JP2000283611A - Heat pump type air conditioning apparatus - Google Patents

Heat pump type air conditioning apparatus

Info

Publication number
JP2000283611A
JP2000283611A JP11089784A JP8978499A JP2000283611A JP 2000283611 A JP2000283611 A JP 2000283611A JP 11089784 A JP11089784 A JP 11089784A JP 8978499 A JP8978499 A JP 8978499A JP 2000283611 A JP2000283611 A JP 2000283611A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
air
outdoor heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11089784A
Other languages
Japanese (ja)
Other versions
JP4134433B2 (en
Inventor
Keita Honda
桂太 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP08978499A priority Critical patent/JP4134433B2/en
Publication of JP2000283611A publication Critical patent/JP2000283611A/en
Application granted granted Critical
Publication of JP4134433B2 publication Critical patent/JP4134433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent frosting onto an outdoor heat exchanger. SOLUTION: An air conditioning apparatus wherein a refrigerant and air conditioning air discharged from a compressor 13 are heat exchanged with a condenser 9, and a refrigerant condensed in the condenser 9 is reduced in pressure through a pressure reducer 19, and the pressure reduced refrigerant and outdoor air are heat exchanged in an outdoor heat exchanger 18. In the air conditioning apparatus, temperature of the outdoor heat exchanger 18 is controlled such that a temperature difference between fresh air temperature and temperature of the outdoor heat exchanger 18 falls within a predetermined range. Hereby, the temperature of the outdoor heat exchanger 18 is prevented from being lowered beyond the need, so that there is reduced the possibility of the temperature of the outdoor heat exchanger 18 being lowered to a frosting temperature region, and hence frosting is previously prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートポンプ式空
調装置に関し、特に、室外熱交換器の着霜防止に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly to prevention of frost formation on an outdoor heat exchanger.

【0002】[0002]

【従来の技術】従来のヒートポンプ式空調装置は、圧縮
機吐出ガス冷媒(ホットガス)を室内熱交換器に直接導
入し、この室内熱交換器でガス冷媒から空調空気に放熱
することにより暖房機能を発揮できるようにしている。
また、室内熱交換器で凝縮された冷媒を減圧した後室外
熱交換器に導入し、この室外熱交換器で空調空気から冷
媒に吸熱した後、この冷媒を圧縮機に戻すようにしてい
る。
2. Description of the Related Art In a conventional heat pump air conditioner, a gas discharge refrigerant (hot gas) discharged from a compressor is directly introduced into an indoor heat exchanger, and the indoor heat exchanger radiates heat from the gas refrigerant to conditioned air to provide a heating function. Can be demonstrated.
Further, the refrigerant condensed in the indoor heat exchanger is decompressed and then introduced into the outdoor heat exchanger. After the outdoor heat exchanger absorbs heat from the conditioned air into the refrigerant, the refrigerant is returned to the compressor.

【0003】そして、この種のヒートポンプ式空調装置
においては室外熱交換器の着霜が問題となり、その対策
として例えば特開平10−71850号公報に記載され
たものがある。この従来装置では、圧縮機吐出側から凝
縮器をバイパスして室外熱交換器入口側に直接連通する
ホットガスのバイパス回路を設けるとともに、このバイ
パス回路に電磁弁を設け、さらに室外熱交換器の温度を
検出する温度センサを設けている。
[0003] In this type of heat pump type air conditioner, frost formation on the outdoor heat exchanger becomes a problem, and as a countermeasure, for example, there is one described in Japanese Patent Application Laid-Open No. Hei 10-71850. In this conventional apparatus, a bypass circuit for hot gas is provided that bypasses the condenser from the compressor discharge side and directly communicates with the outdoor heat exchanger inlet side, and a solenoid valve is provided in this bypass circuit, and further, the outdoor heat exchanger A temperature sensor for detecting a temperature is provided.

【0004】そして、室外熱交換器の温度が所定温度よ
り低くなると着霜状態と判定し、電磁弁を所定のデュー
ティ比でオン・オフ制御して、圧縮機から吐出されたホ
ットガスを室外熱交換器に導入することにより、室外熱
交換器の表面に付着した霜を溶解させるようにしてい
る。
When the temperature of the outdoor heat exchanger becomes lower than a predetermined temperature, it is determined that a frost is formed, and a solenoid valve is controlled to be turned on and off at a predetermined duty ratio so that the hot gas discharged from the compressor is discharged to the outdoor heat exchanger. The frost adhering to the surface of the outdoor heat exchanger is melted by being introduced into the exchanger.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来装置では、着霜後に初めてホットガスを室外熱交換器
に導入して除霜を行うのみであり、着霜を未然に防止す
ることができないという問題がある。また、電磁弁をオ
ン・オフ制御しているため室外熱交換器にホットガスが
断続的に流入し、その影響で除霜中に室内熱交換器に流
れる冷媒の流量が大きく変動し、従って室内空気吹出温
度がハンチングするという問題も生じている。
However, in the above-mentioned conventional apparatus, hot gas is only introduced into the outdoor heat exchanger after frost formation for defrosting, and frost formation cannot be prevented beforehand. There's a problem. In addition, since the solenoid valve is on / off controlled, hot gas flows into the outdoor heat exchanger intermittently, and as a result, the flow rate of the refrigerant flowing through the indoor heat exchanger during defrosting fluctuates greatly, and therefore, There is also a problem that the air blowing temperature hunts.

【0006】本発明は上記の点に鑑みてなされたもの
で、室外熱交換器への着霜を未然に防止することを目的
とする。また、着霜防止中の室内空気吹出温度の安定化
を図ることを他の目的とする。
[0006] The present invention has been made in view of the above points, and has as its object to prevent frost on an outdoor heat exchanger. Another object of the present invention is to stabilize the indoor air blowing temperature during the prevention of frost formation.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1〜4記載の発明では、暖房時には減圧され
た冷媒と室外空気とを熱交換させて冷媒を蒸発させる室
外熱交換器(18)を備え 、外気温度と室外熱交換器
(18)の温度との温度差が所定範囲内となるように、
室外熱交換器(18)の温度を制御することを特徴とし
ている。
In order to achieve the above object, according to the first to fourth aspects of the present invention, an outdoor heat exchanger (evaporating the refrigerant by exchanging heat between the depressurized refrigerant and the outdoor air during heating is provided. 18), so that the temperature difference between the outside air temperature and the temperature of the outdoor heat exchanger (18) falls within a predetermined range.
The temperature of the outdoor heat exchanger (18) is controlled.

【0008】これによれば、室外熱交換器(18)の必
要以上の温度低下を防止できるため、室外熱交換器(1
8)の温度が着霜温度域まで低下する可能性が小さくな
り、従って着霜を未然に防止することが可能になる。請
求項2記載の発明のように、圧縮機(13)から吐出さ
れた冷媒を室外熱交換器(18)に導くバイパス回路
(30)と、このバイパス回路(30)を流れる冷媒の
量を調整するバイパス制御弁(31)と、温度差を所定
範囲内に制御するようにバイパス制御弁(31)の作動
を制御する制御手段(24)とを設けて実施することが
できる。
According to this, since the temperature of the outdoor heat exchanger (18) can be prevented from lowering more than necessary, the outdoor heat exchanger (1)
The possibility that the temperature of 8) is lowered to the frost temperature range is reduced, so that frost formation can be prevented beforehand. As in the second aspect of the present invention, the bypass circuit (30) for guiding the refrigerant discharged from the compressor (13) to the outdoor heat exchanger (18) and the amount of the refrigerant flowing through the bypass circuit (30) are adjusted. And a control means (24) for controlling the operation of the bypass control valve (31) so as to control the temperature difference within a predetermined range.

【0009】請求項3記載の発明では、制御手段(2
4)は、室外熱交換器(18)の温度が外気温度よりも
所定値以上低下した状態が所定時間継続すると着霜状態
と判定し、バイパス制御弁(31)の開弁状態を、除霜
完了状態と判定するまで継続することを特徴としてい
る。これによれば、着霜状態に至った場合でも確実に除
霜を行うことができる。
In the invention according to claim 3, the control means (2
4) When the state in which the temperature of the outdoor heat exchanger (18) is lower than the outside air temperature by a predetermined value or more continues for a predetermined time, it is determined that the frost is formed, and the open state of the bypass control valve (31) is changed to the defrosting state It is characterized in that it is continued until it is determined to be in the completed state. According to this, defrosting can be reliably performed even when a frosted state is reached.

【0010】請求項4記載の発明では、バイパス制御弁
(31)が、バイパス回路(30)を流れる冷媒の量を
連続的に調整可能であることを特徴としている。これに
よれば、バイパス回路(30)側の冷媒流量の変化を緩
やかにできるため、室内熱交換器(9)側の冷媒流量の
急激な変動が防止され、室内空気吹出温度を安定させる
ことができる。
[0010] The invention according to claim 4 is characterized in that the bypass control valve (31) can continuously adjust the amount of refrigerant flowing through the bypass circuit (30). According to this, since the change in the refrigerant flow rate on the bypass circuit (30) side can be moderated, rapid fluctuations in the refrigerant flow rate on the indoor heat exchanger (9) side are prevented, and the indoor air blowing temperature can be stabilized. it can.

【0011】なお、上記各手段の括弧内の符号は、後述
する実施形態記載の具体的手段との対応関係を示すもの
である。
The reference numerals in parentheses of the above means indicate the correspondence with the specific means described in the embodiments described later.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は本発明を電気自動車用空調装
置に適用した一実施形態を示すもので、空調ユニット1
は電気自動車の車室内に設置され,その空調ダクト2
は、車室内に空調空気を導く空調空気通路を構成するも
のである。この空調ダクト2の一端側に内気を吸入する
内気吸入口3と外気を吸入する外気吸入口4が設けられ
ており、この両吸入口3、4は、内外気切替ドア5によ
り切替開閉される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to an air conditioner for an electric vehicle.
Is installed in the cabin of the electric vehicle and its air conditioning duct 2
Constitutes an air-conditioned air passage for guiding conditioned air into the vehicle interior. At one end of the air-conditioning duct 2, there is provided an inside air suction port 3 for sucking inside air and an outside air suction port 4 for sucking outside air. .

【0013】上記吸入口3、4に隣接して、空調ダクト
2内に空気を送風する送風機6が設置されており、この
送風機6はモータ7により駆動される遠心ファンから構
成されている。そして、空調ダクト2内において、送風
機6の空気吹出側には暖房用凝縮器9が設けられてい
る。この暖房用凝縮器9は、冷凍サイクルの一部を構成
する室内熱交換器であり、後述する暖房サイクル時に、
内部を流れる冷媒の放熱作用によって、空調ダクト2内
の空気を加熱する加熱器として機能する。
A blower 6 for blowing air into the air-conditioning duct 2 is provided adjacent to the inlets 3 and 4, and the blower 6 is constituted by a centrifugal fan driven by a motor 7. In the air conditioning duct 2, a heating condenser 9 is provided on the air blowing side of the blower 6. The heating condenser 9 is an indoor heat exchanger that constitutes a part of a refrigeration cycle, and performs a heating cycle described later.
It functions as a heater that heats the air in the air conditioning duct 2 by the heat radiation effect of the refrigerant flowing inside.

【0014】空調ダクト2内において、暖房用凝縮器9
の側方には暖房用凝縮器9をバイパスして空気を流すバ
イパス通路10が設けられており、暖房用凝縮器9の通
風路とバイパス通路10とを切り替える板状の切替ドア
11が回動可能に設けられている。この切替ドア11は
暖房時には暖房用凝縮器9の通風路を全開してバイパス
通路10を全閉する実線位置に操作され、冷房時には、
暖房用凝縮器9の通風路を全閉してバイパス通路10を
全開する破線位置に操作される。
In the air conditioning duct 2, a heating condenser 9 is provided.
A bypass passage 10 for bypassing the heating condenser 9 and allowing air to flow therethrough is provided at the side of the plate-shaped switching door 11 for switching between the ventilation passage of the heating condenser 9 and the bypass passage 10. It is provided as possible. The switching door 11 is operated at a solid line position where the ventilation passage of the heating condenser 9 is fully opened and the bypass passage 10 is fully closed at the time of heating.
It is operated to the position indicated by the broken line where the ventilation passage of the heating condenser 9 is fully closed and the bypass passage 10 is fully opened.

【0015】暖房用凝縮器9の空気下流側には冷房用蒸
発器8が設けられ、この冷房用蒸発器8は、冷凍サイク
ルの一部を構成する室内熱交換器であり、後述する冷房
サイクル時に、内部を流れる冷媒の吸熱作用によって、
空調ダクト2内の空気を冷却除湿する冷却器として機能
する。空調ダクト2内において、冷房用蒸発器8の空気
下流側には、車室内乗員の足元部に向かって空調空気を
吹き出すフット吹出口94、車室内乗員の上半身に向か
って空調空気を吹き出すフェイス吹出口95および車両
窓ガラスの内面に空調空気を吹き出すデフロスタ吹出口
96が設けられる。この複数の吹出口94〜96は吹出
モードドア97、98、99により切替開閉される。
A cooling evaporator 8 is provided downstream of the heating condenser 9 in the air. The cooling evaporator 8 is an indoor heat exchanger that constitutes a part of a refrigeration cycle. Sometimes, due to the endothermic effect of the refrigerant flowing inside,
It functions as a cooler that cools and dehumidifies the air in the air conditioning duct 2. In the air-conditioning duct 2, downstream of the air from the cooling evaporator 8, a foot outlet 94 that blows out the conditioned air toward the feet of the passenger in the passenger compartment, and a face blower that discharges the conditioned air toward the upper body of the passenger in the passenger compartment. An outlet 95 and a defroster outlet 96 for blowing conditioned air to the inner surface of the vehicle window glass are provided. The plurality of outlets 94 to 96 are selectively opened and closed by outlet mode doors 97, 98, and 99.

【0016】次に、上記冷房用の蒸発器8と暖房用の凝
縮器9を含む冷凍サイクル12について説明すると、冷
凍サイクル12は車室内の冷房および暖房を行うヒート
ポンプ式冷凍サイクルとして構成されており、電動式の
冷媒圧縮機13を備えている。圧縮機13の吐出側と凝
縮器9との間の流路には吐出圧(サイクル高圧圧力)を
検出する圧力センサ14が配置されている。
Next, the refrigeration cycle 12 including the cooling evaporator 8 and the heating condenser 9 will be described. The refrigeration cycle 12 is configured as a heat pump refrigeration cycle for cooling and heating the vehicle interior. , A motor-driven refrigerant compressor 13. In the flow path between the discharge side of the compressor 13 and the condenser 9, a pressure sensor 14 for detecting a discharge pressure (cycle high pressure) is arranged.

【0017】また、冷凍サイクル12には、冷房用電磁
弁15、暖房用電磁弁16、除湿用電磁弁17、室外熱
交換器18、第1減圧器19、第2減圧器20、冷媒の
気液を分離するとともに液冷媒を溜めて、ガス冷媒を導
出するアキュームレータ21が備えられている。さら
に、圧縮機13の吐出側と凝縮器9との間から分岐した
バイパス回路30は、室外熱交換器18の入口側に接続
されており、このバイパス回路30の途中には、バイパ
ス回路30の開度を連続的に調整可能なバイパス制御弁
31が設置されている。
The refrigeration cycle 12 includes a cooling solenoid valve 15, a heating solenoid valve 16, a dehumidification solenoid valve 17, an outdoor heat exchanger 18, a first decompressor 19, a second decompressor 20, a refrigerant gas. An accumulator 21 that separates the liquid, stores the liquid refrigerant, and discharges the gas refrigerant is provided. Further, a bypass circuit 30 branched from between the discharge side of the compressor 13 and the condenser 9 is connected to the inlet side of the outdoor heat exchanger 18. A bypass control valve 31 capable of continuously adjusting the opening is provided.

【0018】このバイパス制御弁31は、例えば、冷媒
通路となる円形の開口部に円錐状の弁体を出入りさせて
開度を調整する形式の弁を使用し、円錐状の弁体をステ
ップモータにて駆動する。上記の室外熱交換器18は電
気自動車の車室外に設置され、電動室外ファン18aに
より送風される外気と熱交換するようになっている。室
外熱交換器18には室外器温度センサ32が配置され、
この室外器温度センサ32は、暖房時の冷媒流れにおい
て室外熱交換器18の出口側(暖房用電磁弁16側)と
なる配管の温度を検出する。室外熱交換器18の空気入
口側には、室外熱交換器18に流入する空気(外気)の
温度を検出する外気温度センサ33が配置されている。
The bypass control valve 31 uses, for example, a valve of a type in which a conical valve body is moved in and out of a circular opening serving as a refrigerant passage to adjust the opening degree. Drive with. The outdoor heat exchanger 18 is installed outside the vehicle compartment of the electric vehicle, and exchanges heat with the outside air blown by the electric outdoor fan 18a. An outdoor unit temperature sensor 32 is disposed in the outdoor heat exchanger 18,
The outdoor unit temperature sensor 32 detects the temperature of the pipe on the outlet side (the heating electromagnetic valve 16 side) of the outdoor heat exchanger 18 in the refrigerant flow during heating. An outside air temperature sensor 33 that detects the temperature of the air (outside air) flowing into the outdoor heat exchanger 18 is arranged on the air inlet side of the outdoor heat exchanger 18.

【0019】また、上記冷媒圧縮機13は、電動式圧縮
機であって、図示しない電動モータ(交流モータ)を一
体に密封ケース内に内蔵し、このモータにより駆動され
て冷媒の吸入、圧縮、吐出を行う。この冷媒圧縮機13
の交流モータにはインバータ22により交流電圧が印加
され、このインバータ22により交流電圧の周波数を調
整することによってモータ回転速度を連続的に変化させ
るようになっている。従って、インバータ22は圧縮機
13の回転数調整手段をなすものであり、このインバー
タ22には、車載バッテリ23から直流電圧が印加され
る。
The refrigerant compressor 13 is an electric compressor. An electric motor (AC motor) (not shown) is built in a sealed case integrally, and driven by this motor to suck, compress, and remove the refrigerant. Discharge is performed. This refrigerant compressor 13
An AC voltage is applied to the AC motor by an inverter 22, and the frequency of the AC voltage is adjusted by the inverter 22 to continuously change the motor rotation speed. Accordingly, the inverter 22 serves as a means for adjusting the rotation speed of the compressor 13, and a DC voltage is applied to the inverter 22 from the vehicle-mounted battery 23.

【0020】そして、インバータ22は空調用制御装置
(制御手段)24によって通電制御される。この空調用
制御装置24はマイクロコンピータとその周辺回路にて
構成される電子制御装置であって、インバータ22の他
に電磁弁15〜17、さらにはバイパス制御弁31の作
動を制御する。さらに、空調ユニット1の内外気切替ド
ア5、送風機の6モータ7、エアミックドア11、およ
び室外ファン18a等の機器も制御装置24により作動
が制御される。
The inverter 22 is energized by an air-conditioning control device (control means) 24. The air-conditioning control device 24 is an electronic control device including a microcomputer and its peripheral circuits, and controls the operations of the solenoid valves 15 to 17 and the bypass control valve 31 in addition to the inverter 22. Further, the operation of devices such as the inside / outside air switching door 5 of the air conditioning unit 1, the 6 motor 7 of the blower, the aeromic door 11, and the outdoor fan 18a is controlled by the control device 24.

【0021】上記制御装置24には、前述の圧力センサ
14、室外器温度センサ32、外気温度センサ33の他
に、車室内温度を検出する内気センサ、冷房用蒸発器8
の吹出直後の空気温度を検出する蒸発器温度センサ、車
室内への日射量を検出する日射センサ等を含む空調用セ
ンサ群25からセンサ信号が入力されるようになってい
る。また、車室内運転席近傍に設けられた空調操作パネ
ル26の各レバー、スイッチ群27からの信号(温度設
定信号等)も制御装置24に入力される。
The control unit 24 includes, in addition to the pressure sensor 14, the outdoor unit temperature sensor 32, and the outside air temperature sensor 33, an inside air sensor for detecting the temperature inside the vehicle, and the evaporator 8 for cooling.
Sensor signals are input from an air conditioning sensor group 25 including an evaporator temperature sensor for detecting the air temperature immediately after the air blows out, a solar radiation sensor for detecting the amount of solar radiation into the vehicle interior, and the like. Further, signals (temperature setting signals and the like) from the levers and switches 27 of the air conditioning operation panel 26 provided near the driver's seat in the vehicle cabin are also input to the control device 24.

【0022】次に、上記構成においてこの実施形態の作
動を説明する。まず、暖房運転時には、制御装置24の
出力により冷凍サイクル12の冷房用電磁弁15と除湿
用電磁弁17が閉弁され、暖房用電磁弁16が開弁され
る。これにより、圧縮機13が作動すると、図1の太線
で示す経路、すなわち、圧縮機13→凝縮器9→第1減
圧器19→室外熱交換器18→暖房用電磁弁18→アキ
ュームレータ21→圧縮機13という経路にて冷媒が流
れる。
Next, the operation of this embodiment in the above configuration will be described. First, during the heating operation, the cooling electromagnetic valve 15 and the dehumidifying electromagnetic valve 17 of the refrigeration cycle 12 are closed and the heating electromagnetic valve 16 is opened by the output of the control device 24. Thereby, when the compressor 13 operates, the path shown by the thick line in FIG. 1, that is, the compressor 13 → the condenser 9 → the first depressurizer 19 → the outdoor heat exchanger 18 → the heating electromagnetic valve 18 → the accumulator 21 → the compression. The refrigerant flows through the path of the machine 13.

【0023】従って、室外熱交換器18=蒸発器とな
り、室外熱交換器18にて吸熱された熱量および圧縮仕
事による熱量を空調ユニット1内の室内凝縮器9にて凝
縮熱として放熱することができる。従って、切替ドア1
1を図1の実線位置のように開くことにより、送風機6
の送風空気が凝縮器9を通過して加熱され、温風とな
り、車室内を暖房できる。
Therefore, the outdoor heat exchanger 18 becomes an evaporator, and the heat absorbed by the outdoor heat exchanger 18 and the heat generated by the compression work can be radiated as condensation heat in the indoor condenser 9 in the air conditioning unit 1. it can. Therefore, the switching door 1
1 is opened as shown by the solid line in FIG.
Blown air passes through the condenser 9 and is heated to become hot air, so that the vehicle interior can be heated.

【0024】そして、目標吹出空気温度等に基づいてサ
イクル高圧圧力の目標圧を演算し、その目標圧となるよ
う圧縮機13の回転数を制御することにより、吹出空気
温度を調整する。一方、冷房運転時には、制御装置24
の出力により冷凍サイクル12の冷房用電磁弁15が開
弁され、暖房用電磁弁16と除湿用電磁弁17が閉弁さ
れる。従って、圧縮機13が作動すると、圧縮機13→
凝縮器9→冷房用電磁弁15→室外熱交換器18→第2
減圧器20→蒸発器8→アキュームレータ21→圧縮機
13という経路にて冷媒が流れる。また、冷房時には、
切替ドア11を図1の破線位置に操作して、凝縮器9の
通風路を全閉し、バイパス通路10を全開する。そのた
め、送風機6の送風空気はすべてバイパス通路10を通
過し、凝縮器9を通過しない。その結果、凝縮器9は単
なる冷媒通路となり、凝縮作用を行わない。
Then, the target pressure of the cycle high pressure is calculated based on the target outlet air temperature and the like, and the number of revolutions of the compressor 13 is controlled so as to reach the target pressure, thereby adjusting the outlet air temperature. On the other hand, during the cooling operation, the control device 24
, The cooling electromagnetic valve 15 of the refrigeration cycle 12 is opened, and the heating electromagnetic valve 16 and the dehumidifying electromagnetic valve 17 are closed. Therefore, when the compressor 13 operates, the compressor 13 →
Condenser 9 → cooling solenoid valve 15 → outdoor heat exchanger 18 → second
The refrigerant flows through the route of the pressure reducer 20 → the evaporator 8 → the accumulator 21 → the compressor 13. Also, during cooling,
By operating the switching door 11 to the position indicated by the broken line in FIG. 1, the ventilation passage of the condenser 9 is fully closed, and the bypass passage 10 is fully opened. Therefore, all the air blown by the blower 6 passes through the bypass passage 10 and does not pass through the condenser 9. As a result, the condenser 9 becomes a mere refrigerant passage and does not perform a condensing operation.

【0025】そして、室外熱交換器18が凝縮器とな
り、室外熱交換器18にて放熱し凝縮した冷媒は第2減
圧器20で減圧された後に蒸発器8に流入する。ここ
で、低圧冷媒が蒸発して送風空気を冷却する。この冷却
された冷風はバイパス通路10を通過して車室内へ吹出
し、冷房を行う。次に、本実施形態の特徴である、暖房
運転時の室外熱交換器18の着霜防止制御および除霜制
御について説明する。図2はそれらの制御を行うために
制御装置24にて実行される制御ルーチンを示し、以下
図1、2に基づいて説明する。
Then, the outdoor heat exchanger 18 becomes a condenser, and the refrigerant radiated and condensed by the outdoor heat exchanger 18 flows into the evaporator 8 after being depressurized by the second decompressor 20. Here, the low-pressure refrigerant evaporates and cools the blown air. The cooled cold air passes through the bypass passage 10 and is blown into the vehicle interior to perform cooling. Next, the frost prevention control and the defrost control of the outdoor heat exchanger 18 during the heating operation, which are features of the present embodiment, will be described. FIG. 2 shows a control routine executed by the control device 24 to perform these controls, and will be described below with reference to FIGS.

【0026】暖房運転時には、バイパス制御弁31が全
閉位置に制御されている場合を除き、図1に破線で示す
ように圧縮機13から吐出された高温・高圧のガス冷媒
の一部を、バイパス回路30を介して室外熱交換器18
に導入するようになっており、暖房運転中は図2の制御
ルーチンにしたがって、バイパス制御弁31の開度を制
御する。
During the heating operation, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 13 as shown by a dashed line in FIG. 1 is used, except when the bypass control valve 31 is controlled to the fully closed position. The outdoor heat exchanger 18 via the bypass circuit 30
During the heating operation, the opening degree of the bypass control valve 31 is controlled in accordance with the control routine of FIG.

【0027】暖房運転開始後10分以内であれば(ステ
ップS100がYES)、バイパス制御弁31を全閉位
置に制御し(ステップS101)、圧縮機13の吐出冷
媒を全量凝縮器9に導入して暖房能力を最大に発揮させ
る。暖房運転開始後10分が経過すると(ステップS1
00がNO)、外気温度センサ33で検出した外気温度
と、室外器温度センサ32で検出した室外熱交換器18
の温度との温度差ΔTを判定する(ステップS10
2)。ここで、ΔT=外気温度−室外熱交換器温度、で
ある。
If it is within 10 minutes after the start of the heating operation (step S100: YES), the bypass control valve 31 is controlled to the fully closed position (step S101), and the refrigerant discharged from the compressor 13 is introduced into the full condenser 9. To maximize the heating capacity. After 10 minutes have passed since the start of the heating operation (step S1)
00 is NO), the outdoor air temperature detected by the outdoor air temperature sensor 33 and the outdoor heat exchanger 18 detected by the outdoor air temperature sensor 32.
Of the temperature difference ΔT from the temperature (step S10)
2). Here, ΔT = outside air temperature−outdoor heat exchanger temperature.

【0028】そして、温度差ΔTが目標温度範囲、すな
わち、0°C<ΔT<5°Cの場合は、バイパス制御弁
31が全閉のまま暖房運転が継続される。一方、ΔT≧
5°CであればステップS103に進み、ΔT<20°
Cの場合、または、ΔT≧20°Cの状態が10分未満
の場合は、ステップS103がNOとなり、ステップS
104でバイパス制御弁31を1%開く。
If the temperature difference ΔT is within the target temperature range, that is, 0 ° C <ΔT <5 ° C, the heating operation is continued with the bypass control valve 31 fully closed. On the other hand, ΔT ≧
If it is 5 ° C., the process proceeds to step S103, where ΔT <20 °
C, or if the state of ΔT ≧ 20 ° C. is less than 10 minutes, the determination in step S103 is NO, and the determination in step S103 is NO.
At 104, the bypass control valve 31 is opened by 1%.

【0029】これにより、圧縮機13から吐出されたガ
ス冷媒の一部がバイパス回路30を介して室外熱交換器
18に導入され、そのガス冷媒により室外熱交換器18
が暖められる。従って、室外熱交換器18の温度が上昇
するか、もしくは室外熱交換器18の温度低下が抑制さ
れる。ΔT≧5°Cで、ステップS103がNOの状態
が続いている間は、ステップS104でバイパス制御弁
31の開度が1%ずつ増加され、室外熱交換器18への
ガス冷媒導入量が増加され、室外熱交換器18の温度が
上昇する。
As a result, a part of the gas refrigerant discharged from the compressor 13 is introduced into the outdoor heat exchanger 18 via the bypass circuit 30, and the gas refrigerant discharges the outdoor heat exchanger 18
Is warmed. Therefore, the temperature of the outdoor heat exchanger 18 is increased, or the temperature of the outdoor heat exchanger 18 is prevented from decreasing. While ΔT ≧ 5 ° C. and the state of NO in step S103 continues, the opening of the bypass control valve 31 is increased by 1% in step S104, and the amount of gas refrigerant introduced into the outdoor heat exchanger 18 increases. Then, the temperature of the outdoor heat exchanger 18 rises.

【0030】ステップS102〜104の制御によって
室外熱交換器18の温度が上昇し、温度差ΔTが目標温
度範囲(0°C<ΔT<5°C)に調整されると、その
時点でのバイパス制御弁31の開度を維持したまま暖房
運転が継続される。また、室外熱交換器18の温度が外
気温度を越えた場合(ΔT<0°C)、ステップS10
2からステップS105に進んでバイパス制御弁31の
開度を1%減少させ、室外熱交換器18へのガス冷媒導
入量を減少させる。
When the temperature of the outdoor heat exchanger 18 rises under the control of steps S102 to S104 and the temperature difference ΔT is adjusted to the target temperature range (0 ° C <ΔT <5 ° C), the bypass at that time is set. The heating operation is continued while the opening of the control valve 31 is maintained. If the temperature of the outdoor heat exchanger 18 exceeds the outside air temperature (ΔT <0 ° C.), step S10
From 2, the process proceeds to step S <b> 105, where the opening of the bypass control valve 31 is reduced by 1%, and the amount of gas refrigerant introduced into the outdoor heat exchanger 18 is reduced.

【0031】そして、ΔT<0°Cの状態が続いている
間は、ステップS105でバイパス制御弁31の開度が
1%ずつ減少され、室外熱交換器18へのガス冷媒導入
量が減少され、室外熱交換器18の温度が低下する。次
に、除霜制御について説明する。ΔT≧20°Cの状態
が10分以上続くと着霜状態と判定し(ステップS10
3がYES)、ステップS106でバイパス制御弁31
を1%開いて除霜制御を開始する。
While the state of ΔT <0 ° C. continues, the opening of the bypass control valve 31 is reduced by 1% in step S105, and the amount of gas refrigerant introduced into the outdoor heat exchanger 18 is reduced. Then, the temperature of the outdoor heat exchanger 18 decreases. Next, the defrost control will be described. If the state of ΔT ≧ 20 ° C. continues for 10 minutes or more, it is determined that a frost is formed (step S10).
3 is YES), in step S106, the bypass control valve 31
Is opened by 1% to start defrost control.

【0032】そして、室外熱交換器18の温度Tohが
0°Cより低い場合、または、Toh>0°Cの状態が
5分未満の場合は、ステップS107がNOとなり、ス
テップS106でバイパス制御弁31の開度が1%増加
され、室外熱交換器18へのガス冷媒導入量が増加され
て除霜が行われる。これによって、Toh>0°Cの状
態が5分以上継続すると除霜完了と判定し(ステップS
107がYES)、除霜制御を終了する。
If the temperature Toh of the outdoor heat exchanger 18 is lower than 0 ° C., or if the condition of Toh> 0 ° C. is less than 5 minutes, step S107 becomes NO, and the bypass control valve is turned on at step S106. 31 is increased by 1%, the amount of gas refrigerant introduced into the outdoor heat exchanger 18 is increased, and defrosting is performed. As a result, if the state of Toh> 0 ° C. continues for 5 minutes or more, it is determined that the defrosting is completed (step S
107 is YES), the defrost control ends.

【0033】なお、ステップS102〜104のサイク
ル、ステップS102、105のサイクル、およびステ
ップS106、107のサイクルを各々1秒に設定すれ
ば、バイパス制御弁31の開度を100秒で全閉から全
開まで変化させることができる。上記した本実施形態に
よれば、温度差ΔTを目標温度範囲に調整することによ
り、室外熱交換器18の必要以上の温度低下を防止で
き、従って室外熱交換器18の温度が着霜温度域まで低
下する可能性が小さくなり、着霜を未然に防止すること
ができる。
If the cycle of steps S102 to S104, the cycle of steps S102 and S105, and the cycle of steps S106 and S107 are each set to 1 second, the opening of the bypass control valve 31 is changed from fully closed to fully opened in 100 seconds. Can be varied up to According to the above-described embodiment, by adjusting the temperature difference ΔT to the target temperature range, it is possible to prevent the temperature of the outdoor heat exchanger 18 from dropping more than necessary, and accordingly, the temperature of the outdoor heat exchanger 18 is reduced to the frost formation temperature range. The possibility of lowering is reduced, and frost formation can be prevented.

【0034】また、室外熱交換器18へのガス冷媒導入
量を、オン・オフ的ではなく連続的に制御しているた
め、凝縮器9を流れる冷媒の流量の急激な変動が防止さ
れ、従って室内空気吹出温度を安定させることができ
る。さらに、着霜状態と判定した場合には、バイパス回
路30を流れるガス冷媒の量を増加させて速やかにかつ
確実に除霜を行うことができる。 (他の実施形態)なお、本発明は上記実施形態のような
車両用に限定されることなく、種々な用途の空調装置に
適用可能である。
Also, since the amount of gas refrigerant introduced into the outdoor heat exchanger 18 is controlled continuously, not on / off, a rapid change in the flow rate of the refrigerant flowing through the condenser 9 is prevented. The indoor air blowing temperature can be stabilized. Further, when it is determined that the frost is formed, the amount of the gas refrigerant flowing through the bypass circuit 30 is increased, so that the defrost can be quickly and reliably performed. (Other Embodiments) The present invention is not limited to the vehicle as in the above embodiment, but can be applied to air conditioners for various uses.

【0035】また、バイパス制御弁31として、バイパ
ス回路30をオン・オフ的に開閉する形式の弁を採用し
ても、上記実施形態と同様に着霜防止および除霜を行う
ことができる。また、バイパス回路30およびバイパス
制御弁31を備えていない空調装置においては、バイパ
ス制御弁31の開度を制御するのに代えて、圧縮機13
の回転数または圧縮機13のオン・オフを制御して室外
熱交換器18の温度を制御することにより、上記実施形
態と同様に着霜防止および除霜を行うことができる。
Even if the bypass control valve 31 is of a type that opens and closes the bypass circuit 30 in an on-off manner, frost formation and defrosting can be performed as in the above embodiment. In an air conditioner that does not include the bypass circuit 30 and the bypass control valve 31, the compressor 13 is used instead of controlling the opening of the bypass control valve 31.
By controlling the rotation speed of the compressor or the on / off of the compressor 13 to control the temperature of the outdoor heat exchanger 18, frost formation and defrosting can be performed in the same manner as in the above embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の全体システム図である。FIG. 1 is an overall system diagram of an embodiment of the present invention.

【図2】本発明の一実施形態の作動説明に供するフロー
チャートである。
FIG. 2 is a flowchart for explaining the operation of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2…空調ダクト、9…凝縮器(室内熱交換器)、13…
圧縮機、18…室外熱交換器、19…減圧器(減圧手
段)、24…空調用制御装置(制御手段)、30…バイ
パス回路、31…バイパス制御弁。
2 ... air conditioning duct, 9 ... condenser (indoor heat exchanger), 13 ...
Compressor, 18 outdoor heat exchanger, 19 pressure reducer (pressure reducing means), 24 air conditioning control device (control means), 30 bypass circuit, 31 bypass control valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 室内へ吹き出される空調空気の通路を形
成する空調ダクト(2)と、 冷媒を圧縮し吐出する圧縮機(13)と、 前記空調ダクト(2)内に配置され、暖房時には前記圧
縮機(13)から吐出された冷媒と空調空気とを熱交換
させて冷媒を凝縮させる室内熱交換器(9)と、 前記室内熱交換器(9)で凝縮された冷媒を減圧する減
圧手段(19)と、 室外に配置され、暖房時には前記減圧手段(19)で減
圧された冷媒と室外空気とを熱交換させて冷媒を蒸発さ
せる室外熱交換器(18)とを備え 、 外気温度と前記室外熱交換器(18)の温度との温度差
が所定範囲内となるように、前記室外熱交換器(18)
の温度を制御することを特徴とするヒートポンプ式空調
装置。
1. An air conditioning duct (2) forming a passage for air-conditioned air blown into a room, a compressor (13) for compressing and discharging a refrigerant, and arranged in the air conditioning duct (2) for heating. An indoor heat exchanger (9) for exchanging heat between the refrigerant discharged from the compressor (13) and the conditioned air to condense the refrigerant, and a decompression for decompressing the refrigerant condensed in the indoor heat exchanger (9). Means (19), and an outdoor heat exchanger (18) which is disposed outdoors and heat-exchanges the refrigerant and outdoor air depressurized by the pressure reducing means (19) during heating to evaporate the refrigerant. The outdoor heat exchanger (18) such that a temperature difference between the temperature of the outdoor heat exchanger (18) and the temperature of the outdoor heat exchanger (18) is within a predetermined range.
A heat pump air conditioner characterized by controlling the temperature of the air.
【請求項2】 前記圧縮機(13)から吐出された冷媒
を前記室外熱交換器(18)に導くバイパス回路(3
0)と、 このバイパス回路(30)を流れる冷媒の量を調整する
バイパス制御弁(31)と、 前記温度差を所定範囲内に制御するように前記バイパス
制御弁(31)の作動を制御する制御手段(24)とを
備えることを特徴とする請求項1記載のヒートポンプ式
空調装置。
2. A bypass circuit (3) for guiding refrigerant discharged from said compressor (13) to said outdoor heat exchanger (18).
0), a bypass control valve (31) for adjusting the amount of refrigerant flowing through the bypass circuit (30), and an operation of the bypass control valve (31) so as to control the temperature difference within a predetermined range. The heat pump type air conditioner according to claim 1, further comprising a control means (24).
【請求項3】 前記制御手段(24)は、前記室外熱交
換器(18)の温度が外気温度よりも所定値以上低下し
た状態が所定時間継続すると着霜状態と判定し、前記バ
イパス制御弁(31)の開弁状態を、除霜完了状態と判
定するまで継続することを特徴とする請求項2記載のヒ
ートポンプ式空調装置。
3. The control means (24) determines that a frosting state has occurred when the temperature of the outdoor heat exchanger (18) has been lower than the outside air temperature by a predetermined value or more for a predetermined time. The heat pump air conditioner according to claim 2, wherein the valve opening state of (31) is continued until it is determined that the defrosting is completed.
【請求項4】 前記バイパス制御弁(31)は、前記バ
イパス回路(30)を流れる冷媒の量を連続的に調整可
能であることを特徴とする請求項2記載のヒートポンプ
式空調装置。
4. The heat pump air conditioner according to claim 2, wherein the bypass control valve (31) is capable of continuously adjusting the amount of refrigerant flowing through the bypass circuit (30).
JP08978499A 1999-03-30 1999-03-30 Heat pump air conditioner Expired - Fee Related JP4134433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08978499A JP4134433B2 (en) 1999-03-30 1999-03-30 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08978499A JP4134433B2 (en) 1999-03-30 1999-03-30 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JP2000283611A true JP2000283611A (en) 2000-10-13
JP4134433B2 JP4134433B2 (en) 2008-08-20

Family

ID=13980319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08978499A Expired - Fee Related JP4134433B2 (en) 1999-03-30 1999-03-30 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JP4134433B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011686A (en) * 2009-07-03 2011-01-20 Denso Corp Control method for vehicular air conditioner
CN103204044A (en) * 2012-01-16 2013-07-17 杭州三花研究院有限公司 Vehicle air-conditioning system
JP2013178032A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Vehicle heat pump air conditioner and method for operating the same
EP2695758A1 (en) 2012-08-10 2014-02-12 Honda Motor Co., Ltd. Air conditioner for vehicle
JP2015116934A (en) * 2013-12-18 2015-06-25 株式会社デンソー Heat pump cycle device
US9829237B2 (en) 2012-03-05 2017-11-28 Hanon Systems Heat pump system for vehicle and method of controlling the same
CN108488920A (en) * 2018-04-26 2018-09-04 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN110953699A (en) * 2018-09-26 2020-04-03 杭州三花研究院有限公司 Air conditioning system and control method thereof
CN113246689A (en) * 2021-06-16 2021-08-13 广州小鹏汽车科技有限公司 Thermal management system, control method thereof and vehicle
WO2023159941A1 (en) * 2022-02-28 2023-08-31 青岛海尔空调器有限总公司 Control method and control system for shunting of air conditioner, electronic device, and storage medium
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747709B2 (en) * 2011-07-22 2015-07-15 株式会社富士通ゼネラル Air conditioner
CN107356023B (en) * 2016-05-10 2019-12-10 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011686A (en) * 2009-07-03 2011-01-20 Denso Corp Control method for vehicular air conditioner
CN103204044A (en) * 2012-01-16 2013-07-17 杭州三花研究院有限公司 Vehicle air-conditioning system
JP2013178032A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Vehicle heat pump air conditioner and method for operating the same
US9829237B2 (en) 2012-03-05 2017-11-28 Hanon Systems Heat pump system for vehicle and method of controlling the same
EP2695758A1 (en) 2012-08-10 2014-02-12 Honda Motor Co., Ltd. Air conditioner for vehicle
CN103568782A (en) * 2012-08-10 2014-02-12 本田技研工业株式会社 Air conditioner for vehicle
JP2014034371A (en) * 2012-08-10 2014-02-24 Honda Motor Co Ltd Vehicle air conditioner
US9707930B2 (en) 2012-08-10 2017-07-18 Honda Motor Co., Ltd. Air conditioner for vehicle
JP2015116934A (en) * 2013-12-18 2015-06-25 株式会社デンソー Heat pump cycle device
CN108488920A (en) * 2018-04-26 2018-09-04 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN108488920B (en) * 2018-04-26 2020-11-20 广东美的制冷设备有限公司 Air conditioner and control method and device thereof
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor
CN110953699A (en) * 2018-09-26 2020-04-03 杭州三花研究院有限公司 Air conditioning system and control method thereof
CN113246689A (en) * 2021-06-16 2021-08-13 广州小鹏汽车科技有限公司 Thermal management system, control method thereof and vehicle
WO2023159941A1 (en) * 2022-02-28 2023-08-31 青岛海尔空调器有限总公司 Control method and control system for shunting of air conditioner, electronic device, and storage medium

Also Published As

Publication number Publication date
JP4134433B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
EP0788910B1 (en) Air conditioner for vehicle, improved for frost deposition
JP6332193B2 (en) Air conditioner for vehicles
JPH11157327A (en) Refrigerating cycle device
JPH10287125A (en) Air conditioner
US9719707B2 (en) Air conditioner for vehicle with defroster control
JP2000203249A (en) Air conditioner
JP4211186B2 (en) Vehicle heat pump device
JP2019006330A (en) Air conditioner
JP4134433B2 (en) Heat pump air conditioner
JP2000158933A (en) Air conditioner for vehicle
JP2003080928A (en) Vehicular air conditioner
JP2004131033A (en) Air-conditioner
JPH1026430A (en) Gas injection type heat pump
JP2014058239A (en) Air conditioner for vehicle
JP3063574B2 (en) Air conditioner
JP3257361B2 (en) Vehicle air conditioner
JP3334446B2 (en) Vehicle air conditioner
JP2003042604A (en) Vapor compression type heat pump cycle and air conditioner
JPH11159911A (en) Refrigerating cycle device
JP4134434B2 (en) Air conditioner
JP3351098B2 (en) Electric vehicle air conditioner
JP2000025446A (en) Air conditioner
JPH07164868A (en) Air conditioner for vehicle
JPH06191253A (en) Air conditioner for vehicle
JP4285228B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees