JP2000290062A - MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION - Google Patents

MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION

Info

Publication number
JP2000290062A
JP2000290062A JP11097342A JP9734299A JP2000290062A JP 2000290062 A JP2000290062 A JP 2000290062A JP 11097342 A JP11097342 A JP 11097342A JP 9734299 A JP9734299 A JP 9734299A JP 2000290062 A JP2000290062 A JP 2000290062A
Authority
JP
Japan
Prior art keywords
mgo
powder
earth metal
alkaline earth
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11097342A
Other languages
Japanese (ja)
Other versions
JP3893793B2 (en
Inventor
Hisao Ueda
尚郎 上田
Hitoshi Oomisono
仁 近江園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP09734299A priority Critical patent/JP3893793B2/en
Publication of JP2000290062A publication Critical patent/JP2000290062A/en
Application granted granted Critical
Publication of JP3893793B2 publication Critical patent/JP3893793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably form a uniform film even by an electron beam vapor deposition method without causing trouble in a system for feeding an MgO sintered compact or generating splashes and to enhance the film characteristics of a formed MgO film. SOLUTION: The MgO sintered compact used has >=95% relative density and contains 0.5-50 vol.% alkaline earth metal oxide particles dispersed in the MgO matrix having grains whose average grain diameter is 0.3-100 μm. One or more elements selected from the group comprising Ca, Sr and Ba are preferably used as the alkaline earth metal element in the alkaline earth metal oxide particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MgOマトリック
ス中に、アルカリ土類金属酸化物粒子又はアルカリ土類
金属酸化物粒子及び希土類酸化物粒子を含む複合セラミ
ックからなるMgO系蒸着材及びその製造方法に関す
る。更に詳しくは、AC型PDP(Plasma Display Pan
el)の誘電体層を保護するMgO膜を成膜するのに好適
なMgO系蒸着材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MgO-based vapor deposition material comprising a composite ceramic containing alkaline earth metal oxide particles or alkaline earth metal oxide particles and rare earth oxide particles in a MgO matrix, and a method for producing the same. About. More specifically, an AC type PDP (Plasma Display Pan)
The present invention relates to an MgO-based vapor deposition material suitable for forming an MgO film for protecting a dielectric layer of el) and a method of manufacturing the same.

【0002】[0002]

【従来の技術】ここ数年、平面ディスプレイ、なかでも
プラズマ発光を用いた大型ディスプレイパネルの研究開
発と実用化はめざましく、その生産も急増している。カ
ラープラズマディスプレイパネル(以下、PDPとい
う)は、その開発と実用化の動きが活発化しており、ハ
イビジョン用大画面壁掛けテレビの最短距離にあり、対
角40インチクラス以上のPDPの試作が進められてい
る。PDPは、電極構造の点で放電空間に金属電極が露
出しているDC型と、金属電極が誘電体層で覆われてい
るAC型とに分類される。このAC型PDPの開発の当
初は、ガラス誘電体層が放電空間に露出していたため、
直接放電にさらされ、イオン衝撃のスパッタリングによ
り誘電体層表面が変化して放電開始電圧が上昇し、パネ
ル寿命等に安定性が得られなかった。
2. Description of the Related Art In recent years, research and development and commercialization of flat panel displays, especially large display panels using plasma emission have been remarkable, and their production has been rapidly increasing. Color plasma display panels (hereinafter referred to as PDPs) have been actively developed and put into practical use, and trial production of PDPs with a diagonal size of 40 inches or more, which are the shortest distance from large screen TVs for high-definition televisions, is underway. ing. PDPs are classified into a DC type in which a metal electrode is exposed in a discharge space in terms of an electrode structure, and an AC type in which a metal electrode is covered with a dielectric layer. At the beginning of the development of this AC type PDP, the glass dielectric layer was exposed to the discharge space,
When exposed to direct discharge, the surface of the dielectric layer was changed by ion bombardment and the discharge start voltage was increased, and stability in panel life and the like could not be obtained.

【0003】そのため、上記イオン衝撃のスパッタリン
グで変化しないという、重要な役割を担う種々の酸化物
を誘電体層の保護膜とする試みがなされている。即ち、
保護膜に求められる特性は、低い放電電圧、耐スパ
ッタ性、速い放電の応答性、絶縁性、である。これ
らの条件を満たす材料として、MgOが挙げられる。こ
のMgOからなる保護膜は、誘電体層表面をスパッタリ
ングから守り、PDPの長寿命化に重要な働きをする。
またMgOは材料としての仕事関数が小さく、二次電子
を放出し易いため、放電時の駆動電圧が低くなるという
利点を有する。
For this reason, attempts have been made to use various oxides, which do not change by the ion bombardment sputtering and play an important role, as protective films for the dielectric layer. That is,
The characteristics required for the protective film are low discharge voltage, spatter resistance, fast discharge response, and insulation. MgO is a material that satisfies these conditions. This protective film made of MgO protects the surface of the dielectric layer from sputtering and plays an important role in extending the life of the PDP.
In addition, MgO has the advantage that the work function as a material is small and secondary electrons are easily emitted, so that the driving voltage at the time of discharge is reduced.

【0004】現在、AC型PDPの上記保護膜として、
単結晶MgOの破砕品を蒸着材とする電子ビーム蒸着法
により成膜されたMgO膜が一般的である。なお、単結
晶MgOの破砕品は純度が98%以上のMgOクリンカ
や軽焼MgO(1000℃以下で焼結されたMgO)を
電弧炉(アーク炉)で溶融することにより、即ち電融に
よりインゴットとした後、このインゴットから単結晶部
を取り出して破砕することにより製造される。この電子
ビーム蒸着法によるMgO膜は1000Å/分程度の速
度で成膜されている。また、成膜されたMgO膜は、低
い維持電圧で駆動でき、更に膜中に存在する(111)
面の量が増えるほど、二次電子放出比は増大し、駆動電
圧も減少すると言われている。
At present, as the above protective film of AC type PDP,
An MgO film formed by an electron beam evaporation method using a crushed single crystal MgO as an evaporation material is generally used. The crushed single-crystal MgO is obtained by melting an MgO clinker having a purity of 98% or more or lightly burned MgO (MgO sintered at 1000 ° C. or less) in an electric arc furnace (ie, an arc furnace). Then, the single crystal portion is taken out of the ingot and crushed to produce the ingot. The MgO film formed by the electron beam evaporation method is formed at a speed of about 1000 ° / min. Further, the formed MgO film can be driven at a low sustaining voltage, and further exists in the film (111).
It is said that as the surface area increases, the secondary electron emission ratio increases and the driving voltage also decreases.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の単
結晶MgOの破砕品を蒸着材として用いた電子ビーム蒸
着法では、成膜速度が速い利点がある反面、破砕品であ
るため、形状が均一でなく、スプラッシュが発生し易い
不具合があった。また、上記従来の単結晶MgOの破砕
品を蒸着材として用いた電子ビーム蒸着法では、単一の
組成からなるため、異種原料を混合した成膜には適さ
ず、また成膜面積が広いときには、膜厚及び膜組成を均
一にすることが難しい問題点があった。
However, the conventional electron beam evaporation method using a crushed single-crystal MgO product as a vapor deposition material has the advantage of a high film forming rate, but is a crushed product. There was a problem that it was not uniform and splash was easily generated. In addition, the conventional electron beam evaporation method using a crushed single crystal MgO as an evaporation material has a single composition, and thus is not suitable for film formation in which different kinds of raw materials are mixed. It is difficult to make the film thickness and film composition uniform.

【0006】本発明の目的は、電子ビーム蒸着法による
成膜時にスプラッシュが発生せず、成膜面積が広くて
も、膜厚及び膜組成が均一なMgO膜を得ることができ
る、MgO蒸着材及びその製造方法を提供することにあ
る。本発明の別の目的は、電子ビーム蒸着法による成膜
後、低い電圧でプラズマを生成しかつ維持することがで
き、放電時の耐スパッタ性,速い放電の応答性及び高い
絶縁性を有するMgO膜を得ることができる、MgO蒸
着材及びその製造方法を提供することにある。本発明の
更に別の目的は、MgO焼結体のMgOマトリックス粒
界の欠陥を低減することができ、かつ強度も向上するこ
とができ、またMgO焼結体のMgOマトリックスを均
一な組織にすることができる、MgO蒸着材及びその製
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a MgO vapor deposition material which does not generate a splash during film formation by an electron beam vapor deposition method and can provide an MgO film having a uniform film thickness and film composition even if the film formation area is large. And a method for manufacturing the same. Another object of the present invention is to provide a plasma processing apparatus which can generate and maintain plasma at a low voltage after film formation by electron beam evaporation, and has a sputter resistance at the time of discharge, a fast discharge response and a high insulating property. An object of the present invention is to provide a MgO vapor deposition material capable of obtaining a film and a method for producing the same. Still another object of the present invention is to reduce the defects at the MgO matrix grain boundaries of the MgO sintered body, improve the strength, and make the MgO matrix of the MgO sintered body a uniform structure. It is an object of the present invention to provide an MgO vapor deposition material and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
相対密度が95%以上のMgO焼結体であって、平均結
晶粒径が0.3〜100μmの結晶粒子を有するMgO
マトリックス中に、アルカリ土類金属酸化物粒子が0.
5〜50体積%分散されたMgO蒸着材である。請求項
2に係る発明は、請求項1に係る発明であって、更にア
ルカリ土類金属酸化物粒子中のアルカリ土類金属元素が
Ca,Sr及びBaからなる群より選ばれた1種又は2
種以上の元素であることを特徴とする。これらの請求項
1又は2に記載されたMgO蒸着材では、異方性のない
MgOマトリックス中に、アルカリ土類金属酸化物粒子
を分散して複合化を行うことにより、MgO焼結体の物
理的性質を改善できる。
The invention according to claim 1 is
MgO sintered body having a relative density of 95% or more and having crystal grains having an average crystal grain size of 0.3 to 100 μm
Alkaline earth metal oxide particles are contained in the matrix at a concentration of 0.1%.
It is a MgO vapor deposition material dispersed in 5 to 50% by volume. The invention according to claim 2 is the invention according to claim 1, wherein the alkaline earth metal element in the alkaline earth metal oxide particles is one or more selected from the group consisting of Ca, Sr and Ba.
It is characterized by being at least one kind of element. In the MgO vapor deposition material according to claim 1 or 2, the physical properties of the MgO sintered body are obtained by dispersing the alkaline earth metal oxide particles in an MgO matrix having no anisotropy and performing complexation. Properties can be improved.

【0008】例えば、Al23マトリックスにSiC粒
子を分散させた場合には、分散粒子の熱膨張係数がAl
23マトリックスより2倍以上小さいため、焼結時にこ
の熱膨張係数の差に起因して焼結過程で分散粒子の周囲
や内部に応力が発生する。この応力は1000MPa〜
1500MPaに達する程大きいため、Al23マトリ
ックスと分散粒子の界面に亀裂が走る場合がある。従っ
て、これを防ぐには、非常に細かいSiC粒子を分散さ
せなければならない問題点がある。これに対して本発明
では、アルカリ土類金属酸化物粒子が高温で軟化し、そ
の熱膨張係数が高温でMgOマトリックスの熱膨張係数
(約14×10-6/℃)の約0.7〜0.9倍になる。
MgOマトリックスに対するアルカリ土類金属酸化物粒
子の高温時の熱挙動から、焼結時にMgOマトリックス
と分散粒子はその界面で強く結合する。この界面での強
い結合により、蒸着材として用いた場合に、数千オング
ストローム/分以上の成膜速度が得られる。
For example, when SiC particles are dispersed in an Al 2 O 3 matrix, the thermal expansion coefficient of the dispersed particles is Al.
Since it is smaller than the 2 O 3 matrix by a factor of two or more, stress is generated around and inside the dispersed particles during the sintering process due to the difference in the coefficient of thermal expansion during sintering. This stress is 1000MPa ~
Since it is so large as to reach 1500 MPa, cracks may run at the interface between the Al 2 O 3 matrix and the dispersed particles. Therefore, in order to prevent this, there is a problem that very fine SiC particles must be dispersed. On the other hand, in the present invention, the alkaline earth metal oxide particles soften at a high temperature and have a thermal expansion coefficient of about 0.7 to about the thermal expansion coefficient of the MgO matrix (about 14 × 10 −6 / ° C.) at a high temperature. 0.9 times.
From the thermal behavior of the alkaline earth metal oxide particles with respect to the MgO matrix at a high temperature, the MgO matrix and the dispersed particles are strongly bonded at the interface during sintering. Due to the strong bonding at the interface, a film forming speed of several thousand angstroms / min or more can be obtained when used as a vapor deposition material.

【0009】上述のように分散粒子であるアルカリ土類
金属酸化物粒子は、高温で軟らかくなるために、高温で
はマトリックスと分散粒子との熱膨張係数の差は、小さ
くなる。従って、界面に亀裂を発生させない範囲で大き
なアルカリ土類金属酸化物粒子を分散させることが可能
で、そのためにマトリックス粒界を締め付けるトータル
の領域が大きくなり、粒界の欠陥も少なく、かつ強度も
向上する。更にアルカリ土類金属酸化物粒子を添加する
ことにより、MgO焼結体のMgOマトリックスが均一
な組織となる。
As described above, the alkaline earth metal oxide particles, which are dispersed particles, become soft at high temperatures, so that at high temperatures, the difference in the coefficient of thermal expansion between the matrix and the dispersed particles becomes small. Therefore, it is possible to disperse the large alkaline earth metal oxide particles within a range that does not cause cracks at the interface, thereby increasing the total area for tightening the matrix grain boundaries, reducing the number of defects at the grain boundaries, and improving the strength. improves. Further, by adding the alkaline earth metal oxide particles, the MgO matrix of the MgO sintered body has a uniform structure.

【0010】請求項3に係る発明は、相対密度が95%
以上のMgO焼結体であって、平均結晶粒径が0.3〜
100μmの結晶粒子を有するMgOマトリックス中
に、アルカリ土類金属酸化物粒子及び希土類酸化物粒子
が合計0.5〜50体積%分散されたMgO蒸着材であ
る。請求項4に係る発明は、請求項3に係る発明であっ
て、更にアルカリ土類金属酸化物粒子中のアルカリ土類
金属元素がCa,Sr及びBaからなる群より選ばれた
1種の元素であり、希土類酸化物粒子中の希土類元素が
Sc,Y,La,Ce,Nd,Sm,Gd,Tb,Yb
及びDyからなる群より選ばれた1種の元素であること
を特徴とする。
[0010] The invention according to claim 3 has a relative density of 95%.
In the above MgO sintered body, the average crystal grain size is 0.3 to
This is an MgO vapor deposition material in which alkaline earth metal oxide particles and rare earth oxide particles are dispersed in a total of 0.5 to 50% by volume in an MgO matrix having crystal particles of 100 μm. The invention according to claim 4 is the invention according to claim 3, wherein the alkaline earth metal element in the alkaline earth metal oxide particles is one element selected from the group consisting of Ca, Sr and Ba. And the rare earth elements in the rare earth oxide particles are Sc, Y, La, Ce, Nd, Sm, Gd, Tb, and Yb.
And Dy is one kind of element selected from the group consisting of:

【0011】これらの請求項3又は4に記載されたMg
O蒸着材では、希土類酸化物粒子がアルカリ土類金属酸
化物粒子と同様に、高温で軟化し、その熱膨張係数が高
温でMgOマトリックスの熱膨張係数(約14×10-6
/℃)の約0.7〜0.9倍になる。この結果、MgO
マトリックスに対するアルカリ土類金属酸化物粒子及び
希土類酸化物粒子の高温時の熱挙動から、焼結時にMg
Oマトリックスと分散粒子はその界面で強く結合する。
また分散粒子であるアルカリ土類金属酸化物粒子及び希
土類酸化物粒子は、高温で軟らかくなるために、請求項
1に記載されたMgO蒸着材と同様に、高温ではマトリ
ックスと分散粒子との熱膨張係数の差が小さくなり、界
面に亀裂を発生させない範囲で大きなアルカリ土類金属
酸化物粒子及び希土類酸化物粒子を分散させることが可
能となる。そのためにマトリックス粒界を締め付けるト
ータルの領域が大きくなり、粒界の欠陥も少なく、かつ
強度も向上する、即ちMgO焼結体の物理的性質を改善
できる。またアルカリ土類金属酸化物粒子及び希土類酸
化物粒子を添加することにより、MgO焼結体のMgO
マトリックスが均一な組織となる。
[0011] The Mg according to claim 3 or 4
In the O-deposited material, the rare-earth oxide particles soften at a high temperature similarly to the alkaline-earth metal oxide particles, and the thermal expansion coefficient of the rare-earth oxide particles at the high temperature is about 14 × 10 −6 of the MgO matrix.
/ ° C) about 0.7 to 0.9 times. As a result, MgO
From the thermal behavior of the alkaline earth metal oxide particles and rare earth oxide particles at high temperature with respect to the matrix,
The O matrix and the dispersed particles are strongly bonded at the interface.
Also, the alkaline earth metal oxide particles and the rare earth oxide particles, which are dispersed particles, become soft at a high temperature, so that the thermal expansion of the matrix and the dispersed particles at a high temperature is the same as the MgO vapor deposition material according to claim 1. The difference in coefficient becomes small, and large alkaline earth metal oxide particles and rare earth oxide particles can be dispersed within a range that does not cause cracks at the interface. Therefore, the total area for tightening the matrix grain boundaries is increased, the number of defects at the grain boundaries is reduced, and the strength is improved, that is, the physical properties of the MgO sintered body can be improved. In addition, by adding alkaline earth metal oxide particles and rare earth oxide particles, MgO
The matrix has a uniform structure.

【0012】上記請求項1又は2に係るMgO蒸着材
は、MgO粉末とアルカリ土類金属の酸化物粉末又は炭
酸塩粉末とバインダと有機溶媒とを混合して所定濃度の
混合スラリーを調製する工程と、このスラリーを噴霧乾
燥して所定粒径の造粒粉末を得る工程と、この造粒粉末
を所定の型に入れて所定の圧力で成形する工程と、この
成形体を脱脂した後に1450〜1700℃の温度で焼
結する工程とを含む製造方法で製造されることが好まし
い。また上記請求項3又は4に係るMgO蒸着材は、M
gO粉末とアルカリ土類金属の酸化物粉末又は炭酸塩粉
末と希土類酸化物粉末とバインダと有機溶媒とを混合し
て所定濃度の混合スラリーを調製する工程と、このスラ
リーを噴霧乾燥して所定粒径の造粒粉末を得る工程と、
この造粒粉末を所定の型に入れて所定の圧力で成形する
工程と、この成形体を脱脂した後に1450〜1700
℃の温度で焼結する工程とを含む製造方法で製造される
ことが好ましい。
The MgO vapor deposition material according to claim 1 or 2 is a step of mixing MgO powder and alkaline earth metal oxide powder or carbonate powder, a binder and an organic solvent to prepare a mixed slurry having a predetermined concentration. And a step of spray-drying the slurry to obtain a granulated powder having a predetermined particle size; a step of placing the granulated powder in a predetermined mold and molding at a predetermined pressure; And sintering at a temperature of 1700 ° C. Further, the MgO vapor deposition material according to claim 3 or 4 is characterized in that:
a step of mixing a gO powder and an alkaline earth metal oxide powder or a carbonate powder, a rare earth oxide powder, a binder and an organic solvent to prepare a mixed slurry having a predetermined concentration; A step of obtaining granulated powder having a diameter,
A step of placing the granulated powder in a predetermined mold and molding at a predetermined pressure, and 1450 to 1700 after degreasing the molded body.
And sintering at a temperature of ° C.

【0013】なお、上記アルカリ土類金属酸化物粉末は
アルカリ土類金属元素の水酸化物,炭酸塩,蓚酸塩又は
有機金属化合物のアルコキシドを熱分解することにより
作製され、希土類酸化物粉末は希土類元素の水酸化物,
炭酸塩,蓚酸塩又は有機金属化合物のアルコキシドを熱
分解することにより作製されることが好ましい。上記製
造方法で製造されたMgO蒸着材では、焼結工程で緻密
に焼結され、この蒸着材のMgOマトリックス内に分散
相であるアルカリ土類金属酸化物粒子又はアルカリ土類
金属酸化物粒子及び希土類酸化物粒子が均一に分散され
る。
The alkaline earth metal oxide powder is prepared by thermally decomposing a hydroxide, a carbonate, an oxalate of an alkaline earth metal element or an alkoxide of an organometallic compound, and the rare earth oxide powder is rare earth. Elemental hydroxide,
It is preferably produced by thermally decomposing an alkoxide of a carbonate, an oxalate or an organometallic compound. In the MgO vapor-deposited material manufactured by the above-described manufacturing method, the sintered body is densely sintered in the sintering step, and the alkaline-earth metal oxide particles or the alkaline-earth metal oxide particles that are dispersed phases in the MgO matrix of the vapor-deposited material; The rare earth oxide particles are uniformly dispersed.

【0014】上記請求項1ないし4いずれか記載のMg
O蒸着材を用いて電子ビーム蒸着法によりMgO膜を成
膜すると、二相共存、即ちMgOマトリックスと分散粒
子とが固溶体や反応物を形成しない状態で蒸発するの
で、高速で安定な成膜が可能となり、またスプラッシュ
が発生せず、成膜面積が広くても、膜厚及び膜組成が均
一なMgO膜を得ることができる。またこのMgO膜は
MgO中にアルカリ土類金属酸化物粒子又はアルカリ土
類金属酸化物粒子及び希土類酸化物粒子をドーピングし
た構造、即ちMgO中に上記アルカリ土類金属酸化物粒
子等を固溶した構造、或いはスピネル構造であるので、
MgO膜の配向性は向上する。この結果、このMgO膜
を成膜した基板をPDPに組込むと、低い電圧でプラズ
マを生成しかつ維持することができ、放電時の耐スパッ
タ性を向上でき、速い放電の応答性及び高い絶縁性を得
ることができる。またMgO膜が蛍光体に悪影響を及ぼ
すことはなく、青色に関係する輝度も向上することがで
きる。即ち、AC型PDPの誘電体層の保護膜に好適な
ものとなる。
The Mg according to any one of claims 1 to 4,
When an MgO film is formed by an electron beam evaporation method using an O vapor deposition material, the two phases coexist, that is, the MgO matrix and the dispersed particles evaporate without forming a solid solution or a reactant. This makes it possible to obtain an MgO film having a uniform film thickness and a uniform film composition, even if the film formation area is large without splash. The MgO film has a structure in which alkaline earth metal oxide particles or alkaline earth metal oxide particles and rare earth oxide particles are doped in MgO, that is, the above alkaline earth metal oxide particles and the like are dissolved in MgO. Structure or spinel structure,
The orientation of the MgO film is improved. As a result, when the substrate on which the MgO film is formed is incorporated into a PDP, plasma can be generated and maintained at a low voltage, spatter resistance during discharge can be improved, and fast discharge response and high insulation properties can be achieved. Can be obtained. Also, the MgO film does not adversely affect the phosphor, and the luminance related to blue can be improved. That is, it is suitable as a protective film for the dielectric layer of the AC PDP.

【0015】[0015]

【発明の実施の形態】以下に本発明の第1の実施の形態
を説明する。本発明のMgO蒸着材は、相対密度が95
%以上のMgO焼結体であって、平均結晶粒径が0.3
〜100μm、好ましくは2〜50μmの結晶粒子を有
するMgOマトリックス中に、アルカリ土類金属酸化物
粒子が0.5〜50体積%、好ましくは1〜30体積
%、更に好ましくは5〜25体積%分散されたものであ
る。この蒸着材はマトリックスとしてMgOを用い、か
つ分散相(分散粒子)としてアルカリ土類金属酸化物粒
子を用いたセラミック焼結体である。上記アルカリ土類
金属酸化物粒子中のアルカリ土類金属元素としては、C
a,Sr及びBaからなる群より選ばれた1種又は2種
以上の元素が用いられることが好ましい。また分散粒子
の平均粒径は3.0μm以下であることが好ましく、分
散粒子の含有割合はMgOマトリックス及び分散粒子の
合計に対する内割の割合である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below. The MgO vapor deposition material of the present invention has a relative density of 95.
% Of MgO sintered body having an average crystal grain size of 0.3
0.5 to 50% by volume, preferably 1 to 30% by volume, more preferably 5 to 25% by volume of alkaline earth metal oxide particles in a MgO matrix having crystal particles of from 100 to 100 [mu] m, preferably from 2 to 50 [mu] m. It is distributed. This vapor deposition material is a ceramic sintered body using MgO as a matrix and alkaline earth metal oxide particles as a dispersed phase (dispersed particles). Examples of the alkaline earth metal element in the alkaline earth metal oxide particles include C
It is preferable to use one or more elements selected from the group consisting of a, Sr and Ba. Further, the average particle size of the dispersed particles is preferably 3.0 μm or less, and the content ratio of the dispersed particles is a ratio of the inner part to the total of the MgO matrix and the dispersed particles.

【0016】上記MgOマトリックスの平均結晶粒径を
0.3〜100μmの範囲に限定したのは、この範囲に
おいてMgOマトリックスの組織制御が可能なためであ
る。また分散粒子の平均粒径を3.0μm以下に限定し
たのは、MgOマトリックスの組織構造を制御し易く、
また残留応力がある限度以上になってもマイクロクラッ
クが発生しないためである。なお、分散粒子の平均粒径
が3.0μmを越えるとマイクロクラックが発生し易く
なる。
The reason why the average crystal grain size of the MgO matrix is limited to the range of 0.3 to 100 μm is that the structure of the MgO matrix can be controlled in this range. The reason why the average particle size of the dispersed particles is limited to 3.0 μm or less is that the structure of the MgO matrix can be easily controlled,
Also, microcracks do not occur even when the residual stress exceeds a certain limit. When the average particle size of the dispersed particles exceeds 3.0 μm, micro cracks are easily generated.

【0017】このように構成された本発明のMgO蒸着
材の製造方法を説明する。平均粒径が0.1〜5μm、
好ましくは0.2〜2μmのMgO粉末に、平均粒径が
0.2〜3.0μmのアルカリ土類金属酸化物粉末とバ
インダとを合計0.2〜2.5重量%添加し、更にエタ
ノールやプロパノール等を分散媒として湿式混合して濃
度が40〜70重量%の混合スラリーに調製する。上記
アルカリ土類金属酸化物粉末はこのアルカリ土類金属酸
化物粉末とMgO粉末との合計体積に対してアルカリ土
類金属酸化物粉末が0.5〜50体積%となるように秤
量してMgO粉末に加えられる。また上記湿式混合はボ
ールミル又は撹拌ミルにより行われる。上記MgO粉末
の粒径を0.1〜5μmの範囲に限定したのは、焼結し
易くするためである。また分散粒子の添加量、即ちアル
カリ土類金属酸化物粉末の添加量を0.5〜50体積%
の範囲に限定したのは、0.5体積%未満ではアルカリ
土類金属酸化物粉末を添加した効果が乏しく、50体積
%を越えると、材料組織の制御が困難となり、耐スパッ
タ性や絶縁性にバラツキが生じ、材料の信頼性がなくな
るからである。分散粒子の添加量が上記範囲内であれ
ば、MgOマトリックス中に分散粒子が均一に取り込ま
れかつMgOマトリックスの組織を制御でき、成膜した
膜特性も向上する。
A method for manufacturing the MgO vapor deposition material of the present invention having the above-described structure will be described. Average particle size of 0.1 to 5 μm,
Preferably, a total of 0.2 to 2.5% by weight of an alkaline earth metal oxide powder having an average particle diameter of 0.2 to 3.0 μm and a binder is added to 0.2 to 2 μm of MgO powder, and ethanol is further added. And a mixed slurry having a concentration of 40 to 70% by weight by wet mixing with a dispersion medium such as ethanol or propanol. The alkaline earth metal oxide powder is weighed such that the alkaline earth metal oxide powder is 0.5 to 50% by volume based on the total volume of the alkaline earth metal oxide powder and the MgO powder. Added to powder. The wet mixing is performed by a ball mill or a stirring mill. The reason for limiting the particle size of the MgO powder to the range of 0.1 to 5 μm is to facilitate sintering. Further, the addition amount of the dispersed particles, that is, the addition amount of the alkaline earth metal oxide powder is 0.5 to 50% by volume.
If the content is less than 0.5% by volume, the effect of adding the alkaline earth metal oxide powder is poor, and if it exceeds 50% by volume, it is difficult to control the material structure, and the This causes variations in the reliability of the material. When the amount of the dispersed particles is within the above range, the dispersed particles are uniformly taken into the MgO matrix, the structure of the MgO matrix can be controlled, and the characteristics of the formed film can be improved.

【0018】上記アルカリ土類金属酸化物粉末はアルカ
リ土類金属元素の水酸化物又は炭酸塩を熱分解すること
により作製されることが好ましい。例えば、アルカリ土
類金属元素の水酸化物としては水酸化カルシウム、炭酸
塩としては炭酸カルシウムが用いられる。また上記混合
スラリーの濃度を40〜70重量%に限定したのは、こ
の範囲内であれば混合スラリーの粘度が200ppm以
下であり、スプレードライ造粒しても安定して製造でき
ること、更には後述する成形体の密度が高くなり、緻密
な焼結体の製造が可能になるためである。混合スラリー
の濃度が70重量%を越えると、非水系スラリーである
ために、安定した造粒が難しく、40重量%未満では、
均一な組織を有した緻密なMgO焼結体が得られない。
The alkaline earth metal oxide powder is preferably produced by thermally decomposing a hydroxide or carbonate of an alkaline earth metal element. For example, calcium hydroxide is used as the hydroxide of the alkaline earth metal element, and calcium carbonate is used as the carbonate. The reason why the concentration of the mixed slurry is limited to 40 to 70% by weight is that the viscosity of the mixed slurry is 200 ppm or less within this range, and that the slurry can be manufactured stably even by spray-dry granulation. This is because the density of the compact to be formed increases and a dense sintered body can be manufactured. When the concentration of the mixed slurry exceeds 70% by weight, stable granulation is difficult due to the non-aqueous slurry.
A dense MgO sintered body having a uniform structure cannot be obtained.

【0019】次に上記混合スラリーを噴霧乾燥して平均
粒径が50〜200μmの造粒粉末を得た後、この造粒
粉末を所定の型に入れて所定の圧力で成形する。上記噴
霧乾燥はスプレードライヤを用いて行われることが好ま
しく、ペレットの成形には、メカニカルプレス法、タブ
レットマシン法又はブリケットマシン法のいずれかの金
型プレス法を用いて行われることが好ましい。
Next, the mixed slurry is spray-dried to obtain a granulated powder having an average particle diameter of 50 to 200 μm, and then the granulated powder is placed in a predetermined mold and molded at a predetermined pressure. The spray drying is preferably performed using a spray dryer, and the pellets are preferably formed using a mold pressing method such as a mechanical press method, a tablet machine method, or a briquette machine method.

【0020】更に上記成形体を1450℃〜1700℃
で焼結する。焼結する前に成形体を350〜620℃の
温度で脱脂処理することが好ましい。この脱脂処理は、
成形体の焼結後の色むらと反りを防止するために行わ
れ、時間をかけて十分に行うことが好ましい。上記成形
体の焼結温度を1450℃〜1700℃に限定したの
は、1450℃未満では緻密な焼結体が得られず、17
00℃を越えると粒成長が著しく速く、特性が低下する
からである。また、成形体を不活性ガス雰囲気中で焼結
する場合には、不活性ガスとしてアルゴンガスを用いる
ことが好ましい。このようにして相対密度が95%以上
の緻密なMgO蒸着材が得られる。
Further, the above-mentioned molded product is heated at 1450 ° C. to 1700 ° C.
And sinter. Before sintering, it is preferable that the molded body is subjected to a degreasing treatment at a temperature of 350 to 620 ° C. This degreasing process
It is performed in order to prevent color unevenness and warpage after sintering of the molded body, and it is preferable to sufficiently perform the process over time. The reason why the sintering temperature of the compact was limited to 1450 ° C. to 1700 ° C. is that a compact sintered body cannot be obtained below 1450 ° C.
If the temperature exceeds 00 ° C., the grain growth is remarkably fast, and the characteristics deteriorate. When the compact is sintered in an inert gas atmosphere, it is preferable to use argon gas as the inert gas. In this way, a dense MgO vapor deposition material having a relative density of 95% or more can be obtained.

【0021】上記MgO蒸着材を用いて電子ビーム蒸着
法によりMgO膜を基板等に成膜すれば、高速で安定な
成膜が可能となり、またスプラッシュが発生せず、成膜
面積が広くても、膜厚及び膜組成が均一なMgO膜を得
ることができる。またこのMgO膜はMgO中にアルカ
リ土類金属酸化物粒子をドーピングした構造、即ちMg
O中に上記アルカリ土類金属酸化物粒子を固溶した構
造、或いはスピネル構造であるので、MgO膜の配向性
は向上する。この結果、このMgO膜を成膜した基板を
PDPに組込むと、低い電圧でプラズマを生成しかつ維
持することができ、放電時の耐スパッタ性を向上でき、
速い放電の応答性及び高い絶縁性を得ることができる。
またMgO膜が蛍光体に悪影響を及ぼすことはなく、青
色に関係する輝度も向上することができる。従って、A
C型PDPの誘電体層の保護膜に好適であり、また高機
能セラミック材料の保護膜などにも適用できる。
If an MgO film is formed on a substrate or the like by the electron beam evaporation method using the above-described MgO evaporation material, a high-speed and stable film formation becomes possible. It is possible to obtain an MgO film having a uniform thickness, thickness and composition. The MgO film has a structure in which alkaline earth metal oxide particles are doped in MgO, that is, MgO.
Because of the structure in which the alkaline earth metal oxide particles are dissolved in O or the spinel structure, the orientation of the MgO film is improved. As a result, when the substrate on which the MgO film is formed is incorporated in a PDP, plasma can be generated and maintained at a low voltage, and the spatter resistance during discharge can be improved.
Fast discharge response and high insulation can be obtained.
Also, the MgO film does not adversely affect the phosphor, and the luminance related to blue can be improved. Therefore, A
It is suitable as a protective film for a dielectric layer of a C-type PDP, and is also applicable to a protective film of a high-performance ceramic material.

【0022】次に本発明の第2の実施の形態を説明す
る。本発明のMgO蒸着材は、相対密度が95%以上の
MgO焼結体であって、平均結晶粒径が0.3〜100
μm、好ましくは2〜50μmの結晶粒子を有するMg
Oマトリックス中に、アルカリ土類金属酸化物粒子及び
希土類酸化物粒子が合計で0.5〜50体積%、好まし
くは1〜30体積%、更に好ましくは5〜25体積%分
散されたものである。この蒸着材はマトリックスとして
MgOを用い、かつ分散相(分散粒子)としてアルカリ
土類金属酸化物粒子及び希土類酸化物粒子を用いたセラ
ミック焼結体である。上記アルカリ土類金属酸化物粒子
中のアルカリ土類金属元素としては、Ca,Sr及びB
aからなる群より選ばれた1種の元素が用いられ、希土
類酸化物粒子中の希土類元素としては、Sc,Y,L
a,Ce,Nd,Sm,Gd,Tb,Yb及びDyから
なる群より選ばれた1種の元素が用いられることが好ま
しい。上記以外は第1の実施の形態と同一に構成され
る。
Next, a second embodiment of the present invention will be described. The MgO vapor deposition material of the present invention is a MgO sintered body having a relative density of 95% or more, and has an average crystal grain size of 0.3 to 100.
Mg having crystal grains of μm, preferably 2 to 50 μm
In the O matrix, the alkaline earth metal oxide particles and the rare earth oxide particles are dispersed in a total of 0.5 to 50% by volume, preferably 1 to 30% by volume, and more preferably 5 to 25% by volume. . This vapor deposition material is a ceramic sintered body using MgO as a matrix and alkaline earth metal oxide particles and rare earth oxide particles as a dispersed phase (dispersed particles). The alkaline earth metal elements in the alkaline earth metal oxide particles include Ca, Sr and B
a selected from the group consisting of Sc, Y, and L as rare earth elements in the rare earth oxide particles.
Preferably, one element selected from the group consisting of a, Ce, Nd, Sm, Gd, Tb, Yb and Dy is used. Except for the above, the configuration is the same as that of the first embodiment.

【0023】このように構成された本発明のMgO蒸着
材の製造方法を説明する。平均粒径が0.1〜5μm、
好ましくは0.2〜2μmのMgO粉末に、平均粒径が
0.2〜3.0μmのアルカリ土類金属酸化物粉末及び
希土類酸化物粉末と、バインダとを合計0.2〜2.5
重量%添加し、更にエタノールやプロパノール等を分散
媒として湿式混合して濃度が45〜70重量%の混合ス
ラリーに調製する。上記アルカリ土類金属酸化物粉末及
び希土類酸化物粉末はアルカリ土類金属酸化物粉末と希
土類酸化物粉末とMgO粉末との合計体積に対してアル
カリ土類金属酸化物粉末及び希土類酸化物粉末が0.5
〜50体積%となるように秤量してMgO粉末に加えら
れる。分散粒子の添加量、即ちアルカリ土類金属酸化物
粉末及び希土類酸化物粉末の合計添加量を0.5〜50
体積%の範囲に限定したのは、0.5体積%未満ではア
ルカリ土類金属酸化物及び希土類酸化物を添加した効果
が乏しく、50体積%を越えると、材料組織の制御が困
難となり、耐スパッタ性や絶縁性にバラツキが生じ、材
料の信頼性がなくなるからである。
A method for manufacturing the MgO vapor deposition material of the present invention having the above-described structure will be described. Average particle size of 0.1 to 5 μm,
Preferably, a total of 0.2 to 2.5 μm of an alkaline earth metal oxide powder and a rare earth oxide powder having an average particle size of 0.2 to 3.0 μm and a binder is added to a 0.2 to 2 μm MgO powder.
% By weight and further wet-mixed with ethanol or propanol as a dispersion medium to prepare a mixed slurry having a concentration of 45 to 70% by weight. The alkaline earth metal oxide powder and the rare earth oxide powder are such that the amount of the alkaline earth metal oxide powder and the rare earth oxide powder is 0 with respect to the total volume of the alkaline earth metal oxide powder, the rare earth oxide powder and the MgO powder. .5
It is weighed to be と 50% by volume and added to the MgO powder. The added amount of the dispersed particles, that is, the total added amount of the alkaline earth metal oxide powder and the rare earth oxide powder is 0.5 to 50.
When the content is limited to the range of 0.5% by volume, the effect of adding an alkaline earth metal oxide and a rare earth oxide is poor when the content is less than 0.5% by volume. This is because the sputtering properties and the insulation properties vary, and the reliability of the material is lost.

【0024】上記希土類酸化物粉末は希土類元素の水酸
化物,炭酸塩,蓚酸塩又は有機金属化合物のアルコキシ
ドを熱分解することにより作製されることが好ましい。
例えば、希土類元素の水酸化物としては水酸化ランタン
[La(OH)3]、炭酸塩としては炭酸ランタン[L
2(CO33]、蓚酸塩としては蓚酸ランタン[La2
(C243・10H2O]、有機金属化合物としてはL
a(C5823が用いられる。上記以外のMgO蒸着
材の製造方法は第1の実施の形態と略同様であるので、
繰返しの説明を省略する。
The rare earth oxide powder is preferably prepared by thermally decomposing a hydroxide, carbonate, oxalate or alkoxide of an organometallic compound of a rare earth element.
For example, lanthanum hydroxide [La (OH) 3 ] is used as a hydroxide of a rare earth element, and lanthanum carbonate [L is used as a carbonate.
a 2 (CO 3 ) 3 ], lanthanum oxalate [La 2
(C 2 O 4 ) 3 · 10H 2 O], and the organometallic compound is L
a (C 5 H 8 O 2 ) 3 is used. Since the manufacturing method of the MgO vapor deposition material other than the above is substantially the same as that of the first embodiment,
The description of the repetition is omitted.

【0025】上記MgO蒸着材を用いて電子ビーム蒸着
法によりMgO膜を基板等に成膜すれば、第1の実施の
形態と同様に、高速で安定な成膜が可能となり、またス
プラッシュが発生せず、成膜面積が広くても、膜厚及び
膜組成が均一なMgO膜を得ることができる。またこの
MgO膜はMgO中にアルカリ土類金属酸化物粒子及び
希土類酸化物粒子をドーピングした構造、即ちMgO中
に上記アルカリ土類金属酸化物粒子及び希土類酸化物粒
子を固溶した構造、或いはスピネル構造であるので、M
gO膜の配向性は向上する。この結果、このMgO膜を
成膜した基板をPDPに組込むと、低い電圧でプラズマ
を生成しかつ維持することができ、放電時の耐スパッタ
性を向上でき、速い放電の応答性及び高い絶縁性を得る
ことができる。またMgO膜が蛍光体に悪影響を及ぼす
ことはなく、青色に関係する輝度も向上することができ
る。従って、AC型PDPの誘電体層の保護膜に好適で
あり、また高機能セラミック材料の保護膜などにも適用
できる。
If an MgO film is formed on a substrate or the like by an electron beam evaporation method using the above-described MgO evaporation material, a high-speed and stable film formation can be achieved as in the first embodiment, and a splash is generated. Without this, an MgO film having a uniform film thickness and film composition can be obtained even if the film formation area is large. Further, the MgO film has a structure in which alkaline earth metal oxide particles and rare earth oxide particles are doped in MgO, that is, a structure in which the above alkaline earth metal oxide particles and rare earth oxide particles are dissolved in MgO, or a spinel structure. M
The orientation of the gO film is improved. As a result, when the substrate on which the MgO film is formed is incorporated into a PDP, plasma can be generated and maintained at a low voltage, spatter resistance during discharge can be improved, and fast discharge response and high insulation properties can be achieved. Can be obtained. Also, the MgO film does not adversely affect the phosphor, and the luminance related to blue can be improved. Therefore, it is suitable as a protective film for a dielectric layer of an AC type PDP, and is also applicable to a protective film of a high-performance ceramic material.

【0026】なお、上記第1及び第2の実施の形態で
は、混合スラリーを噴霧乾燥して所定粒径の造粒粉末を
得た後に所定の型に入れて所定の圧力で成形したが、転
動造粒機を用いて成形体を成形してもよい。即ち、先ず
MgO粉末とアルカリ土類金属酸化物粉末等とバインダ
とを混練し、この混練物を転動造粒機の回転皿に入れた
後に、スプレー機でエタノールやプロパノール等の有機
溶媒を噴霧することにより上記混練物を造粒して球状の
成形体を成形し、回転皿に更に上記混練物を入れかつ有
機溶媒を噴霧する作業を繰返すことにより、所定の大き
さの球状の成形体を成形してもよい。また、上記第1及
び第2の実施の形態では、成形体を脱脂した後に145
0〜1700℃の温度で焼結したが、ホットプレス焼結
してもよい。即ち、MgO粉末とアルカリ土類金属酸化
物粉末等とを湿式混合し、この混合物を減圧加熱して乾
燥した後に乾式解砕し、更にこの乾式解砕した混合粉末
を所定の型に入れて所定の圧力をかけた状態で不活性ガ
ス雰囲気中で1450〜1650℃に昇温して焼結して
もよい。
In the first and second embodiments, the mixed slurry is spray-dried to obtain a granulated powder having a predetermined particle size, and then placed in a predetermined mold and molded at a predetermined pressure. The compact may be formed using a dynamic granulator. That is, first, MgO powder, alkaline earth metal oxide powder, etc., and a binder are kneaded, and the kneaded material is put in a rotating plate of a tumbling granulator, and then an organic solvent such as ethanol or propanol is sprayed with a sprayer. The kneaded product is granulated to form a spherical molded product, and the operation of further adding the kneaded product to a rotating dish and spraying an organic solvent is repeated to obtain a spherical molded product of a predetermined size. It may be molded. In the first and second embodiments, after the molded body is degreased, 145
Although sintering was performed at a temperature of 0 to 1700 ° C., hot press sintering may be performed. That is, the MgO powder and the alkaline earth metal oxide powder are wet-mixed, the mixture is heated under reduced pressure, dried, and then subjected to dry pulverization, and the dry pulverized mixed powder is put into a prescribed mold and placed in a prescribed mold. The pressure may be raised to 1450 to 1650 ° C. in an inert gas atmosphere while sintering.

【0027】[0027]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明するが、本発明はその要旨を超えない
限り、以下の実施例に限定されるものではない。 <実施例1>MgO粉末(岩谷化学社製、平均粒径0.
1μm)とCaCO3粉末(関東化学社製、平均粒径
1.0〜1.5μm)とを加え、更にバインダ(ポリビ
ニールブチラール)を添加し、エタノールを分散媒とし
て、撹拌ミルで1時間湿式混合し、濃度が55%の混合
スラリーに調製した。ここで、CaCO3粉末はCaO
に換算してMgOとCaOとの合計体積に対しCaOが
10体積%になるように秤量した。この混合スラリーを
スプレードライヤで噴霧乾燥して造粒することにより造
粒粉末を得た。この造粒粉末を金型(内径が100mm
で深さが8mmの金型)に充填し、メカニカルプレスで
成形して成形体を作製した。この成形体を大気雰囲気
中、1650℃に昇温し、焼結炉(広築社製)で3時間
焼結することにより直径が約80mmのMgO焼結体を
得た。このMgO焼結体を実施例1とした。
EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to the following examples unless it exceeds the gist. <Example 1> MgO powder (manufactured by Iwatani Chemical Co., Ltd .;
1 μm) and CaCO 3 powder (manufactured by Kanto Chemical Co., Inc., average particle size: 1.0 to 1.5 μm), and a binder (polyvinyl butyral) is further added. The mixture was mixed to prepare a mixed slurry having a concentration of 55%. Here, CaCO 3 powder is CaO
And weighed so that CaO was 10% by volume with respect to the total volume of MgO and CaO. The mixed slurry was spray-dried with a spray dryer and granulated to obtain a granulated powder. This granulated powder is placed in a mold (with an inner diameter of 100 mm
To a mold having a depth of 8 mm) and molded by a mechanical press to produce a molded body. This molded body was heated to 1650 ° C. in the air atmosphere and sintered in a sintering furnace (manufactured by Hiroki Corporation) for 3 hours to obtain a MgO sintered body having a diameter of about 80 mm. This MgO sintered body was used as Example 1.

【0028】<実施例2>CaCO3粉末をCaOに換
算してMgOとCaOとの合計体積に対しCaOが20
体積%になるように秤量して、MgO粉末に加え、実施
例1と同様にして混合スラリーを調製した後に造粒粉末
を得た。この造粒粉末を2つの金型(内径が100mm
で深さが8mmの金型、内径が6mmで深さが3mmの
金型)にそれぞれ充填し、メカニカルプレスで成形して
成形体をそれぞれ作製し、更にこれらの成形体を実施例
1と同様に焼結することにより直径が約80mm及び5
mmのMgO焼結体をそれぞれ得た。上記直径が約80
mm及び5mmのMgO焼結体を実施例2とした。 <実施例3>CaCO3粉末をCaOに換算してMgO
とCaOとの合計体積に対しCaOが30体積%になる
ように秤量して、MgO粉末に加えたことを除いて、実
施例1と同様にして直径が約80mmのMgO焼結体を
得た。このMgO焼結体を実施例3とした。
Example 2 CaCO 3 powder was converted to CaO, and CaO was 20 to the total volume of MgO and CaO.
The mixture was weighed so as to be a volume%, added to the MgO powder, and a mixed slurry was prepared in the same manner as in Example 1 to obtain a granulated powder. This granulated powder is placed in two molds (with an inner diameter of 100 mm
, A mold having a depth of 8 mm, and a mold having an inner diameter of 6 mm and a depth of 3 mm), and molding by a mechanical press to produce molded bodies. Further, these molded bodies are the same as in Example 1. About 80mm and 5
mm MgO sintered bodies were obtained. The above diameter is about 80
Examples 2 mm and 5 mm MgO sintered bodies were used. Example 3 CaCO 3 powder was converted to CaO and MgO
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1, except that CaO was weighed so as to be 30% by volume with respect to the total volume of CaO and CaO, and was added to the MgO powder. . This MgO sintered body was used as Example 3.

【0029】<実施例4>SrCO3粉末(堺化学社
製、平均粒径0.3〜0.5μm)をSrOに換算して
MgOとSrOとの合計体積に対しSrOが10体積%
になるように秤量して、MgO粉末に加えたことを除い
て、実施例1と同様にして直径が約80mmのMgO焼
結体を得た。このMgO焼結体を実施例4とした。 <実施例5>SrCO3粉末をSrOに換算してMgO
とSrOとの合計体積に対しSrOが20体積%になる
ように秤量して、MgO粉末に加えたことを除いて、実
施例2と同様にして直径が約80mm及び5mmのMg
O焼結体を得た。これらのMgO焼結体を実施例5とし
た。 <実施例6>SrCO3粉末をSrOに換算してMgO
とSrOとの合計体積に対しSrOが30体積%になる
ように秤量して、MgO粉末に加えたことを除いて、実
施例1と同様にして直径が約80mmのMgO焼結体を
得た。このMgO焼結体を実施例6とした。
Example 4 SrCO 3 powder (manufactured by Sakai Chemical Co., average particle size 0.3 to 0.5 μm) was converted to SrO, and SrO was 10% by volume with respect to the total volume of MgO and SrO.
, And a MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO powder was added to the MgO powder. This MgO sintered body was used as Example 4. <Example 5> SrCO 3 powder was converted to SrO to obtain MgO
In the same manner as in Example 2 except that the SrO was weighed so that SrO became 20% by volume with respect to the total volume of
An O-sinter was obtained. These MgO sintered bodies were designated as Example 5. <Example 6> SrCO 3 powder was converted to SrO and MgO
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that SrO was weighed so as to be 30% by volume with respect to the total volume of SrO and SrO, and was added to the MgO powder. . This MgO sintered body was used as Example 6.

【0030】<実施例7>BaCO3粉末(関東化学社
製、平均粒径1.0〜1.5μm)をBaOに換算して
MgOとBaOとの合計体積に対しBaOが10体積%
になるように秤量して、MgO粉末に加えたことを除い
て、実施例1と同様にして直径が約80mmのMgO焼
結体を得た。このMgO焼結体を実施例7とした。 <実施例8>BaCO3粉末をBaOに換算してMgO
とBaOとの合計体積に対しBaOが20体積%になる
ように秤量して、MgO粉末に加えたことを除いて、実
施例2と同様にして直径が約80mm及び5mmのMg
O焼結体を得た。これらのMgO焼結体を実施例8とし
た。 <実施例9>BaCO3粉末をBaOに換算してMgO
とBaOとの合計体積に対しBaOが30体積%になる
ように秤量して、MgO粉末に加えたことを除いて、実
施例1と同様にして直径が約80mmのMgO焼結体を
得た。このMgO焼結体を実施例9とした。
Example 7 BaCO 3 powder (manufactured by Kanto Kagaku Co., average particle size 1.0-1.5 μm) was converted to BaO, and BaO was 10% by volume with respect to the total volume of MgO and BaO.
, And a MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO powder was added to the MgO powder. This MgO sintered body was used as Example 7. <Example 8> BaCO 3 powder was converted to BaO and MgO
And BaO were weighed so as to be 20% by volume with respect to the total volume of BaO and added to the MgO powder in the same manner as in Example 2 except that MgO having a diameter of about 80 mm and 5 mm was used.
An O-sinter was obtained. These MgO sintered bodies were used as Example 8. <Example 9> BaCO 3 powder was converted to BaO and MgO
A BaO having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that BaO was weighed such that BaO became 30% by volume with respect to the total volume of BaO and added to the MgO powder. . This MgO sintered body was used as Example 9.

【0031】<実施例10>CaCO3粉末(関東化学
社製、平均粒径1.0〜1.5μm)及びSc23粉末
(三菱マテリアル社製、平均粒径1〜3μm)を、Ca
CO3粉末をCaOに換算して、MgOとCaOとSc2
3の合計体積に対し、CaO及びSc23がそれぞれ
10体積%及び5体積%になるように秤量して、MgO
粉末に加えたことを除いて、実施例1と同様にして直径
が約80mmのMgO焼結体を得た。このMgO焼結体
を実施例10とした。 <実施例11>CaCO3粉末及びSc23粉末を、C
aCO3粉末をCaOに換算して、MgOとCaOとS
23の合計体積に対し、CaO及びSc23がそれぞ
れ20体積%及び10体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例2と同様にして
直径が約80mm及び5mmのMgO焼結体を得た。こ
のMgO焼結体を実施例11とした。 <実施例12>CaCO3粉末及びSc23粉末を、C
aCO3粉末をCaOに換算して、MgOとCaOとS
23の合計体積に対し、CaO及びSc23がそれぞ
れ30体積%及び20体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例1と同様にして
直径が約80mmのMgO焼結体を得た。このMgO焼
結体を実施例12とした。
Example 10 CaCO 3 powder (manufactured by Kanto Chemical Co., average particle size: 1.0 to 1.5 μm) and Sc 2 O 3 powder (manufactured by Mitsubishi Materials Corporation, average particle size: 1 to 3 μm) were mixed with Ca
Converting CO 3 powder into CaO, MgO, CaO and Sc 2
The total volume of O 3 to, were weighed so as CaO and Sc 2 O 3 is 10% by volume and 5% by volume, respectively, MgO
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the powder was added to the powder. This MgO sintered body was used as Example 10. Example 11 CaCO 3 powder and Sc 2 O 3 powder were
aCO 3 powder is converted into CaO, and MgO, CaO and S
CaO and Sc 2 O 3 were weighed so as to be 20% by volume and 10% by volume, respectively, based on the total volume of c 2 O 3 , and M
Except for adding to the gO powder, MgO sintered bodies having diameters of about 80 mm and 5 mm were obtained in the same manner as in Example 2. This MgO sintered body was used as Example 11. <Example 12> CaCO 3 powder and Sc 2 O 3 powder were mixed with C
aCO 3 powder is converted into CaO, and MgO, CaO and S
CaO and Sc 2 O 3 were weighed so as to be 30% by volume and 20% by volume, respectively, based on the total volume of c 2 O 3 , and M
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO powder was added to the gO powder. This MgO sintered body was used as Example 12.

【0032】<実施例13>CaCO3粉末(関東化学
社製、平均粒径1.0〜1.5μm)及びY23粉末
(信越化学社製、平均粒径0.6〜1.0μm)を、C
aCO3粉末をCaOに換算して、MgOとCaOとY2
3の合計体積に対し、CaO及びY23がそれぞれ1
0体積%及び5体積%になるように秤量して、MgO粉
末に加えたことを除いて、実施例1と同様にして直径が
約80mmのMgO焼結体を得た。このMgO焼結体を
実施例13とした。 <実施例14>CaCO3粉末及びY23粉末を、Ca
CO3粉末をCaOに換算して、MgOとCaOとY2
3の合計体積に対し、CaO及びY23がそれぞれ20
体積%及び10体積%になるように秤量して、MgO粉
末に加えたことを除いて、実施例2と同様にして直径が
約80mm及び5mmのMgO焼結体を得た。このMg
O焼結体を実施例14とした。 <実施例15>CaCO3粉末及びY23粉末を、Ca
CO3粉末をCaOに換算して、MgOとCaOとY2
3の合計体積に対し、CaO及びY23がそれぞれ30
体積%及び20体積%になるように秤量して、MgO粉
末に加えたことを除いて、実施例1と同様にして直径が
約80mmのMgO焼結体を得た。このMgO焼結体を
実施例15とした。
Example 13 CaCO 3 powder (manufactured by Kanto Chemical Co., average particle size 1.0-1.5 μm) and Y 2 O 3 powder (manufactured by Shin-Etsu Chemical Co., average particle size 0.6-1.0 μm) ) To C
aCO 3 powder is converted to CaO, and MgO, CaO and Y 2
The total volume of O 3 with respect to, CaO and Y 2 O 3 are each 1
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1, except that the mixture was weighed to be 0% by volume and 5% by volume and added to the MgO powder. This MgO sintered body was used as Example 13. <Example 14> CaCO 3 powder and Y 2 O 3 powder were mixed with Ca
Converting CO 3 powder into CaO, MgO, CaO and Y 2 O
3, the total volume of CaO and Y 2 O 3 was 20
MgO sintered bodies having diameters of about 80 mm and 5 mm were obtained in the same manner as in Example 2, except that they were weighed so as to be 10% by volume and 10% by volume, respectively, and were added to the MgO powder. This Mg
An O-sintered body was used as Example 14. Example 15 CaCO 3 powder and Y 2 O 3 powder were
Converting CO 3 powder into CaO, MgO, CaO and Y 2 O
3, the total volume of CaO and Y 2 O 3 was 30
A MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1, except that the mixture was weighed so as to be 20% by volume and added to the MgO powder. This MgO sintered body was used as Example 15.

【0033】<実施例16>SrCO3粉末(堺化学社
製、平均粒径0.3〜0.5μm)及びLa23粉末
(信越化学社製、平均粒径0.1〜0.2μm)を、S
rCO3粉末をSrOに換算して、MgOとSrOとY2
3の合計体積に対し、SrO及びY23がそれぞれ1
0体積%及び5体積%になるように秤量して、MgO粉
末に加えたことを除いて、実施例1と同様にして直径が
約80mmのMgO焼結体を得た。このMgO焼結体を
実施例16とした。 <実施例17>SrCO3粉末及びLa23粉末を、S
rCO3粉末をSrOに換算して、MgOとSrOとY2
3の合計体積に対し、SrO及びY23がそれぞれ2
0体積%及び10体積%になるように秤量して、MgO
粉末に加えたことを除いて、実施例2と同様にして直径
が約80mm及び5mmのMgO焼結体を得た。このM
gO焼結体を実施例17とした。 <実施例18>SrCO3粉末及びLa23粉末を、S
rCO3粉末をSrOに換算して、MgOとSrOとY2
3の合計体積に対し、SrO及びY23がそれぞれ3
0体積%及び20体積%になるように秤量して、MgO
粉末に加えたことを除いて、実施例1と同様にして直径
が約80mmのMgO焼結体を得た。このMgO焼結体
を実施例18とした。
Example 16 SrCO 3 powder (manufactured by Sakai Chemical Co., average particle size: 0.3 to 0.5 μm) and La 2 O 3 powder (manufactured by Shin-Etsu Chemical Co., Ltd., average particle size: 0.1 to 0.2 μm) ) To S
The rCO 3 powder was converted to SrO, and MgO, SrO and Y 2
The total volume of O 3 with respect to, SrO and Y 2 O 3 are each 1
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1, except that the mixture was weighed to be 0% by volume and 5% by volume and added to the MgO powder. This MgO sintered body was used as Example 16. <Example 17> SrCO 3 powder and La 2 O 3 powder were
The rCO 3 powder was converted to SrO, and MgO, SrO and Y 2
The total volume of O 3 with respect to, SrO and Y 2 O 3, respectively 2
0% by volume and 10% by volume,
Except for adding the powder, MgO sintered bodies having diameters of about 80 mm and 5 mm were obtained in the same manner as in Example 2. This M
The gO sintered body was used as Example 17. Example 18 SrCO 3 powder and La 2 O 3 powder were
The rCO 3 powder was converted to SrO, and MgO, SrO and Y 2
The total volume of O 3 with respect to, SrO and Y 2 O 3, respectively 3
0% by volume and 20% by volume,
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the powder was added to the powder. This MgO sintered body was used as Example 18.

【0034】<実施例19>SrCO3粉末(堺化学社
製、平均粒径0.3〜0.5μm)及びCe23粉末
(信越化学社製、平均粒径0.6〜1.0μm)を、S
rCO3粉末をSrOに換算して、MgOとSrOとC
23の合計体積に対し、SrO及びCe23がそれぞ
れ10体積%及び5体積%になるように秤量して、Mg
O粉末に加えたことを除いて、実施例1と同様にして直
径が約80mmのMgO焼結体を得た。このMgO焼結
体を実施例19とした。 <実施例20>SrCO3粉末及びCe23粉末を、S
rCO3粉末をSrOに換算して、MgOとSrOとC
23の合計体積に対し、SrO及びCe23がそれぞ
れ20体積%及び10体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例2と同様にして
直径が約80mm及び5mmのMgO焼結体を得た。こ
のMgO焼結体を実施例20とした。 <実施例21>SrCO3粉末及びCe23粉末を、S
rCO3粉末をSrOに換算して、MgOとSrOとC
23の合計体積に対し、SrO及びCe23がそれぞ
れ30体積%及び20体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例1と同様にして
直径が約80mmのMgO焼結体を得た。このMgO焼
結体を実施例21とした。
<Example 19> SrCO 3 powder (manufactured by Sakai Chemical Co., average particle size 0.3 to 0.5 μm) and Ce 2 O 3 powder (manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 0.6 to 1.0 μm) ) To S
The rCO 3 powder was converted to SrO, and MgO, SrO and C
the total volume of e 2 O 3, were weighed so as SrO and Ce 2 O 3 is 10% by volume and 5% by volume, respectively, Mg
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO sintered body was added to the O powder. This MgO sintered body was used as Example 19. <Example 20> SrCO 3 powder and Ce 2 O 3 powder were
The rCO 3 powder was converted to SrO, and MgO, SrO and C
SrO and Ce 2 O 3 were weighed to 20% by volume and 10% by volume, respectively, based on the total volume of e 2 O 3 , and M
Except for adding to the gO powder, MgO sintered bodies having diameters of about 80 mm and 5 mm were obtained in the same manner as in Example 2. This MgO sintered body was used as Example 20. <Example 21> SrCO 3 powder and Ce 2 O 3 powder were
The rCO 3 powder was converted to SrO, and MgO, SrO and C
SrO and Ce 2 O 3 were weighed so as to be 30% by volume and 20% by volume, respectively, based on the total volume of e 2 O 3 , and M
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO powder was added to the gO powder. This MgO sintered body was used as Example 21.

【0035】<実施例22>BaCO3粉末(関東化学
社製、平均粒径1.0〜2.0μm)及びNd23粉末
(信越化学社製、平均粒径0.7〜1.5μm)を、B
aCO3粉末をBaOに換算して、MgOとBaOとC
23の合計体積に対し、BaO及びCe23がそれぞ
れ10体積%及び5体積%になるように秤量して、Mg
O粉末に加えたことを除いて、実施例1と同様にして直
径が約80mmのMgO焼結体を得た。このMgO焼結
体を実施例22とした。 <実施例23>BaCO3粉末及びNd23粉末を、B
aCO3粉末をBaOに換算して、MgOとBaOとC
23の合計体積に対し、BaO及びCe23がそれぞ
れ20体積%及び10体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例2と同様にして
直径が約80mm及び5mmのMgO焼結体を得た。こ
のMgO焼結体を実施例23とした。 <実施例24>BaCO3粉末及びNd23粉末を、B
aCO3粉末をBaOに換算して、MgOとBaOとC
23の合計体積に対し、BaO及びCe23がそれぞ
れ30体積%及び20体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例1と同様にして
直径が約80mmのMgO焼結体を得た。このMgO焼
結体を実施例24とした。
Example 22 BaCO 3 powder (manufactured by Kanto Chemical Co., average particle size 1.0-2.0 μm) and Nd 2 O 3 powder (Shin-Etsu Chemical Co., Ltd., average particle size 0.7-1.5 μm) ) To B
aCO 3 powder is converted to BaO, and MgO, BaO and C
the total volume of e 2 O 3, were weighed so that BaO and Ce 2 O 3 becomes 10 vol% and 5 vol%, respectively, Mg
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO sintered body was added to the O powder. This MgO sintered body was used as Example 22. <Example 23> BaCO 3 powder and Nd 2 O 3 powder were mixed with B
aCO 3 powder is converted to BaO, and MgO, BaO and C
BaO and Ce 2 O 3 were weighed to 20% by volume and 10% by volume, respectively, based on the total volume of e 2 O 3 , and M
Except for adding to the gO powder, MgO sintered bodies having diameters of about 80 mm and 5 mm were obtained in the same manner as in Example 2. This MgO sintered body was used as Example 23. <Example 24> BaCO 3 powder and Nd 2 O 3 powder were mixed with B
aCO 3 powder is converted to BaO, and MgO, BaO and C
Based on the total volume of e 2 O 3 , BaO and Ce 2 O 3 were weighed so as to be 30% by volume and 20% by volume, respectively, and M
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO powder was added to the gO powder. This MgO sintered body was used as Example 24.

【0036】<実施例25>BaCO3粉末(関東化学
社製、平均粒径1.0〜2.0μm)及びSm23粉末
(信越化学社製、平均粒径1.0〜1.5μm)を、B
aCO3粉末をBaOに換算して、MgOとBaOとS
23の合計体積に対し、BaO及びSm23がそれぞ
れ10体積%及び5体積%になるように秤量して、Mg
O粉末に加えたことを除いて、実施例1と同様にして直
径が約80mmのMgO焼結体を得た。このMgO焼結
体を実施例25とした。 <実施例26>BaCO3粉末及びSm23粉末を、B
aCO3粉末をBaOに換算して、MgOとBaOとS
23の合計体積に対し、BaO及びSm23がそれぞ
れ20体積%及び10体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例2と同様にして
直径が約80mm及び5mmのMgO焼結体を得た。こ
のMgO焼結体を実施例26とした。 <実施例27>BaCO3粉末及びSm23粉末を、B
aCO3粉末をBaOに換算して、MgOとBaOとS
23の合計体積に対し、BaO及びSm23がそれぞ
れ30体積%及び20体積%になるように秤量して、M
gO粉末に加えたことを除いて、実施例1と同様にして
直径が約80mmのMgO焼結体を得た。このMgO焼
結体を実施例27とした。
Example 25 BaCO 3 powder (manufactured by Kanto Chemical Co., average particle size 1.0-2.0 μm) and Sm 2 O 3 powder (Shin-Etsu Chemical Co., Ltd., average particle size 1.0-1.5 μm) ) To B
aCO 3 powder is converted to BaO, and MgO, BaO and S
BaO and Sm 2 O 3 were weighed so as to be 10% by volume and 5% by volume, respectively, based on the total volume of m 2 O 3 , and Mg was added.
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO sintered body was added to the O powder. This MgO sintered body was designated as Example 25. <Example 26> BaCO 3 powder and Sm 2 O 3 powder were mixed with B
aCO 3 powder is converted to BaO, and MgO, BaO and S
Based on the total volume of m 2 O 3 , BaO and Sm 2 O 3 were weighed so as to be 20% by volume and 10% by volume, respectively.
Except for adding to the gO powder, MgO sintered bodies having diameters of about 80 mm and 5 mm were obtained in the same manner as in Example 2. This MgO sintered body was used as Example 26. <Example 27> BaCO 3 powder and Sm 2 O 3 powder were mixed with B
aCO 3 powder is converted to BaO, and MgO, BaO and S
BaO and Sm 2 O 3 were weighed so as to be 30% by volume and 20% by volume, respectively, based on the total volume of m 2 O 3 , and M
An MgO sintered body having a diameter of about 80 mm was obtained in the same manner as in Example 1 except that the MgO powder was added to the gO powder. This MgO sintered body was used as Example 27.

【0037】<比較例1>市販のMgO焼結体(直径が
約80mm)を比較例1とした。 <比較例2>CaCO3粉末(関東化学社製、平均粒径
1.0〜1.5μm)をCaOに換算してMgOとCa
Oの合計体積に対しCaOが0.3体積%になるように
秤量して、MgO粉末に加えたことを除いて、実施例1
と同様にして直径が約80mmのMgO焼結体を得た。
このMgO焼結体を比較例2とした。 <比較例3>SrCO3粉末(堺化学社製、平均粒径
0.3〜0.5μm)をSrOに換算してMgOとSr
Oの合計体積に対しSrOが0.2体積%になるように
秤量して、MgO粉末に加えたことを除いて、実施例1
と同様にして直径が約80mmのMgO焼結体を得た。
このMgO焼結体を比較例3とした。 <比較例4>BaCO3粉末(関東化学社製、平均粒径
1.0〜1.5μm)をBaOに換算してMgOとBa
OとSm23の合計体積に対しBaOが60体積%にな
るように秤量して、MgO粉末に加えたことを除いて、
実施例2と同様にして直径が約80mm及び5mmのM
gO焼結体を得た。これらのMgO焼結体を比較例4と
した。
Comparative Example 1 A commercially available MgO sintered body (about 80 mm in diameter) was used as Comparative Example 1. <Comparative Example 2> CaCO 3 powder (manufactured by Kanto Chemical Co., Ltd., average particle size: 1.0 to 1.5 μm) was converted into CaO, and MgO and Ca were converted.
Example 1 was repeated except that CaO was weighed to 0.3% by volume with respect to the total volume of O and added to MgO powder.
In the same manner as in the above, an MgO sintered body having a diameter of about 80 mm was obtained.
This MgO sintered body was used as Comparative Example 2. <Comparative Example 3> SrCO 3 powder (manufactured by Sakai Chemical Co., average particle size: 0.3 to 0.5 μm) was converted to SrO, and MgO and Sr were converted.
Example 1 was repeated except that SrO was weighed to 0.2% by volume with respect to the total volume of O and added to the MgO powder.
In the same manner as in the above, an MgO sintered body having a diameter of about 80 mm was obtained.
This MgO sintered body was used as Comparative Example 3. <Comparative Example 4> BaCO 3 powder (manufactured by Kanto Chemical Co., Ltd., average particle size 1.0 to 1.5 μm) was converted into BaO, and MgO and Ba were converted.
Except that BaO was weighed to be 60% by volume with respect to the total volume of O and Sm 2 O 3 and added to MgO powder,
M having diameters of about 80 mm and 5 mm in the same manner as in Example 2.
A gO sintered body was obtained. These MgO sintered bodies were designated as Comparative Example 4.

【0038】<比較例5>CaCO3粉末(関東化学社
製、平均粒径1.0〜1.5μm)及びSc23粉末
(三菱マテリアル社製、平均粒径1〜3μm)を、Ca
CO3粉末をCaOに換算して、MgOとCaOとSc2
3の合計体積に対し、CaO及びSc23がそれぞれ
10体積%及び45体積%になるように秤量して、Mg
O粉末に加えたことを除いて、実施例2と同様にして直
径が約80mm及び5mmのMgO焼結体を得た。これ
らのMgO焼結体を比較例5とした。 <比較例6>SrCO3粉末(堺化学社製、平均粒径
0.3〜0.5μm)及びLa23粉末(信越化学社
製、平均粒径0.1〜0.2μm)を、SrCO3粉末
をSrOに換算して、MgOとSrOとLa23の合計
体積に対し、SrO及びLa23がそれぞれ20体積%
及び50体積%になるように秤量して、MgO粉末に加
えたことを除いて、実施例2と同様にして直径が約80
mm及び5mmのMgO焼結体を得た。これらのMgO
焼結体を比較例6とした。 <比較例7>BaCO3粉末(関東化学社製、平均粒径
1.0〜1.5μm)及びNd23粉末(信越化学社
製、平均粒径0.7〜1.5μm)を、BaCO3粉末
をBaOに換算して、MgOとBaOとNd23の合計
体積に対し、BaO及びNd2O3がそれぞれ40体積%
及び20体積%になるように秤量して、MgO粉末に加
えたことを除いて、実施例1と同様にして直径が約80
mmのMgO焼結体を得た。このMgO焼結体を比較例
7とした。
<Comparative Example 5> CaCO 3 powder (manufactured by Kanto Chemical Co., average particle size 1.0 to 1.5 μm) and Sc 2 O 3 powder (manufactured by Mitsubishi Materials Corporation, average particle size 1 to 3 μm) were mixed with Ca
Converting CO 3 powder into CaO, MgO, CaO and Sc 2
The total volume of O 3 to, were weighed so as CaO and Sc 2 O 3 is 10 vol% and 45 vol% respectively, Mg
Except for adding to the O powder, a MgO sintered body having a diameter of about 80 mm and 5 mm was obtained in the same manner as in Example 2. These MgO sintered bodies were used as Comparative Example 5. <Comparative Example 6> SrCO 3 powder (manufactured by Sakai Chemical Co., average particle size 0.3 to 0.5 μm) and La 2 O 3 powder (manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 0.1 to 0.2 μm) SrCO 3 powder was converted to SrO, and SrO and La 2 O 3 were each 20% by volume based on the total volume of MgO, SrO, and La 2 O 3.
And 50% by volume and weighed to about 80% by volume in the same manner as in Example 2 except that it was added to the MgO powder.
mm and 5 mm MgO sintered bodies were obtained. These MgO
The sintered body was designated as Comparative Example 6. <Comparative Example 7> BaCO 3 powder (manufactured by Kanto Chemical Co., average particle size 1.0 to 1.5 μm) and Nd 2 O 3 powder (Shin-Etsu Chemical Co., Ltd., average particle size 0.7 to 1.5 μm) BaCO 3 powder is converted into BaO, and BaO and Nd 2 O 3 are each 40% by volume based on the total volume of MgO, BaO and Nd 2 O 3.
And 20% by volume and weighed to about 80% by volume in the same manner as in Example 1 except that it was added to the MgO powder.
mm MgO sintered body was obtained. This MgO sintered body was used as Comparative Example 7.

【0039】<比較試験と評価> (a) 相対密度と強度試験 実施例1〜27及び比較例1〜7で得られたMgO焼結
体(直径80mmのMgO焼結体)を切り出し、研削・
研磨加工して、JIS R1601に準じた3×4×4
0mmの3点曲げ試験片の大きさとし、相対密度、曲げ
強度を測定した。これらの結果を表1に示す。なお、相
対密度はトルエン中、アルキメデス法で測定した。破壊
強度は3点曲げ試験により測定した。
<Comparative Test and Evaluation> (a) Relative Density and Strength Test The MgO sintered bodies (MgO sintered bodies having a diameter of 80 mm) obtained in Examples 1 to 27 and Comparative Examples 1 to 7 were cut out and ground.
Polished, 3 × 4 × 4 according to JIS R1601
The size of a 0 mm three-point bending test piece was measured, and the relative density and bending strength were measured. Table 1 shows the results. The relative density was measured in toluene by Archimedes' method. The breaking strength was measured by a three-point bending test.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明らかなように、比較例1の市販
のMgO焼結体の相対密度96%であるのに対して、実
施例1〜27のMgO焼結体の相対密度は96%以上と
緻密になっている。また実施例1〜27のMgO焼結体
の曲げ強度は比較例1〜7の2倍以上の高強度を示し
た。これは、実施例1〜27では結晶粒界面に亀裂を発
生させない範囲内でアルカリ土類金属酸化物粒子又はア
ルカリ土類金属酸化物粒子及び希土類酸化物粒子を分散
でき、結晶粒界の欠陥も少なく強度が改善できるためで
あり、比較例2〜7では分散粒子の添加割合の過多によ
り、結晶粒界に欠陥が生じたためであると考えられる。
As is clear from Table 1, the relative density of the commercially available MgO sintered body of Comparative Example 1 was 96%, whereas the relative density of the MgO sintered bodies of Examples 1 to 27 was 96% or more. It has become dense. Further, the bending strength of the MgO sintered bodies of Examples 1 to 27 was twice or more as high as those of Comparative Examples 1 to 7. This is because, in Examples 1 to 27, the alkaline earth metal oxide particles or the alkaline earth metal oxide particles and the rare earth oxide particles can be dispersed within a range that does not cause cracking at the crystal grain interface, and defects at the crystal grain boundaries are also present. This is considered to be because the strength can be improved to a small extent, and in Comparative Examples 2 to 7, defects were generated in the crystal grain boundaries due to an excessive addition ratio of the dispersed particles.

【0042】(b) MgO膜の特性試験 実施例2,5,8,11,14,17,20,23及び
26と比較例1及び4〜6の直径5mmのMgO焼結体
を電子ビーム蒸着法によりガラス基板に成膜して10種
類のTEG(Test Element Group)基板を作製した。な
お、上記比較例1の直径5mmのMgO焼結体は直径が
約80mmのものを直径が5mmで厚さが2.5mmに
機械加工することにより作製した。図1に示すようにT
EG基板10は、厚さ1mmのガラス基板(コーニング
#7059ガラス)11上にフォトリソグラフィにより
InSn複合酸化膜からなる下地電極12を100μm
の間隔で厚さ0.2μm、幅100μmに形成し、これ
らの下地電極12を覆うようにSiの反応性DCスパッ
タリングで厚さ2μmのガラス層13を形成した後、上
記電子ビーム蒸着法により同一の成膜条件で厚さ0.5
μmのMgO膜14を成膜することにより作られた。な
お、MgO膜の成膜条件は、到達圧力が4×10-4
a、酸素分圧が1×10-2Pa、基板温度が200℃で
あった。
(B) Characteristic test of MgO film The MgO sintered bodies having a diameter of 5 mm of Examples 2, 5, 8, 11, 14, 17, 20, 23 and 26 and Comparative Examples 1 and 4 to 6 were subjected to electron beam evaporation. Ten types of TEG (Test Element Group) substrates were prepared by forming a film on a glass substrate by the method. The 5 mm diameter MgO sintered body of Comparative Example 1 was manufactured by machining a material having a diameter of about 80 mm to a diameter of 5 mm and a thickness of 2.5 mm. As shown in FIG.
The EG substrate 10 has a base electrode 12 made of an InSn composite oxide film formed on a 1 mm-thick glass substrate (Corning # 7059 glass) 11 by photolithography at 100 μm.
After forming a glass layer 13 having a thickness of 0.2 μm and a width of 100 μm at a distance of 2 μm by reactive DC sputtering of Si so as to cover these underlying electrodes 12, the same electron beam evaporation method was used. Thickness of 0.5
It was formed by forming a μm MgO film 14. The conditions for forming the MgO film are such that the ultimate pressure is 4 × 10 −4 P
a, the oxygen partial pressure was 1 × 10 −2 Pa, and the substrate temperature was 200 ° C.

【0043】先ず上記MgO膜14の屈折率及び吸収係
数を測定した。MgO膜の屈折率と吸収係数は、He−
Neレーザ(波長6238オングストローム)により、
膜に対し1波長、2入射角(55°、70°)のエリプ
ソ測定を行い、解析ソフトを用いて求めた。次に上記M
gO膜の放電開始電圧を以下の方法で測定した。上記1
3種類のTEG基板をTEG基板毎に図2に示す装置の
Ne−5%Xeで500Torrの真空ベルジャー15
内に配置した加熱サンプル台16に載せ、下地電極19
(図1)をパルス電源17に接続し、TEG基板10を
熱電対18で測定しながら一定の温度に制御して、電源
電圧を上昇して行き、放電を開始する電圧を測定した。
パルス電源17は0〜300Vの範囲で電圧可変であっ
て、周波数30kHzでパルス幅10μsecのパルスを
発生するようになっている。上記方法で求めたMgO膜
の屈折率、吸収係数及び放電開始電圧を表2に示す。
First, the refractive index and the absorption coefficient of the MgO film 14 were measured. The refractive index and absorption coefficient of the MgO film are He-
By Ne laser (wavelength 6238 angstroms)
Ellipsometry was performed on the film at one wavelength and two incident angles (55 ° and 70 °), and the film was determined using analysis software. Next, the above M
The firing voltage of the gO film was measured by the following method. 1 above
A vacuum bell jar 15 of 500 Torr with Ne-5% Xe of the apparatus shown in FIG.
Placed on the heating sample table 16 arranged in the
(FIG. 1) was connected to a pulse power source 17, and the temperature of the TEG substrate 10 was controlled at a constant temperature while being measured by a thermocouple 18, the power source voltage was increased, and the voltage at which discharge started was measured.
The pulse power supply 17 is variable in a voltage range of 0 to 300 V, and generates a pulse having a frequency of 30 kHz and a pulse width of 10 μsec. Table 2 shows the refractive index, absorption coefficient, and firing voltage of the MgO film obtained by the above method.

【0044】[0044]

【表2】 [Table 2]

【0045】表2から明らかなように、比較例1及び比
較例4〜6のMgO焼結体を用いて成膜されたMgO膜
の屈折率は1.65以下で吸収係数は0.008以上
(但し、比較例1の吸収係数は0.002)であったの
に対して、実施例2,5,8,11,14,17,2
0,23及び26のMgO焼結体を用いて成膜されたM
gO膜の屈折率は1.70以上で吸収係数は0.005
以下であった。これらのことから、実施例のMgO焼結
体を用いれば、結晶性と透過性に優れたMgO膜が得ら
れることが分かった。また上記実施例の放電開始電圧は
上記比較例の放電開始電圧と比べて、いずれも20〜5
0V程度低いことから、実施例のMgO焼結体を用いて
成膜されたMgO膜は低い電圧でのプラズマの生成と維
持が可能なことが分かった。
As is apparent from Table 2, the refractive index of the MgO film formed using the MgO sintered bodies of Comparative Example 1 and Comparative Examples 4 to 6 was 1.65 or less and the absorption coefficient was 0.008 or more. (However, while the absorption coefficient of Comparative Example 1 was 0.002), Examples 2, 5, 8, 11, 14, 17, and 2 were used.
M formed using MgO sintered bodies of 0, 23 and 26
The refractive index of the gO film is 1.70 or more and the absorption coefficient is 0.005.
It was below. From these facts, it was found that the use of the MgO sintered body of the example can provide an MgO film having excellent crystallinity and transparency. In addition, the discharge starting voltage of the above example was 20 to 5 compared with the discharge starting voltage of the comparative example.
Since the voltage was low by about 0 V, it was found that the MgO film formed using the MgO sintered body of the example can generate and maintain plasma at a low voltage.

【0046】[0046]

【発明の効果】以上述べたように、本発明によれば、相
対密度が95%以上のMgO焼結体であって、平均結晶
粒径が0.3〜100μmの結晶粒子を有するMgOマ
トリックス中に、アルカリ土類金属酸化物粒子を0.5
〜50体積%分散することにより、MgO蒸着材を構成
したので、MgO焼結体の物理的性質を改善できる。即
ち、MgO焼結体におけるMgOマトリックスと分散粒
子であるアルカリ土類金属酸化物粒子はその界面で強く
結合するので、蒸着材として用いた場合に、数千オング
ストローム/分以上の成膜速度が得られる。また分散粒
子であるアルカリ土類金属酸化物粒子とMgOマトリッ
クスの熱膨張係数の差は小さいので、界面に亀裂を発生
させない範囲で大きなアルカリ土類金属酸化物粒子を分
散させることが可能となる。この結果、マトリックス粒
界を締め付けるトータルの領域が大きくなり、粒界の欠
陥も少なく、かつ強度も向上でき、MgOマトリックス
の組織を均一にすることができる。また上記MgOマト
リックス中に、アルカリ土類金属酸化物粒子及び希土類
酸化物粒子を合計0.5〜50体積%分散しても、上記
と同様の効果が得られる。
As described above, according to the present invention, a MgO sintered body having a relative density of not less than 95% and having crystal grains having an average crystal grain size of 0.3 to 100 μm. And 0.5 parts of alkaline earth metal oxide particles
Since the MgO vapor deposition material was formed by dispersing by about 50% by volume, the physical properties of the MgO sintered body can be improved. That is, since the MgO matrix in the MgO sintered body and the alkaline earth metal oxide particles as dispersed particles are strongly bonded at the interface, when used as a vapor deposition material, a film formation rate of several thousand angstroms / minute or more can be obtained. Can be Further, since the difference between the thermal expansion coefficients of the alkaline earth metal oxide particles, which are the dispersed particles, and the MgO matrix is small, large alkaline earth metal oxide particles can be dispersed within a range that does not cause cracks at the interface. As a result, the total area for tightening the matrix grain boundaries increases, the number of defects at the grain boundaries can be reduced, the strength can be improved, and the structure of the MgO matrix can be made uniform. The same effect as described above can be obtained even when the alkaline earth metal oxide particles and the rare earth oxide particles are dispersed in the MgO matrix in a total amount of 0.5 to 50% by volume.

【0047】またMgO粉末と,アルカリ土類金属の酸
化物粉末等又はアルカリ土類金属の酸化物粉末等及び希
土類酸化物粉末と,バインダと,有機溶媒とを混合して
所定濃度の混合スラリーを調製し、このスラリーを噴霧
乾燥して所定粒径の造粒粉末を作製し、この造粒粉末を
所定の型に入れて所定の圧力で成形し、更にこの成形体
を脱脂した後に1450〜1700℃の温度で焼結する
ことが好ましい。上記アルカリ土類金属酸化物粉末をア
ルカリ土類金属元素の水酸化物,炭酸塩,蓚酸塩又は有
機金属化合物のアルコキシドを熱分解することにより作
製し、上記希土類酸化物粉末を希土類元素の水酸化物,
炭酸塩,蓚酸塩又は有機金属化合物のアルコキシドを熱
分解することにより作製することが更に好ましい。これ
らの方法で製造された蒸着材は、焼結工程で緻密に焼結
され、この蒸着材のMgOマトリックスの粒子内に分散
相のアルカリ土類金属酸化物粉末や希土類酸化物粉末が
均一に分散される。この結果、上記方法で製造されたM
gO蒸着材は、高純度で緻密なMgO焼結体となる。
Further, a MgO powder, an alkaline earth metal oxide powder or the like or an alkaline earth metal oxide powder or the like, a rare earth oxide powder, a binder and an organic solvent are mixed to form a mixed slurry having a predetermined concentration. The slurry is spray-dried to produce a granulated powder having a predetermined particle size, the granulated powder is placed in a predetermined mold, molded at a predetermined pressure, and the molded body is degreased. Sintering at a temperature of ° C. is preferred. The alkaline earth metal oxide powder is prepared by thermally decomposing a hydroxide, a carbonate, an oxalate of an alkaline earth metal element or an alkoxide of an organometallic compound, and the rare earth oxide powder is subjected to hydroxylation of the rare earth element. object,
It is more preferable that the alkoxide is prepared by thermally decomposing an alkoxide of a carbonate, an oxalate or an organic metal compound. The vapor deposition material manufactured by these methods is densely sintered in the sintering step, and the dispersed phase alkaline earth metal oxide powder or the rare earth oxide powder is uniformly dispersed in the MgO matrix particles of the vapor deposition material. Is done. As a result, the M
The gO vapor deposition material is a dense and dense MgO sintered body.

【0048】また上記MgO蒸着材を用いて電子ビーム
蒸着法によりMgO膜を成膜すれば、二相共存、即ちM
gOマトリックスと分散粒子とが固溶体や反応物を形成
しない状態で蒸発するので、高速で安定な成膜が可能と
なり、またスプラッシュが発生せず、成膜面積が広くて
も、膜厚及び膜組成が均一なMgO膜を得ることができ
る。更にこのMgO膜はMgO中にアルカリ土類金属酸
化物粒子又はアルカリ土類金属酸化物粒子及び希土類酸
化物粒子をドーピングした構造、即ちMgO中に上記ア
ルカリ土類金属酸化物粒子等を固溶した構造、或いはス
ピネル構造であるので、MgO膜の配向性は向上する。
この結果、このMgO膜を成膜した基板をPDPに組込
むと、低い電圧でプラズマを生成しかつ維持することが
でき、放電時の耐スパッタ性を向上でき、速い放電の応
答性及び高い絶縁性を得ることができる。またMgO膜
が蛍光体に悪影響を及ぼすことはなく、青色に関係する
輝度も向上することができる。従って、AC型PDPの
誘電体層の保護膜に好適なものとなる。
When an MgO film is formed by electron beam evaporation using the above-mentioned MgO evaporation material, two phases coexist, that is, M
Since the gO matrix and the dispersed particles evaporate without forming a solid solution or a reactant, high-speed and stable film formation is possible, and no splash occurs. Can obtain a uniform MgO film. Further, the MgO film has a structure in which alkaline earth metal oxide particles or alkaline earth metal oxide particles and rare earth oxide particles are doped in MgO, that is, the above alkaline earth metal oxide particles and the like are dissolved in MgO. Because of the structure or the spinel structure, the orientation of the MgO film is improved.
As a result, when the substrate on which the MgO film is formed is incorporated into a PDP, plasma can be generated and maintained at a low voltage, spatter resistance during discharge can be improved, and fast discharge response and high insulation properties can be achieved. Can be obtained. Also, the MgO film does not adversely affect the phosphor, and the luminance related to blue can be improved. Therefore, it is suitable as a protective film for the dielectric layer of the AC type PDP.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のMgO蒸着材を用いて電子ビーム蒸着
法で成膜したMgO膜を有するTEG基板の断面図。
FIG. 1 is a cross-sectional view of a TEG substrate having an MgO film formed by an electron beam evaporation method using the MgO evaporation material of the present invention.

【図2】図1に示すTEG基板の放電開始電圧を測定す
る装置の構成図。
FIG. 2 is a configuration diagram of an apparatus for measuring a discharge starting voltage of the TEG substrate shown in FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA05 AA08 AA09 AA10 AA11 AA13 AA14 BA12 CA01 CA02 CA04 GA05 GA27 4G076 AA01 AA02 AA10 AA16 AA26 AC07 BA38 BC08 CA11 CA30 4K029 BA50 BB07 CA01 DB05 DB07 DB21  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G030 AA05 AA08 AA09 AA10 AA11 AA13 AA14 BA12 CA01 CA02 CA04 GA05 GA27 4G076 AA01 AA02 AA10 AA16 AA26 AC07 BA38 BC08 CA11 CA30 4K029 BA50 BB07 CA01 DB05 DB07 DB21

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 相対密度が95%以上のMgO焼結体で
あって、平均結晶粒径が0.3〜100μmの結晶粒子
を有するMgOマトリックス中に、アルカリ土類金属酸
化物粒子が0.5〜50体積%分散されたMgO蒸着
材。
1. An MgO sintered body having a relative density of 95% or more, wherein an MgO matrix having crystal grains having an average crystal grain size of 0.3 to 100 μm contains alkaline earth metal oxide particles in an amount of 0.1%. MgO vapor deposition material dispersed in 5 to 50% by volume.
【請求項2】 アルカリ土類金属酸化物粒子中のアルカ
リ土類金属元素がCa,Sr及びBaからなる群より選
ばれた1種又は2種以上の元素である請求項1記載のM
gO蒸着材。
2. The M according to claim 1, wherein the alkaline earth metal element in the alkaline earth metal oxide particles is one or more elements selected from the group consisting of Ca, Sr and Ba.
gO vapor deposition material.
【請求項3】 相対密度が95%以上のMgO焼結体で
あって、平均結晶粒径が0.3〜100μmの結晶粒子
を有するMgOマトリックス中に、アルカリ土類金属酸
化物粒子及び希土類酸化物粒子が合計0.5〜50体積
%分散されたMgO蒸着材。
3. An MgO sintered body having a relative density of 95% or more and having an average crystal grain size of 0.3 to 100 μm in a MgO matrix having alkaline earth metal oxide particles and rare earth oxides. MgO vapor deposition material in which material particles are dispersed in a total of 0.5 to 50% by volume.
【請求項4】 アルカリ土類金属酸化物粒子中のアルカ
リ土類金属元素がCa,Sr及びBaからなる群より選
ばれた1種の元素であり、希土類酸化物粒子中の希土類
元素がSc,Y,La,Ce,Nd,Sm,Gd,T
b,Yb及びDyからなる群より選ばれた1種の元素で
ある請求項3記載のMgO蒸着材。
4. The alkaline earth metal element in the alkaline earth metal oxide particles is one element selected from the group consisting of Ca, Sr and Ba, and the rare earth element in the rare earth oxide particles is Sc, Y, La, Ce, Nd, Sm, Gd, T
The MgO vapor deposition material according to claim 3, wherein the material is one element selected from the group consisting of b, Yb, and Dy.
【請求項5】 MgO粉末とアルカリ土類金属の酸化物
粉末又は炭酸塩粉末とバインダと有機溶媒とを混合して
所定濃度の混合スラリーを調製する工程と、 前記スラリーを噴霧乾燥して所定粒径の造粒粉末を得る
工程と、 前記造粒粉末を所定の型に入れて所定の圧力で成形する
工程と、 前記成形体を脱脂した後に1450〜1700℃の温度
で焼結する工程とを含むMgO蒸着材の製造方法。
5. A step of mixing a MgO powder and an alkaline earth metal oxide powder or a carbonate powder, a binder and an organic solvent to prepare a mixed slurry having a predetermined concentration, and spray-drying the slurry to obtain a predetermined slurry. A step of obtaining a granulated powder having a diameter; a step of placing the granulated powder in a predetermined mold and molding at a predetermined pressure; and a step of sintering at a temperature of 1450 to 1700 ° C. after degreasing the molded body. A method for producing an MgO vapor-deposited material.
【請求項6】 MgO粉末とアルカリ土類金属の酸化物
粉末又は炭酸塩粉末と希土類酸化物粉末とバインダと有
機溶媒とを混合して所定濃度の混合スラリーを調製する
工程と、 前記スラリーを噴霧乾燥して所定粒径の造粒粉末を得る
工程と、 前記造粒粉末を所定の型に入れて所定の圧力で成形する
工程と、 前記成形体を脱脂した後に1450〜1700℃の温度
で焼結する工程とを含むMgO蒸着材の製造方法。
6. A step of mixing a MgO powder and an alkaline earth metal oxide powder or a carbonate powder, a rare earth oxide powder, a binder, and an organic solvent to prepare a mixed slurry having a predetermined concentration, and spraying the slurry. Drying to obtain a granulated powder having a predetermined particle size; placing the granulated powder in a predetermined mold and molding at a predetermined pressure; and degreased the molded body, followed by firing at a temperature of 1450 to 1700 ° C. And a sintering step.
【請求項7】 アルカリ土類金属酸化物粉末がアルカリ
土類金属元素の水酸化物,炭酸塩,蓚酸塩又は有機金属
化合物のアルコキシドを熱分解することにより作製され
た請求項5又は6記載のMgO蒸着材の製造方法。
7. The method according to claim 5, wherein the alkaline earth metal oxide powder is produced by thermally decomposing a hydroxide, carbonate, oxalate or alkoxide of an organic metal compound of an alkaline earth metal element. Manufacturing method of MgO vapor deposition material.
【請求項8】 希土類酸化物粉末が希土類元素の水酸化
物,炭酸塩,蓚酸塩又は有機金属化合物のアルコキシド
を熱分解することにより作製された請求項6記載のMg
O蒸着材の製造方法。
8. The Mg according to claim 6, wherein the rare earth oxide powder is prepared by thermally decomposing a hydroxide, carbonate, oxalate or alkoxide of an organometallic compound of a rare earth element.
Manufacturing method of O vapor deposition material.
【請求項9】 請求項1ないし4いずれか記載のMgO
蒸着材を用いて電子ビーム蒸着法により成膜するMgO
膜の製造方法。
9. The MgO according to claim 1, wherein
MgO deposited by electron beam evaporation using evaporation material
Manufacturing method of membrane.
JP09734299A 1999-04-05 1999-04-05 MgO vapor deposition material and method for producing the same Expired - Lifetime JP3893793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09734299A JP3893793B2 (en) 1999-04-05 1999-04-05 MgO vapor deposition material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09734299A JP3893793B2 (en) 1999-04-05 1999-04-05 MgO vapor deposition material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000290062A true JP2000290062A (en) 2000-10-17
JP3893793B2 JP3893793B2 (en) 2007-03-14

Family

ID=14189817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09734299A Expired - Lifetime JP3893793B2 (en) 1999-04-05 1999-04-05 MgO vapor deposition material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3893793B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264272A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Material of magnesium oxide thin film
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
JP2005330589A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Method for producing magnesium oxide vapor-deposition material
WO2006006633A1 (en) * 2004-07-14 2006-01-19 Mitsubishi Materials Corporation MgO DEPOSITION MATERIAL
WO2007126061A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Plasma display panel and its manufacturing method
WO2009154130A1 (en) * 2008-06-16 2009-12-23 株式会社アルバック Method for manufacturing plasma display panel and film forming apparatus
CN100582288C (en) * 2003-10-21 2010-01-20 宇部材料工业株式会社 Magnesium oxide vapour-deposition material
US7691200B2 (en) 2005-03-25 2010-04-06 Tateho Chemical Industries Co., Ltd Magnesium oxide single crystal and method for producing the same
JP2010143798A (en) * 2008-12-19 2010-07-01 Tateho Chem Ind Co Ltd Sintered magnesium oxide and method for producing the same
CN102191463A (en) * 2010-03-15 2011-09-21 三菱综合材料株式会社 Vapor phase deposition material for forming film, film sheet with the film, and laminated sheet
WO2011145265A1 (en) * 2010-05-20 2011-11-24 タテホ化学工業株式会社 Sintered magnesium oxide material, and process for production thereof
CN102372481A (en) * 2010-07-08 2012-03-14 宇部材料工业株式会社 Compound Alkaline Earth Metal Oxide
JP2012072428A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Vapor deposition material for protective film of plasma display panel
JP2012149353A (en) * 2007-03-09 2012-08-09 Mitsubishi Materials Corp Method for producing vapor deposition material
WO2012127771A1 (en) * 2011-03-24 2012-09-27 タテホ化学工業株式会社 Process for producing sintered magnesium oxide material
KR101569939B1 (en) * 2008-06-13 2015-11-17 우베 마테리알즈 가부시키가이샤 Polycrystalline magnesium oxide material process for preparation thereof and method for manufacturing magnesium oxide film
KR101609010B1 (en) 2008-07-15 2016-04-04 우베 마테리알즈 가부시키가이샤 Vapor deposition material for the production of strontium/calcium composite oxide films
CN107253733A (en) * 2017-07-18 2017-10-17 成都新柯力化工科技有限公司 A kind of preparation method of the nano oxidized magnesium material of high purity high dispersiveness

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611138B2 (en) * 2003-10-21 2011-01-12 宇部マテリアルズ株式会社 Method for producing magnesium oxide vapor deposition material
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
JP2005330589A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Method for producing magnesium oxide vapor-deposition material
CN100582288C (en) * 2003-10-21 2010-01-20 宇部材料工业株式会社 Magnesium oxide vapour-deposition material
JP4627652B2 (en) * 2003-10-21 2011-02-09 宇部マテリアルズ株式会社 Magnesium oxide vapor deposition material
JP2010236096A (en) * 2003-10-21 2010-10-21 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
JP2005264272A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Material of magnesium oxide thin film
JP4674360B2 (en) * 2004-03-19 2011-04-20 テクノロジーシードインキュベーション株式会社 Magnesium oxide thin film material deposited by electron beam evaporation
WO2006006633A1 (en) * 2004-07-14 2006-01-19 Mitsubishi Materials Corporation MgO DEPOSITION MATERIAL
KR100821967B1 (en) * 2004-07-14 2008-04-15 미츠비시 마테리알 가부시키가이샤 MgO Vapor Deposition Material
US7691200B2 (en) 2005-03-25 2010-04-06 Tateho Chemical Industries Co., Ltd Magnesium oxide single crystal and method for producing the same
US8018154B2 (en) 2006-04-28 2011-09-13 Panasonic Corporation Plasma display panel and its manufacturing method
WO2007126061A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Plasma display panel and its manufacturing method
JP2012149353A (en) * 2007-03-09 2012-08-09 Mitsubishi Materials Corp Method for producing vapor deposition material
KR101569939B1 (en) * 2008-06-13 2015-11-17 우베 마테리알즈 가부시키가이샤 Polycrystalline magnesium oxide material process for preparation thereof and method for manufacturing magnesium oxide film
CN102067266B (en) * 2008-06-16 2013-02-06 株式会社爱发科 Method for manufacturing plasma display panel and film forming apparatus
JP5235214B2 (en) * 2008-06-16 2013-07-10 株式会社アルバック Plasma display panel manufacturing method and film forming apparatus
WO2009154130A1 (en) * 2008-06-16 2009-12-23 株式会社アルバック Method for manufacturing plasma display panel and film forming apparatus
KR101609010B1 (en) 2008-07-15 2016-04-04 우베 마테리알즈 가부시키가이샤 Vapor deposition material for the production of strontium/calcium composite oxide films
JP2010143798A (en) * 2008-12-19 2010-07-01 Tateho Chem Ind Co Ltd Sintered magnesium oxide and method for producing the same
CN102191463A (en) * 2010-03-15 2011-09-21 三菱综合材料株式会社 Vapor phase deposition material for forming film, film sheet with the film, and laminated sheet
JP2011241123A (en) * 2010-05-20 2011-12-01 Tateho Chemical Industries Co Ltd Magnesium oxide sintered compact and method for producing the same
WO2011145265A1 (en) * 2010-05-20 2011-11-24 タテホ化学工業株式会社 Sintered magnesium oxide material, and process for production thereof
CN102822113A (en) * 2010-05-20 2012-12-12 达泰豪化学工业株式会社 Sintered magnesium oxide material, and process for production thereof
CN102372481A (en) * 2010-07-08 2012-03-14 宇部材料工业株式会社 Compound Alkaline Earth Metal Oxide
JP2012072428A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Vapor deposition material for protective film of plasma display panel
CN103415486A (en) * 2011-03-24 2013-11-27 达泰豪化学工业株式会社 Process for producing sintered magnesium oxide material
JP2012201528A (en) * 2011-03-24 2012-10-22 Tateho Chemical Industries Co Ltd Method for producing magnesium oxide sintered body
WO2012127771A1 (en) * 2011-03-24 2012-09-27 タテホ化学工業株式会社 Process for producing sintered magnesium oxide material
CN107253733A (en) * 2017-07-18 2017-10-17 成都新柯力化工科技有限公司 A kind of preparation method of the nano oxidized magnesium material of high purity high dispersiveness

Also Published As

Publication number Publication date
JP3893793B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP2000290062A (en) MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION
JP4754612B2 (en) Manufacturing method of sputtering target
JP3314728B2 (en) Polycrystalline MgO deposited material
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP2009144238A (en) Indium tin oxide target, method for manufacturing the same, transparent conductive film of indium tin oxide, and method for manufacturing the same
US20230242409A1 (en) Ceramic sintered body comprising magnesium aluminate spinel
KR100345083B1 (en) Aluminum nitride sintered body, electronic functional material, and electrostatic chuck
WO2011145265A1 (en) Sintered magnesium oxide material, and process for production thereof
JPH10291854A (en) Polycrystalline mgo vapor depositing material and its production
JPH10130827A (en) Mgo target and its production
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
JP3331584B2 (en) Polycrystalline MgO deposited material
JP5320761B2 (en) Zinc oxide-based sintered tablet and method for producing the same
JP3494205B2 (en) Target material containing MgO as a main component and method for producing the same
KR20070041440A (en) Single-ctystal magnesium oxide sinter, process for produsing the same, and protective film for plasma display panel
JP4419343B2 (en) Deposition material for protective film of FPD and method for producing the same
JPH10158826A (en) Mgo target and its production
JP4147988B2 (en) Deposition material for protective film of FPD and method for producing the same
JPH10237636A (en) Target essentially consisting of mgo and its production
US6649270B2 (en) SiC jig for use in heat treatment
JP5129772B2 (en) Sr-Ca-O sintered body
JPH1129355A (en) Polycrystalline magnesium oxide vacuum-deposition material and its production
JP3417457B2 (en) Target containing MgO as main component and method for producing the same
JPH10130828A (en) Mgo target and its production
JP4196438B2 (en) Vapor deposition material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term