drive circuit ia Current of excitation coil of a phase ib Current of excitation coil of b phase ic Current of excitation coil of c phase id Current of excitation coil of d phase ie e Phase excitation coil current

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月26日(2000.4.2
6)
[Submission date] April 26, 2000 (200.4.2
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 モータの励磁電流を検出する電流検出回
路を2個以上使用せず、複数の励磁相を有するモータを
駆動制御するモータ駆動制御装置において、前記モータ
の各励磁相に供給する励磁信号を生成する駆動手段と、
前記各励磁相ごとに前記励磁信号の方向決定及びオンオ
フに切替えを行う制御手段とを備え、前記制御手段は、
前記切替えの時にモータの前記各励磁相の励磁電流の合
計値を一定に保つように前記励磁信号を生成することを
特徴とするモータ駆動制御装置。
1. A motor drive control device for driving and controlling a motor having a plurality of excitation phases without using two or more current detection circuits for detecting an excitation current of the motor, wherein an excitation supplied to each excitation phase of the motor is provided. Driving means for generating a signal;
Control means for determining the direction of the excitation signal for each of the excitation phases and switching on and off, the control means,
A motor drive control device, wherein the excitation signal is generated such that a total value of excitation currents of the respective excitation phases of the motor is kept constant at the time of the switching.
【請求項2】 前記制御手段は、前記切替時に切り替え
られる前記励磁信号の変化率を制御する請求項1に記載
のモータ駆動制御装置。
2. The motor drive control device according to claim 1, wherein the control means controls a rate of change of the excitation signal switched at the time of the switching.
【請求項3】 前記駆動手段は、前記励磁信号として前
記モータの複数の励磁コイルに供給する励磁電流を生成
する駆動回路を有し、前記制御手段は、前記励磁電流の
切換時に前記励磁電流が立上がる励磁相と立下がる励磁
相の電流変化率を一致させるか又は同程度にする駆動信
号を前記駆動回路に供給する請求項2に記載のモータ駆
動制御装置。
3. The drive unit includes a drive circuit that generates an excitation current to be supplied to a plurality of excitation coils of the motor as the excitation signal. The control unit controls the excitation current when the excitation current is switched. 3. The motor drive control device according to claim 2, wherein a drive signal for making the current change rates of the rising excitation phase and the falling excitation phase equal or substantially equal is supplied to the drive circuit. 4.
【請求項4】 前記制御手段は、前記励磁電流が切替え
られない励磁相に対する上段用(順方向電流用)の第1
のPMW信号と下段用(逆方向電流用)の第3のPMW
信号と、前記励磁電流が立上がる励磁相及び/又は立下
がる励磁相に対する上段用(順方向電流用)の第2のP
WM信号と下段用(逆方向電流用)の第4のPWM信号
とを合成演算することにより、前記駆動信号を生成する
請求項3に記載のモータ駆動制御装置。
4. The control means according to claim 1, wherein said control means includes a first step (for forward current) for an exciting phase in which said exciting current is not switched.
Signal and the lower (for reverse current) third PMW
Signal and a second P for the upper stage (for forward current) with respect to the exciting phase in which the exciting current rises and / or the exciting phase in which the exciting current falls.
4. The motor drive control device according to claim 3, wherein the drive signal is generated by performing a composite operation on a WM signal and a fourth PWM signal for a lower stage (for a reverse current). 5.
【請求項5】 前記第2のPWM信号及び前記第4のP
WM信号のデューティ比は、前記切替時のモータ電流、
前記第1のPWM信号及び前記第3のPWM信号のデュ
ーティ比、モータの回転角速度、モータの逆起電圧定
数、モータ駆動回路に供給される電源電圧及びモータと
駆動回路の等価電気回路の抵抗成分の関数である請求項
4に記載のモータ駆動制御装置。
5. The second PWM signal and the fourth P signal
The duty ratio of the WM signal is the motor current at the time of the switching,
Duty ratio of the first PWM signal and the third PWM signal, angular velocity of motor, counter electromotive force constant of motor, power supply voltage supplied to motor drive circuit, and resistance component of equivalent electric circuit of motor and drive circuit The motor drive control device according to claim 4, which is a function of:
JP11509899A 1998-06-09 1999-04-22 Motor drive control device Expired - Fee Related JP3309828B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11509899A JP3309828B2 (en) 1999-04-22 1999-04-22 Motor drive control device
DE19981253T DE19981253T1 (en) 1998-06-09 1999-06-07 Motor driver control system
PCT/JP1999/003021 WO1999065138A1 (en) 1998-06-09 1999-06-07 Motor drive control apparatus
US09/485,394 US6400116B1 (en) 1998-06-09 1999-06-07 Motor drive control apparatus
KR1020000020452A KR100710515B1 (en) 1999-04-22 2000-04-18 Motor drive control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11509899A JP3309828B2 (en) 1999-04-22 1999-04-22 Motor drive control device

Publications (2)

Publication Number Publication Date
JP2000308386A true JP2000308386A (en) 2000-11-02
JP3309828B2 JP3309828B2 (en) 2002-07-29

Family

ID=14654172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11509899A Expired - Fee Related JP3309828B2 (en) 1998-06-09 1999-04-22 Motor drive control device

Country Status (2)

Country Link
JP (1) JP3309828B2 (en)
KR (1) KR100710515B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369569A (en) * 2001-06-04 2002-12-20 Nsk Ltd Brushless motor drive control unit
JP2017518020A (en) * 2014-06-03 2017-06-29 エムエムティー エスアー Self-switching reversible linear actuator with two-wire control
CN114826036A (en) * 2022-05-30 2022-07-29 南京凌博电子科技有限公司 Brushless direct current motor control method capable of reducing phase-change torque pulsation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757997B1 (en) * 2001-03-14 2007-09-11 아키라 호사카 Magnetic motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954615B2 (en) * 1989-11-24 1999-09-27 株式会社日立製作所 Motor drive control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369569A (en) * 2001-06-04 2002-12-20 Nsk Ltd Brushless motor drive control unit
JP2017518020A (en) * 2014-06-03 2017-06-29 エムエムティー エスアー Self-switching reversible linear actuator with two-wire control
CN114826036A (en) * 2022-05-30 2022-07-29 南京凌博电子科技有限公司 Brushless direct current motor control method capable of reducing phase-change torque pulsation
CN114826036B (en) * 2022-05-30 2023-11-03 南京凌博电子科技有限公司 Brushless direct current motor control method capable of reducing commutation torque pulsation

Also Published As

Publication number Publication date
KR20000077041A (en) 2000-12-26
JP3309828B2 (en) 2002-07-29
KR100710515B1 (en) 2007-04-23

Similar Documents

Publication Publication Date Title
US7233121B2 (en) Fan speed control circuit
US7764030B2 (en) Control device for three-phase brushless motor
JP3416494B2 (en) DC brushless motor control device and DC brushless motor control method
US6400116B1 (en) Motor drive control apparatus
US7122985B2 (en) Sensorless brushless motor
US20060145652A1 (en) Motor drive controlling device and electric power-steering device
JPH11299297A (en) Controller for permanent magnet synchronous motor
US5155419A (en) Brushless motor drive circuit having a highly accurate sinusoidal output signal
JP2001268879A (en) Brushless motor and its drive controller
JP4346813B2 (en) Power output apparatus and control method thereof
JPH08331883A (en) Driver of brushless dc motor
JP3309828B2 (en) Motor drive control device
US6969962B2 (en) DC motor drive circuit
US6841968B2 (en) Motor driver circuit and method of controlling the motor driver circuit
JP3298508B2 (en) Motor drive control device
JP2008178159A (en) Control device of voltage-type inverter
JP4779233B2 (en) Brushless motor drive control device
JP3556137B2 (en) Drive control device for brushless motor
JPH10234195A (en) Method and apparatus for speed control of motor
JP2003259678A (en) Controller of dc brushless motor
JP4037536B2 (en) Motor control device
JP3362337B2 (en) Brushless DC motor drive controller
JP2541194B2 (en) Brushless motor
JP2022014111A (en) Control apparatus of motor
JPH11289797A (en) Driving method for two phase stepping motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees