JP2000304396A - Hybrid refrigerator - Google Patents

Hybrid refrigerator

Info

Publication number
JP2000304396A
JP2000304396A JP11111559A JP11155999A JP2000304396A JP 2000304396 A JP2000304396 A JP 2000304396A JP 11111559 A JP11111559 A JP 11111559A JP 11155999 A JP11155999 A JP 11155999A JP 2000304396 A JP2000304396 A JP 2000304396A
Authority
JP
Japan
Prior art keywords
peltier element
temperature
evaporator
junction
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11111559A
Other languages
Japanese (ja)
Inventor
Motoo Sugawara
元雄 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP11111559A priority Critical patent/JP2000304396A/en
Publication of JP2000304396A publication Critical patent/JP2000304396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids

Abstract

PROBLEM TO BE SOLVED: To provide means for stably holding the cooling or heating temp. of a hybrid refrigerator. SOLUTION: A compressor 11 compresses a vapor refrigerant evaporated by an evaporator 14 and sends it to a condenser 12. The condenser 12 cools the vapor refrigerant from the compressor to condense it into a liq. refrigerant. The condensed high-pressure liq. refrigerant is changed through an expansion valve 13 to a low pressure one and sent to the evaporator 14. The evaporator 14 at low pressure evaporates the liq. refrigerant, thus constituting a refrigeration cycle for absorbing heat from surroundings. A specified current is caused to flow from a power source 22 to the evaporator 14 by bringing one junction of a Peltier element 21 into thermal contact and the other junction is, e.g. cooled to cool the interior 31a of a covered box 31 through a heat exchanger 25 such as absorbing fins attached to this junction. A heat storage body 24 composed of a Cu thick plate or the like having a high thermal conductivity and a high specific heat is set between the evaporator 14 in the refrigeration cycle and one junction of the Peltier element 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷却又は加熱する
温度を安定に保持することが可能な混成冷凍機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid refrigerator capable of stably maintaining a cooling or heating temperature.

【0002】[0002]

【従来の技術】動く部分が無く、冷却(又は加熱)する
温度を高精度で制御することができるものとしてペルチ
ェ素子が重用されている。このペルチェ素子では、冷却
(又は加熱)のCOP(Coefficent of Performance )
が小さいため、目的によっては十分な冷却等ができない
ことも多い。そのような場合には、冷媒を用いた冷凍サ
イクルにより大きな温度差を得るとともに、ペルチェ素
子により安定な温度制御を行うような混成冷凍機が考え
られる。このような混成冷凍機では、一般にペルチェ素
子の一方の接合部を冷凍サイクルの蒸発器に熱的に接触
させて、他方の接合部により対象物を冷却(又は加熱)
することとなる。しかし、熱負荷の変動等に対処するた
めの冷凍サイクル側で行う温度制御は精度が悪く、これ
によりペルチェ素子の一方の接合部の温度も大きく変動
する。そのめに、対象物の温度を所定の温度範囲内に制
御することが困難となる。
2. Description of the Related Art Peltier elements are frequently used because they have no moving parts and can control the temperature of cooling (or heating) with high accuracy. In this Peltier element, COP (Coefficent of Performance) of cooling (or heating)
Because of its small size, sufficient cooling or the like cannot often be performed depending on the purpose. In such a case, a hybrid refrigerator that can obtain a large temperature difference by a refrigeration cycle using a refrigerant and perform stable temperature control by a Peltier element is conceivable. In such a hybrid refrigerator, generally, one joint of a Peltier element is brought into thermal contact with an evaporator of a refrigeration cycle, and the other joint cools (or heats) an object.
Will be done. However, temperature control performed on the refrigeration cycle side to cope with fluctuations in heat load or the like is inaccurate, and as a result, the temperature of one junction of the Peltier element also fluctuates greatly. In addition, it is difficult to control the temperature of the object within a predetermined temperature range.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みなされたもので、混成冷凍機の冷却又は加熱の温度
を容易に安定に保持する手段を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide means for easily and stably maintaining the cooling or heating temperature of a hybrid refrigerator.

【0004】[0004]

【課題を解決するための手段】蒸発器で蒸発してくる蒸
気冷媒を圧縮して送り出す圧縮機と、圧縮機から送られ
てくる蒸気冷媒を冷却して凝縮させる凝縮器と、凝縮器
からの高圧の液体冷媒を低圧の蒸発器に送り出す膨張弁
と、膨張弁を通して送られる液体冷媒を蒸発させて周囲
を冷却する蒸発器からなる冷凍サイクルと、電流の方向
により冷却または加熱を行う2つの接合部からなるペル
チェ素子を備え、冷凍サイクルの蒸発器にペルチェ素子
の一方の接合部を熱的に接触させ他方の接合部を冷却又
は加熱する混成冷凍機において、蒸発器とペルチェ素子
の接合部との間に熱伝導度が高く、かつ比熱の大きい蓄
熱体を介在させる。
Means for Solving the Problems A compressor for compressing and sending vapor refrigerant evaporated by an evaporator, a condenser for cooling and condensing the vapor refrigerant sent from the compressor, A refrigeration cycle consisting of an expansion valve that sends high-pressure liquid refrigerant to a low-pressure evaporator, an evaporator that cools the surroundings by evaporating the liquid refrigerant sent through the expansion valve, and two junctions that perform cooling or heating depending on the direction of current In a hybrid refrigerator in which one of the Peltier elements is brought into thermal contact with the evaporator of the refrigeration cycle and the other is cooled or heated, the junction between the evaporator and the Peltier element is provided. A heat storage body having a high thermal conductivity and a large specific heat is interposed therebetween.

【0005】蒸発器、蓄熱体及びこれに接触するペルチ
ェ素子の接合部は、ペルチェ素子の他方の接合部から熱
的に遮断する断熱材で覆う構造とする。
The joint between the evaporator, the heat storage element and the Peltier element that comes into contact with the evaporator is covered with a heat insulating material that is thermally isolated from the other joint of the Peltier element.

【0006】蓄熱体は、銅板の厚板から構成する。[0006] The heat storage body is formed of a thick plate of a copper plate.

【0007】ペルチェ素子を駆動する電源には、所定の
時間毎に、又は冷却部への霜の付着を検出する霜付着検
出手段からの信号により、ペルチェ素子に流す電流を逆
転して霜取りを行う霜取り機能を設ける。
A power supply for driving the Peltier element performs defrosting at predetermined time intervals or in accordance with a signal from frost adhesion detection means for detecting the adhesion of frost to the cooling section by reversing the current flowing through the Peltier element. Provide a defrost function.

【0008】霜付着検出手段はペルチェ素子の双方の接
合部それぞれの温度を検出する温度検出手段と、それら
の温度の差を算出する温度差算出手段と、算出した温度
差を所定の値と比較する比較手段から構成し、ペルチェ
素子の双方の接合部の間の温度差が所定の温度以上とな
ることにより霜が付着したと判定する。
[0008] The frost adhesion detecting means is a temperature detecting means for detecting the temperature of each of the two joints of the Peltier element, a temperature difference calculating means for calculating a difference between the temperatures, and comparing the calculated temperature difference with a predetermined value. It is determined that frost has adhered when the temperature difference between the two joints of the Peltier element is equal to or higher than a predetermined temperature.

【0009】ペルチェ素子の双方の接合部それぞれの温
度を検出する温度検出手段は、一方の接合部の温度を検
出する温度センサと、その温度とペルチェ素子の電圧お
よび電流並びにペルチェ素子の物理定数から他方の接合
部の温度を算出する温度算出部から構成する。
The temperature detecting means for detecting the temperature of each of the two junctions of the Peltier element includes a temperature sensor for detecting the temperature of one of the junctions, and a temperature, a voltage and a current of the Peltier element, and a physical constant of the Peltier element. It comprises a temperature calculator for calculating the temperature of the other joint.

【0010】温度算出部は、ペルチェ素子の一方の接合
部の温度とペルチェ素子の電圧および電流並びにペルチ
ェ素子の物理定数を入力とし、ペルチェ素子の他方の接
合部の温度を出力とするLUT(Look Up Table )から
構成する。
[0010] The temperature calculating section receives the temperature of one junction of the Peltier element, the voltage and current of the Peltier element, and the physical constant of the Peltier element as inputs, and outputs the LUT (Look) which outputs the temperature of the other junction of the Peltier element. Up Table).

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態につい
て、図を用いて説明する。図1は、本発明による混成冷
凍機の1実施例の概念図である。断熱材等からなる有蓋
箱体31の内部31aを所定温度に冷却する恒温槽を考
える。圧縮機11で、蒸発器14で蒸発した蒸気冷媒を
圧縮して凝縮器12に送り出す。凝縮器12では圧縮機
から送られてくる蒸気冷媒を冷却して凝縮させ、液体冷
媒とする。凝縮した高圧の液体冷媒は、膨張弁13を介
して低圧にし蒸発器14に送り出す。低圧の蒸発器14
では液体冷媒が蒸発して周囲から吸熱することにより、
冷凍サイクルが構成される。蒸発器14には、ペルチェ
素子21の一方の接合部を熱的に接触させて、電源22
から所定の電流を流すことで、他方の接合部を例えば冷
却して、その接合部に設けた吸熱フィン等からなる熱交
換器25を介して有蓋箱体31の内部31aを冷却す
る。冷凍サイクルの蒸発器14とペルチェ素子21の一
方の接合部との間には、銅の厚板等からなる熱伝導度が
高く、かつ比熱の大きい蓄熱体24を介在させる。これ
により、冷凍サイクルをオンオフ制御して、蒸発器14
の温度が大きく変動しても、ペルチェ素子21の放熱側
の一方の接合部の温度は蓄熱体24で平均化されて略一
定となり、ひいては、冷却側の他方の接合部の温度もこ
れにより変動することが無くなる。なお、蒸発器14と
蓄熱体24とこれに接続するペルチェ素子21の放熱側
の接合部の周囲には断熱体31bを設けて、ペルチェ素
子21の冷却側の接合部から熱的に遮断する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of one embodiment of a hybrid refrigerator according to the present invention. Consider a thermostat that cools the inside 31a of the covered box body 31 made of a heat insulating material or the like to a predetermined temperature. In the compressor 11, the vapor refrigerant evaporated in the evaporator 14 is compressed and sent to the condenser 12. In the condenser 12, the vapor refrigerant sent from the compressor is cooled and condensed to be a liquid refrigerant. The condensed high-pressure liquid refrigerant is reduced in pressure through the expansion valve 13 and sent to the evaporator 14. Low pressure evaporator 14
The liquid refrigerant evaporates and absorbs heat from the surroundings,
A refrigeration cycle is configured. One of the joints of the Peltier element 21 is brought into thermal contact with the evaporator 14 so that
Then, a predetermined current is passed through the cooling device to cool the other joint, for example, and cool the inside 31a of the closed box 31 via the heat exchanger 25 including heat absorbing fins provided at the joint. Between the evaporator 14 of the refrigeration cycle and one joint of the Peltier element 21, a heat storage body 24 made of a thick copper plate or the like and having high heat conductivity and high specific heat is interposed. As a result, the refrigeration cycle is turned on and off, and the evaporator 14 is controlled.
Even if the temperature of the Peltier element 21 greatly fluctuates, the temperature of one of the joints on the heat radiation side of the Peltier element 21 is averaged by the heat storage unit 24 and becomes substantially constant, and the temperature of the other joint on the cooling side also fluctuates accordingly. Will not be done. In addition, a heat insulator 31b is provided around the joint on the heat radiation side of the evaporator 14, the heat storage body 24, and the Peltier element 21 connected to the evaporator 14, so as to be thermally isolated from the joint on the cooling side of the Peltier element 21.

【0012】上記の有蓋箱体31が、例えば冷蔵庫等の
場合には、所定時間毎、又は冷却部への霜の付着を検出
する霜付着検出手段からの信号により、熱交換器25に
付着する霜を除去する必要がある。この場合には、ペル
チェ素子21を駆動する電源22の中に、所定の時間
毎、又は霜付着検出手段からの信号により、ペルチェ素
子21の電流を所定時間だけ逆転して流すことにより霜
取りを行う霜取り機能を設ける。ペルチェ素子21の電
流を所定時間だけ逆転して流すことにより、冷却側の接
合部で発熱して霜取りが行われるが、このとき、放熱側
の接合部及びこれに接触する蓄熱体24が冷却される。
そして所定時間後にもとの電流の方向に戻ると蓄熱体2
4により放熱側が冷却されるため、冷却側の接合部の温
度は急速に冷却され、有蓋箱体31の内部31aを迅速
にもとの温度に戻すことができる。
When the above-mentioned closed box 31 is, for example, a refrigerator or the like, it adheres to the heat exchanger 25 at predetermined time intervals or according to a signal from frost adhesion detecting means for detecting the adhesion of frost to the cooling section. The frost needs to be removed. In this case, defrosting is performed by flowing the current of the Peltier element 21 in the power supply 22 for driving the Peltier element 21 at predetermined time intervals or in reverse by a signal from the frost adhesion detection means for a predetermined time. Provide a defrost function. By flowing the current of the Peltier element 21 in reverse for a predetermined time, heat is generated at the junction on the cooling side and defrosting is performed. At this time, the junction on the heat radiation side and the heat storage body 24 in contact with the junction are cooled. You.
Then, after returning to the original current direction after a predetermined time, the heat storage body 2
Since the heat radiation side is cooled by 4, the temperature of the junction on the cooling side is rapidly cooled, and the inside 31a of the closed box body 31 can be quickly returned to the original temperature.

【0013】霜付着検出手段としては、従来の技術を利
用することもできる。または、以下のようにすることに
より、この構成に適合した手段が採用できる。すわわ
ち、ペルチェ素子21の冷却側の熱交換器25に霜が付
着すると吸熱量が低下して、ペルチェ素子21の冷却側
と放熱側の接合部の温度差が増大する。そこで、これら
接合部の双方の温度を検出する温度検出手段と、それら
の温度の差を算出する温度差算出手段と、算出した温度
差を所定の値と比較する比較手段を設けて、ペルチェ素
子21の双方の接合部の間の温度差が所定の温度以上と
なることにより霜が付着したと判定する。図2は、これ
らの機能を含むペルチェ素子21の電源22の概要ブロ
ック図である。電源22の電流制御部では、ペルチェ素
子21の冷却側の温度Tcを入力して、これを所定の温
度とすべくPID制御等により電流値を算出して、これ
をペルチェ素子21に流す。ペルチェ素子21の冷却側
の温度Tcは、例えばサーミスタ等からなる温度センサ
23で検出する放熱側の温度Th、電流計22c及び電
圧計22d等で検出するペルチェ素子21の電流Iと電
圧V、ペルチェ素子21のゼーベック係数Sと抵抗Rに
より、V=S×(Th−Tc)+R×Iを用いて温度算
出部22aで算出することができる。温度算出部22a
は、例えば温度Th、電流I、電圧Vをアドレス入力と
し、温度Tcをデータ出力とするROMからなるLUT
から構成することができる。
As the frost adhesion detecting means, a conventional technique can be used. Alternatively, a means suitable for this configuration can be adopted as follows. That is, if frost adheres to the heat exchanger 25 on the cooling side of the Peltier element 21, the amount of heat absorbed decreases, and the temperature difference between the junction of the cooling side and the radiation side of the Peltier element 21 increases. Therefore, a Peltier element is provided by providing temperature detecting means for detecting the temperatures of both of these junctions, temperature difference calculating means for calculating the difference between the temperatures, and comparing means for comparing the calculated temperature difference with a predetermined value. It is determined that frost has adhered when the temperature difference between the two joints 21 is equal to or higher than a predetermined temperature. FIG. 2 is a schematic block diagram of the power supply 22 of the Peltier device 21 including these functions. The current control unit of the power supply 22 inputs the temperature Tc on the cooling side of the Peltier element 21, calculates a current value by PID control or the like to keep the temperature at a predetermined temperature, and sends the current to the Peltier element 21. The temperature Tc on the cooling side of the Peltier element 21 includes, for example, a temperature Th on the heat radiation side detected by a temperature sensor 23 composed of a thermistor or the like, a current I and a voltage V of the Peltier element 21 detected by an ammeter 22c, a voltmeter 22d, and the like. Using the Seebeck coefficient S and the resistance R of the element 21, the temperature can be calculated by the temperature calculation unit 22 a using V = S × (Th−Tc) + R × I. Temperature calculator 22a
Is an LUT composed of a ROM that uses, for example, a temperature Th, a current I, and a voltage V as address inputs and a temperature Tc as a data output.
Can be composed of

【0014】霜付着検出手段26は、ペルチェ素子21
の冷却側と放熱側の接合部の双方の温度を検出する温度
差算出手段としての差分部26aと、算出した温度差を
所定の値と比較する比較手段としての比較部26bから
構成する。上記の温度算出部22a及び温度センサ23
から得られるTc、Thを、差分部26aに入力してこ
れらの温度差を算出する。算出した温度差を比較部26
bで予め定めた所定の値を出力する定電源26cからの
出力と比較し、温度差が所定の値より大きいときは、霜
付着信号Fを出力する。霜付着信号Fを電流制御部22
bで受けて、霜付着信号Fが真のときはペルチェ素子2
1に流す電流を所定時間逆転して、熱交換器25に付着
した霜を除去する。
The frost adhesion detecting means 26 includes a Peltier device 21
And a comparing section 26b as a comparing section for comparing the calculated temperature difference with a predetermined value. The above temperature calculation unit 22a and the temperature sensor 23
Are input to the difference unit 26a to calculate the temperature difference between them. The calculated temperature difference is compared with the comparison unit 26.
When the temperature difference is larger than the predetermined value, the frost adhesion signal F is output. The frost adhesion signal F is supplied to the current control unit 22.
b, when the frost adhesion signal F is true, the Peltier element 2
The current flowing through the heat exchanger 1 is reversed for a predetermined time to remove frost attached to the heat exchanger 25.

【0015】[0015]

【発明の効果】以上に説明したように、蒸発器から蒸発
してくる蒸気冷媒を圧縮して送り出す圧縮機と、圧縮機
から送られてくる蒸気冷媒を冷却して凝縮させる凝縮器
と、凝縮器からの高圧の液体冷媒を低圧の蒸発器に送り
出す膨張弁と、膨張弁を通して送られる液体冷媒を蒸発
させて周囲を冷却する蒸発器からなる冷凍サイクルと、
電流の方向により冷却または加熱を行う2つの接合部か
らなるペルチェ素子を備え、冷凍サイクルの蒸発器にペ
ルチェ素子の一方の接合部を熱的に接触させ他方の接合
部を冷却又は加熱する混成冷凍機において、蒸発器とペ
ルチェ素子の接合部との間に熱伝導度が高く、かつ比熱
の大きい蓄熱体を介在させることにより、冷凍サイクル
の蒸発器の温度変化にかかわらず、混成冷凍機の冷却又
は加熱の温度を安定に保持することが可能となる。
As described above, the compressor for compressing and sending out the vapor refrigerant evaporating from the evaporator, the condenser for cooling and condensing the vapor refrigerant sent from the compressor, An expansion valve that sends high-pressure liquid refrigerant from the device to a low-pressure evaporator, and a refrigeration cycle consisting of an evaporator that evaporates the liquid refrigerant sent through the expansion valve and cools the surroundings.
A hybrid refrigeration system comprising a Peltier element consisting of two junctions for cooling or heating depending on the direction of electric current, wherein one junction of the Peltier element is brought into thermal contact with the evaporator of the refrigeration cycle and the other junction is cooled or heated. The heat exchanger with high thermal conductivity and high specific heat is interposed between the evaporator and the junction of the Peltier element to cool the hybrid refrigerator regardless of the temperature change of the evaporator in the refrigeration cycle. Alternatively, the heating temperature can be stably maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による混成冷凍機の1実施例の概念図で
ある。
FIG. 1 is a conceptual diagram of one embodiment of a hybrid refrigerator according to the present invention.

【図2】本発明による混成冷凍機の1実施例のペルチェ
素子の電源の概要ブロック図である。
FIG. 2 is a schematic block diagram of a power supply of a Peltier device of one embodiment of the hybrid refrigerator according to the present invention.

【符号の説明】[Explanation of symbols]

11 圧縮機 12 凝縮器 13 膨張弁 14 蒸発器 21 ペルチェ素子 22 電源 22a 温度算出部 22b 電流制御部 22c 電流計 22d 電圧計 23 温度センサ 24 蓄熱体 25 熱交換器 26 霜付着検出手段 26a 差分部 26b 比較部 26c 定電源 31 有蓋箱体 DESCRIPTION OF SYMBOLS 11 Compressor 12 Condenser 13 Expansion valve 14 Evaporator 21 Peltier element 22 Power supply 22a Temperature calculation unit 22b Current control unit 22c Ammeter 22d Voltmeter 23 Temperature sensor 24 Heat storage unit 25 Heat exchanger 26 Frost adhesion detection means 26a Difference unit 26b Comparison section 26c Constant power supply 31 Covered box

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器で蒸発してくる蒸気冷媒を圧縮し
て送り出す圧縮機と、圧縮機から送られてくる蒸気冷媒
を冷却して凝縮させる凝縮器と、凝縮器からの高圧の液
体冷媒を低圧の蒸発器に送り出す膨張弁と、膨張弁を通
して送られる液体冷媒を蒸発させて周囲を冷却する蒸発
器からなる冷凍サイクルと、電流の方向により冷却また
は加熱を行う2つの接合部からなるペルチェ素子を備
え、冷凍サイクルの蒸発器にペルチェ素子の一方の接合
部を熱的に接触させ他方の接合部を冷却又は加熱する混
成冷凍機において、蒸発器とペルチェ素子の接合部との
間に熱伝導度が高く、かつ比熱の大きい蓄熱体を介在さ
せることを特徴とした混成冷凍機。
1. A compressor for compressing and sending vapor refrigerant evaporated from an evaporator, a condenser for cooling and condensing the vapor refrigerant sent from the compressor, and a high-pressure liquid refrigerant from the condenser. A refrigeration cycle consisting of an expansion valve that sends air to a low-pressure evaporator, an evaporator that cools the surroundings by evaporating the liquid refrigerant sent through the expansion valve, and a Peltier that consists of two joints that perform cooling or heating depending on the direction of electric current In a hybrid refrigerator in which one of the Peltier elements is brought into thermal contact with the evaporator of the refrigeration cycle and the other is cooled or heated, heat is applied between the evaporator and the Peltier element junction. A hybrid refrigerating machine characterized by interposing a heat storage body having high conductivity and high specific heat.
【請求項2】 蒸発器、蓄熱体及びこれに接触するペル
チェ素子の接合部は、ペルチェ素子の他方の接合部から
熱的に遮断する断熱材で覆う構造とすることを特徴とし
た請求項1記載の混成冷凍機。
2. The structure according to claim 1, wherein the junction between the evaporator, the heat storage element and the Peltier element in contact with the evaporator is covered with a heat insulating material that is thermally insulated from the other junction of the Peltier element. The hybrid refrigerator as described.
【請求項3】 蓄熱体は、銅板の厚板から構成すること
を特徴とした請求項1記載の混成冷凍機。
3. The hybrid refrigerator according to claim 1, wherein the heat storage body is formed of a thick copper plate.
【請求項4】 ペルチェ素子を駆動する電源には、所定
の時間毎に、又は冷却部への霜の付着を検出する霜付着
検出手段からの信号により、ペルチェ素子に流す電流を
逆転して霜取りを行う霜取り機能を設けることを特徴と
した請求項1記載の混成冷凍機。
4. A power supply for driving the Peltier element is defrosted by reversing a current flowing through the Peltier element at predetermined time intervals or by a signal from frost adhesion detection means for detecting the adhesion of frost to the cooling unit. The hybrid refrigerator according to claim 1, further comprising a defrosting function for performing the defrosting.
【請求項5】 霜付着検出手段はペルチェ素子の双方の
接合部それぞれの温度を検出する温度検出手段と、それ
らの温度の差を算出する温度差算出手段と、算出した温
度差を所定の値と比較する比較手段から構成し、ペルチ
ェ素子の双方の接合部の間の温度差が所定の温度以上と
なることにより霜が付着したと判定することを特徴とし
た請求項4記載の混成冷凍機。
5. A frost adhesion detecting means comprising: a temperature detecting means for detecting the temperature of each of the two joints of the Peltier element; a temperature difference calculating means for calculating a difference between the temperatures; 5. The hybrid refrigerator according to claim 4, wherein the temperature difference between the two joints of the Peltier element is equal to or higher than a predetermined temperature, and it is determined that frost has adhered. .
【請求項6】 ペルチェ素子の双方の接合部それぞれの
温度を検出する温度検出手段は、一方の接合部の温度を
検出する温度センサと、その温度とペルチェ素子の電圧
および電流並びにペルチェ素子の物理定数から他方の接
合部の温度を算出する温度算出部から構成することを特
徴とした請求項5記載の混成冷凍機。
6. A temperature sensor for detecting the temperature of each of the two junctions of the Peltier element, a temperature sensor for detecting the temperature of one of the junctions, the temperature and the voltage and current of the Peltier element, and the physical characteristics of the Peltier element. 6. The hybrid refrigerator according to claim 5, further comprising a temperature calculator for calculating the temperature of the other junction from the constant.
【請求項7】 温度算出部は、ペルチェ素子の一方の接
合部の温度とペルチェ素子の電圧および電流並びにペル
チェ素子の物理定数を入力とし、ペルチェ素子の他方の
接合部の温度を出力とするLUT(Look Up Table )か
ら構成することを特徴とした請求項6記載の混成冷凍
機。
7. The LUT which receives the temperature of one junction of the Peltier element, the voltage and current of the Peltier element, and the physical constant of the Peltier element as inputs, and outputs the temperature of the other junction of the Peltier element as an output. 7. The hybrid refrigerator according to claim 6, comprising a (Look Up Table).
JP11111559A 1999-04-20 1999-04-20 Hybrid refrigerator Pending JP2000304396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11111559A JP2000304396A (en) 1999-04-20 1999-04-20 Hybrid refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11111559A JP2000304396A (en) 1999-04-20 1999-04-20 Hybrid refrigerator

Publications (1)

Publication Number Publication Date
JP2000304396A true JP2000304396A (en) 2000-11-02

Family

ID=14564466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11111559A Pending JP2000304396A (en) 1999-04-20 1999-04-20 Hybrid refrigerator

Country Status (1)

Country Link
JP (1) JP2000304396A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240494B2 (en) * 2005-11-09 2007-07-10 Emerson Climate Technologies, Inc. Vapor compression circuit and method including a thermoelectric device
EP1915579A1 (en) * 2005-08-15 2008-04-30 Carrier Corporation Hybrid thermoelectric-vapor compression system
WO2008055607A1 (en) * 2006-11-09 2008-05-15 Airbus Deutschland Gmbh Cooling device for installation in an aircraft
EP1946024A1 (en) * 2005-11-09 2008-07-23 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
KR100909726B1 (en) 2008-01-09 2009-07-29 강형구 Refrigerator Cooling Unit and Cooling Method
CN101865587A (en) * 2010-06-21 2010-10-20 合肥美的荣事达电冰箱有限公司 Low temperature refrigerator
CN113474608A (en) * 2019-02-28 2021-10-01 Lg电子株式会社 Control method of refrigerator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1915579A1 (en) * 2005-08-15 2008-04-30 Carrier Corporation Hybrid thermoelectric-vapor compression system
EP1915579A4 (en) * 2005-08-15 2011-04-13 Carrier Corp Hybrid thermoelectric-vapor compression system
US8307663B2 (en) 2005-11-09 2012-11-13 Emerson Climate Technologies, Inc. Vapor compression circuit and method including a thermoelectric device
US7240494B2 (en) * 2005-11-09 2007-07-10 Emerson Climate Technologies, Inc. Vapor compression circuit and method including a thermoelectric device
EP1946024A1 (en) * 2005-11-09 2008-07-23 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
EP1946024A4 (en) * 2005-11-09 2012-07-11 Emerson Climate Technologies Refrigeration system including thermoelectric module
US7296416B2 (en) 2005-11-09 2007-11-20 Emerson Climate Technologies, Inc. Vapor compression circuit and method including a thermoelectric device
US7752852B2 (en) 2005-11-09 2010-07-13 Emerson Climate Technologies, Inc. Vapor compression circuit and method including a thermoelectric device
JP2010509117A (en) * 2006-11-09 2010-03-25 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Airplane cooling system
RU2448022C2 (en) * 2006-11-09 2012-04-20 Эйрбас Оперейшнз Гмбх Aircraft cooler
WO2008055607A1 (en) * 2006-11-09 2008-05-15 Airbus Deutschland Gmbh Cooling device for installation in an aircraft
CN101547830B (en) * 2006-11-09 2013-02-13 空中客车德国运营有限责任公司 Cooling device for installation in an aircraft
KR100909726B1 (en) 2008-01-09 2009-07-29 강형구 Refrigerator Cooling Unit and Cooling Method
CN101865587A (en) * 2010-06-21 2010-10-20 合肥美的荣事达电冰箱有限公司 Low temperature refrigerator
CN113474608A (en) * 2019-02-28 2021-10-01 Lg电子株式会社 Control method of refrigerator
CN113474608B (en) * 2019-02-28 2023-08-18 Lg电子株式会社 Control method of refrigerator

Similar Documents

Publication Publication Date Title
US7278269B2 (en) Refrigeration system including thermoelectric module
US5406805A (en) Tandem refrigeration system
US4879879A (en) Apparatus for controlling a thermostatic expansion valve
US20090031733A1 (en) Thermotunneling refrigeration system
US7140191B2 (en) Refrigerator and temperature sensor fixing method in the refrigerator
JP2000304396A (en) Hybrid refrigerator
JPH08327169A (en) Refrigerating equipment
JP2002162143A (en) Refrigerator with freezer
JP2003028565A (en) Direct cooling refrigerator
JPS6247730B2 (en)
JP2000329414A (en) Hybrid refrigerating machine
JPH09318134A (en) Air conditioner
WO2001020235A1 (en) Apparatus and method for evaporator defrosting
JP2573082Y2 (en) Late-night electric power type refrigerator
US3373575A (en) System for defrost control of refrigerators and the like
JP2642654B2 (en) Refrigeration equipment
JP2990441B2 (en) Thermoelectric element control device for vehicle refrigerator-freezer
JP6847262B2 (en) Refrigerator, heater drive, heater drive method and program
JPH082243A (en) Cold/warm store for vehicle
JPS5916747Y2 (en) air conditioner
WO2018179396A1 (en) Refrigerator, refrigerator control method, and program
JPH07243727A (en) Refrigerator
JPH04320782A (en) Refrigerator/cold store
JP2000111232A (en) Cool storage type cold insulation storage
JPH07280397A (en) Refrigerating capacity measuring method for refrigerator