JP2000306576A - Sintered nickel electrode for alkaline storage battery - Google Patents

Sintered nickel electrode for alkaline storage battery

Info

Publication number
JP2000306576A
JP2000306576A JP11115763A JP11576399A JP2000306576A JP 2000306576 A JP2000306576 A JP 2000306576A JP 11115763 A JP11115763 A JP 11115763A JP 11576399 A JP11576399 A JP 11576399A JP 2000306576 A JP2000306576 A JP 2000306576A
Authority
JP
Japan
Prior art keywords
electrode
nickel
storage battery
sintered
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11115763A
Other languages
Japanese (ja)
Inventor
Kengo Furukawa
健吾 古川
Toshiki Tanaka
俊樹 田中
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP11115763A priority Critical patent/JP2000306576A/en
Publication of JP2000306576A publication Critical patent/JP2000306576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered nickel electrode excellent in charge efficiency characteristics and highly efficient discharge characteristics having high utilization ratio of an active material and sufficient electrode plate strength. SOLUTION: In this sintered nickel electrode, a porous product sintered with a metal nickel powder is filled with a nickel hydroxide that a part of a nickel is substituted with groups 2A and 2B elements. A coated layer of a compound of a rare-earth element is formed on the surface of an electrode plate. The rare-earth element is at least one kind or more of Ho, Er, Tm, Yb, Lu and Y.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケルカドミウ
ム蓄電池やニッケル水素化物蓄電池のようなアルカリ蓄
電池に用いられる電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode used for an alkaline storage battery such as a nickel cadmium storage battery and a nickel hydride storage battery.

【0002】[0002]

【従来の技術】焼結式ニッケル電極は、ニッケル粉末を
焼結させた高多孔度を有する集電体の細孔内部に直接水
酸化ニッケル活物質を析出・成長させて得られる。一般
には、焼結集電体に硝酸ニッケルなどの溶融塩を含浸
し、ついで水酸化ナトリウム水溶液などのアルカリ液中
で水酸化ニッケルに転化させる一連の操作を、所望の充
填量が得られるまで繰り返すことによって製造されてい
る。
2. Description of the Related Art A sintered nickel electrode is obtained by directly depositing and growing a nickel hydroxide active material inside the pores of a current collector having a high porosity obtained by sintering nickel powder. Generally, a series of operations in which a sintered current collector is impregnated with a molten salt such as nickel nitrate and then converted to nickel hydroxide in an alkaline solution such as an aqueous sodium hydroxide solution is repeated until a desired filling amount is obtained. It is manufactured by.

【0003】焼結式電極に用いる焼結集電体の細孔径は
10数μmと非常に小さく、活物質と集電体間の距離が
短く、これにより導電性が確保されるため、電動工具な
どの大電流放電用途に使用する電池に不可欠である。し
かしながら、先に述べたように焼結式集電体の細孔径は
非常に小さいため、逆にこの電極に充分な量の水酸化ニ
ッケルを充填するには上記含浸、中和、洗浄、乾燥とい
った煩雑な一連の工数を多数回繰り返す必要がある。ま
た、集電体の細孔入り口近傍が目詰まりを起こすなどし
て、電極内の電解液拡散を阻害するため、電池出力が低
下するなどの問題があった。そこで、これを改善する目
的で予め焼結集電体の多孔度を大きくするという手法が
一般に行われているものの、必要以上に集電体の多孔度
を大きくすると集電体自体の強度が著しく低下するた
め、限界があった。
[0003] The pore size of the sintered current collector used for the sintered electrode is as very small as several tens of µm, and the distance between the active material and the current collector is short, thereby ensuring conductivity. Indispensable for batteries used for large current discharge applications. However, as described above, the pore size of the sintered current collector is very small, and conversely, in order to fill this electrode with a sufficient amount of nickel hydroxide, the above-described impregnation, neutralization, washing, and drying are performed. It is necessary to repeat a complicated series of man-hours many times. In addition, there is a problem in that, for example, clogging occurs near the entrance of the fine hole in the current collector, which inhibits diffusion of the electrolytic solution in the electrode, thereby lowering the battery output. In order to improve this, it is common practice to increase the porosity of the sintered current collector in advance.However, if the porosity of the current collector is increased more than necessary, the strength of the current collector itself significantly decreases. There were limits to doing so.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記の問題点
を解決するために、充電効率特性、高率放電特性に優
れ、活物質利用率が高く、且つ充分な電極板強度を有す
る焼結式ニッケル電極を提供するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a sintered compact having excellent charge efficiency characteristics, high rate discharge characteristics, a high active material utilization rate, and sufficient electrode plate strength. The present invention provides a formula nickel electrode.

【0005】[0005]

【課題を解決するための手段】本発明の第一は、金属ニ
ッケル粉末を焼結した多孔体に、ニッケルの一部が2
A、2B族元素で置換された水酸化ニッケル活物質を充
填してなるアルカリ蓄電池用焼結式ニッケル電極におい
て、極板の表面に希土類元素の化合物の被覆層を形成さ
せたことを特徴とするアルカリ蓄電池用焼結式ニッケル
電極であって、前記希土類元素がHo,Er,Tm,Y
b,Lu,Yの少なくとも一種以上の元素であることを
特徴とするものである。
Means for Solving the Problems The first aspect of the present invention is to provide a porous body obtained by sintering metallic nickel powder, wherein a part of nickel is
A sintered nickel electrode for an alkaline storage battery, which is filled with a nickel hydroxide active material substituted with a group A or 2B element, wherein a coating layer of a compound of a rare earth element is formed on the surface of the electrode plate. A sintered nickel electrode for an alkaline storage battery, wherein the rare earth element is Ho, Er, Tm, Y
It is characterized by being at least one element of b, Lu and Y.

【0006】本発明の第二は、前記アルカリ蓄電池用焼
結式ニッケル電極において、さらに極板の表面にコバル
ト及び/または2A,2B族元素の被覆層を形成せし
め、さらに前記複合被覆層を化学的酸化または電気化学
酸化によってコバルト高次酸化物とするものである。
A second aspect of the present invention is that, in the sintered nickel electrode for an alkaline storage battery, a coating layer of cobalt and / or a group 2A, 2B element is further formed on the surface of the electrode plate. Cobalt higher-order oxide is formed by chemical oxidation or electrochemical oxidation.

【0007】上記の2A、2B族元素でニッケルの一部
を置換することによって、電極膨潤を抑制する効果があ
る。また、同時に希土類元素で被覆することにより、ニ
ッケル電極の酸素発生過電圧が増大させられることか
ら、充電効率の優れた電極とすることができる。さら
に、前記のニッケル電極の表面にコバルト化合物の被覆
層を形成させることにより、高い導電性を持つコバルト
高次酸化物がその後の充電過程により形成される。その
結果、活物質間の導電性が向上し、活物質利用率、高率
放電特性が向上する。
By substituting a part of nickel with the above-mentioned 2A or 2B group element, there is an effect of suppressing electrode swelling. In addition, by coating with a rare earth element at the same time, the oxygen generation overpotential of the nickel electrode can be increased, so that an electrode having excellent charging efficiency can be obtained. Further, by forming a coating layer of a cobalt compound on the surface of the nickel electrode, a cobalt higher oxide having high conductivity is formed in a subsequent charging process. As a result, the conductivity between the active materials is improved, and the active material utilization rate and the high-rate discharge characteristics are improved.

【0008】[0008]

【発明の実施の形態】本発明の第一は、金属ニッケル粉
末を焼結した多孔体に、ニッケルの一部が2A、2B族
元素で置換された水酸化ニッケル活物質を充填してなる
アルカリ蓄電池用焼結式ニッケル電極において、極板の
表面に希土類元素の化合物の被覆層を形成させたことを
特徴とするアルカリ蓄電池用焼結式ニッケル電極であっ
て、前記希土類元素がHo,Er,Tm,Yb,Lu,
Yの少なくとも一種以上の元素であることを特徴とする
ものであり、環境に優しく、幅広い温度範囲での充電効
率に優れた電極を提供することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The first aspect of the present invention is an alkali obtained by filling a nickel hydroxide active material in which a part of nickel is substituted with a group 2A or 2B element into a porous body obtained by sintering metallic nickel powder. A sintered nickel electrode for an alkaline storage battery, wherein a coating layer of a compound of a rare earth element is formed on the surface of an electrode plate, wherein the rare earth element is Ho, Er, Tm, Yb, Lu,
It is characterized by being at least one element of Y, and can provide an electrode that is environmentally friendly and has excellent charge efficiency in a wide temperature range.

【0009】また、本発明の第二は、前記アルカリ蓄電
池用焼結式ニッケル電極において、さらに極板の表面に
コバルト及び/または2A,2B族元素の化合物の複合
被覆層を形成せしめ、さらに前記複合被覆層を化学的酸
化または電気化学酸化によって高次酸化物とするもので
あり、充電効率に優れるとともに、活物質利用率及び高
率放電性能を高めた電極を提供できる。
A second aspect of the present invention is that in the sintered nickel electrode for an alkaline storage battery, a composite coating layer of a compound of cobalt and / or a group 2A, 2B element is further formed on the surface of the electrode plate. Since the composite coating layer is converted to a higher oxide by chemical oxidation or electrochemical oxidation, it is possible to provide an electrode which is excellent in charge efficiency, and has enhanced active material utilization and high rate discharge performance.

【0010】[0010]

【実施例】以下に、本発明の実施例を説明するが、本発
明はこれに限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0011】ニッケル粉末を焼結して得られた多孔度約
80%の焼結式ニッケル集電体を、80℃、比重1.8
の溶融硝酸ニッケル溶液に硝酸亜鉛および硝酸コバルト
を所定比で加えた含浸液に5分間浸漬し、乾燥後、80
℃、比重1.3の苛性ソーダ中にて水酸化物に転化する
一連の工程を繰り返して所定の充填量とし、引き続いて
イッテルビウム硝酸塩水溶液に浸漬して、乾燥後、比重
1.3の苛性ソーダ中にて遊離状態のイッテルビウム水
酸化物被覆層を形成させた本発明焼結式電極を作成し
た。以下これを本発明電極(A)とする。
A sintered nickel current collector having a porosity of about 80%, obtained by sintering nickel powder, is heated at 80 ° C. and a specific gravity of 1.8.
5 minutes in an impregnating solution in which zinc nitrate and cobalt nitrate are added at a predetermined ratio to a molten nickel nitrate solution of
A series of steps of conversion to hydroxide in caustic soda having a specific gravity of 1.3 ° C. are repeated to obtain a predetermined filling amount, subsequently immersed in an ytterbium nitrate aqueous solution, dried, and then dried in caustic soda having a specific gravity of 1.3. Thus, a sintered electrode of the present invention was formed in which a ytterbium hydroxide coating layer in a free state was formed. Hereinafter, this is referred to as electrode (A) of the present invention.

【0012】一方、イッテルビウム硝酸塩を加えない以
外は全く同様の操作で、希土類元素を含まない比較電極
(C)を作成した。
On the other hand, a comparative electrode (C) containing no rare earth element was prepared in exactly the same manner except that no ytterbium nitrate was added.

【0013】さらに、本発明電極(A)を比重1.2の
硝酸コバルト水溶液に浸漬して、乾燥後、比重1.3の
苛性ソーダ中にて遊離状態のコバルト水酸化物被覆層を
形成させた希土類元素を含む本発明電極(B)を作成し
た。
Further, the electrode (A) of the present invention was immersed in an aqueous solution of cobalt nitrate having a specific gravity of 1.2, dried, and then a free cobalt hydroxide coating layer was formed in caustic soda having a specific gravity of 1.3. The electrode (B) of the present invention containing a rare earth element was prepared.

【0014】このようにして作成した各種電極を、セパ
レータを介して水素吸蔵合金負極と対向させ、比重1.
28の水酸化カリウムを電解液とし、開放系にて充放電
試験を行い、容量が安定した5サイクル経過後性能を評
価した。
The various electrodes thus prepared are opposed to the hydrogen-absorbing alloy negative electrode via a separator, and the specific gravity is set to 1.
A charge / discharge test was performed in an open system using potassium hydroxide of No. 28 as an electrolyte, and the performance was evaluated after 5 cycles when the capacity was stabilized.

【0015】図1に50℃における本発明電極(A)、
比較電極(C)の充電効率を示す。希土類元素を表面に
被覆することにより、充電効率が高くなっていることが
分かる。また、20℃における本発明電極(A)および
比較電極(C)の充電曲線を図2に示す。本発明電極
(A)では充電初期の水酸化ニッケルの酸化分解反応に
よる電圧平坦部とそれに引き続く充電末期の酸素発生反
応による電圧平坦部が明確に区別されているが、比較電
極(C)では酸化ニッケルの酸化分解反応と充電末期の
酸素発生反応の区別がはっきりしない。充電末期におい
てこの2つの競争反応の電位が区別されることにより、
通電電気量の大部分が水酸化ニッケルの酸化反応に使わ
れるため、充電効率が向上する。
FIG. 1 shows the electrode (A) of the present invention at 50 ° C.
4 shows the charging efficiency of the comparative electrode (C). It can be seen that the charging efficiency is increased by coating the surface with the rare earth element. FIG. 2 shows the charging curves of the electrode of the present invention (A) and the comparative electrode (C) at 20 ° C. In the electrode (A) of the present invention, a voltage flat portion caused by the oxidative decomposition reaction of nickel hydroxide at the early stage of charging and a voltage flat portion caused by the subsequent oxygen evolution reaction at the end of charging are clearly distinguished. The distinction between the oxidative decomposition reaction of nickel and the oxygen evolution reaction at the end of charging is not clear. At the end of charging, the potential of these two competition reactions is distinguished,
Since most of the electricity is used for the oxidation reaction of nickel hydroxide, the charging efficiency is improved.

【0016】また、本発明電極(A)および本発明電極
(B)の放電率と利用率変化を図3に示す。図より明ら
かなように、電極の表面にコバルト水酸化物の被覆層を
形成した場合には、高率放電においても高い利用率を示
すことがわかる。これは、活物質表面に高次コバルト合
物の導電性ネットワークが形成され、深放電が可能にな
ったためと考えられる。
FIG. 3 shows changes in the discharge rate and the utilization rate of the electrode (A) of the present invention and the electrode (B) of the present invention. As is apparent from the figure, when the coating layer of cobalt hydroxide is formed on the surface of the electrode, it shows a high utilization factor even in high-rate discharge. This is probably because a conductive network of a higher-order cobalt compound was formed on the surface of the active material, and deep discharge was enabled.

【0017】以上、実施例では主にイッテルビウムの効
果について説明したが、ここに挙げた他の希土類元素で
も同様の効果を示した。
Although the effects of ytterbium have been mainly described in the embodiments, similar effects can be obtained with other rare earth elements listed here.

【0018】[0018]

【発明の効果】以上のように、本発明の第一によれば、
金属ニッケル粉末を焼結した多孔体に、ニッケルの一部
が2A、2B族元素で置換された水酸化ニッケル活物質
を充填してなるアルカリ蓄電池用焼結式ニッケル電極の
表面をさらに希土類元素で置換することにより、環境に
優しく、充電効率に優れるとともに、電極膨潤を防止し
てサイクル寿命を向上させ、且つ電池の自己放電を抑制
する電極を提供することができる。
As described above, according to the first aspect of the present invention,
The surface of a sintered nickel electrode for an alkaline storage battery in which a porous body obtained by sintering metallic nickel powder is filled with a nickel hydroxide active material in which a part of nickel is substituted by a 2A or 2B group element, is further coated with a rare earth element. By substituting, it is possible to provide an electrode that is environmentally friendly, has excellent charging efficiency, prevents swelling of the electrode, improves cycle life, and suppresses self-discharge of the battery.

【0019】また、本発明の第二によれば、前記アルカ
リ蓄電池用焼結式ニッケル電極において、さらに極板の
表面にコバルト及び/または2A,2B族元素や希土類
元素の化合物の複合被覆層を形成せしめ、さらに前記複
合被覆層を化学的酸化または電気化学酸化によって高次
酸化物とすることにより活物質利用率及び高率放電性能
を高めた電極を提供できる。
According to a second aspect of the present invention, in the sintered nickel electrode for an alkaline storage battery, a composite coating layer of cobalt and / or a compound of a group 2A, 2B element or a rare earth element is further provided on the surface of the electrode plate. By forming the composite coating layer into a higher oxide by chemical oxidation or electrochemical oxidation, it is possible to provide an electrode having improved active material utilization and high rate discharge performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】50℃における各種電極の充電効率を示した図
である。
FIG. 1 is a diagram showing the charging efficiency of various electrodes at 50 ° C.

【図2】20℃における各種電極の充電曲線を示した図
である。
FIG. 2 is a diagram showing charging curves of various electrodes at 20 ° C.

【図3】各種電極の放電率と利用率の関係を示した図で
ある。
FIG. 3 is a diagram showing a relationship between a discharge rate and a utilization rate of various electrodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 Fターム(参考) 5H003 AA02 BB04 BB13 BB14 5H016 AA06 BB08 BB11 CC00 EE01 EE04 EE05 5H017 AA02 BB08 BB16 CC27 DD05 EE04  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Oshitani 6-6 Josaicho, Takatsuki-shi, Osaka F-term in Yuasa Corporation (reference) 5H003 AA02 BB04 BB13 BB14 5H016 AA06 BB08 BB11 CC00 EE01 EE04 EE05 5H017 AA02 BB08 BB16 CC27 DD05 EE04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属ニッケル粉末を焼結した多孔体に、
ニッケルの一部が2A、2B族元素で置換された水酸化
ニッケル活物質を充填してなるアルカリ蓄電池用焼結式
ニッケル電極において、極板の表面に希土類元素の化合
物の被覆層を形成させたことを特徴とするアルカリ蓄電
池用焼結式ニッケル電極。
1. A porous body obtained by sintering metallic nickel powder,
In a sintered nickel electrode for an alkaline storage battery in which a part of nickel is filled with a nickel hydroxide active material substituted with a 2A or 2B group element, a coating layer of a compound of a rare earth element is formed on the surface of an electrode plate. A sintered nickel electrode for an alkaline storage battery.
【請求項2】 前記希土類元素が、Ho,Er,Tm,
Yb,Lu,Yの少なくとも一種以上の元素である請求
項1記載のアルカリ蓄電池用焼結式ニッケル電極。
2. The method according to claim 1, wherein the rare earth element is Ho, Er, Tm,
The sintered nickel electrode for an alkaline storage battery according to claim 1, wherein the sintered nickel electrode is at least one element of Yb, Lu, and Y.
【請求項3】 前記希土類元素の化合物の被覆層を形成
した極板の表面にさらにコバルト及び/または2A,2
B族元素の被覆層を形成させたアルカリ蓄電池用焼結式
ニッケル電極。
3. The surface of the electrode plate on which a coating layer of a compound of a rare earth element is formed, further comprising cobalt and / or 2A, 2
A sintered nickel electrode for an alkaline storage battery having a coating layer of a group B element formed thereon.
【請求項4】 前記複合被覆層を化学的酸化または電気
化学酸化によって高次酸化物とした請求項3記載のアル
カリ蓄電池用焼結式ニッケル電極。
4. The sintered nickel electrode for an alkaline storage battery according to claim 3, wherein said composite coating layer is converted into a higher oxide by chemical oxidation or electrochemical oxidation.
JP11115763A 1999-04-23 1999-04-23 Sintered nickel electrode for alkaline storage battery Pending JP2000306576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11115763A JP2000306576A (en) 1999-04-23 1999-04-23 Sintered nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11115763A JP2000306576A (en) 1999-04-23 1999-04-23 Sintered nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2000306576A true JP2000306576A (en) 2000-11-02

Family

ID=14670451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11115763A Pending JP2000306576A (en) 1999-04-23 1999-04-23 Sintered nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2000306576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075346A (en) * 2000-08-30 2002-03-15 Sanyo Electric Co Ltd Sintered nickel electrode and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075346A (en) * 2000-08-30 2002-03-15 Sanyo Electric Co Ltd Sintered nickel electrode and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2000306576A (en) Sintered nickel electrode for alkaline storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JP2002231240A (en) Sintered nickel electrode for alkaline battery, method of manufacturing the same, and alkaline battery
JP2001351619A (en) Nickel positive electrode plate and alkaline battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2000113882A (en) Sintered nickel electrode for alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JP3287215B2 (en) Manufacturing method of nickel positive plate for alkaline storage battery
JPH0465067A (en) Formation method of nickel-hydrogen battery
JP3209083B2 (en) Manufacturing method of nickel positive plate for alkaline storage battery
JP2002260645A (en) Manufacturing method of hydrogen storage alloy electrode, and the hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP2000277105A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPH11144724A (en) Non-sintering nickel hydroxide electrode for alkaline storage battery
JPH11273669A (en) Manufacture of sintered cadmium negative electrode
KR19980026469A (en) Nickel electrode and its manufacturing method
JPH06140035A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPH01146253A (en) Manufacture of cadmium electrode for battery