JP2000282587A - Brace structure in wooden building - Google Patents

Brace structure in wooden building

Info

Publication number
JP2000282587A
JP2000282587A JP11121596A JP12159699A JP2000282587A JP 2000282587 A JP2000282587 A JP 2000282587A JP 11121596 A JP11121596 A JP 11121596A JP 12159699 A JP12159699 A JP 12159699A JP 2000282587 A JP2000282587 A JP 2000282587A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation means
wooden building
compression coil
strut structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11121596A
Other languages
Japanese (ja)
Inventor
Tamio Ishige
民雄 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11121596A priority Critical patent/JP2000282587A/en
Publication of JP2000282587A publication Critical patent/JP2000282587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely preserve a wooden building by absorbing and relieving impact force corresponding to the generation of a large earthquake of different seismic intensity in the brace structure of the wooden building. SOLUTION: A foundation 11 is connected to a second-floor beam 12 by a longitudinal brace structure body A with an aseismic base isolation means 17 at a middle part. Two compression coil springs 30 and 31 of different spring force according to the impact force of an earthquake are overlapped around an axial center so that the springs may be compressed in the longitudinal direction of the brace structure body A and a partition material is interposed between the springs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、木造建築物にお
ける筋かい構造に係る技術分野に属する。
TECHNICAL FIELD The present invention belongs to a technical field related to a bracing structure in a wooden building.

【0002】[0002]

【従来技術】 従来、木造建築物における筋かい構造の
中に、地震発生時における横揺れ縦揺れを吸収緩和して
木造建築物の保全を図るベく、たとえば図14に示すよ
うに構成したものがある。
2. Description of the Related Art Conventionally, in a strut structure of a wooden building, a structure as shown in FIG. 14 has been used for absorbing and mitigating a roll and a pitch when an earthquake occurs to maintain the wooden building. There is.

【0003】その従来の筋かい構造は、コンクリート基
礎B上の土台1と2階梁2とを約45度に傾斜した筋か
い構造体Dにて連結し、ターンバックル構造からなるテ
ンション調整機構3と、その調整機構3を構成する一方
のスクリューロッド4端に止着され、かつ、2階梁2に
囲繞かけ止めされる帯状鋼板製で2ツ折り構造の連結体
5と、テンション調整機構3を構成する他方のスクリュ
ーロッド6の端部に着脱自在に連結される免震手段7
と、その免震手段を構成する作動ロッド8端に止着さ
れ、かつ、土台1に囲繞かけ止めされる帯状鋼板製で2
ツ折り構造の連結体9とにより構成している。
In the conventional bracing structure, a foundation 1 and a second floor beam 2 on a concrete foundation B are connected by a bracing structure D inclined at about 45 degrees, and a tension adjusting mechanism 3 having a turnbuckle structure. A connecting member 5 made of a band-shaped steel plate and fixed to the end of one of the screw rods 4 constituting the adjusting mechanism 3 and surrounded by the second floor beam 2 and having a two-fold structure; Seismic isolation means 7 detachably connected to the end of the other screw rod 6 constituting
And a belt-shaped steel plate 2 fixed to the end of the operating rod 8 constituting the seismic isolation means and surrounded by the base 1.
The connector 9 has a folded structure.

【0004】そして、特に、免震手段7に、たとえばゴ
ム板の集合体で形成して一定の弾性力を有する弾性体a
を配設し、地震発生時、地震による衝撃力を受けると、
その衝撃力を弾性体aにより吸収・緩和できるようにし
ていた。
[0004] In particular, the seismic isolation means 7 includes an elastic body a formed of, for example, an aggregate of rubber plates and having a constant elastic force.
When an earthquake occurs and receives an impact due to the earthquake,
The impact force can be absorbed and reduced by the elastic body a.

【0005】[0005]

【発明が解決しようとする課題】 ところが、上述のよ
うな従来の筋かい構造では、免震手段7に弾性体aを備
えるが、震度の異なる、たとえば大きな地震が発生した
ときには、それに応じて衝撃力を十分に吸収することが
できず、その結果、木造建築物の確実に保全することが
できないという課題があった。
However, in the conventional strut structure as described above, the seismic isolation means 7 is provided with the elastic body a, but when a seismic intensity is different, for example, when a large earthquake occurs, an impact is applied accordingly. There was a problem that the power could not be sufficiently absorbed, and as a result, the wooden building could not be reliably maintained.

【0006】[0006]

【課題を解決するための手段】 そこで、この課題を解
決すべく、請求項1に記載の発明は、たとえば以下の図
面を用いて説明する実施の形態のとおり、土台側の下桁
又は下梁と階上側の上桁又は上梁とを、中途部に免震手
段17を備える長手の筋かい構造体Aにより結合する木
造建築物における筋かい構造において、前記免震手段1
7に、地震の衝撃力の強さに応じてバネ力の異なる複数
の圧縮コイルバネ30,31を、前記筋かい構造体Aの
長手方向に圧縮可能に、軸心周りに多段に重ねて設けた
ことを特徴とする。
Means for Solving the Problems In order to solve this problem, the invention according to claim 1 is, for example, according to an embodiment described with reference to the drawings below, in which a lower girder or a lower beam on a base side is provided. And the upper girder or the upper beam on the upper floor are connected by a longitudinal bracing structure A provided with a seismic isolating means 17 in the middle of the bracing structure in a wooden building.
7, a plurality of compression coil springs 30 and 31 having different spring forces according to the magnitude of the impact force of the earthquake are provided in multiple stages around the axis so as to be compressible in the longitudinal direction of the bracing structure A. It is characterized by the following.

【0007】請求項2に記載の発明は、請求項1に記載
の木造建築物における筋かい構造において、たとえば以
下の図面を用いて説明する実施の形態のとおり、前記各
圧縮コイルバネ30,31間に、その間を仕切る仕切材
35を介在させてなることを特徴とする。
According to a second aspect of the present invention, there is provided a brace structure for a wooden building according to the first aspect, wherein the compression coil springs 30 and 31 are provided between the compression coil springs 30 and 31 as in an embodiment described with reference to the following drawings. In addition, a partition member 35 for partitioning between them is interposed.

【0008】請求項3に記載の発明は、たとえば以下の
図面を用いて説明する実施の形態のとおり、土台側の下
桁又は下梁と階上側の上桁又は上梁とを、中途部に免震
手段55を備える長手の筋かい構造体Aにより結合する
木造建築物における筋かい構造において、それぞれ中間
側を厚肉に形成するとともにその厚肉部60a,61a
側から両端側に漸次薄肉に形成した2枚の半円形板バネ
60,61を用い、それら板バネ60,61を両端の薄
肉部60b,61b側で互いに連結して前記免震手段5
5を環状に構成し、この免震手段における一側の板バネ
60をその厚肉部60aで前記筋かい構造体Aの土台側
端部に固着する一方、他側の板バネ61をその厚肉部6
01aで前記筋かい構造体の階上側端部に固着したこと
を特徴とする。
According to a third aspect of the present invention, a lower girder or lower girder on the base and an upper girder or upper girder on the floor are provided in the middle as in an embodiment described with reference to the following drawings. In the brace structure of the wooden building connected by the long brace structure A having the seismic isolation means 55, the middle side is formed to be thick and the thick portions 60a and 61a are formed.
Two semicircular leaf springs 60, 61 formed gradually thinner from the side to both ends, and these leaf springs 60, 61 are connected to each other at the thin portions 60b, 61b at both ends, and the seismic isolation means 5
5, the leaf spring 60 on one side of the seismic isolation means is fixed to the base side end of the brace structure A at its thick portion 60a, while the leaf spring 61 on the other side is thickened. Meat part 6
At 01a, the bracing structure is fixed to the upper end of the floor.

【0009】[0009]

【発明の実施の形態】 以下、図面を参照して発明の実
施の形態について詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1に、この発明の木造建築物における筋
かい構造の一例を示す。この例では、図中下側のコンク
リート基礎10上にゴム製土台保護板(図示省略)を介
して付設された土台(下梁)11と、2階梁(上梁)1
2とを、45度に傾斜させた筋かい構造体Aで連結した
構造を示す。筋かい構造体Aは、ターンバックル構造か
らなるテンション調整機構13と、該テンション調整機
構を構成する一方のスクリューロッド14端に止着さ
れ、かつ、2階梁12に囲繞かけ止めされる帯状鋼板製
で2ツ折り構造の連結体15と、該テンション調整機構
を構成する他方のスクリューロッド16の端部に着脱自
在に連結した免震手段17と、該免震手段17に備える
作動ロッド18端に止着され、かつ、前記土台11に囲
撓かけ止めされる帯状鋼板製で2ツ折り構造の連結体1
9とによって構成される。
FIG. 1 shows an example of a brace structure in a wooden building of the present invention. In this example, a base (lower beam) 11 and a second-floor beam (upper beam) 1 provided on a concrete foundation 10 on the lower side in the figure via a rubber base protection plate (not shown).
2 is connected by a strut structure A inclined at 45 degrees. The bracing structure A includes a tension adjusting mechanism 13 having a turnbuckle structure, and a belt-shaped steel plate fixed to one end of one of the screw rods 14 constituting the tension adjusting mechanism and stopped by being surrounded by the second floor beam 12. And a seismic isolation means 17 detachably connected to an end of another screw rod 16 constituting the tension adjusting mechanism, and an end of an operating rod 18 provided in the seismic isolation means 17 And a two-folded structure made of a strip-shaped steel plate which is fixed to the base and is prevented from bending and surrounding the base 11.
9.

【0011】次に、この筋かい構造体Aの架設工法につ
いて説明すると、土台11と2階梁12の筋かい構造体
Aの架設位置に、予じめ正面形状が直角三角形状の切欠
き20,21を刻設し、この切欠き20,21に夫々連
結体15,19を掛け回しておく。そして、上方の連結
体15の両端をテンション調整機構13のスクリューロ
ッド14端にボルト止めするとともに、下方の連結体1
9の両端を作動ロッド18端にボルト止めする。そうし
て、ターンバックル構造からなるテンション調整機構1
3を作動せしめて筋かい構造体Aに適度のテンションを
付与して取り付けを終る。
Next, a method of erection of the bracing structure A will be described. A notch 20 whose front shape is a right-angled triangle is previously provided at the erection position of the stiffening structure A of the base 11 and the second floor beam 12. , 21 are engraved, and the connectors 15, 19 are hung around the notches 20, 21, respectively. Then, both ends of the upper connector 15 are bolted to the ends of the screw rods 14 of the tension adjusting mechanism 13 and the lower connector 1
9 are bolted to the end of the operating rod 18. Then, the tension adjusting mechanism 1 having a turnbuckle structure
3 is actuated to give an appropriate tension to the braced structure A, and the mounting is completed.

【0012】また、連結体15には、図示省略したが、
その両端に案内長孔を設け、上端側の案内長孔は2階梁
12の表裏面に対応し、この案内長孔に2階梁12を貫
通したボルト23が挿入され、該ボルト23に対して連
結体15が、案内長孔を介して長手軸線方向に摺動しう
るように構成する。また、連結体15の下端側の案内長
孔は土台11と2階梁12間に架設した柱24の表裏面
に対応し、同様に柱24を貫通したボルト25が挿入さ
れ、該ボルトに対して連結体15が、案内長孔を介して
長手軸線方向に摺動できるように構成する。詳細な構成
の説明は省略するが、同様にして、連結体19にも、そ
の両端に、前記と同様の作用をなす案内長孔を設ける。
Although not shown, the connecting body 15
A guide slot is provided at both ends thereof, and the guide slot at the upper end side corresponds to the front and back surfaces of the second floor beam 12, and a bolt 23 penetrating the second floor beam 12 is inserted into the guide long hole. The connecting body 15 is configured to be slidable in the longitudinal axis direction via the guide slot. The guide slots at the lower end side of the connecting body 15 correspond to the front and back surfaces of a column 24 erected between the base 11 and the second floor beam 12, and a bolt 25 penetrating the column 24 is inserted in the same manner. Thus, the connecting body 15 is configured to be slidable in the longitudinal axis direction through the guide slot. Although a detailed description of the configuration is omitted, similarly, the connecting body 19 is provided with a guide elongated hole having the same function as that described above at both ends thereof.

【0013】ところで、図2,図3および図4に、前記
免震手段17の詳細を示す。この免震手段17は、前記
作動ロッド18の上端に螺子部26を形成するととも
に、この螺子部26の上端にナット27を螺合してお
く。更に、作動ロッド18の上端には、ナット27に当
接する平面形状が長方形状の押圧作用板28を上下動可
能に設け、この押圧作用板28と同形状で、かつ、これ
と対向的に作動ロッド18を挿入して支持板29を設
け、その支持板29と押圧作用板28との間に2つの圧
縮コイルバネ30,31を介装する。
FIGS. 2, 3 and 4 show the details of the seismic isolation means 17. FIG. The seismic isolation means 17 has a screw portion 26 formed at the upper end of the operating rod 18 and a nut 27 screwed to the upper end of the screw portion 26. Further, at the upper end of the operating rod 18, a pressing action plate 28 having a rectangular planar shape that comes into contact with the nut 27 is provided so as to be vertically movable, and has the same shape as the pressing action plate 28 and operates in opposition to this. A support plate 29 is provided by inserting the rod 18, and two compression coil springs 30 and 31 are interposed between the support plate 29 and the pressing plate 28.

【0014】一方、押圧作用板28と支持板29の相対
向する両辺中央部に切欠き凹部32,33を設けるとと
もに、スクリューロッド16の下端に、2又構造のアー
ム部34aを有する支持体34を螺着せしめ、この両ア
ーム部34aの垂直辺部に押圧作用板28と支持板29
に設けた両切欠き凹部32,33を、夫々スライド可能
に係合させてなる。また、両アーム部34aの垂直辺部
の下端に、それぞれ螺子部38を形成するとともに、両
螺子部38にそれぞれ2つのナット36,37を螺合し
て支持板29を挟んで固定する。
On the other hand, notches 32 and 33 are provided at the center of both sides of the pressing plate 28 and the supporting plate 29 which face each other, and a support 34 having a bifurcated arm 34a at the lower end of the screw rod 16 is provided. The pressing plate 28 and the supporting plate 29 are attached to the vertical sides of the arms 34a.
The two notched concave portions 32 and 33 provided in the above are slidably engaged with each other. Further, screw portions 38 are formed at the lower ends of the vertical sides of both arm portions 34a, respectively, and two nuts 36, 37 are screwed to both screw portions 38, respectively, and fixed with support plate 29 therebetween.

【0015】上述した筋かい構造では、前記2つの圧縮
コイルバネ30,31として、地震の衝撃力の強さに応
じてバネ力の異なるものを用い、それら圧縮コイルバネ
30,31を前記筋かい構造体Aの長手方向に圧縮可
能、詳しくは、作動ロッド18の軸周りに同心状に設け
る。たとえば内側の圧縮コイルバネ30としては、外側
の圧縮コイルバネ31より長くて、比較的多く発生する
弱い地震の発生時に受ける衝撃力に応じたバネ力を有す
る圧縮コイルバネを用いる。そして、この内側の圧縮コ
イルバネ30を、その上下両端をそれぞれ押圧作用板2
8の下面と支持板29の上面に当接させて設ける。一
方、外側の圧縮コイルバネ31としては、稀に発生する
比較的強い地震の発生時に受ける衝撃力に応じたバネ力
を有し、かつ圧縮コイルバネ30より短尺な圧縮コイル
バネを用いる。そして、その外側の圧縮コイルバネ31
の下端を支持板29上にフリーな状態で載せて設ける。
In the strut structure described above, the two compression coil springs 30, 31 having different spring forces in accordance with the magnitude of the impact force of the earthquake are used, and these compression coil springs 30, 31 are connected to the strut structure. A is compressible in the longitudinal direction of A, and more specifically, is provided concentrically around the axis of the operating rod 18. For example, as the inner compression coil spring 30, a compression coil spring that is longer than the outer compression coil spring 31 and has a spring force corresponding to the impact force received when a relatively large amount of weak earthquake occurs is used. The upper and lower ends of the inner compression coil spring 30 are respectively pressed by the pressing plate 2.
8 is provided in contact with the lower surface of the support plate 29 and the upper surface of the support plate 29. On the other hand, as the outer compression coil spring 31, a compression coil spring having a spring force corresponding to an impact force received when a relatively strong relatively rare earthquake occurs and shorter than the compression coil spring 30 is used. Then, the outer compression coil spring 31
Is provided on the support plate 29 in a free state.

【0016】また、図示の例では、内外圧縮コイルバネ
30,31間に、その間を仕切る筒状構造の仕切材35
を介在させる。仕切材35としては、たとえば油を含ん
だ布や紙製等のシートを用いる。この仕切板35は、両
圧縮バネ30,31の噛み合いをを防止するものであ
る。
In the illustrated example, a cylindrical partition member 35 is provided between the inner and outer compression coil springs 30 and 31 to partition between them.
Intervene. As the partition member 35, for example, a sheet made of oil-containing cloth or paper is used. The partition plate 35 prevents the compression springs 30 and 31 from meshing with each other.

【0017】なお、この例では、図2に示すように、支
持板29の下側で作動ロッド18の螺子部26にナット
41,42を螺合してダブルナット構造にして、内圧縮
コイルバネ30の最大バネ力を調整できるようにしてい
る。
In this example, as shown in FIG. 2, nuts 41 and 42 are screwed into the screw portion 26 of the operating rod 18 below the support plate 29 to form a double nut structure, and the inner compression coil spring 30 is formed. The maximum spring force can be adjusted.

【0018】そして、上述した筋かい構造では、たとえ
ば比較的弱い地震が発生したとき、筋かい構造体Aに横
揺れ縦揺れによる衝撃力を受けると、押圧作用板28と
支持板29間で内側の圧縮コイルバネ30が圧縮し、衝
撃力を吸収・緩和する。
In the above-described strut structure, for example, when a relatively weak earthquake occurs, when the striking structure A receives an impact force due to the rolling and pitching, the inner side between the pressing action plate 28 and the supporting plate 29 is formed. The compression coil spring 30 is compressed to absorb and reduce the impact force.

【0019】一方、たとえば比較的強い地震が発生した
とき、筋かい構造体Aに横揺れ縦揺れによる衝撃力を受
けると、押圧作用板28と支持板29間で内側の圧縮コ
イルバネ30が圧縮するとともに、外側の圧縮コイルバ
ネ31も圧縮し、この強い衝撃力を吸収・緩和する。
On the other hand, for example, when a relatively strong earthquake occurs, when the striking structure A receives an impact force due to the horizontal and vertical swings, the inner compression coil spring 30 is compressed between the pressing action plate 28 and the support plate 29. At the same time, the outer compression coil spring 31 is also compressed, absorbing and relaxing this strong impact force.

【0020】なお、図示した免震手段17には、バネ力
の異なる2つの圧縮コイルバネ30,31を設けたが、
地震の衝撃力の強さに応じて、バネ力の異なる3以上の
圧縮コイルバネを圧縮可能に軸心周りに同心状に設け
て、さらに地震強さに更に多段に対応できるようにする
こともできる。
Although the illustrated seismic isolation means 17 is provided with two compression coil springs 30 and 31 having different spring forces,
According to the strength of the impact of the earthquake, three or more compression coil springs having different spring forces may be provided concentrically around the axis so as to be compressible, so that it can respond to the earthquake strength in more stages. .

【0021】また、前述した筋かい構造体Aでは、連結
体15を、図5に示すように、2階梁12の表裏面及び
上面に掛け回し囲繞した2ツ折り構造の帯鋼板材料より
形成し、その連結体15の下端をスクリューロッド14
の上端に固定した構造とすることもできる。図中39は
連着ボルトである。
In the above-described bracing structure A, as shown in FIG. 5, the connecting body 15 is formed of a two-folded band steel sheet material which is wrapped around the front and back surfaces and the upper surface of the second floor beam 12. And the lower end of the connecting body 15 is connected to the screw rod 14
May be fixed to the upper end of the frame. In the drawing, reference numeral 39 denotes a connecting bolt.

【0022】さらに、そのように2ツ折り構造の帯鋼板
材料で形成して連結体15をスクリューロッド14に固
定する場合は、たとえば図6〜図8を用いて説明する構
造にするとよい。つまり、2階梁12に掛け回し囲繞し
た2ツ折り構造の連結体15の向かい合う下端15a側
を、図7でも示す四角い止めリング40に嵌め込み、そ
の止めリングで束ねて重ね合わせて、スクリューロッド
14の上端に固定する。このとき、連結体15の向かい
合う下端15aの一部を、図8(a)に示すように、パ
ンチで押し抜きして矩形状の抜け止め部15bを互いに
外向きに開いて設け、止めリング40の抜け落ちを防止
する。抜け止め部15bは、図8(b)に示すような三
角形状など、各種形状に形成することもできる。
Further, in the case where the connecting member 15 is fixed to the screw rod 14 by using a two-folded strip steel plate material, the structure described with reference to FIGS. 6 to 8 may be used. That is, the opposed lower end 15a side of the two-fold structure connecting body 15 that is wrapped around the second floor beam 12 is fitted into a square retaining ring 40 shown in FIG. To the top of At this time, as shown in FIG. 8A, a part of the lower end 15a facing the connecting body 15 is punched out by a punch to form rectangular retaining portions 15b opened outward from each other. To prevent falling off. The retaining portion 15b can be formed in various shapes such as a triangular shape as shown in FIG.

【0023】なお、前述した例では、図1において2個
の筋かい構造体Aを八の字状に架設し、左右のバランス
が得られるようにしたが、2個の筋かい構造体Aを×印
状に架設することもあるので、図示の筋かい架設構造に
特定されることはない。
In the above-described example, two strut structures A are laid in an eight-shape in FIG. 1 so that a right-left balance can be obtained. X Since it may be erected in the shape of a sign, it is not limited to the illustrated erection structure.

【0024】次に、図9に、下側のコンクリート基礎1
0上にゴム製の土台保護板43を介して付設された土台
11と、2階梁12との間に、鉛直姿勢にて筋かい構造
体Aを架設した例を示す。この例では、前述したテンシ
ョン調整機構13及び免震手段17をそのまま具有して
いるが、テンション調整機構13と2階梁12の連結手
段及び免震手段17と土台11との連結手段が異る。
Next, FIG. 9 shows the lower concrete foundation 1.
An example is shown in which a bracing structure A is erected in a vertical posture between a base 11 attached to a base 11 via a rubber base protection plate 43 and a second floor beam 12. In this example, the tension adjusting mechanism 13 and the seismic isolation means 17 described above are provided as they are, but the coupling means between the tension adjusting mechanism 13 and the second floor beam 12 and the coupling means between the seismic isolation means 17 and the base 11 are different. .

【0025】即ち、テンション調整機構13における上
方のスクリューロッド14を2階梁12に形成した上下
方向の貫通孔44に挿通し、該スクリューロッド14の
上端にゴム付き座金45を介してナット46を螺合し、
スクリューロッド14を2階梁12に連結せしめ、又前
記免震手段17における作動ロッド18の下端を、土台
11の表裏面及び下面に掛け回し囲繞した2ツ折り構造
の帯鋼板材料よりなる連結体25の上端と固定したもの
である。この例も、前記テンション調整機構13を作動
して筋かい構造体Aに適度のテンションを付与し、前記
免震手段17により大きさの異なる地震に対応できるよ
うにしたものである。
That is, the upper screw rod 14 of the tension adjusting mechanism 13 is inserted into a vertical through hole 44 formed in the second floor beam 12, and a nut 46 is attached to the upper end of the screw rod 14 via a washer 45 with rubber. Screw
A connecting body made of a two-folded strip steel material in which the screw rod 14 is connected to the second floor beam 12 and the lower end of the operating rod 18 in the seismic isolation means 17 is wrapped around the front and back and lower surfaces of the base 11. 25 and fixed to the upper end. In this example, too, the tension adjusting mechanism 13 is operated to apply an appropriate tension to the bracing structure A, so that the seismic isolation means 17 can cope with earthquakes of different sizes.

【0026】図10は、前記図9に示した鉛直姿勢の筋
かい構造体Aの更なる変形例であって、次のように構成
されている。即ち、前記コンクリート基礎10中に、圧
縮コイルバネよりなるアンカー体50を下端に挿通支持
したアンカーボルト51を垂設し、このアンカーボルト
51は前記土台保護板43及び土台11を貫通するとと
もに、アンカーボルト51の上端部を、下半分を土台1
1に支持させた外面が六角形状の継ぎ螺筒52に螺合連
結させ、該継ぎ螺筒52の上端部に作動ロッド18の下
端部を螺合連着せしめたものである。図中53はガイド
パイプである。
FIG. 10 is a further modified example of the brace structure A in the vertical posture shown in FIG. 9 and is configured as follows. That is, an anchor bolt 51 having an anchor body 50 made of a compression coil spring inserted and supported at the lower end thereof is suspended in the concrete foundation 10, and this anchor bolt 51 penetrates through the base protection plate 43 and the base 11, and an anchor bolt 51 is provided. The upper end of 51 and the lower half
The outer surface supported by 1 is screwed and connected to a hexagonal connecting screw cylinder 52, and the lower end of the operating rod 18 is screwed and connected to the upper end of the connecting screw cylinder 52. In the figure, 53 is a guide pipe.

【0027】さて、図11に、上述した免震手段17に
代えて他の免震手段55を備える、この発明による木造
建築物の筋かい構造の例を示す。この免震手段55は、
上述したと同様に、ターンバックル構造のテンション調
整機構13と、前記した連結体19との間に配設し、上
部側を、テンション調整機構13とそのスクリューロッ
ド56を介して連結し、下部側を、前記連結体19に作
動ロッド57を介して連結した構成とする。
FIG. 11 shows an example of a bracing structure for a wooden building according to the present invention, which is provided with another seismic isolation means 55 in place of the seismic isolation means 17 described above. This seismic isolation means 55
As described above, the tension adjusting mechanism 13 having a turnbuckle structure is disposed between the connecting member 19 and the upper side is connected to the tension adjusting mechanism 13 via the screw rod 56, and the lower side is connected to the lower side. Are connected to the connecting body 19 via an operating rod 57.

【0028】そして、この免震手段55は、半円形に曲
げた2枚の帯状板バネ60,61を用いる。それら板バ
ネ60,61は、それぞれ中間側を厚肉に形成するとと
もにその厚肉部60a,61a側から両端側に漸次薄肉
に形成している。そうして、両端の薄肉部60b,61
b側を、図12に示すような周知の蝶番構造によりピン
62で互いに連結し、図11に示すように免震手段55
を環状に構成する。
The seismic isolation means 55 uses two band-shaped leaf springs 60 and 61 bent in a semicircular shape. Each of the leaf springs 60 and 61 has a thick middle portion, and is gradually thinner from both sides of the thick portions 60a and 61a. Then, the thin portions 60b, 61 at both ends
The b side is connected to each other by a pin 62 by a well-known hinge structure as shown in FIG. 12, and as shown in FIG.
Is formed in an annular shape.

【0029】しかして、免震手段55における図中上側
の板バネ60を厚肉部60aでテンション調整機構13
のスクリューロッド56下端(筋かい構造体Aの階上側
端部)に固着する一方、下側の板バネ61を厚肉部61
aで連結体19の作動ロッド57上端(筋かい構造体A
の土台側端部)に固着してなる。
The leaf spring 60 on the upper side in the figure of the seismic isolation means 55 is connected to the tension adjusting mechanism 13 by the thick portion 60a.
To the lower end of the screw rod 56 (upper floor end of the bracing structure A), while attaching the lower leaf spring 61 to the thick portion 61.
a at the upper end of the operating rod 57 of the connector 19
On the base side).

【0030】そして、この免震手段55を備える筋かい
構造では、比較的弱い地震が発生したとき、前記筋かい
構造体Aに横揺れ縦揺れによる衝撃力を受けると、免震
手段55が板バネ60,61の薄肉部60b,61bに
て弾性的に撓んで、衝撃力を吸収緩和する。
In the strut structure provided with the seismic isolation means 55, when a relatively weak earthquake occurs, when the strut structure A receives an impact force due to the roll and the pitch, the seismic isolation means 55 becomes a plate. The springs 60, 61 are elastically bent by the thin portions 60b, 61b to absorb and reduce the impact force.

【0031】一方、たとえば比較的強い地震が発生した
ときは、前記筋かい構造体Aに横揺れ縦揺れによる衝撃
力を受けると、図13(a),(b)に示すように、免
震手段55が、振動に応じて、板バネ60,61の薄肉
部60b,61bとともに厚肉部60a,61aでも弾
性的に撓んで、この強い衝撃力を吸収緩和する。
On the other hand, for example, when a relatively strong earthquake occurs, when the strut structure A receives an impact force due to the roll and the pitch, as shown in FIGS. The means 55 elastically bends not only the thin portions 60b, 61b of the leaf springs 60, 61 but also the thick portions 60a, 61a in response to the vibration, thereby absorbing and relaxing this strong impact force.

【0032】[0032]

【発明の効果】 上述のように本発明の構造によれば、
次のような効果が得られる。
According to the structure of the present invention as described above,
The following effects can be obtained.

【0033】請求項1に記載の発明によれば、筋かい構
造体に備える免震手段に、地震の衝撃力の強さに応じて
バネ力の異なる複数の圧縮コイルバネを、筋かい構造体
の長手方向に圧縮可能に軸心周りに重ねて多段に設ける
ため、震度の異なる、たとえば大きな地震が発生したと
きでも、それに応じて段階的に衝撃力を十分に吸収緩和
することができ、その結果、木造建築物の確実に保全す
ることができる。
According to the first aspect of the present invention, a plurality of compression coil springs having different spring forces according to the magnitude of the impact force of the earthquake are provided to the seismic isolation means provided in the bracing structure. Because it is provided in multiple stages stacked around the axis so that it can be compressed in the longitudinal direction, even when a large earthquake with a different seismic intensity, for example, a large earthquake occurs, the impact force can be sufficiently absorbed and alleviated gradually in accordance with it, as a result , Can surely preserve wooden buildings.

【0034】請求項2に記載の発明によれば、加えて、
各圧縮コイルバネ間に、その間を仕切る仕切材を介在さ
せる構成とするため、互いに圧縮コイルバネが干渉し合
って圧縮作用が有効に発揮できなくなることを防止する
ことができる。
According to the second aspect of the present invention,
Since a partition member is provided between the compression coil springs to separate the compression coil springs from each other, it is possible to prevent the compression coil springs from interfering with each other and preventing the compression action from being effectively exerted.

【0035】請求項3に記載の発明によれば、筋かい構
造体に備える免震手段を、それぞれ中間側を厚肉に形成
するとともにその厚肉部側から両端側に漸次薄肉に形成
した2枚の半円形板バネを用い、それら板バネを両端の
薄肉部側で互いに連結して環状に構成し、この免震手段
における一側の板バネをその厚肉部で筋かい構造体の土
台側端部に固着する一方、他側の板バネをその厚肉部で
階上側端部に固着した構成にすることにより、震度の異
なる、たとえば大きな地震が発生したときでも、それに
応じて板バネをその厚肉部と薄肉部とで段階的に衝撃力
を吸収緩和することができ、その結果、木造建築物の確
実に保全することができる。
According to the third aspect of the present invention, the seismic isolation means provided on the bracing structure is formed such that the middle side is formed to be thick and the thickness is gradually reduced from the thick part to both ends. Using a pair of semicircular leaf springs, the leaf springs are connected to each other at the thin portions at both ends to form an annular shape, and one leaf spring in the seismic isolation means is mounted on a base of a bracing structure with its thick portions. By fixing the leaf spring on the other side to the upper end of the floor with a thicker portion while being fixed to the side end, even when a large earthquake occurs, for example, when a large earthquake occurs, the leaf spring can be adjusted accordingly. The impact force can be gradually absorbed and reduced by the thick portion and the thin portion, and as a result, the wooden building can be reliably maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による筋かい構造の実施の形態を示す
構成説明図である。
FIG. 1 is a configuration explanatory view showing an embodiment of a bracing structure according to the present invention.

【図2】 その筋かい構造の免震手段を示す拡大正面図
である。
FIG. 2 is an enlarged front view showing the seismic isolation means having the bracing structure.

【図3】 図2で示す免震手段を図中下方から見て一部
を断面にして示す構成説明図である。
FIG. 3 is a configuration explanatory view showing a part of the seismic isolation unit shown in FIG. 2 as viewed from below in a sectional view.

【図4】 図2で示す免震手段を図中上方から見て一部
を断面にして示す構成説明図である。
FIG. 4 is a configuration explanatory view showing a partial cross section of the seismic isolation means shown in FIG. 2 as viewed from above in the figure.

【図5】 図1に示す例の一部を変更した他の実施の形
態を示す部分断面図である。
FIG. 5 is a partial cross-sectional view showing another embodiment in which a part of the example shown in FIG. 1 is modified.

【図6】 図5に示す例のさらに他の実施の形態を示す
部分断面図である。
FIG. 6 is a partial sectional view showing still another embodiment of the example shown in FIG. 5;

【図7】 図6中に示す止めリングの斜視図である。FIG. 7 is a perspective view of a retaining ring shown in FIG. 6;

【図8】 (a)は、その止めリングの抜け止め部を示
す斜視図、(b)は、その抜け止め部の実施の形態を示
す斜視図である。
FIG. 8A is a perspective view illustrating a retaining portion of the retaining ring, and FIG. 8B is a perspective view illustrating an embodiment of the retaining portion.

【図9】 この発明による筋かい構造体を鉛直に配置し
た場合の一部切欠側面図である。
FIG. 9 is a partially cutaway side view when the bracing structure according to the present invention is arranged vertically.

【図10】 その筋かい構造体を鉛直に配置した場合の
他の実施の形態を示す一部切欠側面図である。
FIG. 10 is a partially cutaway side view showing another embodiment in which the bracing structure is arranged vertically.

【図11】 図1に示す例の免震手段を変更したさらに
別の実施の形態を示す拡大正面図である。
FIG. 11 is an enlarged front view showing still another embodiment in which the seismic isolation means of the example shown in FIG. 1 is changed.

【図12】 その免震手段の板バネの連結部分の構成を
示す構成図である。
FIG. 12 is a configuration diagram showing a configuration of a connecting portion of a leaf spring of the seismic isolation means.

【図13】 (a),(b)は各々その免震手段で衝撃
を吸収する状態を説明する状態説明図である。
FIGS. 13A and 13B are state explanatory diagrams each illustrating a state in which the seismic isolation means absorbs an impact.

【図14】 従来の筋かい構造を示す構成説明図であ
る。
FIG. 14 is a configuration explanatory view showing a conventional bracing structure.

【符号の説明】[Explanation of symbols]

A 筋かい構造体 11 土台 12 2階梁 17,55 免震手段 30,31 圧縮コイルバネ 35 仕切材 60,61 板バネ 60a,61a 厚肉部 60b,61b 薄肉部 A Brace structure 11 Base 12 Second floor beam 17,55 Seismic isolation means 30,31 Compression coil spring 35 Partition material 60,61 Leaf spring 60a, 61a Thick part 60b, 61b Thin part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 土台側の下桁又は下梁と階上側の上桁又
は上梁とを、中途部に免震手段を備える長手の筋かい構
造体により結合する木造建築物における筋かい構造にお
いて、 前記免震手段に、地震の衝撃力の強さに応じてバネ力の
異なる複数の圧縮コイルバネを、前記筋かい構造体の長
手方向に圧縮可能に、軸心周りに多段に重ねて設けたこ
とを特徴とする木造建築物における筋かい構造。
1. A strut structure for a wooden building in which a lower girder or lower beam on the base side and an upper girder or upper beam on the upper floor are connected by a longitudinal strut structure provided with seismic isolation means in the middle part. In the seismic isolation means, a plurality of compression coil springs having different spring forces according to the magnitude of the impact force of the earthquake are provided in multiple stages around the axis so as to be compressible in the longitudinal direction of the bracing structure. A strut structure in a wooden building, characterized in that:
【請求項2】 前記各圧縮コイルバネ間に、その間を仕
切る仕切材を介在させてなることを特徴とする請求項1
に記載の木造建築物における筋かい構造。
2. The apparatus according to claim 1, wherein a partition member for partitioning the compression coil springs is interposed between the compression coil springs.
Brace structure in a wooden building described in.
【請求項3】 土台側の下桁又は下梁と階上側の上桁又
は上梁とを、中途部に免震手段を備える長手の筋かい構
造体により結合する木造建築物における筋かい構造にお
いて、 それぞれ中間側を厚肉に形成するとともにその厚肉部側
から両端側に漸次薄肉に形成した2枚の半円形板バネを
用い、それら板バネを両端の薄肉部側で互いに連結して
前記免震手段を環状に構成し、この免震手段における一
側の板バネをその厚肉部で前記筋かい構造体の土台側端
部に固着する一方、他側の板バネをその厚肉部で前記筋
かい構造体の階上側端部に固着したことを特徴とする木
造建築物における筋かい構造。
3. A strut structure in a wooden building in which a lower girder or lower beam on the base side and an upper girder or upper beam on the upper floor are connected by a longitudinal strut structure provided with seismic isolation means in the middle part. Using two semi-circular leaf springs, each of which has a thick intermediate portion and is gradually thinned from the thick portion side to both end portions, and connects these leaf springs to each other at the thin portion portions at both ends. The seismic isolation means is formed in an annular shape, and one side leaf spring of the seismic isolation means is fixed to the base side end of the brace structure at its thick portion, while the other side leaf spring is fixed to the thick portion. A strut structure in a wooden building, wherein the strut structure is fixed to an upper end of a floor of the strut structure.
JP11121596A 1999-01-26 1999-04-28 Brace structure in wooden building Pending JP2000282587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11121596A JP2000282587A (en) 1999-01-26 1999-04-28 Brace structure in wooden building

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1703099 1999-01-26
JP11-17030 1999-01-26
JP11121596A JP2000282587A (en) 1999-01-26 1999-04-28 Brace structure in wooden building

Publications (1)

Publication Number Publication Date
JP2000282587A true JP2000282587A (en) 2000-10-10

Family

ID=26353487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11121596A Pending JP2000282587A (en) 1999-01-26 1999-04-28 Brace structure in wooden building

Country Status (1)

Country Link
JP (1) JP2000282587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016538A (en) * 2005-07-11 2007-01-25 Mokken Giken Kk Vibration damper built in building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016538A (en) * 2005-07-11 2007-01-25 Mokken Giken Kk Vibration damper built in building

Similar Documents

Publication Publication Date Title
WO2020215863A1 (en) Self-resetting jacket ocean platform structure system based on built-in swing column
JPH0721259B2 (en) Energy absorbing assembly and construct comprising the energy absorbing assembly
CA2524547A1 (en) Fork configuration dampers and method of using same
JP4034006B2 (en) Vibration energy absorbing device for tension structure and construction method thereof
CA2592710A1 (en) Composite energy absorbing structure
CN217128591U (en) Disc spring three-dimensional damping and energy dissipation upper node for assembled steel structure external wall panel
JPH0826687B2 (en) Steel damper
CN113123454B (en) Column-connected double-energy-consumption assembled concrete frame system and construction method
CN101761145A (en) Compound energy-consumption supporting member for automatically recovering axis centering function
JP2000282587A (en) Brace structure in wooden building
JP2000027483A (en) Vibration damping brace
JP3957890B2 (en) Building vibration control device
CN211143322U (en) High-rise building anti-seismic support
JPH11350778A (en) Vibration damper and vibration-damping structure
JP2001140343A (en) Theree-storied dwelling house
JP2929268B2 (en) Bracing structure in wooden buildings
JPH11210079A (en) Earthquake-resistant reinforcing structure for leg portion of steel column of building and earthquake-resistant reinforcing method for leg portion of steel column of building
JP3323623B2 (en) Vibration control device for buildings using eccentric brace damper
JP4828053B2 (en) Structure damping device
CN112814224B (en) Construction technology of building wall
JPH09317240A (en) Elastic and plastic damper
JP2003097642A (en) Vertical quake-absorbing equipment
CN220790265U (en) Combined steel structure for building engineering design
CN221001551U (en) Outer curtain wall skeleton coupling mechanism
CN215802454U (en) Wall body energy dissipation structure with from restoring to throne and crashproof function

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees