JP2000290708A - Method and apparatus for manufacturing metal particles by spray pyrolysis - Google Patents

Method and apparatus for manufacturing metal particles by spray pyrolysis

Info

Publication number
JP2000290708A
JP2000290708A JP11134632A JP13463299A JP2000290708A JP 2000290708 A JP2000290708 A JP 2000290708A JP 11134632 A JP11134632 A JP 11134632A JP 13463299 A JP13463299 A JP 13463299A JP 2000290708 A JP2000290708 A JP 2000290708A
Authority
JP
Japan
Prior art keywords
electric furnace
metal particles
particles
metal
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11134632A
Other languages
Japanese (ja)
Inventor
Yoshinobu Watanabe
嘉伸 渡辺
Shigeo Shioda
重雄 塩田
Akihiko Okuda
晃彦 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP11134632A priority Critical patent/JP2000290708A/en
Publication of JP2000290708A publication Critical patent/JP2000290708A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the properties of an aqueous solution of metal salt to be sprayed and also to improve the behavior of droplets in an electric furnace used for pyrolysis, at the time of forming metal or noble-metal particles by a spray pyrolysis. SOLUTION: In the method of manufacturing metal particles by spraying an aqueous solution of one or more metal salts into an electric furnace, a surface tension depressant is added to the aqueous solution of metallic salt to be sprayed into the electric furnace and also the periphery of a spray nozzle hole 4 for spraying the aqueous solution of metallic salt is provided with a 200- to 400-mesh stainless steel mesh cover M all over the surface. By this method, fine droplets of a down flow stream can be formed under a low pressure and uniform and fine metal particles can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属粒子の製造方
法及びその製造装置に関するもので、例えば、電子回路
形成用貴金属ペースト、導電性塗料及び導電性接着剤に
用いる導電成分となる銀粒子、銀−酸化物複合粒子の製
造方法及びその製造装置に関し、電気炉内において注入
液の乱流もなく、又液滴の電気炉の内壁周辺への付着も
なく微細な液滴から均整のとれた金属粒子の製造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing metal particles and an apparatus for producing the same, for example, silver particles as a conductive component used in a noble metal paste for forming an electronic circuit, a conductive paint and a conductive adhesive, The present invention relates to a method for producing silver-oxide composite particles and an apparatus for producing the same, in which there is no turbulence of an injection liquid in an electric furnace, and no fine liquid droplets adhere to the inner wall of the electric furnace. It relates to the production of metal particles.

【0002】[0002]

【従来の技術】近年、電子工業用貴金属ペースト、導電
性塗料及び導電性接着剤に使用する導電成分となる銀粒
子、銀−酸化物複合粒子の製造方法及びその製造装置に
関する応用技術は急速に進歩してきている。それに用い
る多種にわたる貴金属粒子が単一又は複合してペースト
素材として活用されている。
2. Description of the Related Art In recent years, methods of producing silver particles and silver-oxide composite particles as conductive components used in noble metal pastes, conductive paints and conductive adhesives for use in the electronics industry, and the application technology related to the production equipment has been rapidly increasing. It is improving. Various kinds of noble metal particles used therefor are used singly or in combination as a paste material.

【0003】電子部品である電極及び導体、抵抗体への
金属膜形成方法として、卑金属又は貴金属のオルガノメ
タル(インキ)から金属膜を造る方法や、電気メッキに
代表される湿式メッキにより薄膜を形成させる方法、ま
た、真空蒸着法、化学蒸着法、スパッタリングなどの乾
式メッキにより薄膜を形成させる方法、ならびに卑金属
又は貴金属ペーストを用いて金属膜を形成させる方法な
ど広く行われている。
[0003] As a method of forming a metal film on electrodes, conductors, and resistors as electronic parts, a method of forming a metal film from a base metal or a noble metal organometal (ink), or a method of forming a thin film by wet plating typified by electroplating. Such methods include a method of forming a thin film by dry plating such as a vacuum evaporation method, a chemical vapor deposition method, and sputtering, and a method of forming a metal film using a base metal or a noble metal paste.

【0004】上記の、導電性塗料や導電性接着剤の導電
成分として銀を用いる場合、銀粒子の形状としては、微
細で均一性が要求されペースト焼成時に電気的トラブル
のない導電性膜となるものが望ましく、それを得るため
の一方法として、それらの金属塩水溶液を液滴として電
気炉内に噴霧し、固化、精製して銀粒子、銀−酸化物複
合粒子として得る方法がある。
[0004] When silver is used as a conductive component of the conductive paint or conductive adhesive, the silver particles are required to be fine and uniform in shape, resulting in a conductive film free from electrical trouble during paste firing. One of the methods for obtaining the same is to spray an aqueous solution of the metal salt as droplets in an electric furnace, and solidify and purify the solution to obtain silver particles and silver-oxide composite particles.

【0005】金属塩水溶液の微細な液滴を乾燥、熱分解
すると混合酸化物の微粉体が得られるが、例えば、銀−
酸化物複合粒子を得る方法として、噴霧乾燥後捕集し
た粒子を熱分解する2段法、高温度の電気炉内へ噴霧
し乾燥と熱分解を同時に行う方法、可燃性溶媒を用い
乾燥と熱分解を同時に行う方法、乾燥と熱分解を順次
連続的に行う方法、ゾルを含む液滴(ミスト)を順次
高温で処理する方法、液滴と気相の化学反応を用いる
方法などがあり、夫々特徴をもつが、本発明はとりわけ
の改良に関する。
When fine droplets of a metal salt aqueous solution are dried and thermally decomposed, a fine powder of a mixed oxide is obtained.
As a method for obtaining the oxide composite particles, a two-stage method in which the collected particles are thermally decomposed after spray drying, a method in which the particles are sprayed into a high-temperature electric furnace to simultaneously perform drying and thermal decomposition, and drying and heating using a flammable solvent are performed. There are a method of performing decomposition simultaneously, a method of performing drying and thermal decomposition sequentially and continuously, a method of sequentially processing droplets (mist) containing sol at a high temperature, and a method of using a chemical reaction between a droplet and a gas phase. Although characteristic, the present invention is directed to particular improvements.

【0006】また、前記において、金属塩水溶液から液
滴を造る方法についても幾つかの方法が提案されてい
る。大別して一流体ノズルで行う方法、二流体ノズ
ルで行う方法、高速で回転する円盤上に液体を滴下す
る方法、超音波振動子を利用して霧状に細かい水滴と
して噴水状に吹き上がらせる方法などがあるが、本発明
においては、の二流体ノズルで行う方法を一義とする
が、その他の方法を採用することも吝かではない。
In the above, several methods have been proposed for producing droplets from an aqueous metal salt solution. The method can be roughly divided into one-fluid nozzle, two-fluid nozzle, dropping a liquid onto a rotating disk at high speed, and spraying as a fine water droplet into a mist using an ultrasonic vibrator. In the present invention, the method performed by using the two-fluid nozzle is basically defined, but other methods may be employed.

【0007】金属塩水溶液を電気炉内に噴霧して液滴と
する場合、粗大な液滴だと単に粗大な金属粒子生成の原
因となるばかりでなく、該粒子が電気炉内を通過する加
熱時間内に熱分解反応が終了しないまま、所謂未分解粒
子として電気炉から排出され、幾多の減点要因となりこ
れら問題を解決する必要がある。
When an aqueous solution of a metal salt is sprayed into an electric furnace to form droplets, coarse droplets not only cause formation of coarse metal particles, but also cause the particles to pass through the electric furnace. If the pyrolysis reaction is not completed within a certain period of time, the particles are discharged from the electric furnace as so-called undecomposed particles, causing a number of deduction factors, and it is necessary to solve these problems.

【0008】また、金属塩水溶液の電気炉内への噴霧圧
力が弱いと、液滴のサイズが大きくなり得られる粒子の
粗大化を招き、未分解粒子の発生が起き、逆に噴霧圧力
を高くすると液滴は微細になるが、電気炉内部における
乱流が大きくなり、高温の電気炉内部における気流の乱
流で電気炉内壁への粒子の付着が増大し、金属複合粒子
の歩留りが極端に低下するのを防ぎ得ない。これらの点
は、高温の電気炉を使用し流体ノズルをもって液滴を作
成する工程において、二律背反の性格を持ち、好ましい
改善が求められているところである。
If the spray pressure of the aqueous solution of the metal salt into the electric furnace is low, the size of the droplets becomes large, resulting in coarsening of the obtained particles, and undecomposed particles are generated. The droplets become finer, but the turbulence inside the electric furnace increases, and the turbulence of the airflow inside the high-temperature electric furnace increases the adhesion of particles to the inner wall of the electric furnace, resulting in an extremely high yield of metal composite particles. It cannot be prevented from lowering. In these respects, in the process of forming droplets with a fluid nozzle using a high-temperature electric furnace, the process has a trade-off characteristic, and a favorable improvement is demanded.

【0009】従来、噴霧熱分解法の改良に関して幾つか
の公知技術があり、それについては後記するが、未だ好
ましい方法はなく、生産歩留りに関しては、何れの公知
技術をみても教唆する点はない。しかも本発明において
最も重要な課題としている均一粒子金属粉を得るべく、
金属塩水溶液の表面張力の降下及び液粘度の低下を図る
ために界面活性剤を添加して、均一粒子とすること及び
噴霧圧力を低くとっても微細液滴化ができること、請求
項2の装置のメッシュ機能とも相まって液滴は整流とな
って、電気炉内壁への金属粒子の付着もないなど、多く
の優れた方法及び装置に関して、従来例には全く記載の
ない新規技術である。
Heretofore, there are several known techniques for improving the spray pyrolysis method, which will be described later. However, there is no preferable method yet, and there is no point to teach any production technique regarding the production yield. . Moreover, in order to obtain the uniform particle metal powder which is the most important subject in the present invention,
3. The mesh according to claim 2, wherein a surfactant is added to lower the surface tension of the aqueous solution of the metal salt and lower the viscosity of the liquid, so that uniform particles can be obtained and fine droplets can be formed even at a low spray pressure. This is a novel technique which has not been described in the prior art at all with respect to many excellent methods and apparatuses such as the function of rectifying the droplets in combination with the function and no adhesion of metal particles to the inner wall of the electric furnace.

【0010】ここに挙げる従来例は、何れも噴霧熱分解
法による金属粒子製造に関するものであり、特開昭50
−137856号は、霧化した液滴の調節を、硝酸塩溶
液の組成と濃度及び沈澱用媒体の濃度の調整によって行
うものであること、特公昭63−31522号は、金属
塩の分解温度、その金属の融点より高い温度で熱処理し
て金属塩を分解して金属粒子を得るもので、球状で結晶
性の高い高分散性の金属粉末が得られるとの開示がある
のに止まり、何ら本発明を示唆する記載はない。
[0010] All of the conventional examples mentioned here relate to the production of metal particles by the spray pyrolysis method.
JP-137856 discloses that the control of atomized droplets is carried out by adjusting the composition and concentration of a nitrate solution and the concentration of a precipitation medium, and JP-B-63-31522 discloses that the decomposition temperature of a metal salt is determined. The heat treatment is performed at a temperature higher than the melting point of the metal to decompose the metal salt to obtain metal particles, and there is no disclosure that a spherical, highly crystalline metal powder having high dispersibility can be obtained. There is no description which suggests.

【0011】また、特開平4−270115号は、ダス
ト不含の硝酸銀を得る方法を紹介し、純度の高い硝酸銀
を使用しその10重量%水溶液としたpH値が2〜6
で、融解、霧化及び液滴の固化は遮光下で実施する発明
で、これも直接本発明とは関係はない。他に、特開平6
−279816号は、A、熱揮発性溶剤中の熱分解性銀
含有化合物の不飽和溶液を形成させ、B、不活性担体ガ
ス中で分散された工程Aからの溶液の微細な小滴であっ
て、その小滴濃度が、凝集の結果小滴濃度の10%以下
を生じる濃度より低いものより本質的になるエアロゾル
を形成させ、C、銀化合物の分解温度より高いが、銀の
融点より低い操作温度にエアロゾルを加熱し、それによ
って、i、溶剤が揮発し、ii、銀化合物が分解して純
銀の微細な粒子を形成し、そして、iii、銀粒子が高
密度化し、D、担体ガス反応副生物及び溶剤揮発生成物
から銀粒子を分離する発明が開示されている。
Japanese Patent Application Laid-Open No. Hei 4-270115 introduces a method for obtaining dust-free silver nitrate, which uses silver nitrate of high purity and has a pH value of 2 to 6 as a 10% by weight aqueous solution.
Melting, atomization, and solidification of droplets are inventions performed under light shielding, and are not directly related to the present invention. In addition, JP-A-6
-279816 is a fine droplet of the solution from step A dispersed in an inert carrier gas, A, forming an unsaturated solution of a thermally decomposable silver-containing compound in a thermally volatile solvent. To form an aerosol whose droplet concentration is essentially less than the concentration that results in less than 10% of the droplet concentration as a result of aggregation, C, higher than the decomposition temperature of the silver compound, but lower than the melting point of silver. Heating the aerosol to the operating temperature, whereby i, the solvent evaporates, ii, the silver compound decomposes to form fine particles of pure silver, and iii, the silver particles densify, D, the carrier gas An invention is disclosed for separating silver particles from reaction by-products and solvent volatilization products.

【0012】その従来例にも、本発明の方法及び装置と
の関連における優れた効果、即ち金属塩溶液の表面張力
が低いため高い噴射力を用いずとも電気炉内において乱
流を生ずることなく均一な液滴とすること、さらに溶液
粘度が低いため電気炉内壁への液滴付着が極めて少ない
ことによる金属粒子生成の歩留りの高さなど、それらを
推考させる記載はない。
The prior art also has an excellent effect in connection with the method and apparatus of the present invention, that is, the surface tension of the metal salt solution is low so that turbulence does not occur in the electric furnace without using a high jetting force. There is no description that suggests such factors as uniform droplets and high yield of metal particle generation due to extremely low droplet adhesion to the inner wall of the electric furnace due to low solution viscosity.

【0013】[0013]

【発明が解決しようとする課題】本発明は、噴霧熱分解
法により、大量生産に適した金属粒子、とりわけ銀粒
子、銀−酸化物複合粒子の製造方法及びその製造装置の
改良に着目し、多くの実験を重ねた結果として50μm
以下の微細液滴を容易に且つ効率的に噴霧せしめて、均
一微細な金属粒子とりわけ銀粒子、銀−酸化物複合粒子
の製造に成功したものである。
SUMMARY OF THE INVENTION The present invention focuses on a method for producing metal particles, particularly silver particles, silver-oxide composite particles, and an apparatus for producing the same, which are suitable for mass production by spray pyrolysis. 50 μm as a result of many experiments
The following fine droplets were easily and efficiently sprayed to successfully produce uniform fine metal particles, particularly silver particles and silver-oxide composite particles.

【0014】[0014]

【課題を解決するための手段】本発明の構成は次のとお
りである。 1 一種又はそれ以上の金属塩水溶液を電気炉内に噴霧
して金属粒子を製造する方法において、電気炉内に注入
する金属塩水溶液中に表面張力降下剤を添加して低圧力
下で微細液滴とすることにより均一微細な金属粒子を得
ることを特徴とする金属粒子の製造方法 2 一種又はそれ以上の金属塩水溶液を電気炉内に噴霧
して金属粒子を製造する方法において、表面張力降下剤
を添加した金属塩水溶液を噴霧する噴霧ノズル口の周囲
を、全面において200〜400meshの金網カバー
としたことを特徴とする金属粒子の製造装置 3 表面張力降下剤は、カチオン、アニオン、ノニオ
ン、両性の各界面活性剤の中から選択されるものである
前項1又は2のいずれかに記載の金属粒子の製造方法及
びその製造装置 4 金網カバーはステンレス製であることを特徴とする
前項2記載の金属粒子の製造装置 上記1において言う低圧力下とは0.1〜2.0kg/
cmの範囲である。また、金属粒子とは、とりわけ銀
粒子、銀−酸化物複合粒子である。
The configuration of the present invention is as follows. 1. A method for producing metal particles by spraying one or more aqueous metal salt solutions into an electric furnace, comprising adding a surface tension reducing agent to the aqueous metal salt solution to be injected into the electric furnace, and applying a fine liquid under a low pressure. 2. A method for producing metal particles, characterized in that uniform fine metal particles are obtained by forming droplets. 2. A method for producing metal particles by spraying one or more aqueous solutions of metal salts into an electric furnace. Metal particle manufacturing apparatus characterized in that the periphery of a spray nozzle port for spraying a metal salt aqueous solution to which an agent is added is a wire mesh cover of 200 to 400 mesh on the entire surface 3 The surface tension reducing agent is a cation, anion, nonion, The method for producing metal particles and the apparatus for producing metal particles according to any one of the above items 1 or 2, which are selected from amphoteric surfactants. 4 The wire mesh cover is made of stainless steel. 3. The apparatus for producing metal particles according to the above item 2, wherein the low pressure referred to in the above item 1 is 0.1 to 2.0 kg /
cm 2 . The metal particles are silver particles and silver-oxide composite particles, among others.

【0015】[0015]

【発明の実施の形態】液体の表面張力を降下させるのに
界面活性剤を添加する事については、従来から良く知ら
れていることであるが、二流体ノズルの液滴発生のメカ
ニズムを考慮するとき、高速の剪断気流によって液が千
切れ微粒の液滴となるのであるが、液体が千切れること
に抵抗する力、合一しようとする力は主として表面張力
に起因する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The addition of a surfactant to lower the surface tension of a liquid is well known in the art, but takes into account the mechanism of droplet generation in a two-fluid nozzle. In some cases, the liquid is broken into fine droplets by the high-speed shear gas flow, and the force that resists the breaking of the liquid and the force that attempts to unite the liquid are mainly caused by surface tension.

【0016】棚沢らの研究によれば: この式からも判るように、同一のノズルから噴霧される
場合の液滴は、より低表面張力、低粘性の液の方が小さ
くなることが判る。硝酸銀水溶液などのような硝酸塩水
溶液において、液の粘性を低下させることは困難である
が、表面張力は界面活性剤を微量添加すること、エチル
アルコールなどの溶媒を多量に加えることで実現が可能
である。しかし、エチルアルコールなどの溶媒を使用す
る場合、それを多量に用いないと表面張力は低下しな
い、硝酸銀と化学反応し液を変質させる危険性がある
など、その点でも界面活性剤が数段好ましい。
According to the study by Tanasawa et al .: As can be seen from this equation, it is understood that the droplets sprayed from the same nozzle are smaller in a liquid having a lower surface tension and a lower viscosity. In aqueous nitrate solutions such as aqueous silver nitrate solutions, it is difficult to lower the viscosity of the solution, but the surface tension can be realized by adding a small amount of a surfactant or a large amount of a solvent such as ethyl alcohol. is there. However, when a solvent such as ethyl alcohol is used, the surface tension is not reduced unless a large amount of the solvent is used, and there is a risk of chemically reacting with silver nitrate to deteriorate the solution. .

【0017】次に示す表1は、界面活性剤の有無及び噴
霧圧力との関係を粗大液滴発生の有無で纏めたものであ
る。
Table 1 below summarizes the relationship between the presence or absence of a surfactant and the spray pressure by the presence or absence of generation of coarse droplets.

【表1】 [Table 1]

【0018】上記の表から判るように、高い圧力だと管
内に液滴が付着するが、界面活性剤を添加することによ
り圧力を高くすることなく、弱いガス圧力でも粗大液滴
が発生しないことが判る。本発明で実施する弱いガス圧
力、即ち低圧力下とは0.1〜2.0kg/cmの範
囲で行うことが可能となる。界面活性剤の種類におい
て、本発明の趣旨にてらし特に限定するものではない
が、硝酸塩などを含む原液に添加すると、塩と界面活性
剤とが反応を起こす場合があるので注意して選択使用す
る必要はある。その点をクリアーすればカチオン、アニ
オン、ノニオン、両性の各界面活性剤など何れも使用が
可能である。
As can be seen from the above table, when the pressure is high, droplets adhere to the inside of the tube. However, by adding a surfactant, coarse droplets are not generated even at a weak gas pressure without increasing the pressure. I understand. The weak gas pressure, that is, the low pressure, used in the present invention can be performed in the range of 0.1 to 2.0 kg / cm 2 . In the type of surfactant, it is not particularly limited in the spirit of the present invention, but when added to a stock solution containing nitrate or the like, the salt may react with the surfactant, so that it is carefully selected and used. There is a need. If this point is cleared, any of cations, anions, nonionics and amphoteric surfactants can be used.

【0019】後記する実施例では、金属塩水溶液として
硝酸銀を用いているが、この場合は界面活性剤として日
信化学製の商品名オレフィンE1010を使用した。添
加量も特に規定しないが一般的に、溶液に対して0.1
〜1.0重量%でよい。 基本的には、これら界面活性
剤は、電気炉への噴霧において酸化燃焼して消失すると
考えられ、最終粉末には残存する事はない。(通常の噴
霧熱分解法では電気炉の温度は800〜1000℃とい
う有機物燃焼には十分の高温を設定している)。
In the examples described later, silver nitrate is used as the aqueous metal salt solution. In this case, an olefin E1010 manufactured by Nissin Chemical Co., Ltd. was used as a surfactant. Although the amount of addition is not particularly specified, it is generally 0.1% to the solution.
It may be up to 1.0% by weight. Basically, it is considered that these surfactants are oxidized and burned out when sprayed into an electric furnace, and do not remain in the final powder. (In the usual spray pyrolysis method, the temperature of the electric furnace is set at 800 to 1000 ° C., which is high enough for organic matter combustion.)

【0020】また、本発明は、金属塩水溶液の表面張力
を降下させて、より少ないエネルギーで液滴の生成を行
うものであり、噴霧装置は二流体ノズルに限らず、一流
体ノズルでも回転円盤方式でも所望の効果を発揮する。
しかも、本発明は工業的規模で行う際に顕著な歩留り向
上をもたらし、実験室規模では窺知し得なかった効果を
発揮する。
Further, the present invention reduces the surface tension of the aqueous metal salt solution to generate droplets with less energy. The spraying device is not limited to a two-fluid nozzle, and a single-fluid nozzle can be used for a rotating disk. The desired effect is also exhibited by the method.
Moreover, the present invention brings about a remarkable improvement in yield when carried out on an industrial scale, and exhibits effects that could not be detected on a laboratory scale.

【0021】次に、請求項2の製造装置について詳説す
る。噴霧熱分解法において、高温電気炉内への液滴の付
着が金属粉付着となり、製品歩留りが極端に低下し、大
きな問題としてクローズアップされている。液滴を発生
させる方法としては前記したが、例えば、図2(イ)
(ロ)、に示すような方法が屡々用いられる。これの問
題点としてしいて挙げれば、高速の気流が電気炉内に導
入されるため乱気流を生じやすく、液滴が上部カバー及
び炉内壁に付着し易くなることである。
Next, the manufacturing apparatus of claim 2 will be described in detail. In the spray pyrolysis method, the adhesion of liquid droplets in a high-temperature electric furnace becomes the adhesion of metal powder, and the product yield is extremely reduced. The method for generating droplets is described above. For example, FIG.
The method shown in (b) is often used. The problem with this is that high-speed airflow is introduced into the electric furnace, so that turbulence is likely to occur, and droplets tend to adhere to the upper cover and the inner wall of the furnace.

【0022】その付着を防止するため、本発明の図1
(ロ)で示す電気炉上部の噴霧ノズル口4周辺のカバー
前面をステンレス製の200〜400mesh程度のメ
ッシュカバーMとし、外気流を整流して均整のとれた均
一のダウンフロー流として導入することで内壁付着を防
止することに成功したのである。この効果は、請求項2
に記載のとおり表面張力降下と液粘性の低下との相乗作
用により顕著な収率と、品質の向上を達成できた。
In order to prevent the adhesion, FIG.
(2) The front surface of the cover around the spray nozzle port 4 at the upper part of the electric furnace shown in (b) is made of a stainless steel mesh cover M of about 200 to 400 mesh, and the outside air flow is rectified and introduced as a uniform and uniform downflow flow. This successfully prevented the inner wall from adhering. This effect is achieved by claim 2
As described above, a remarkable yield and an improvement in quality were able to be achieved by the synergistic action of a decrease in surface tension and a decrease in liquid viscosity.

【0023】従来使用されている電気炉において、圧縮
空気又は大気供給口5は金属塩水溶液噴霧ノズル口4の
至近の周辺に設けられており図2(イ)(ロ)は一流体
ノズルによるもので、電気炉内部に供給されたとき水溶
液の乱流と、電気炉内部への付着は避けられない。各図
において、1は電気炉加熱器、2は石英又はシリカ管、
3はムライト管、4は金属塩水溶液噴霧ノズル口、5は
圧縮空気又は大気供給口、6は大気分散流、7は大気、
Mはメッシュカバーを夫々示す。
In a conventionally used electric furnace, the compressed air or air supply port 5 is provided in the vicinity of the metal salt aqueous solution spray nozzle port 4, and FIG. Therefore, turbulent flow of the aqueous solution when supplied into the electric furnace and adherence to the inside of the electric furnace are inevitable. In each figure, 1 is an electric furnace heater, 2 is a quartz or silica tube,
3 is a mullite tube, 4 is a metal salt aqueous solution spray nozzle port, 5 is a compressed air or air supply port, 6 is an air dispersed flow, 7 is air,
M indicates a mesh cover.

【0024】本発明は、図1(ロ)に示すように、電気
炉の上部にて金属塩水溶液噴霧ノズル口4から噴霧さ
れ、上部全面を覆ったメッシュカバーMにて、全面で平
均的に大気が分散吸入されるため、電気炉内での金属塩
水溶液の液滴は均一なダウンフロー整流となり、電気炉
内壁への付着もなく、そして十分に反応を完結する。そ
こで派生する良好な液滴の千切れ現象は、請求項1の表
面張力降下剤添加との相乗作用であるのは言うまでもな
い。なお、ハニカム状での整流も効果はあるが、厚みを
持たないメッシュカバーは細かい無数の微小渦流の乱流
状態となり、それらの集合が全体として層状となること
から、より効果的となる。メッシュカバーMはステンレ
ス製で200〜400meshのものを用いている。
In the present invention, as shown in FIG. 1 (b), the metal salt solution is sprayed from the nozzle 4 at the upper part of the electric furnace, and the mesh cover M covering the entire upper part is used to average the entire surface. Since the atmosphere is dispersed and sucked, the droplets of the metal salt aqueous solution in the electric furnace have a uniform downflow rectification, do not adhere to the inner wall of the electric furnace, and sufficiently complete the reaction. It goes without saying that the resulting good dropping of the droplet is a synergistic effect with the addition of the surface tension reducing agent of claim 1. Although the rectification in the honeycomb shape has an effect, the mesh cover having no thickness is in a turbulent state of countless fine eddies, and the aggregation thereof becomes a layer as a whole, which is more effective. The mesh cover M is made of stainless steel and has a mesh of 200 to 400 mesh.

【0025】次に、図面との対応において実施例、比較
例について説明する。図1(イ)は、本発明の界面活性
剤を添加した金属塩水溶液を用い、電気炉上部のカバー
は椀状カバー(メッシュなし)によって行った実施例
で、図1(ロ)は、本発明に係る界面活性剤を添加した
金属塩水溶液を用い、電気炉上部のカバーを椀状のメッ
シュカバーMとし、図2(イ)(ロ)は金属塩水溶液噴
霧ノズル口4の先端周囲に、圧縮空気又は大気供給口5
を設けた従来例であり、図3(イ)は金属塩水溶液と圧
縮空気とを一本のノズルから噴霧する二流体ノズルの従
来例を示したものである。
Next, examples and comparative examples will be described in correspondence with the drawings. FIG. 1A shows an embodiment in which a metal salt aqueous solution to which the surfactant of the present invention is added is used, and the upper cover of the electric furnace is formed by a bowl-shaped cover (without mesh). FIG. Using a metal salt aqueous solution to which the surfactant according to the present invention has been added, the upper cover of the electric furnace is formed as a bowl-shaped mesh cover M, and FIGS. Compressed air or air supply port 5
FIG. 3 (a) shows a conventional example of a two-fluid nozzle for spraying a metal salt aqueous solution and compressed air from a single nozzle.

【0026】[0026]

【実施例1:請求項1に対応するもの】硝酸銀1.0k
gを1000mlの純水温湯に溶解して放置し、60℃
以下の液温になった時点で、日信化学製の商品名オレフ
ィンE1010界面活性剤を1.0g添加し攪拌する。
この水溶液を図1(イ)の電気炉上部の金属塩水溶液噴
霧ノズル口4から噴霧熱分解炉内に噴霧した(メッシュ
カバーMなしの状態)。噴霧ノズル口4の噴霧ガス圧は
1.0kg/cm、液体流量31/hr、電気炉温度
950℃で反応させた。炉の上部カバー周囲、内壁には
僅かの粉末の付着が認められたが、噴霧金属塩水溶液量
に対する金属粒子の捕集率は85重量%で、従来法に比
して15重量%も高いものであった。また、捕集器に捕
集された金属粒子、即ち銀粒子を10g採取し純水10
0ml中に浸漬して、残留硝酸銀を溶出したのちNaC
lを添加してAgClによる白濁度を観察した結果、殆
ど白濁化はなく十分な分解反応が行われたことが認めら
れた。
Example 1: Corresponding to claim 1 Silver nitrate 1.0 k
g in 1000 ml of pure hot water and left at 60 ° C.
When the temperature of the solution reaches the following, 1.0 g of an olefin E1010 surfactant manufactured by Nissin Chemical Co., Ltd. is added and stirred.
This aqueous solution was sprayed into the spray pyrolysis furnace from the metal salt aqueous solution spray nozzle port 4 at the upper part of the electric furnace shown in FIG. 1A (without the mesh cover M). The reaction was performed at a spray gas pressure of the spray nozzle port 4 of 1.0 kg / cm 2 , a liquid flow rate of 31 / hr, and an electric furnace temperature of 950 ° C. A slight amount of powder adhered around the inner cover and the inner wall of the furnace, but the collection rate of metal particles with respect to the amount of the sprayed metal salt solution was 85% by weight, which was 15% by weight higher than the conventional method. Met. Further, 10 g of the metal particles, that is, silver particles, collected in the collector were collected and pure water 10 g was collected.
0 ml to elute residual silver nitrate, then add NaC
As a result of observation of the turbidity due to AgCl after adding l, it was confirmed that there was almost no turbidity and a sufficient decomposition reaction was performed.

【0027】[0027]

【比較例1】これは、金属塩水溶液中に界面活性剤を添
加しなかったことの他は、全て実施例1と同様に行っ
た。その結果、炉の上部カバー周囲、内壁には金属粒子
の付着が多く認められ、粒子の収率も70重量%を下回
り、また、AgClによる白濁度を観察した結果、牛乳
を添加した如く白濁した事を見ても、硝酸銀の分解が不
十分であったことが窺知出来、収率の低さも当然と言え
る。
Comparative Example 1 This was carried out in the same manner as in Example 1 except that no surfactant was added to the aqueous metal salt solution. As a result, a large amount of metal particles adhered around the upper cover and the inner wall of the furnace, the particle yield was lower than 70% by weight, and the cloudiness was observed by AgCl. From this fact, it can be seen that the decomposition of silver nitrate was insufficient, and it can be said that the yield was low.

【0028】[0028]

【実施例2:請求項2に対応するもの】炉の上部カバー
として、図1(ロ)に示すメッシュカバーMのメッシュ
を325としたステンレス製金網を設置して、バグフィ
ルター(図示しないが電気炉下部に取り付けられている
吸引フィルター)の吸引の度合いに適合させるように、
自然にメッシュカバーM金網部から大気7を導入して、
実施例1に記載する金属塩水溶液を霧化して金属粒子を
捕集した。その捕集率は91重量%と高く、メッシュカ
バーMの裏面及び電気炉内壁への金属粉の付着は僅かに
認められる程度であった。噴霧ノズル口4からの噴霧ガ
ス圧は0.7kg/cm、液体流量31/hrで、電
気炉温度950℃であった。
Embodiment 2: A stainless steel wire mesh having a mesh of 325 as a mesh cover M shown in FIG. 1 (b) is installed as an upper cover of the furnace, and a bag filter (not shown) is used. To match the degree of suction of the suction filter attached to the bottom of the furnace)
Naturally, the atmosphere 7 is introduced from the mesh cover M wire mesh,
The metal salt aqueous solution described in Example 1 was atomized to collect metal particles. The collection rate was as high as 91% by weight, and adhesion of metal powder to the back surface of the mesh cover M and the inner wall of the electric furnace was slightly recognized. The spray gas pressure from the spray nozzle port 4 was 0.7 kg / cm 2 , the liquid flow rate was 31 / hr, and the electric furnace temperature was 950 ° C.

【0029】[0029]

【比較例2】図2(イ)及び図3(イ)に示す電気炉
で、金属塩水溶液中に界面活性剤を添加せずに噴霧熱分
解を行ったものは、上部カバー、炉の肩部及び内壁に加
熱分解した粒子が多く認められ、噴射量に対する金属粒
子の捕集率は70重量%及び75重量%であった。
Comparative Example 2 In the electric furnace shown in FIGS. 2 (a) and 3 (b), spray pyrolysis was performed without adding a surfactant to the aqueous metal salt solution. Many heat-decomposed particles were observed in the part and the inner wall, and the collection rate of the metal particles with respect to the injection amount was 70% by weight and 75% by weight.

【0030】[0030]

【発明の効果】以上詳記したように、実験室規模で実施
する場合にはさほど問題視されないことであるが、工業
的規模で金属粒子、とりわけ良質の銀粒子を歩留り良く
捕集するには当業界において懸案の事項となっていたと
ころ、本発明により金属塩水溶液の表面張力と液の粘
度、そして電気炉内における霧化した液滴の乱流や、そ
の他の挙動に着目し、これを解決し、歩留りを高め、同
時に均整のとれた良質の金属粒子を得た効果は顕著なも
のである。
As described in detail above, although it is not so much a problem when the method is carried out on a laboratory scale, it is necessary to collect metal particles, especially high quality silver particles on an industrial scale with a good yield. Although it has been a matter of concern in the art, the present invention focuses on the surface tension and viscosity of the aqueous solution of the metal salt, the turbulence of the atomized droplets in the electric furnace, and other behaviors. The effect of solving the problem, increasing the yield, and at the same time, obtaining a well-balanced high-quality metal particle is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)本発明の界面活性剤を金属塩水溶液に添
加し、メッシュカバーMを用いず実施したもの
FIG. 1 (a) A test in which the surfactant of the present invention is added to an aqueous solution of a metal salt and the mesh cover M is not used.

【図1】(ロ)本発明の界面活性剤を金属塩水溶液に添
加し、メッシュカバーMを用いて実施したもの
FIG. 1 (b) A sample prepared by adding the surfactant of the present invention to an aqueous solution of a metal salt and using a mesh cover M

【図2】(イ)(ロ)従来例で使用する一流体ノズル電
気炉の構造
FIGS. 2A and 2B show the structure of a one-fluid nozzle electric furnace used in a conventional example.

【図3】(イ)従来例で使用する二流体ノズル電気炉の
構造
FIG. 3 (a) Structure of a two-fluid nozzle electric furnace used in a conventional example

【符号の説明】[Explanation of symbols]

1 電気炉加熱器 4 金属塩水溶液噴霧ノズル口 5 圧縮空気又は大気供給口 6 大気分散流 7 大気 M メッシュカバー Reference Signs List 1 electric furnace heater 4 metal salt aqueous solution spray nozzle port 5 compressed air or air supply port 6 air dispersion flow 7 air M mesh cover

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥田 晃彦 神奈川県厚木市飯山台ノ岡2453−21 田中 貴金属工業株式会社厚木工場内 Fターム(参考) 4K017 AA02 AA06 BA02 CA07 EJ01 EK05  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akihiko Okuda 2453-21 Iiyamadainooka, Atsugi-shi, Kanagawa F-term in the Atsugi factory of Tanaka Kikinzoku Kogyo Co., Ltd. 4K017 AA02 AA06 BA02 CA07 EJ01 EK05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一種又はそれ以上の金属塩水溶液を電気
炉内に噴霧して金属粒子を製造する方法において、電気
炉内に注入する金属塩水溶液中に表面張力降下剤を添加
して低圧力下で微細液滴とすることにより均一微細な金
属粒子を得ることを特徴とする金属粒子の製造方法
1. A method for producing metal particles by spraying one or more aqueous metal salt solutions into an electric furnace, wherein a low surface pressure reducing agent is added to the aqueous metal salt solution to be injected into the electric furnace. A method for producing metal particles, characterized in that uniform fine metal particles are obtained by forming fine droplets underneath.
【請求項2】 一種又はそれ以上の金属塩水溶液を電気
炉内に噴霧して金属粒子を製造する方法において、表面
張力降下剤を添加した金属塩水溶液を噴霧する噴霧ノズ
ル口の周囲を、全面において200〜400meshの
金網カバーとしたことを特徴とする金属粒子の製造装置
2. A method for producing metal particles by spraying one or more aqueous metal salt solutions into an electric furnace, wherein the surface of the spray nozzle opening for spraying the aqueous metal salt solution to which a surface tension reducing agent is added is entirely covered. A metal mesh cover having a mesh size of 200 to 400 mesh
【請求項3】 表面張力降下剤は、カチオン、アニオ
ン、ノニオン、両性の各界面活性剤の中から選択される
ものである請求項1又は2のいずれかに記載の金属粒子
の製造方法及びその製造装置
3. The method for producing metal particles according to claim 1, wherein the surface tension reducing agent is selected from cation, anion, nonionic, and amphoteric surfactants. manufacturing device
【請求項4】 金網カバーはステンレス製であることを
特徴とする請求項2記載の金属粒子の製造装置
4. The apparatus according to claim 2, wherein the wire mesh cover is made of stainless steel.
JP11134632A 1999-04-06 1999-04-06 Method and apparatus for manufacturing metal particles by spray pyrolysis Pending JP2000290708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11134632A JP2000290708A (en) 1999-04-06 1999-04-06 Method and apparatus for manufacturing metal particles by spray pyrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11134632A JP2000290708A (en) 1999-04-06 1999-04-06 Method and apparatus for manufacturing metal particles by spray pyrolysis

Publications (1)

Publication Number Publication Date
JP2000290708A true JP2000290708A (en) 2000-10-17

Family

ID=15132922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11134632A Pending JP2000290708A (en) 1999-04-06 1999-04-06 Method and apparatus for manufacturing metal particles by spray pyrolysis

Country Status (1)

Country Link
JP (1) JP2000290708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322052A (en) * 2005-05-19 2006-11-30 Noritake Co Ltd Method for producing metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322052A (en) * 2005-05-19 2006-11-30 Noritake Co Ltd Method for producing metal powder

Similar Documents

Publication Publication Date Title
JP2650837B2 (en) Production method of silver powder by aerosol decomposition
US5429657A (en) Method for making silver-palladium alloy powders by aerosol decomposition
US5421854A (en) Method for making palladium and palladium oxide powders by aerosol decomposition
JP5151476B2 (en) Ink composition and metallic material
EP0761349B1 (en) Method for making gold powders by aerosol decomposition
JP6282648B2 (en) Method for producing cuprous oxide fine particles
JPS63243211A (en) Wet metallurgical method for producing finely divided globular noble metal base powder
JP4747839B2 (en) Dispersion containing metal hydride fine particles, method for producing the same, and metallic material
US5964918A (en) Process for preparing metal powder
CN111819018B (en) Method for producing microparticles, and microparticles
JP2011514432A (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
KR0144599B1 (en) Liquid-drop generator and device for preparing fine-partides
JPS621807A (en) Manufacture of metallic powder
KR20070105902A (en) Nickel powder manufacturing method
JP2000290708A (en) Method and apparatus for manufacturing metal particles by spray pyrolysis
KR20100116400A (en) Method and apparatus depositing trans-phase aerosol
CN111565870B (en) Copper microparticles
CN112204159B (en) Method for selectively oxidizing metal of alloy
US20230032817A1 (en) Plasma jet deposition process
JPH0368484B2 (en)
JP2006322051A (en) Metal powder, and method for producing the same
CN1951610A (en) Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
EP0834369A1 (en) Process for preparing metal powder
JP2000265202A (en) Production of silver powder
JP2006322052A (en) Method for producing metal powder