JP2000299106A - Secondary battery with gel electrolyte - Google Patents

Secondary battery with gel electrolyte

Info

Publication number
JP2000299106A
JP2000299106A JP11109468A JP10946899A JP2000299106A JP 2000299106 A JP2000299106 A JP 2000299106A JP 11109468 A JP11109468 A JP 11109468A JP 10946899 A JP10946899 A JP 10946899A JP 2000299106 A JP2000299106 A JP 2000299106A
Authority
JP
Japan
Prior art keywords
carbon material
gel electrolyte
secondary battery
electrolyte
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11109468A
Other languages
Japanese (ja)
Inventor
Takashi Iijima
島 孝 飯
Teruo Shinbara
原 照 男 榛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11109468A priority Critical patent/JP2000299106A/en
Publication of JP2000299106A publication Critical patent/JP2000299106A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high performance gel electrolyte secondary battery which can be charged in a short time, and can solve various problems such as lowering of a capacity in the large current density charge. SOLUTION: This secondary battery with a gel electrolyte comprise a positive electrode, a negative electrode in which a carbon material that stores and discharges lithium is used as an active material, and a high molecule gelled electrolyte. As the carbon material those may be used which satisfies the following conditions: (1) oxygen content amount >=0.05 wt.%, (2) amount of xenon type oxygen >=20 μmol/g, and (3) all acid degree >=20 μeq/g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極とリチウムを
吸蔵・放出することが可能な炭素材料を活物質とした負
極と高分子ゲル状電解質とから構成されるゲル状電解質
二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel electrolyte secondary battery comprising a positive electrode, a negative electrode using a carbon material capable of occluding and releasing lithium as an active material, and a polymer gel electrolyte.

【0002】[0002]

【従来の技術】非プロトン性有機溶媒にリチウム塩を溶
解してなる溶液を電解質として用いたリチウム二次電池
は、高エネルギー密度電池として注目され、様々な電子
機器の電源として普及している。しかしながら最近のエ
レクトロニクス技術の進歩は著しく、電子機器の更なる
軽量化、小型化、薄型化、多機能化が図られており、電
源である電池に対しても、小型化、軽量化、薄型化、信
頼性の向上など、より一層の高性能化が要望されてい
る。このような要望に応えるために、正極と負極とが固
体電解質層を介して積層された固体電解質電池が提案さ
れている。
2. Description of the Related Art A lithium secondary battery using a solution obtained by dissolving a lithium salt in an aprotic organic solvent as an electrolyte has attracted attention as a high energy density battery and has been widely used as a power source for various electronic devices. However, recent advances in electronics technology have been remarkable, and electronic devices are becoming lighter, smaller, thinner, and more multifunctional, and batteries, which are power sources, have been made smaller, lighter, and thinner. There is a demand for higher performance such as improved reliability. In order to meet such a demand, a solid electrolyte battery in which a positive electrode and a negative electrode are stacked via a solid electrolyte layer has been proposed.

【0003】固体電解質は溶媒を全く含まない完全固体
電解質と溶媒を高分子中にゲル化することで固定化した
ゲル状電解質とに大別することができる。完全固体電解
質としては、ポリエチレンオキシドに代表されるような
極性の強い高分子自身がLi塩を溶解する高分子系完全固
体電解質と、結晶構造中をLiイオンが伝導するLi3N、Li
I、LiI-Li2S-P2O5などの無機系完全固体電解質が提案さ
れているが、何れの固体電解質系もイオン導電性が溶液
系の電解質に比較して低いために、短時間充電や重負荷
放電の際に容量が低下するという問題があった。
[0003] Solid electrolytes can be broadly classified into completely solid electrolytes containing no solvent at all and gelled electrolytes immobilized by gelling the solvent in a polymer. As a completely solid electrolyte, a polymer-based completely solid electrolyte in which a strongly polar polymer itself represented by polyethylene oxide dissolves a Li salt, and Li 3 N, Li in which Li ions are conducted in a crystal structure, are used.
I, LiI-Li 2 SP 2 O 5 and other inorganic solid electrolytes have been proposed, but all solid electrolytes have low ionic conductivity compared to solution-based electrolytes. There is a problem that the capacity is reduced at the time of heavy load discharge.

【0004】他方、ゲル状電解質では、高分子に固定化
された溶媒にLi塩が溶解しているため、ゲル状電解質の
イオン伝導性は基本的に溶媒にLi塩を溶解した通常の電
解液系に近い特性を持つ。すなわち、ゲル状電解質は電
解液に匹敵するイオン伝導性を備えた固体電解質であ
り、固体電解質Li二次電池に最も適した固体電解質とし
て盛んに研究開発が進められている。
On the other hand, in a gel electrolyte, since a Li salt is dissolved in a solvent immobilized on a polymer, the ion conductivity of the gel electrolyte is basically the same as that of a normal electrolyte in which a Li salt is dissolved in a solvent. Has characteristics close to the system. That is, the gel electrolyte is a solid electrolyte having ion conductivity comparable to that of the electrolyte, and has been actively studied and developed as a solid electrolyte most suitable for a solid electrolyte Li secondary battery.

【0005】しかしながら、負極とゲル状電解質と正極
とを積層して電池を構成して充電・放電をすると、電解
液系に比較して大きな過電圧を発生し、その結果、大電
流での充電・放電における容量低下を招く。ゲル状電解
質の直流抵抗成分による過電圧に対する寄与は電解液と
同水準であり、したがって過電圧の原因はゲル状電解質
と正極、ゲル状電解質と負極の界面部分で発生するもの
と考えられる。
However, when a battery is formed by laminating a negative electrode, a gel electrolyte, and a positive electrode and charged / discharged, a large overvoltage is generated as compared with an electrolyte system, and as a result, charging / discharging with a large current is performed. This causes a reduction in capacity during discharge. The contribution of the DC resistance component of the gel electrolyte to the overvoltage is at the same level as that of the electrolytic solution. Therefore, it is considered that the cause of the overvoltage is generated at the interface between the gel electrolyte and the positive electrode and between the gel electrolyte and the negative electrode.

【0006】界面抵抗の低減を目的とした負極に関する
検討として、負極に用いる炭素材料のX線回折による結
晶構造因子の最適化に関する報告がなされている(特開
平7-320724号公報)。基本的に黒鉛の結晶構造が発達し
ていることが界面抵抗の低減に重要との結論が提出され
ているが、本発明者が鋭意検討した結果、最も結晶性の
高い天然黒鉛や、ピッチコークスなど易黒鉛化材料を28
00℃以上の高温で焼成して得た黒鉛質材料を負極に用い
ても溶液系に比較して過電圧は大きく、特に大電流密度
で充電した際の容量の低下は著しいものであった。
As a study on a negative electrode for the purpose of reducing interface resistance, a report has been made on optimization of a crystal structure factor of a carbon material used for the negative electrode by X-ray diffraction (Japanese Patent Application Laid-Open No. 7-320724). It has been concluded that the development of graphite crystal structure is basically important for reducing interfacial resistance, but as a result of diligent studies by the present inventors, the most crystalline natural graphite and pitch coke 28 easily graphitizable materials
Even when a graphite material obtained by firing at a high temperature of 00 ° C. or more was used for the negative electrode, the overvoltage was large as compared with the solution system, and the decrease in capacity particularly when charged at a large current density was remarkable.

【0007】このように従来の技術では、負極とゲル状
固体電解質との界面抵抗の低減に関しては、甚だ不十分
な状況であった。
[0007] As described above, in the prior art, the situation of reducing the interfacial resistance between the negative electrode and the gelled solid electrolyte has been extremely insufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、大電
流密度充電における容量の低下など上述の種々の問題点
を解決し、短時間充電可能な高性能なゲル状電解質二次
電池を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high performance gel electrolyte secondary battery which can solve the above-mentioned various problems such as a decrease in capacity in large current density charging and can be charged in a short time. Is to do.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく鋭意検討を重ねた結果、下記の材料を電
池に用いることにより、大電流密度充電における容量低
下を抑制することを見出し、本発明を完成するに至っ
た。即ち、本発明は、正極と、リチウムを吸蔵・放出す
ることが可能な炭素材料を活物質とした負極と、高分子
ゲル状電解質とから構成されるゲル状電解質二次電池で
あって、前記炭素材料が、下記の条件: (1) 酸素含有量 ≧ 0.05重量% (2) キノン型酸素量 ≧ 20μmol/g (3) 全酸度 ≧ 20μeq/g を満足することを特徴とするゲル状電解質二次電池であ
る。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, by using the following materials for a battery, it is possible to suppress a decrease in capacity during high current density charging. And completed the present invention. That is, the present invention is a gel electrolyte secondary battery comprising a positive electrode, a negative electrode using a carbon material capable of inserting and extracting lithium as an active material, and a polymer gel electrolyte, A gel electrolyte characterized in that the carbon material satisfies the following conditions: (1) oxygen content ≧ 0.05% by weight (2) quinone type oxygen content ≧ 20 μmol / g (3) total acidity ≧ 20 μeq / g Next battery.

【0010】ここで、上記の酸素含有量は燃焼法に基づ
いて測定した元素分析値で炭素材料中に含まれる全ての
酸素を重量%で表したもの、上記キノン型酸素量はNaBH4
との反応により検出される炭素材料表面に存在するキノ
ン型酸素量を炭素材料単位重量あたりのモル数で表した
もの、上記全酸度はNaOHとの反応により検出される炭素
材料表面に存在する酸性官能基量を炭素材料単位重量あ
たりの電気化学当量で表したものである。
Here, the above-mentioned oxygen content is a value obtained by expressing all oxygen contained in the carbon material in% by weight by an elemental analysis value measured based on a combustion method, and the above-mentioned quinone-type oxygen content is NaBH 4
The amount of quinone-type oxygen present on the surface of the carbon material detected by the reaction with the carbon material expressed in moles per unit weight of the carbon material.The total acidity is the acidity present on the surface of the carbon material detected by the reaction with NaOH. The amount of the functional group is represented by an electrochemical equivalent per unit weight of the carbon material.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0012】本発明において本質的に重要な点は、炭素
材料とゲル状電解質の界面抵抗が下記の機構に基づくも
のであると推察し、その解決策として、炭素材料表面へ
の極性官能基の導入を検討した結果、予想外なことに、
酸素含有官能基を炭素材料表面に導入し、その官能基の
種類と導入量を最適化することにより、界面抵抗が大幅
に低減した点である。
The essential point of the present invention is that the interface resistance between the carbon material and the gel electrolyte is presumed to be based on the following mechanism. After considering the introduction, unexpectedly,
The point is that interface resistance is greatly reduced by introducing an oxygen-containing functional group onto the surface of the carbon material and optimizing the type and amount of the functional group.

【0013】炭素材料は、その構造が非晶質であっても
結晶性であっても、表面には極性を持たないため、見か
け上ゲル状電解質と密着していてもその界面をミクロに
観ると、溶媒分子は主に高分子を構成する極性部分に束
縛され、炭素材料表面とは殆ど相互作用を持たないと推
定される。従って、溶液系電解質と炭素材料とで構成さ
れる界面に比較して、ゲル状電解質と炭素材料との界面
は、1)炭素材料表面に存在する溶媒分子の平均的な密度
が少ない、2)炭素材料表面近傍に存在する溶媒分子でも
溶液系の場合に比べて運動性の自由度が少ない、と考え
られる。そして、明らかにこれら2つの界面の特徴は何
れもリチウムイオンの移動を妨げる作用をもたらす。即
ち、界面抵抗の増加をもたらすと推定される。
[0013] Since the surface of the carbon material has no polarity irrespective of whether the structure is amorphous or crystalline, even if it is apparently in close contact with the gel electrolyte, its interface is observed microscopically. It is presumed that the solvent molecules are mainly bound by the polar portion constituting the polymer, and have little interaction with the carbon material surface. Therefore, compared to the interface composed of the solution-based electrolyte and the carbon material, the interface between the gel electrolyte and the carbon material has 1) an average density of the solvent molecules existing on the carbon material surface is small, 2) It is considered that the solvent molecules existing near the surface of the carbon material have a lower degree of freedom in mobility than in the case of the solution system. And obviously, the characteristics of these two interfaces both have the effect of preventing the movement of lithium ions. That is, it is estimated that the interface resistance increases.

【0014】この解決策として、炭素材料表面に極性官
能基を導入することで高分子と同程度以上の極性を持た
せ、この極性部分により炭素材料表面に溶媒を取り込
み、炭素材料表面に吸着する平均的な溶媒密度を増加さ
せることにより、溶液系電解質に近い界面状況を作り出
すという思想に基づき鋭意検討した結果、酸素含有官能
基を炭素材料表面に導入し、その官能基の種類と導入量
を最適化することにより、界面抵抗を大幅に低減した。
As a solution to this problem, a polar functional group is introduced into the surface of the carbon material so that the surface of the carbon material has the same or higher polarity as that of the polymer. As a result of intensive studies based on the idea of creating an interface state close to a solution-based electrolyte by increasing the average solvent density, oxygen-containing functional groups were introduced on the carbon material surface, and the type and amount of the functional groups were introduced. By optimizing, the interface resistance was greatly reduced.

【0015】即ち、下記の条件: (1) 酸素含有量 ≧ 0.05重量% (2) キノン型酸素量 ≧ 20μmol/g (3) 全酸度 ≧ 20μeq/g を満足する炭素材料を負極に用いることにより界面抵抗
の低減を達成した。
That is, the following conditions are used: (1) Oxygen content ≧ 0.05% by weight (2) Quinone-type oxygen content ≧ 20 μmol / g (3) Total acidity ≧ 20 μeq / g The interface resistance was reduced.

【0016】酸素含有量は炭素材料中に含まれる酸素量
を表すが、本願発明における規定では、酸素含有量は炭
素材料表面の持つ極性の大小を表す基本的指標として用
いている。すなわち、本願発明に用いる炭素材料は含有
する酸素がゲル電解質と接触する炭素材料表面に濃化し
ていることが本質的に重要である。そして、ゲル状電解
質との相互作用を強くするために必要な酸素含有量が0.
05重量%以上であり、より好ましくは、0.10重量%以上で
ある。
The oxygen content indicates the amount of oxygen contained in the carbon material. In the present invention, the oxygen content is used as a basic index indicating the magnitude of the polarity of the carbon material surface. That is, it is essentially important that oxygen contained in the carbon material used in the present invention is concentrated on the surface of the carbon material in contact with the gel electrolyte. And the oxygen content necessary to strengthen the interaction with the gel electrolyte is 0.
It is at least 05% by weight, more preferably at least 0.10% by weight.

【0017】電解液系Li二次電池に用いられる有機溶媒
は、基本的に、エーテル型酸素、あるいは、カルボニル
型酸素をその構造中に持つ。本発明において重要な点は
溶媒分子との相互作用を強めるような官能基を炭素材料
表面に導入することで界面抵抗を低減することにあり、
鋭意検討した結果、キノン型酸素を炭素材料表面に導入
することが特に溶媒との相互作用を高め、その結果、界
面抵抗を低減するのに効果的であることを見出した。そ
して炭素材料表面と溶媒との相互作用を強めるのに必要
なキノン型酸素量は20μmol/g以上であることが肝要で
あり、より好ましくは、キノン型酸素量≧25μmol/gで
ある。
The organic solvent used for the electrolyte-type Li secondary battery basically has ether-type oxygen or carbonyl-type oxygen in its structure. The important point in the present invention is to reduce the interfacial resistance by introducing a functional group that enhances the interaction with the solvent molecule on the carbon material surface,
As a result of diligent studies, it has been found that introducing quinone-type oxygen to the surface of the carbon material is particularly effective in enhancing the interaction with the solvent and, as a result, reducing the interface resistance. It is important that the amount of quinone-type oxygen necessary for strengthening the interaction between the carbon material surface and the solvent is not less than 20 μmol / g, and more preferably the amount of quinone-type oxygen ≧ 25 μmol / g.

【0018】本願発明において全酸度はLiイオンの伝導
経路として活用されると考えられる。すなわち、全酸度
で表される官能基は酸性官能基であり水素を遊離しやす
い構造の官能基であり、言い換えれば化学的に反応性の
高い水素を含有する官能基である。充電中には、負極活
物質である炭素材料とゲル電解質とが接触する界面に高
い電圧が印加され、酸性官能基の水素はLiイオンとの置
換反応が進行すると考えられる。水素とLiとが置換した
酸性官能基中のLiは、以降の充電時、あるいは放電時に
はLiイオンの伝導経路として活用されることになる。界
面抵抗を低減するための新たなイオン伝導経路としての
十分な低抵抗を発現するために必要な官能基量が、全酸
度≧20μeq/gであり、より好ましくは、全酸度≧30μeq
/gである。他方、全酸度量が多すぎると、充電時に発生
する水素とLiとの置換反応に費やされる電気量が多くな
りすぎるために、Liの供給源である正極活物質量を多く
しなければならず、電池トータルでのエネルギー密度の
低下をもたらすことになる。この点において全酸度量に
は上限があり、全酸度≦200μeq/gが好ましい。
In the present invention, it is considered that the total acidity is utilized as a conduction path of Li ions. That is, the functional group represented by the total acidity is an acidic functional group and a functional group having a structure that easily releases hydrogen, in other words, a functional group containing chemically highly reactive hydrogen. During charging, a high voltage is applied to the interface between the carbon material as the negative electrode active material and the gel electrolyte, and it is considered that the substitution reaction of hydrogen of the acidic functional group with Li ions proceeds. Li in the acidic functional group substituted by hydrogen and Li will be used as a conduction path of Li ions during subsequent charging or discharging. The amount of functional group necessary to develop a sufficiently low resistance as a new ion conduction path for reducing the interface resistance is the total acidity ≧ 20 μeq / g, more preferably the total acidity ≧ 30 μeq
/ g. On the other hand, if the total acidity is too large, the amount of electricity consumed in the substitution reaction between hydrogen and Li generated during charging becomes too large, so the amount of the positive electrode active material, which is the source of Li, must be increased. As a result, the energy density of the battery as a whole decreases. In this respect, the total acidity has an upper limit, and the total acidity is preferably 200 μeq / g.

【0019】本発明に用いる炭素材料は上述のように表
面構造が本質的に重要であって、Liを電気化学的に吸蔵
・放出することが可能な炭素材料であれば、特に、その
構造に関して何ら制限されるものではないが、具体的に
は以下の材料を例示することが可能である。有機高分子
(フェノール樹脂、フラン樹脂、ポリアクリロニトリ
ル、セルロースなど)、コークスやピッチを不活性雰囲
気中、もしくは、減圧下で500℃以上3000℃以下の温度
で焼成することにより得られるもの、キッシュ黒鉛、天
然黒鉛を好適に用いることができる。さらには高エネル
ギー密度の観点から、黒鉛質構造が発達した材料がより
好ましく、X線回折による黒鉛の面間隔d00 2が、d002
0.337nmを満たす黒鉛質材料を好適に使用することが可
能である。
As described above, the surface structure of the carbon material used in the present invention is essentially important. If the carbon material is capable of electrochemically absorbing and releasing Li, the structure is particularly important. Although not particularly limited, the following materials can be specifically exemplified. Organic polymer
(Phenol resin, furan resin, polyacrylonitrile, cellulose, etc.), coke or pitch fired in an inert atmosphere or under reduced pressure at a temperature of 500 ° C to 3000 ° C, quiche graphite, natural graphite Can be suitably used. Further from the viewpoint of high energy density, the material is more preferable that graphite structure is developed, the lattice distance d 00 2 graphite by X-ray diffraction, d 002
It is possible to suitably use a graphitic material satisfying 0.337 nm.

【0020】本発明では、炭素材料表面とゲル状電解質
の界面における炭素材料表面への溶媒の吸着を高めるの
が本質であるため、高分子ゲル状電解質の構造を限定す
るものではないが、以下の構造体を例示可能である。
In the present invention, since it is essential to enhance the adsorption of the solvent to the surface of the carbon material at the interface between the surface of the carbon material and the gel electrolyte, the structure of the polymer gel electrolyte is not limited. Can be exemplified.

【0021】高分子ゲル状電解質としては、リチウムイ
オン及び強酸のアニオンからなる電解質塩と、酸素また
は窒素を含有して成る高分子化合物と、非プロトン性有
機溶媒とからなるものが好ましい。リチウムイオン及び
強酸のアニオンからなる電解質塩としては、過塩素酸リ
チウム(LiClO4)、トリフルオロメタンスルホン酸リチウ
ム(LiCF3SO3)、六フッ化リン酸リチウム(LiPF6)、四フ
ッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(Li
AsF6)、六フッ化アンチモン酸リチウム(LiSbF6)、リチ
ウムトリフルオロメタンスルホン酸イミド(LiN(CF3SO2)
2)などを例示することができる。
The polymer gel electrolyte preferably comprises an electrolyte salt comprising lithium ions and a strong acid anion, a polymer compound containing oxygen or nitrogen, and an aprotic organic solvent. Examples of electrolyte salts composed of lithium ions and anions of strong acids include lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), and tetrafluoroboric acid. Lithium (LiBF 4 ), lithium hexafluoroarsenate (Li
AsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium trifluoromethanesulfonate imide (LiN (CF 3 SO 2)
2 ) and the like.

【0022】また、酸素、または窒素を含有してなる高
分子化合物としては、アルキレンオキシド、アクリロニ
トリル、フッ化ビニリデン、ウレタン、シロキサン、ス
ルホン、フォスファゼン、エポキシ、エチレン等の単独
重合体、あるいは、二種以上の共重合体を例示すること
ができる。
Examples of the high molecular compound containing oxygen or nitrogen include homopolymers such as alkylene oxide, acrylonitrile, vinylidene fluoride, urethane, siloxane, sulfone, phosphazene, epoxy, and ethylene; The above copolymers can be exemplified.

【0023】また、非プロトン性有機溶媒としては、エ
チレンカーボネート(EC)、プロピレンカーボネート(P
C)、ブチレンカーボネート(BC)、γ-ブチロラクトン(γ
-BL)、スルホラン(SL)、1,2-ジメトキシエタン(DME)、
1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン
(EMC)、テトラヒドロフラン(THF)、2-メチルテトラヒド
ロフラン(2M-THF)、1,3-ジオキソラン(DOX)、4-メチル-
1,3-ジオキソラン(4M-DOX)、等を例示することができ
る。
As the aprotic organic solvent, ethylene carbonate (EC), propylene carbonate (P
C), butylene carbonate (BC), γ-butyrolactone (γ
-BL), sulfolane (SL), 1,2-dimethoxyethane (DME),
1,2-diethoxyethane (DEE), ethoxymethoxyethane
(EMC), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2M-THF), 1,3-dioxolane (DOX), 4-methyl-
1,3-dioxolane (4M-DOX) and the like can be exemplified.

【0024】本発明に用いられる正極は特に制限される
ものではないが、例示するならば、リチウム含有マンガ
ン酸化物、リチウム含有コバルト酸化物、リチウム含有
ニッケル酸化物、及び、マンガン、コバルト及びニッケ
ルから選ばれた少なくとも2種の金属を含有する複合酸
化物、リチウムを含有する五酸化バナジウム、二硫化チ
タン、二硫化モリブデンなどの硫化物、ポリアニリン、
ポリアセチレン、ポリピロールなどの導電性高分子など
を用いるのが好ましい。
The positive electrode used in the present invention is not particularly limited, but examples thereof include lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing nickel oxide, and manganese, cobalt and nickel. Composite oxides containing at least two selected metals, vanadium pentoxide containing lithium, titanium disulfide, sulfides such as molybdenum disulfide, polyaniline,
It is preferable to use a conductive polymer such as polyacetylene or polypyrrole.

【0025】炭素材料表面に極性を持った含酸素官能基
を適正量導入することにより、高分子ゲル電解質を構成
する溶媒の一部が炭素材料表面に吸着され、この溶媒分
子を介してリチウムイオンがゲル電解質から炭素材料へ
移動するための新たな導入路が形成されるなどの機構に
より界面抵抗が低減されるものと推察される。界面抵抗
の低減により、大電流密度充電時の負極の利用率低下が
抑制され、放電容量が低下しにくくなる。
By introducing an appropriate amount of a polar oxygen-containing functional group on the surface of the carbon material, a part of the solvent constituting the polymer gel electrolyte is adsorbed on the surface of the carbon material, and lithium ion is absorbed through the solvent molecule. It is presumed that the interface resistance is reduced by a mechanism such as formation of a new introduction path for the transfer of carbon from the gel electrolyte to the carbon material. Due to the reduction in the interface resistance, a decrease in the utilization rate of the negative electrode during charging at a large current density is suppressed, and the discharge capacity is not easily reduced.

【0026】[0026]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記の実施例に限定されるもの
ではなく、その要旨を変更しない範囲において適宜変更
して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention can be practiced by appropriately changing the gist of the invention. Is possible.

【0027】実施例1 [負極の作製]人造黒鉛(SFG44、TIMCAL Ltd.社製)約15
gを発煙硝酸300cc中に混合し、沸騰温度(約110℃)にて3
時間撹拌しながら反応させた後、蒸留水を用いて濾液が
中性になるまで吸引濾過を繰り返す。洗浄を終えた黒鉛
粉は、90℃で温風乾燥し、更に90℃で真空乾燥した。こ
の黒鉛粉をポリフッ化ビニリデン樹脂(PVdF)のN-メチル
ピロリドン(NMP)溶液(12%溶液)と混合して、黒鉛に対し
てPVdFが重量比で9:1になるようにスラリーを調整し
た。NMPを適宜加えてスラリーの粘度を調整した後に銅
箔上に塗布し、80℃の乾燥器内で溶媒を除去することに
より、負極に用いる電極を作製した。負極は更にロール
プレスすることにより、電極嵩密度を0.8〜0.9g/mLに調
整し、試験電極に供した。尚、成型後の電極の厚さは25
〜30μm、単位面積当たりの活物質重量は、約2mg/cm2
した。
Example 1 [Preparation of negative electrode] About 15 artificial graphite (SFG44, manufactured by TIMCAL Ltd.)
g in fuming nitric acid (300 cc) and at boiling temperature (about 110 ° C)
After the reaction with stirring for a period of time, suction filtration is repeated using distilled water until the filtrate becomes neutral. The washed graphite powder was dried with hot air at 90 ° C., and further dried in vacuum at 90 ° C. This graphite powder was mixed with an N-methylpyrrolidone (NMP) solution (12% solution) of polyvinylidene fluoride resin (PVdF), and the slurry was adjusted so that the weight ratio of PVdF to graphite was 9: 1. . After adjusting the viscosity of the slurry by appropriately adding NMP, the slurry was applied on a copper foil, and the solvent was removed in a dryer at 80 ° C. to prepare an electrode to be used as a negative electrode. The negative electrode was further roll-pressed to adjust the electrode bulk density to 0.8 to 0.9 g / mL, and used as a test electrode. The electrode thickness after molding is 25
Active material weight per unit area was about 2 mg / cm 2 .

【0028】[ゲル電解質の作製]エチレンカーボネー
ト(EC)とプロピレンカーボネート(PC)を体積比1:1で混
合した溶媒にLiClO4を1mol/Lの濃度で溶解させた電解液
(富山薬品工業(株)社、リチウムバッテリーグレード)と
アクリロニトリル(AN、富山薬品工業(株)社、リチウム
バッテリーグレード)と、100℃で10時間真空乾燥したポ
リアクリロニトリル(PAN、Polyscience社、平均分子量
(Mw):150000)とをアルゴン雰囲気のグローブボックス内
で混合し、ANの蒸発を防ぐため密栓容器内で80℃に加熱
し、透明な粘ちょう液体を調整した。80℃に加熱した粘
性溶液を予め60℃で真空乾燥した負極上に塗布し、60〜
70℃に設定されたホットプレート上で1〜5時間加熱する
ことによりANを除去した後、グローブボックス内で約20
時間自然放冷し、塗布液をゲル化させた。ANは混合溶液
の粘度を低下させ負極成型体内への溶液のしみ込みを改
善する目的で加えたもので、PANと電解液とANは、重量
比で1:7:2とした。
[Preparation of Gel Electrolyte] An electrolyte in which LiClO 4 is dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate (EC) and propylene carbonate (PC) are mixed at a volume ratio of 1: 1.
(Toyama Pharmaceutical Co., Ltd., lithium battery grade) and acrylonitrile (AN, Toyama Pharmaceutical Co., Ltd., lithium battery grade) and polyacrylonitrile (PAN, Polyscience, average molecular weight, vacuum-dried at 100 ° C. for 10 hours)
(Mw): 150,000) was mixed in a glove box under an argon atmosphere, and heated to 80 ° C. in a sealed vessel to prevent evaporation of AN to prepare a transparent viscous liquid. The viscous solution heated to 80 ° C was applied on the negative electrode previously dried in vacuum at 60 ° C,
After removing AN by heating on a hot plate set at 70 ° C for 1-5 hours, about 20 minutes in a glove box
The coating solution was allowed to cool naturally for a period of time to gel. AN was added for the purpose of reducing the viscosity of the mixed solution and improving the penetration of the solution into the molded negative electrode. The weight ratio of PAN, the electrolyte and AN was 1: 7: 2.

【0029】[ゲル電解質電池(コイン型電池)の組立]
負極/ゲル電解質成型体にリチウム金属を張り合わせた
後、直径12mmの円形に切り抜き、コイン型のセルを作製
した。上述のように、PAN溶液塗布からセル作製までの
行程は、全てアルゴン雰囲気中で行った。
[Assembly of gel electrolyte battery (coin-type battery)]
After laminating lithium metal to the negative electrode / gel electrolyte molded body, it was cut out into a circle having a diameter of 12 mm to produce a coin-shaped cell. As described above, the entire process from the application of the PAN solution to the production of the cell was performed in an argon atmosphere.

【0030】[大電流充電による容量維持率]上記で作
製した「黒鉛負極/ゲル電解質/リチウム金属」で構成さ
れるコイン電池は、室温(約25℃に調整保持)で、下限0
V、上限1.0Vの電位規制で一定電流(電流密度0.1mA/cm2)
で充電(黒鉛へのリチウムのドープ反応)・放電(黒鉛か
らのリチウムの脱ドープ反応)を5回サイクルさせた後、
0.8mA/cm2で充電(ドープ)した後0.1mA/cm2で放電(脱ド
ープ)した際の容量を計測し、電流密度0.1mA/cm2で充電
したときの容量と比較することにより、容量維持率(=0.
8mA/cm2充電の際の放電容量/0.1mA/cm2充電の際の放電
容量)を算出した。0.8mA/cm2での充電は、約1時間率充
電に相当し、溶液系電解質における評価でも20%以上の
顕著な容量減少が認められる厳しい充電条件に相当す
る。このような大電流密度で充電しても容量の減少が無
ければ(黒鉛の利用率が低下しなければ)容量維持率は高
く、全く容量に変化がなければ、容量維持率は1にな
る。
[Capacity maintenance rate by large current charging] The coin battery composed of "graphite negative electrode / gel electrolyte / lithium metal" prepared above has a lower limit of 0 at room temperature (adjusted and maintained at about 25 ° C).
V, constant current with potential regulation of 1.0 V upper limit (current density 0.1 mA / cm 2 )
After 5 cycles of charging (doping reaction of lithium into graphite) and discharging (dedoping reaction of lithium from graphite) with
0.8 mA / cm capacity upon discharge (dedoping) at 0.1 mA / cm 2 was charged (doped) with 2 measured by comparing the capacity when charged at a current density of 0.1 mA / cm 2, Capacity maintenance rate (= 0.
8 mA / cm discharge capacity when the discharge capacity /0.1MA/cm 2 charged during 2 charge) was calculated. Charging at 0.8 mA / cm 2 corresponds to charging at an hourly rate, and corresponds to a severe charging condition in which a remarkable capacity reduction of 20% or more is observed in a solution electrolyte. Even if the battery is charged at such a high current density, the capacity maintenance rate is high if the capacity does not decrease (unless the utilization rate of graphite decreases), and the capacity maintenance rate becomes 1 if the capacity does not change at all.

【0031】また、本発明において炭素材料の規定に用
いる物性は以下の方法により測定されるものとする。
The physical properties used for defining the carbon material in the present invention are measured by the following methods.

【0032】[酸素含有量]測定には、FISONS Instrum
ents社製 EA 1108 Elemental Analyzerを使用した。
[Oxygen content] was measured by FISONS Instrum
EA 1108 Elemental Analyzer manufactured by ents was used.

【0033】酸素は"Unterzaucher Modified"法に基づ
き測定する。すなわち、炭素材料中の酸素は、触媒下で
の高温熱分解により完全にCOへ変換され、COガス濃度と
して熱伝導度検出器により検出される。酸素の検量線の
測定にはベンゾイックアシッドを用い、その仕込量を変
化させることで検量線を得ている。元素分析測定に用い
るサンプルは、炭素材料表面に吸着した水分の影響を除
去する目的で、予め90℃で2時間以上真空乾燥したもの
を試験に供する。
Oxygen is measured according to the "Unterzaucher Modified" method. That is, oxygen in the carbon material is completely converted to CO by high-temperature pyrolysis under a catalyst, and is detected as a CO gas concentration by a thermal conductivity detector. The calibration curve of oxygen was measured using benzoic acid, and the calibration curve was obtained by changing the charged amount. Samples used for elemental analysis are dried in advance at 90 ° C. for 2 hours or more in order to remove the influence of moisture adsorbed on the carbon material surface, and then subjected to the test.

【0034】[キノン型酸素量]炭素材料表面に存在す
るキノン型酸素が水素化剤であるNaBH4との反応で水酸
基に変換する反応を利用し、キノン型酸素を定量する。
反応は下式に従う; 8(>C=O) + NaBH4 + 2H2O → 8(>C-OH) + NaBO2 キノン型酸素に対して過剰のNaBH4を加え、上記の反応
で残留した未反応なNaBH4を下式で分解させ、その際に
発生する水素ガスを定量することにより、キノン型酸素
を定量する。
The quinone type oxygen present in the quinone type oxygen carbon material surface by utilizing a reaction to convert the hydroxyl groups react with the NaBH 4 is hydrogen agent, to quantify the quinone type oxygen.
The reaction follows the formula; 8 (> C = O) + NaBH 4 + 2H 2 O → 8 (> C-OH) + NaBO 2 Excess NaBH 4 with respect to quinone-type oxygen was added and remained in the above reaction. Unreacted NaBH 4 is decomposed by the following formula, and hydrogen gas generated at that time is quantified to determine quinone-type oxygen.

【0035】NaBH4 + 3H2O → NaBO3 + 5H2 実際の測定手順は下記に従う:NaBH4を0.064g秤量し、
0.1N NaOH水溶液100mLに溶解し、NaBH4溶液を調製す
る。フラスコ内に予め90℃で30分間以上真空乾燥した炭
素材料1gと撹拌子を入れゴム栓をし、発生した水素ガス
量を定量するためのガスビュレット(最大10mL計量)系に
接続する。系内を窒素ガスに置換した後、ゴム栓からシ
リンジで8mLの蒸留水と4mLのNaBH4溶液を注入し、1時間
スターラーで撹拌を続ける。6N H2SO4, 3mLをシリンジ
で加えた後5分間撹拌し、その間に発生したガス量(水素
ガス)をビュレットで計量する(V1)。このV1に基づき、
上記の反応式に基づいて、消費したNaBH4の量、即ち、
炭素材料表面のキノン型酸素量を算出する。
NaBH 4 + 3H 2 O → NaBO 3 + 5H 2 The actual measurement procedure is as follows: weigh 0.064 g of NaBH 4 ,
Dissolve in 100 mL of 0.1N NaOH aqueous solution to prepare NaBH 4 solution. In a flask, 1 g of a carbon material previously vacuum-dried at 90 ° C. for 30 minutes or more and a stirrer are placed, and a rubber stopper is connected. The flask is connected to a gas burette (maximum 10 mL measurement) system for measuring the amount of generated hydrogen gas. After replacing the inside of the system with nitrogen gas, 8 mL of distilled water and 4 mL of NaBH 4 solution are injected from a rubber stopper with a syringe, and stirring is continued for 1 hour with a stirrer. After adding 3 mL of 6N H 2 SO 4 with a syringe, the mixture is stirred for 5 minutes, and the amount of gas (hydrogen gas) generated during the addition is measured with a burette (V1). Based on this V1,
Based on the above reaction scheme, consumed amount of NaBH 4, i.e.,
The amount of quinone-type oxygen on the surface of the carbon material is calculated.

【0036】[全酸度]一般に炭素材料表面には、カル
ボニル基、水酸基、ラクトン環などの酸性官能基が存在
する。これらの酸性官能基は、NaOHとの反応により水素
とNaとが置換し中和する。全酸度は、この中和反応によ
り炭素材料により消費されるNaOH量により、炭素材料表
面に存在する酸性官能基量を評価するもので、測定の詳
細は下記に従う;予め90℃で真空乾燥した炭素材料1gを1
00mLの三角フラスコに入れ、0.01NのNaOH水溶液 50mLを
加え冷却管を立てて、ホットスターラー上で撹拌子で撹
拌しながら4時間煮沸反応する。反応終了後、加圧濾過
器で濾過し、濾液を0.01NのHClで中和滴定し、滴定量か
ら消費したNaOH量を計算し、炭素材料1g当たりのNaOH消
費量として全酸度(μeq/g)を算出する。
[Total acidity] Generally, acidic functional groups such as a carbonyl group, a hydroxyl group, and a lactone ring are present on the surface of a carbon material. These acidic functional groups are neutralized by substitution with hydrogen and Na by reaction with NaOH. The total acidity is used to evaluate the amount of acidic functional groups present on the carbon material surface by the amount of NaOH consumed by the carbon material due to this neutralization reaction.The details of the measurement are as follows; 1g of material 1
Put into a 00 mL Erlenmeyer flask, add 50 mL of 0.01N NaOH aqueous solution, set up a cooling tube, and boil for 4 hours while stirring with a stirrer on a hot stirrer. After completion of the reaction, the mixture was filtered with a pressure filter, the filtrate was subjected to neutralization titration with 0.01 N HCl, the amount of NaOH consumed was calculated from the titer, and the total acidity (μeq / g) was calculated as the NaOH consumption per 1 g of the carbon material. ) Is calculated.

【0037】実施例2 実施例1で調整した硝酸酸化済みの人造黒鉛粉をタンマ
ン炉を用いてアルゴン雰囲気中で1時間450℃で熱処理
し、実施例1と同様の方法により電極評価を実施した。
Example 2 The artificial graphite powder oxidized with nitric acid prepared in Example 1 was heat-treated at 450 ° C. for 1 hour in an argon atmosphere using a Tamman furnace, and the electrode was evaluated in the same manner as in Example 1. .

【0038】実施例3 実施例2における熱処理温度を800℃に変更して黒鉛を調
製し、実施例1と同様の方法により電極評価を実施し
た。
Example 3 Graphite was prepared by changing the heat treatment temperature in Example 2 to 800 ° C., and the electrode was evaluated in the same manner as in Example 1.

【0039】実施例4 実施例1で用いた人造黒鉛30gを30%濃度の過酸化水素水3
00gに加えて、15時間撹拌することにより、人造黒鉛に
対して表面酸化処理を施した。実施例1と同様に蒸留水
にて洗浄を繰り返し、洗浄以下、実施例1と同様の方法
により電極評価を実施した。
Example 4 30 g of the artificial graphite used in Example 1 was added to a 30% hydrogen peroxide solution 3
In addition to 00g, the mixture was stirred for 15 hours to give a surface oxidation treatment to the artificial graphite. Washing with distilled water was repeated in the same manner as in Example 1. After the washing, the electrode was evaluated in the same manner as in Example 1.

【0040】実施例5 実施例1で用いた人造黒鉛を空気のプラズマを用いて酸
化処理した。プラズマ処理には(株)サムコインターナシ
ョナル社製のラボ用プラズマ処理装置PT500を用いた。
処理条件は、以下の通りとした。反応容器内に黒鉛粉5g
を入れ、真空レベルが80mTorr以下になったところで、
毎分30〜40mLの空気を導入し(反応系内は300〜900mTor
r)、高周波誘導によりプラズマを発生させて、黒鉛粉表
面を酸化処理した。この後の乾燥工程以降は実施例1と
同様にして、酸化処理した黒鉛粉の電極性能を評価し
た。
Example 5 The artificial graphite used in Example 1 was oxidized by using air plasma. For the plasma treatment, a laboratory plasma treatment device PT500 manufactured by Samco International Co., Ltd. was used.
The processing conditions were as follows. 5g of graphite powder in the reaction vessel
And when the vacuum level drops below 80mTorr,
Introduce 30-40 mL of air per minute (300-900 mTor in the reaction system)
r) A plasma was generated by high-frequency induction to oxidize the graphite powder surface. After this drying step, the electrode performance of the oxidized graphite powder was evaluated in the same manner as in Example 1.

【0041】実施例6 実施例5において、プラズマを発生させるガスとして酸
素ガスを導入し、他の条件は実施例5と同様にして酸化
処理を行い、実施例5と同様の方法で、酸化処理した黒
鉛粉の電極性能を評価した。
Example 6 In Example 5, an oxygen gas was introduced as a gas for generating plasma, and the oxidizing treatment was performed in the same manner as in Example 5 under the other conditions. The electrode performance of the obtained graphite powder was evaluated.

【0042】比較例1 実施例1に用いた人造黒鉛を何ら処理することなく、実
施例1と同様の方法によりその電極特性を評価した。
Comparative Example 1 The electrode characteristics of the artificial graphite used in Example 1 were evaluated in the same manner as in Example 1 without any treatment.

【0043】比較例2 実施例2における熱処理温度を1200℃に変更して処理
し、黒鉛を調製し、実施例1と同様の方法により電極評
価を実施した。
Comparative Example 2 A graphite was prepared by changing the heat treatment temperature in Example 2 to 1200 ° C., and the electrode was evaluated in the same manner as in Example 1.

【0044】表1に、実施例1〜6、比較例1並びに比較例
2に用いた各黒鉛の酸素含有量、キノン型酸素量と全酸
度の測定値、並びに、実施例、比較例に用いたコイン型
電池の放電容量、容量維持率をまとめて示す。
Table 1 shows Examples 1 to 6, Comparative Example 1 and Comparative Example.
Table 2 summarizes the oxygen content of each graphite used, the measured values of quinone-type oxygen content and total acidity, and the discharge capacity and capacity retention of the coin-type batteries used in Examples and Comparative Examples.

【0045】表1の結果から明らかに、実施例1〜6の本
発明で規定するところの炭素材料の容量維持率が、未処
理の炭素材料(比較例1)、並びに、酸素含有量が少なく
極性基導入量が少ない炭素材料(比較例2)に比較して大
幅に改善されていることが分かる。
It is apparent from the results in Table 1 that the capacity retention ratio of the carbon material as defined in the present invention of Examples 1 to 6 is lower than that of the untreated carbon material (Comparative Example 1) and the oxygen content. It can be seen that the amount of introduction of the polar group is significantly improved as compared with the carbon material (Comparative Example 2).

【0046】[0046]

【発明の効果】本発明によれば、適正な表面状態の炭素
材料を負極に用いることにより、負極と固体電解質の間
の界面抵抗が小さくなるために大電流密度で充電しても
容量減少が少ないので、短時間充電可能な高性能なゲル
状電解質二次電池が提供できる。
According to the present invention, by using a carbon material having an appropriate surface state for the negative electrode, the interface resistance between the negative electrode and the solid electrolyte is reduced, so that the capacity is reduced even when charged at a large current density. Since it is small, a high-performance gel electrolyte secondary battery that can be charged in a short time can be provided.

【0047】[0047]

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極と、リチウムを吸蔵・放出することが
可能な炭素材料を活物質とした負極と、高分子ゲル状電
解質とから構成されるゲル状電解質二次電池であって、
前記炭素材料が、下記の条件: (1) 酸素含有量 ≧ 0.05重量% (2) キノン型酸素量 ≧ 20μmol/g (3) 全酸度 ≧ 20μeq/g を満足することを特徴とする、ゲル状電解質二次電池。
1. A gel electrolyte secondary battery comprising a positive electrode, a negative electrode using a carbon material capable of inserting and extracting lithium as an active material, and a polymer gel electrolyte,
Wherein the carbon material satisfies the following conditions: (1) oxygen content ≧ 0.05% by weight (2) quinone type oxygen content ≧ 20 μmol / g (3) total acidity ≧ 20 μeq / g Electrolyte secondary battery.
JP11109468A 1999-04-16 1999-04-16 Secondary battery with gel electrolyte Withdrawn JP2000299106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11109468A JP2000299106A (en) 1999-04-16 1999-04-16 Secondary battery with gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11109468A JP2000299106A (en) 1999-04-16 1999-04-16 Secondary battery with gel electrolyte

Publications (1)

Publication Number Publication Date
JP2000299106A true JP2000299106A (en) 2000-10-24

Family

ID=14511006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11109468A Withdrawn JP2000299106A (en) 1999-04-16 1999-04-16 Secondary battery with gel electrolyte

Country Status (1)

Country Link
JP (1) JP2000299106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063058A (en) * 2005-08-30 2007-03-15 Aisin Seiki Co Ltd Surface modifying method of graphite particle
WO2013145925A1 (en) * 2012-03-30 2013-10-03 株式会社 日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
WO2020105196A1 (en) * 2018-11-22 2020-05-28 日立化成株式会社 Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063058A (en) * 2005-08-30 2007-03-15 Aisin Seiki Co Ltd Surface modifying method of graphite particle
WO2013145925A1 (en) * 2012-03-30 2013-10-03 株式会社 日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
JPWO2013145925A1 (en) * 2012-03-30 2015-12-10 株式会社日立製作所 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
WO2020105196A1 (en) * 2018-11-22 2020-05-28 日立化成株式会社 Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
CN113196529A (en) * 2018-11-22 2021-07-30 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2020105196A1 (en) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4231411B2 (en) Electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4297133B2 (en) Lithium ion battery
KR101534386B1 (en) Non-aqueous secondary battery having a blended cathode active material
JP5157216B2 (en) Method for producing active material and active material
JP2007305546A (en) Lithium ion battery
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
KR101484015B1 (en) Method for producing lithium metal phosphate
JP5661875B2 (en) Non-aqueous electrolyte and secondary battery including the same
JPWO2016157735A1 (en) Nonaqueous electrolyte secondary battery
WO2017166147A1 (en) Encapsulated lithium titanate for lithium ion batteries
EP2784848B1 (en) Negative electrode
US20100216017A1 (en) Battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
US20180053929A1 (en) Positive electrode active substance for secondary cell and method for producing same
EP2372818A1 (en) Non-aqueous electrolyte secondary battery and fabrication method for non-aqueous electrolyte secondary battery
JP6384596B2 (en) Anode materials for lithium-ion batteries
EP2792638A1 (en) Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP5463754B2 (en) Active material for lithium secondary battery, lithium secondary battery, and method for producing active material for lithium secondary battery
KR20200033764A (en) positive material having surface coated positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same
JP2000299106A (en) Secondary battery with gel electrolyte
JP2000299132A (en) Gel electrolyte secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
KR101044577B1 (en) Lithium Secondary Battery
WO2013151096A1 (en) Lithium secondary cell
JPH07134989A (en) Nonaqueous electrolyte system secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704