JP2000280401A - Resin-clad copper foil - Google Patents

Resin-clad copper foil

Info

Publication number
JP2000280401A
JP2000280401A JP11089395A JP8939599A JP2000280401A JP 2000280401 A JP2000280401 A JP 2000280401A JP 11089395 A JP11089395 A JP 11089395A JP 8939599 A JP8939599 A JP 8939599A JP 2000280401 A JP2000280401 A JP 2000280401A
Authority
JP
Japan
Prior art keywords
copper foil
resin
layer
thickness
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11089395A
Other languages
Japanese (ja)
Inventor
Shuichi Furuya
修一 古谷
Hitoshi Kato
人士 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Circuit Foil Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11089395A priority Critical patent/JP2000280401A/en
Publication of JP2000280401A publication Critical patent/JP2000280401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin-clad copper foil for a printed circuit board high in the bonding strength with a base material, capable of also forming high density ultrafine wiring and good in heat resistance and fire retardancy. SOLUTION: In a resin-clad copper foil wherein the surface 1a of a copper foil 1 is coated with an insulating resin layer 2 of a B-stage state, the insulating resin layer 2 comprises a resin compsn. containing 50-70 wt.% of a polyfunctional cyanic acid ester compd. and 12 - below 20 wt.% of a brominated epoxy compd. in terms of bromine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は印刷回路基板の製造
時に用いる樹脂付き銅箔に関し、更に詳しくは、高密度
超微細配線の形成が可能であり、また基材との接合強度
も高く難燃性を備え、とくに多層印刷回路基板の製造に
用いて好適な難燃性樹脂付き銅箔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-coated copper foil used in the manufacture of a printed circuit board, and more particularly, it is capable of forming high-density ultrafine wiring and has high bonding strength with a base material and flame retardancy. The present invention relates to a copper foil with a flame-retardant resin, which is particularly suitable for use in the production of multilayer printed circuit boards.

【0002】[0002]

【従来の技術】印刷回路基板は、概ね次のようにして製
造されている。まず、エポキシ樹脂やポリイミド樹脂な
どから成る電気絶縁性の基板の表面に、熱硬化性の接着
剤を用いて表面回路形成用の薄い銅箔を貼着したのち、
加熱・加圧して銅張り積層板を製造する。
2. Description of the Related Art A printed circuit board is generally manufactured as follows. First, a thin copper foil for surface circuit formation is attached to the surface of an electrically insulating substrate made of epoxy resin or polyimide resin using a thermosetting adhesive,
Heat and press to produce copper clad laminates.

【0003】ついで、その銅張り積層板に、スルーホー
ルの穿設,スルーホールめっきを順次行ったのち、表面
の銅箔にエッチング処理を行って所望する線幅と所望す
る線間ピッチを備えた配線パターンを形成し、最後に、
ソルダーレジストの形成やその他の仕上げ処理が行われ
る。このとき、用いる銅箔に対しては、基材に熱圧着さ
れる表面を粗化面とし、この粗化面で基材に対するアン
カー効果を発揮させ、もって基材と銅箔との接合強度を
高めて印刷回路基板としての信頼性を確保することがな
されている。
[0003] Then, after drilling through holes and plating through holes in the copper-clad laminate in order, the copper foil on the surface is subjected to an etching treatment to provide a desired line width and a desired line pitch. Form a wiring pattern, and finally,
A solder resist is formed and other finishing processes are performed. At this time, for the copper foil to be used, the surface to be thermocompression-bonded to the substrate is a roughened surface, and the roughened surface exerts an anchoring effect on the substrate, thereby increasing the bonding strength between the substrate and the copper foil. The reliability of the printed circuit board has been increased to enhance the reliability.

【0004】また、最近では、銅箔の上記粗化面を予め
エポキシ樹脂のような接着用樹脂で被覆し、当該接着用
樹脂を半硬化状態(Bステージ)の絶縁樹脂層にした樹
脂付き銅箔を表面回路形成用の銅箔として用い、その絶
縁樹脂層側を基材に熱圧着して印刷回路基板、とりわけ
多層印刷回路基板を製造することが行われている。とこ
ろで、最近の各種電子部品は高度に集積化され、小型で
かつ高密度の印刷回路を内蔵するICやLSIなどが使
用されている。そして、このことに対応して、印刷回路
基板における配線パターンも高密度化が要求され、微細
な線幅や線間ピッチの配線から成る配線パターンが形成
されている、いわゆるファインパターンの印刷回路基板
が要求されるようになり、更には集積化に伴う発熱量の
増加に対応するために優れた耐熱性や難燃性と誘電特性
も要求されるようになっている。
Recently, a resin-coated copper foil in which the above-described roughened surface of a copper foil is coated in advance with an adhesive resin such as an epoxy resin, and the adhesive resin is an insulating resin layer in a semi-cured state (B stage). 2. Description of the Related Art A foil is used as a copper foil for forming a surface circuit, and the insulating resin layer side is thermocompression-bonded to a substrate to produce a printed circuit board, especially a multilayer printed circuit board. By the way, recent various electronic components are highly integrated, and small ICs and LSIs having a high-density printed circuit are used. Corresponding to this, the wiring pattern on the printed circuit board is also required to have a high density, and a so-called fine-pattern printed circuit board on which a wiring pattern composed of wiring having a fine line width and a line pitch is formed. Are required, and further, in order to cope with an increase in the amount of heat generated by integration, excellent heat resistance, flame retardancy and dielectric properties are also required.

【0005】[0005]

【発明が解決しようとする課題】本発明は、最近、樹脂
付き銅箔に要求されている上記した問題に対応すべく開
発された樹脂付き銅箔であって、ファインパターンの配
線を形成できることは勿論のこと、耐熱性や難燃性が優
れ、また良好な誘電特性も備えている樹脂付き銅箔の提
供を目的とする。
SUMMARY OF THE INVENTION The present invention relates to a resin-coated copper foil which has been recently developed to address the above-mentioned problems required for a resin-coated copper foil. Needless to say, an object of the present invention is to provide a resin-coated copper foil having excellent heat resistance and flame retardancy and also having good dielectric properties.

【0006】[0006]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、銅箔の表面が半硬化状態の
絶縁樹脂層で被覆されている樹脂付き銅箔において、前
記絶縁樹脂層が、多官能性シアン酸エステル化合物を5
0〜70重量%含有し、かつ、臭素化エポキシ化合物を
臭素換算量で12重量%以上20重量%未満含有する樹
脂組成物から成ることを特徴とする樹脂付き銅箔が提供
される。
According to the present invention, there is provided a resin-coated copper foil having a semi-cured insulating resin layer coated on the surface of the copper foil. Is a polyfunctional cyanate compound
The present invention provides a resin-coated copper foil comprising a resin composition containing 0 to 70% by weight and containing a brominated epoxy compound in an amount of 12% by weight or more and less than 20% by weight in terms of bromine.

【0007】とくに、前記銅箔の表面粗度(Rz)が2.
0〜4.0μmであり、かつ、前記銅箔の表面には、更
に、厚み0.01〜0.05mg/dm2のニッケル層と厚み
0.15〜0.5mg/dm2の亜鉛層がこの順序で形成され
ている樹脂付き銅箔が提供される。
[0007] In particular, the surface roughness (Rz) of the copper foil is 2.
A 0~4.0Myuemu, and, on the surface of the copper foil is further nickel layer having a thickness of 0.01-0.05 mg / dm 2 and zinc thickness 0.15~0.5mg / dm 2 layer A copper foil with resin formed in this order is provided.

【0008】[0008]

【発明の実施の形態】まず、本発明の樹脂付き銅箔の1
例Aを図1に示す。この樹脂付き銅箔Aは、銅箔1と、
その片面1aを被覆して形成された半硬化状態の絶縁樹
脂層2で構成されている。ここでいう半硬化状態とは、
いわゆるBステージ状態であって、表面を指で触れても
粘着感はなく、その絶縁樹脂層2を重ね合わせて保管す
ることができ、更に加熱処理を受けると硬化反応が起こ
る状態のことをいう。
BEST MODE FOR CARRYING OUT THE INVENTION First, the copper foil with resin of the present invention 1
Example A is shown in FIG. This copper foil A with resin is a copper foil 1
It is composed of a semi-cured insulating resin layer 2 formed by covering one surface 1a. The semi-cured state here means
It is a so-called B-stage state, in which there is no stickiness even when the surface is touched with a finger, the insulating resin layer 2 can be stored in an overlapping state, and a curing reaction occurs when further subjected to a heat treatment. .

【0009】この絶縁樹脂層2は、少なくとも多官能性
シアン酸エステル化合物と臭素化エポキシ化合物を含有
している熱硬化性樹脂組成物から成る。ここで、多官能
性シアン酸エステル化合物としては、特開平10−14
6915号公報に開示されているものを用いることがで
きる。その場合、多官能性シアン酸エステル化合物の含
有量が50重量%より少ないと、絶縁樹脂層の耐熱性や
誘電特性が低下するようになり、また含有量が70重量
%より多くなると、製造した樹脂付き銅箔を基材に例え
ば温度170℃で60分間という標準プレス条件で熱圧
着したときの接着性が低下するようになるので、樹脂組
成物における当該多官能性シアン酸エステル化合物の含
有量は50〜70重量%に設定される。
The insulating resin layer 2 is made of a thermosetting resin composition containing at least a polyfunctional cyanate compound and a brominated epoxy compound. Here, as the polyfunctional cyanate compound, JP-A-10-14
No. 6,915, can be used. In this case, when the content of the polyfunctional cyanate compound is less than 50% by weight, the heat resistance and the dielectric properties of the insulating resin layer are reduced, and when the content is more than 70% by weight, the product is produced. Since the adhesiveness when the resin-coated copper foil is thermocompression-bonded to the substrate under a standard press condition of, for example, a temperature of 170 ° C. for 60 minutes is reduced, the content of the polyfunctional cyanate compound in the resin composition Is set to 50 to 70% by weight.

【0010】臭素化エポキシ化合物は、絶縁樹脂層2を
難燃化し、その耐熱性を高めるために配合される。この
ような働きをする臭素化エポキシ化合物としては、例え
ば、油化シエルエポキシ(株)製のエピコート5050
(臭素含有量47〜51重量%)、旭チバ(株)製のア
ラルダイト8018などをあげることができる。
The brominated epoxy compound is blended to make the insulating resin layer 2 flame-retardant and to improve its heat resistance. Examples of the brominated epoxy compound having such a function include, for example, Epicoat 5050 manufactured by Yuka Shell Epoxy Co., Ltd.
(Bromine content: 47 to 51% by weight), and Araldite 8018 manufactured by Asahi Ciba Co., Ltd.

【0011】この臭素化エポキシ化合物の配合量は、臭
素換算量にして12重量%以上20重量%未満に設定さ
れる。配合量が12重量%未満の場合には、難燃規格で
あるUL−94V0を満たすことができず、また20重
量%以上にすると、製造した樹脂付き銅箔を基材に熱圧
着したときの柔軟性が悪くなり、更には製造した積層板
の切断加工時に粉吹きが多くなるからである。
The compounding amount of the brominated epoxy compound is set to be 12% by weight or more and less than 20% by weight in terms of bromine. When the compounding amount is less than 12% by weight, UL-94V0, which is a flame retardant standard, cannot be satisfied. This is because flexibility is deteriorated, and moreover, powder blowing increases during cutting processing of the manufactured laminated board.

【0012】なお、上記臭素化エポキシ化合物と一緒に
酸化アンチモンを配合すると、臭素化エポキシ化合物の
配合量を少なくすることができる。例えば酸化アンチモ
ンを2重量%程度配合すると、臭素化エポキシ化合物の
配合量が10重量%程度であっても、UL規格を満たす
ことができる。この樹脂付き銅箔Aは次のようにして製
造することができる。
When antimony oxide is blended together with the above-mentioned brominated epoxy compound, the amount of the brominated epoxy compound can be reduced. For example, when about 2% by weight of antimony oxide is added, even if the amount of the brominated epoxy compound is about 10% by weight, the UL standard can be satisfied. This copper foil A with resin can be manufactured as follows.

【0013】すなわち、上記した各成分を例えばメチル
エチルケトン(MEK),トルエンなどの溶剤に溶解し
て樹脂液とし、これを銅箔の片面1aに例えばロールコ
ータ法などによって塗布し、必要に応じて加熱乾燥して
溶剤を除去してBステージ状態にする。乾燥には例えば
熱風乾燥炉を用いればよく、乾燥温度は100〜250
℃、好ましくは130〜170℃であればよい。
That is, each of the above components is dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to form a resin solution, which is applied to one surface 1a of the copper foil by, for example, a roll coater method and, if necessary, heated. After drying, the solvent is removed to obtain a B-stage state. For drying, for example, a hot air drying oven may be used, and the drying temperature is 100 to 250.
C, preferably 130 to 170C.

【0014】このとき、用いる銅箔1の片面1aは、J
IS B0601で規定する10点平均粗さの値(Rz)
が2.0〜4.0μmになっている粗化面であることが好
ましい。このRz値が2.0μmより小さい場合は前記し
た基材に熱圧着したときに充分な接合強度が得られず、
またRz値が4.0μmより大きい場合には、熱圧着時に
おける基材への突起部の喰い込み量が大きくなり、エッ
チング時にその突起部の完全除去に要するエッチング時
間が長くなってエッチングファクタ値は小さくなり、結
局、信頼性の高いファインな配線パターンの形成が困難
になるからである。
At this time, one side 1a of the copper foil 1 used is J
10-point average roughness value (Rz) specified in IS B0601
Is preferably a roughened surface having a thickness of 2.0 to 4.0 μm. If the Rz value is smaller than 2.0 μm, sufficient bonding strength cannot be obtained when thermocompression-bonded to the above-described substrate,
If the Rz value is greater than 4.0 μm, the amount of protrusion of the protrusion into the substrate at the time of thermocompression bonding increases, and the etching time required for complete removal of the protrusion during etching increases. Is small, and eventually it becomes difficult to form a highly reliable fine wiring pattern.

【0015】また、銅箔の片面1aに更にクロメート処
理を行うと、そこに酸化防止膜が形成されるので好適で
ある。適用するクロメート処理としては、公知の方法で
あってよく、例えば、特開昭60−86894号に開示
されている方法をあげることができる。クロム量に換算
して0.01〜0.2mg/dm2程度のクロム酸化物とその
水和物などを付着させることにより、銅箔には優れた防
食能を付与することができる。
Further, it is preferable to further perform a chromate treatment on one surface 1a of the copper foil, since an antioxidant film is formed thereon. The chromate treatment to be applied may be a known method, for example, a method disclosed in JP-A-60-86894. By adhering about 0.01 to 0.2 mg / dm 2 of chromium oxide and its hydrate in terms of the amount of chromium, the copper foil can be provided with an excellent anticorrosive ability.

【0016】また、前記したクロメート処理面に対し更
にシランカップリング材を用いた表面処理を行うと、銅
箔表面には接着剤との親和力の強い官能基が付与される
ので、銅箔と基材との接合強度は一層向上し、銅箔の防
錆性,耐熱性も更に向上するので好適である。用いるシ
ランカップリング材としては、例えばビニルトリス(2
−メトキシエトキシ)シラン,3−クリシドキシプロピ
ルトリメトキシシラン,N−(2−アミノエチル)−3
−アミノプロピルトリメトキシシラン,3−アミノプロ
ピルトリエトキシシランなどをあげることができる。こ
れらのシランカップリング剤は通常0.001〜5%の
水溶液にし、これを銅箔の表面に塗布したのちそのまま
加熱乾燥して用いればよい。なお、シランカップリング
剤に代えて、チタン系,ジルコン系などのカップリング
剤を用いても同様の効果を得ることができる。
Further, when a surface treatment using a silane coupling material is further performed on the above-mentioned chromate-treated surface, a functional group having a strong affinity for an adhesive is provided on the surface of the copper foil. It is preferable because the bonding strength with the material is further improved, and the rust resistance and heat resistance of the copper foil are further improved. As the silane coupling material to be used, for example, vinyl tris (2
-Methoxyethoxy) silane, 3-crysidoxypropyltrimethoxysilane, N- (2-aminoethyl) -3
-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and the like. These silane coupling agents are usually prepared as a 0.001 to 5% aqueous solution, applied to the surface of a copper foil, and dried by heating as it is. The same effect can be obtained by using a titanium-based or zircon-based coupling agent instead of the silane coupling agent.

【0017】図2に本発明の樹脂付き銅箔の別の例Bを
示す。この樹脂付き銅箔Bは、銅箔1の表面1aにニッ
ケル層3,亜鉛層4をこの順序で形成し、亜鉛層4の表
面が前記した絶縁樹脂層2で被覆された構造になってい
る。この亜鉛層4は、樹脂付き銅箔Bと基材とを接着剤
を用いて例えば熱圧着したときに、銅箔1と接着剤との
反応による接着剤の劣化や銅箔1の表面酸化を防止して
基材との接合強度を高める働きをし、更には、銅箔1の
粗化面の突起部が基材に喰い込んでいる場合、突起部と
基材との界面に存在している亜鉛の働きで突起部の銅が
エッチングされやすくなり、もってエッチングファクタ
値を向上させる。またニッケル層3は、熱圧着時に亜鉛
層4の亜鉛が銅箔1側へ熱拡散することを防止し、もっ
て亜鉛層4の上記機能を有効に発揮させる働きをする。
FIG. 2 shows another example B of the copper foil with resin of the present invention. The copper foil with resin B has a structure in which a nickel layer 3 and a zinc layer 4 are formed in this order on the surface 1a of the copper foil 1 and the surface of the zinc layer 4 is covered with the insulating resin layer 2 described above. . This zinc layer 4 is used to prevent the deterioration of the adhesive due to the reaction between the copper foil 1 and the adhesive and the surface oxidation of the copper foil 1 when the copper foil with resin B and the base material are thermocompression-bonded using the adhesive, for example. It acts to prevent and increase the bonding strength with the base material, and furthermore, when the protrusions on the roughened surface of the copper foil 1 bite into the base material, they are present at the interface between the protrusions and the base material. The function of the zinc makes it easier to etch the copper on the protrusions, thereby improving the etching factor value. Further, the nickel layer 3 functions to prevent the zinc of the zinc layer 4 from thermally diffusing to the copper foil 1 side during thermocompression bonding, thereby effectively exerting the above function of the zinc layer 4.

【0018】ここで、亜鉛は銅へ拡散しやすいので、亜
鉛層4の厚みが薄すぎると、拡散の結果、銅箔1の表面
に存在する亜鉛の量は極度に減少してしまい、結局、亜
鉛層4を形成した意味が消失してしまう。亜鉛層4の厚
みが厚くなれば上記した問題は起こらなくなるが、しか
し他方ではエッチング時に溶出する亜鉛量も多くなって
銅箔1の粗化面と基材との間にクリアランスが生じてこ
の場合も接合強度の低下が引き起こされる。このような
ことから、亜鉛層4の厚みは、0.15〜0.5mg/dm2
の範囲に設定されることが好ましい。
Here, since zinc is easily diffused into copper, if the thickness of the zinc layer 4 is too thin, the amount of zinc present on the surface of the copper foil 1 is extremely reduced as a result of the diffusion. The meaning of forming the zinc layer 4 disappears. When the thickness of the zinc layer 4 is increased, the above-mentioned problem does not occur. However, on the other hand, the amount of zinc eluted at the time of etching also increases, and a clearance is generated between the roughened surface of the copper foil 1 and the base material. This also causes a decrease in bonding strength. Thus, the thickness of the zinc layer 4 is 0.15 to 0.5 mg / dm 2.
Is preferably set in the range.

【0019】一方、亜鉛の拡散防止層として機能するニ
ッケル層3の厚みは、上記した亜鉛層4の厚みと相関関
係をもっている。例えば、ニッケル層3の厚みが薄い場
合には、亜鉛の拡散防止層としての機能は充分に発揮さ
れないので、樹脂付き銅箔Bと基材との接合強度を高め
るときには、銅箔1側への亜鉛の拡散量を見込んで比較
的多量の亜鉛をニッケル層3の上に存在させることが必
要になる。そして、ニッケル層3の厚みを0.01mg/d
m2よりも薄くすると、亜鉛の拡散防止層としての機能は
ほとんど発現せず、また0.04〜0.05mg/dm2の厚
みのときには、この上に形成する亜鉛層の厚みは、0.
15〜0.5mg/dm2の範囲における下限前後の厚みであ
っても亜鉛の拡散が有効に防止できる。
On the other hand, the thickness of the nickel layer 3 functioning as a zinc diffusion preventing layer has a correlation with the thickness of the zinc layer 4 described above. For example, when the thickness of the nickel layer 3 is small, the function as a zinc diffusion preventing layer is not sufficiently exhibited. It is necessary to allow a relatively large amount of zinc to exist on the nickel layer 3 in consideration of the diffusion amount of zinc. Then, the thickness of the nickel layer 3 is set to 0.01 mg / d.
When the thickness is smaller than m 2 , the function of the zinc as a diffusion preventing layer is hardly exhibited, and when the thickness is 0.04 to 0.05 mg / dm 2 , the thickness of the zinc layer formed thereon is 0.1 mm.
Even when the thickness is around the lower limit in the range of 15 to 0.5 mg / dm 2 , diffusion of zinc can be effectively prevented.

【0020】しかし、ニッケル層3の厚みを0.05mg
/dm2より厚くすると、亜鉛の拡散防止層としての機能
向上は達成されるものの、他方では、ニッケル層3はエ
ッチングを阻害するので、銅箔1のエッチング時にエッ
チングファクタ値は小さくなり、ファインな配線パター
ンの形成ができなくなる。このようなことから、例えば
線間ピッチや線幅を30μm程度にするためには、ニッ
ケル層3の厚みを、0.01〜0.05mg/dm2の範囲に
設定することが好ましい。
However, the thickness of the nickel layer 3 is 0.05 mg.
When the thickness is greater than / dm 2 , the function as a zinc diffusion preventing layer can be improved, but on the other hand, the nickel layer 3 hinders the etching. Wiring patterns cannot be formed. For this reason, it is preferable to set the thickness of the nickel layer 3 in the range of 0.01 to 0.05 mg / dm 2 in order to set the line pitch and line width to about 30 μm, for example.

【0021】なお、これらのニッケル層や亜鉛層は、公
知の電解めっき法や無電解めっき法を適用して形成する
ことが好ましい。また、上記したニッケル層は、純ニッ
ケルで形成してもよく、6重量%以下のリンを含有する
含リンニッケルで形成してもよい。なお、この樹脂付き
銅箔Bの場合、絶縁樹脂層2の形成に先立ち、前記した
クロメート処理,シランカップリング剤処理などを行っ
てもよい。
The nickel layer and the zinc layer are preferably formed by applying a known electrolytic plating method or electroless plating method. Further, the above-mentioned nickel layer may be formed of pure nickel, or may be formed of phosphorus-containing nickel containing 6% by weight or less of phosphorus. In the case of the resin-coated copper foil B, the above-described chromate treatment, silane coupling agent treatment, or the like may be performed before the formation of the insulating resin layer 2.

【0022】本発明の樹脂付き銅箔は、その絶縁樹脂層
2を図示しない基材に重ね合わせたのち全体を熱圧着し
て絶縁樹脂層を熱硬化し、銅箔1に所定の配線パターン
を形成するという態様で使用される。この樹脂付き銅箔
を使用すると、多層印刷回路基板の製造時におけるプリ
プレグ材の使用枚数を減らすこともできる。しかも、絶
縁樹脂層2の厚みを層間絶縁が確保できるような厚みに
したり、プリプレグ材を全く使用していなくても銅張り
積層板を製造することができる。またこのとき、基材の
表面に絶縁樹脂をアンダーコートして表面の平滑性を更
に改善することもできる。
In the copper foil with resin of the present invention, the insulating resin layer 2 is overlaid on a base material (not shown), and the whole is thermocompressed to thermally cure the insulating resin layer. Used in the form of forming. The use of this resin-coated copper foil can also reduce the number of prepreg materials used in manufacturing a multilayer printed circuit board. In addition, a copper-clad laminate can be manufactured even if the thickness of the insulating resin layer 2 is set to a value that ensures interlayer insulation, or no prepreg material is used. At this time, the surface of the base material may be undercoated with an insulating resin to further improve the smoothness of the surface.

【0023】なお、上記したようにプリプレグ材を使用
しない場合には、プリプレグ材の材料コストは節約さ
れ、また積層工程も簡略になるので経済的に有利とな
り、しかも、プリプレグ材の厚み分だけ製造される多層
印刷回路基板の厚みは薄くなり、1層の厚みが100μ
m以下である極薄の多層印刷回路基板を製造することが
できるという利点がある。
When the prepreg material is not used as described above, the material cost of the prepreg material is saved, and the laminating process is simplified, which is economically advantageous. The thickness of the multilayer printed circuit board is reduced, and the thickness of one layer is 100 μm.
The advantage is that an ultra-thin multilayer printed circuit board having a thickness of not more than m can be manufactured.

【0024】この絶縁樹脂層2の厚みは20〜80μm
であることが好ましい。絶縁樹脂層2の厚みが20μm
より薄くなると、基材との接着力は低下し、プリプレグ
材を介在させることなくこの樹脂付き銅箔を内層材を備
えた基材に積層したときに、内層材の回路との間の層間
絶縁を確保することが困難になるからである。
The thickness of the insulating resin layer 2 is 20 to 80 μm
It is preferred that The thickness of the insulating resin layer 2 is 20 μm
When it becomes thinner, the adhesive strength with the base material decreases, and when this resin-coated copper foil is laminated on the base material with the inner layer material without interposing the prepreg material, the interlayer insulation between the circuit of the inner layer material and Is difficult to secure.

【0025】また、絶縁樹脂層2の厚みを80μmより
厚くすると、1回の塗布工程で目的厚みの絶縁樹脂層を
形成することが困難となり、余分な材料費と工数がかか
るため経済的に不利となる。更には、形成された絶縁樹
脂層はその可撓性が劣るので、ハンドリング時にクラッ
クなどが発生しやすくなり、また内層材との熱圧着時に
過剰な樹脂流れが起こって円滑な積層が困難になるから
である。
If the thickness of the insulating resin layer 2 is more than 80 μm, it becomes difficult to form an insulating resin layer having a desired thickness in a single coating step, which requires extra material costs and man-hours, which is economically disadvantageous. Becomes Furthermore, since the formed insulating resin layer is inferior in flexibility, cracks and the like are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. Because.

【0026】[0026]

【実施例】実施例1 (1)銅箔の製造 下記の条件で長さ300m,幅500mm,厚み10μm
の電解銅箔を製造した。
EXAMPLES Example 1 (1) Production of copper foil Under the following conditions, length 300m, width 500mm, thickness 10μm
Was produced.

【0027】浴組成:金属銅55g/L,硫酸55g/
L,塩化物イオン30ppm(NaClとして),3−メ
ルカプト1−プロパンスルホン酸ナトリウム1.5ppm,
ヒドロキシエチルセルロース10ppm。 浴温:58℃、対極:含リン銅板、電流密度:50A/
dm2。 得られた電解銅箔の表面粗度をJISB0601で規定
する方法によって測定した。10点平均表面粗度(Rz)
は1.2μmであった。
Bath composition: metallic copper 55 g / L, sulfuric acid 55 g / L
L, 30 ppm of chloride ion (as NaCl), 1.5 ppm of sodium 3-mercapto 1-propanesulfonate,
Hydroxyethyl cellulose 10 ppm. Bath temperature: 58 ° C, counter electrode: phosphorus-containing copper plate, current density: 50A /
dm 2 . The surface roughness of the obtained electrolytic copper foil was measured by the method specified in JIS B0601. 10-point average surface roughness (Rz)
Was 1.2 μm.

【0028】この電解銅箔の表面に更に次のような銅め
っきを行って粗化面を形成した。まず、金属銅:20g
/L,硫酸:100g/Lから成る組成の電析浴を建浴
した。これを浴(1)とする。また、金属銅:60g/
L,硫酸:100g/Lから成る電析浴を建浴した。こ
れを浴(2)とする。前記した電解銅箔に対し、浴(1)を用
い、浴温25℃,電流密度30A/dm2の条件下で時間
を変えためっき処理を行い、その表面に銅粒子を析出さ
せた。ついで、浴(2)を用い、浴温60℃,電流密度1
5A/dm2の条件下で時間を変えてめっき処理を行い、
前記銅粒子を被覆する緻密な銅のカプセルめっき層を形
成した。
The surface of the electrolytic copper foil was further subjected to the following copper plating to form a roughened surface. First, metal copper: 20g
/ L, sulfuric acid: an electrodeposition bath having a composition of 100 g / L was prepared. This is called bath (1). Metallic copper: 60 g /
L, sulfuric acid: An electrodeposition bath consisting of 100 g / L was prepared. This is called bath (2). The above-mentioned electrolytic copper foil was subjected to a plating treatment using a bath (1) under the conditions of a bath temperature of 25 ° C. and a current density of 30 A / dm 2 for various times to deposit copper particles on the surface. Then, using bath (2), bath temperature 60 ° C, current density 1
Performs a plating process by changing the time under the conditions of 5A / dm 2,
A dense copper encapsulation plating layer covering the copper particles was formed.

【0029】この時点で電解銅箔の表面を顕微鏡観察し
たところ、全面に微粒子状の突起物が形成されている粗
化面になっていた。この粗化面のRz値は表1,2で示し
たとおりである。ついで、この粗化面の上に次のように
してニッケル層,亜鉛めっき層を形成した。
At this point, when the surface of the electrolytic copper foil was observed with a microscope, it was found to be a roughened surface in which fine projections were formed on the entire surface. The Rz value of the roughened surface is as shown in Tables 1 and 2. Next, a nickel layer and a zinc plating layer were formed on the roughened surface as follows.

【0030】まず、下記組成のニッケルめっき浴を建浴
した。硫酸ニッケル六水塩240g/L,塩化ニッケル
六水塩45g/L,ホウ酸30g/L,次亜リン酸ナト
リウム5g/L。また、下記組成の亜鉛めっき浴を建浴
した。硫酸亜鉛七水塩24g/L,水酸化ナトリウム8
5g/L。
First, a nickel plating bath having the following composition was prepared. Nickel sulfate hexahydrate 240 g / L, nickel chloride hexahydrate 45 g / L, boric acid 30 g / L, sodium hypophosphite 5 g / L. In addition, a galvanizing bath having the following composition was constructed. Zinc sulfate heptahydrate 24 g / L, sodium hydroxide 8
5 g / L.

【0031】前記した電解銅箔の粗化面に、ニッケルめ
っき浴の浴温を50℃とし、対極にステンレス鋼板を用
い、電流密度0.5A/dm2でめっき時間を変化させてニ
ッケルめっきを行い、粗化面に表1,2で示した厚みの
含リンニッケルめっき層を形成し、更にその上に、亜鉛
めっき浴の浴温を25℃とし、対極にステンレス鋼板を
用い、電流密度0.4A/dm2でめっき時間を変化させて
亜鉛めっきを行い、表1,2で示した厚みの亜鉛めっき
層を形成した。
On the roughened surface of the above-mentioned electrolytic copper foil, a nickel plating bath was set at a bath temperature of 50 ° C., a stainless steel plate was used as a counter electrode, and the plating time was changed at a current density of 0.5 A / dm 2 to perform nickel plating. Then, a phosphorous-containing nickel plating layer having the thickness shown in Tables 1 and 2 was formed on the roughened surface, and the bath temperature of the zinc plating bath was set at 25 ° C., and a stainless steel plate was used as a counter electrode. Galvanization was performed by changing the plating time at 0.4 A / dm 2 to form a galvanized layer having a thickness shown in Tables 1 and 2.

【0032】ついで、この銅箔を水洗したのち、三酸化
クロム3g/L,pH11.5の水酸化ナトリウム水溶
液(液温:55℃)に6秒間浸漬してクロメート処理を
行い、水洗乾燥した。更に、銅箔を、ビニルトリス(2
−メトキシエトキシ)シラン2g/Lの水溶液に5秒間
浸漬したのち取り出し、温度100℃の温風で乾燥して
シランカップリング剤処理を行った。
Then, after the copper foil was washed with water, it was immersed in a 3 g / L of chromium trioxide, aqueous solution of sodium hydroxide having a pH of 11.5 (liquid temperature: 55 ° C.) for 6 seconds, subjected to a chromate treatment, washed with water and dried. Further, the copper foil is replaced with vinyl tris (2
-Methoxyethoxy) silane was immersed in an aqueous solution of 2 g / L for 5 seconds, taken out, dried with hot air at a temperature of 100 ° C., and treated with a silane coupling agent.

【0033】(2)樹脂付き銅箔の製造 まず、多官能性シアン酸エステル化合物として旭チバ
(株)製のアロシーを選び、また臭素含量が52重量%
である臭素化エポキシ化合物として旭チバ(株)製の臭
素化エポキシアラルダイト8018を選んだ。そして、
両者を表1,2で示した割合(重量%)で混合し、更に
両者の合計量100重量部に対し、液状エポキシ樹脂1
1.1重量部,ニッカオクチニックス亜鉛(商品名、亜
鉛含有量18重量%)0.06重量部を配合して各種の
ワニスを調製した。ついで、このワニスを前記した銅箔
のシランカップリング剤処理面にロールコータで塗布し
たのち、温度160℃で3分間の熱処理を行い、厚み6
0μmのBステージの絶縁樹脂層を形成した。
(2) Production of Copper Foil with Resin First, Allothy manufactured by Asahi Chiba Co., Ltd. was selected as a polyfunctional cyanate ester compound, and bromine content was 52% by weight.
As a brominated epoxy compound, brominated epoxy araldite 8018 manufactured by Asahi Ciba Co., Ltd. was selected. And
Both were mixed at the ratio (% by weight) shown in Tables 1 and 2, and 100 parts by weight of the total amount of both were mixed with the liquid epoxy resin 1
Various varnishes were prepared by mixing 1.1 parts by weight and 0.06 parts by weight of Nikka Octinix zinc (trade name, zinc content: 18% by weight). Then, the varnish was applied to the surface of the copper foil treated with the silane coupling agent using a roll coater, and then heat-treated at a temperature of 160 ° C. for 3 minutes to obtain a thickness of 6 mm.
A 0-μm B-stage insulating resin layer was formed.

【0034】(3)特性の評価 各樹脂付き銅箔を縦300mm,横300mmに切断したの
ちその絶縁樹脂層側の面を、厚み1mmのガラス繊維エポ
キシプレプリグシート(FR−4)の上に配置し、全体
を2枚の平滑なステンレス鋼板で挟み、温度170℃,
圧力50kg/cm 2で60分間熱圧着して片面銅張り積層
板を製造した。
(3) Evaluation of characteristics Each resin-coated copper foil was cut into a length of 300 mm and a width of 300 mm.
The surface on the insulating resin layer side is coated with a 1 mm thick glass fiber
Placed on xy-prepreg sheet (FR-4)
Sandwiched between two smooth stainless steel plates at a temperature of 170 ° C.
Pressure 50kg / cm TwoThermocompression bonding for 60 minutes on one side and copper-laminated
Boards were manufactured.

【0035】この片面銅張り積層板の銅箔表面に対し、
下記の仕様によるエッチング特性と、プレプリグ材との
接合強度と耐塩酸性、および耐熱性と難燃性と誘電特性
を測定した。 エッチング特性:片面銅張り積層板から縦100mm,横
100mmの試料を切り出した。試料の銅箔の上に、厚み
2.5μmのレジスト膜を形成したのち線幅35μm,
線間ピッチ25μmの直線平行パターンを描画現像し
た。ついで、塩化第二鉄2.0モル/L,塩酸0.4モル
/Lから成るエッチャントをスプレーしてエッチング処
理を行い配線パターンを形成した。
With respect to the copper foil surface of this single-sided copper-clad laminate,
The etching characteristics according to the following specifications, the bonding strength with the prepreg material and hydrochloric acid resistance, and the heat resistance, flame retardancy and dielectric characteristics were measured. Etching characteristics: A sample having a length of 100 mm and a width of 100 mm was cut out from a single-sided copper-clad laminate. A resist film having a thickness of 2.5 μm was formed on the copper foil of the sample, and then a line width of 35 μm was formed.
A line parallel pattern with a line pitch of 25 μm was drawn and developed. Then, an etching treatment was performed by spraying an etchant composed of 2.0 mol / L of ferric chloride and 0.4 mol / L of hydrochloric acid to form a wiring pattern.

【0036】なお、積層板へのエッチング時間は、同一
積層板を用いて予備試験を行い、配線パターンの基部に
残銅が認められなくなるまでの最適時間を調べ、当該時
間を採用した。得られた配線パターンにつき、ショート
部と切断部の有無を顕微鏡観察した。いずれも存在しな
いものを良好とした。
The etching time for the laminated board was determined by conducting a preliminary test using the same laminated board, examining the optimum time until no residual copper was found at the base of the wiring pattern, and employing the time. The resulting wiring pattern was observed under a microscope for the presence or absence of shorts and cuts. Those which did not exist were evaluated as good.

【0037】接合強度:片面銅張り積層板から試料を切
りだし、その試料につき、JISC6511で規定する
方法に準拠して引き剥がし強度を測定した。なお、この
値が0.8kg/cm以上であるものは良品と判定される。 耐塩酸性:線幅1mmのテストパターン描画試料を濃度1
2%の塩酸(温度25℃)に30分間浸漬したのち取り
出して前記した引き剥がし強度を測定し、塩酸浸漬前後
における引き剥がし強度の低下率(%)を算出した。こ
の値が小さいものほど耐塩酸性が優れていることを表
す。
Bonding strength: A sample was cut out from a single-sided copper-clad laminate, and the peeling strength of the sample was measured according to the method specified in JIS C6511. If the value is 0.8 kg / cm or more, it is determined to be good. Hydrochloric acid resistance: Test pattern drawing sample with 1mm line width, density 1
After being immersed in 2% hydrochloric acid (temperature: 25 ° C.) for 30 minutes, it was taken out and the above-mentioned peel strength was measured, and the reduction rate (%) of the peel strength before and after immersion in hydrochloric acid was calculated. The smaller the value, the better the hydrochloric acid resistance.

【0038】耐熱性:JIS C6481で規定するD
SC法により樹脂のガラス転移温度(Tg)を測定し
た。この値が180℃以上であることが好ましい。 難燃性:JIS C6481で規定する耐熱性測定法に
より、試料着火後のフレーミング時間(1回目の着火
後、消えるまでの時間)とグローイング時間(2回目の
着火後、消えるまでの時間)を測定する。
Heat resistance: D specified in JIS C6481
The glass transition temperature (Tg) of the resin was measured by the SC method. This value is preferably 180 ° C. or higher. Flame retardancy: Measure the framing time after ignition of the sample (the time from the first ignition until it goes out) and the glowing time (the time from the second ignition until it goes out) by the heat resistance measurement method specified in JIS C6481. I do.

【0039】試料5個、各2回、計10回のフレーミン
グ時間が、平均5秒以下でかつ最大10秒以下であり、
グローイング時間が30秒を超えない場合、UL−94
V0に合格する。 誘電特性:JIS C6481の自動平衡ブリッジ法で
比誘電率を測定する。測定値が3.2以下であることが
好ましい。以上の結果を一括して表1,2に示した。
The framing time of 5 samples, 2 times each, a total of 10 times, is an average of 5 seconds or less and a maximum of 10 seconds or less,
If the glowing time does not exceed 30 seconds, UL-94
Pass V0. Dielectric property: The relative dielectric constant is measured by the automatic equilibrium bridge method of JIS C6481. It is preferable that the measured value is 3.2 or less. The above results are collectively shown in Tables 1 and 2.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】以上の説明で明らかなように、本発明の
樹脂付き銅箔は、基材であるプリプレグとの接合強度が
高く、しかもエッチング特性は良好で耐熱性,難燃性も
優れ、更には誘電特性も良好で、線間ピッチや線幅が3
0μm前後の高密度超微細配線を有する印刷回路基板用
の銅箔として好適である。
As is apparent from the above description, the resin-coated copper foil of the present invention has a high bonding strength with the prepreg as the base material, has good etching characteristics, and has excellent heat resistance and flame retardancy. Furthermore, the dielectric properties are good, and the line pitch and line width are 3
It is suitable as a copper foil for a printed circuit board having a high-density ultrafine wiring of about 0 μm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の樹脂付き銅箔Aの断面構造を示す断面
図である。
FIG. 1 is a cross-sectional view showing a cross-sectional structure of a copper foil with resin A of the present invention.

【図2】本発明の他の樹脂付き銅箔Bの断面構造を示す
断面図である。
FIG. 2 is a sectional view showing a sectional structure of another copper foil with resin B of the present invention.

【符号の説明】[Explanation of symbols]

1 銅箔 1a 銅箔1の表面 2 絶縁樹脂層 3 ニッケル層 4 亜鉛層 Reference Signs List 1 copper foil 1a surface of copper foil 1 2 insulating resin layer 3 nickel layer 4 zinc layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B32B 27/18 B32B 27/18 B 27/38 27/38 C25D 7/00 C25D 7/00 J H05K 1/03 610 H05K 1/03 610H 610L 1/09 1/09 C 3/46 3/46 T S (72)発明者 加藤 人士 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 Fターム(参考) 4E351 AA03 AA04 BB01 BB30 BB33 BB35 BB38 CC06 CC21 DD04 DD08 DD19 GG02 GG04 GG13 4F100 AB16C AB17A AB18D AB33A AH05B AK01B AK51B AK53 BA02 BA04 BA07 BA10A BA10B DD07A EH71 EJ69 GB43 JA20C JA20D JB12B JB13B JG04B JG05 JJ03 JJ07 JK06 YY00A YY00C YY00D 4K024 AA05 AA09 AB02 BA09 BB11 BC02 DB04 DB06 GA16 5E346 AA05 AA12 AA15 BB01 CC08 CC09 CC31 CC32 CC37 DD03 DD12 EE02 EE06 EE19 GG02 GG27 HH11 HH16 HH18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B32B 27/18 B32B 27/18 B 27/38 27/38 C25D 7/00 C25D 7/00 J H05K 1 / 03 610 H05K 1/03 610H 610L 1/09 1/09 C 3/46 3/46 TS (72) Inventor Hitoshi Kato 2-6-1 Marunouchi, Chiyoda-ku, Tokyo F-term in Furukawa Electric Co., Ltd. (Reference) 4E351 AA03 AA04 BB01 BB30 BB33 BB35 BB38 CC06 CC21 DD04 DD08 DD19 GG02 GG04 GG13 4F100 AB16C AB17A AB18D AB33A AH05B AK01B AK51B AK53 BA02 BA04 BA07 BA10A BA10B DD07A EJ71J04 J03 GB AA05 AA09 AB02 BA09 BB11 BC02 DB04 DB06 GA16 5E346 AA05 AA12 AA15 BB01 CC08 CC09 CC31 CC32 CC37 DD03 DD12 EE02 EE06 EE19 GG02 GG27 HH11 HH16 HH18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅箔の表面が半硬化状態の絶縁樹脂層で
被覆されている樹脂付き銅箔において、 前記絶縁樹脂層が、多官能性シアン酸エステル化合物を
50〜70重量%含有し、かつ、臭素化エポキシ化合物
を臭素換算量で12重量%以上20重量%未満含有する
樹脂組成物から成ることを特徴とする樹脂付き銅箔。
1. A resin-coated copper foil in which the surface of the copper foil is covered with a semi-cured insulating resin layer, wherein the insulating resin layer contains 50 to 70% by weight of a polyfunctional cyanate compound, A resin-coated copper foil comprising a resin composition containing a brominated epoxy compound in an amount of 12% by weight or more and less than 20% by weight in terms of bromine.
【請求項2】 前記銅箔の表面粗度(Rz)が2.0〜4.
0μmであり、かつ、前記銅箔の表面には、更に、厚み
0.01〜0.05mg/dm2のニッケル層と厚み0.15〜
0.5mg/dm2の亜鉛層がこの順序で形成されている請求
項1の樹脂付き銅箔。
2. The copper foil has a surface roughness (Rz) of 2.0 to 4.0.
0 μm, and a nickel layer having a thickness of 0.01 to 0.05 mg / dm 2 and a thickness of 0.15 to 0.05 mg / dm 2 on the surface of the copper foil.
Resin-coated copper foil according to claim 1, the zinc layer of 0.5 mg / dm 2 are formed in this order.
JP11089395A 1999-03-30 1999-03-30 Resin-clad copper foil Pending JP2000280401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11089395A JP2000280401A (en) 1999-03-30 1999-03-30 Resin-clad copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11089395A JP2000280401A (en) 1999-03-30 1999-03-30 Resin-clad copper foil

Publications (1)

Publication Number Publication Date
JP2000280401A true JP2000280401A (en) 2000-10-10

Family

ID=13969474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11089395A Pending JP2000280401A (en) 1999-03-30 1999-03-30 Resin-clad copper foil

Country Status (1)

Country Link
JP (1) JP2000280401A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015483A1 (en) * 2001-08-06 2003-02-20 Mitsui Mining & Smelting Co., Ltd. Printed wiring board-use copper foil and copper clad laminated sheet using the printed wiring board-use copper foil
JP2003136626A (en) * 2001-11-02 2003-05-14 Toyo Kohan Co Ltd Conductive layer-laminated material and part using the material
JP2004079523A (en) * 2002-08-01 2004-03-11 Furukawa Techno Research Kk Electrolytic copper foil and electrolytic copper foil for current collector of secondary battery
WO2012173178A1 (en) * 2011-06-14 2012-12-20 大日本印刷株式会社 Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells
JP2013004236A (en) * 2011-06-14 2013-01-07 Dainippon Printing Co Ltd Conductive base material for forming wring pattern of current collection sheet for solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015483A1 (en) * 2001-08-06 2003-02-20 Mitsui Mining & Smelting Co., Ltd. Printed wiring board-use copper foil and copper clad laminated sheet using the printed wiring board-use copper foil
US6989199B2 (en) * 2001-08-06 2006-01-24 Mitsui Mining & Smelting Co., Ltd. Copper foil for printed-wiring board and copper-clad laminate using copper foil for printed-wiring board
JP2003136626A (en) * 2001-11-02 2003-05-14 Toyo Kohan Co Ltd Conductive layer-laminated material and part using the material
JP2004079523A (en) * 2002-08-01 2004-03-11 Furukawa Techno Research Kk Electrolytic copper foil and electrolytic copper foil for current collector of secondary battery
WO2012173178A1 (en) * 2011-06-14 2012-12-20 大日本印刷株式会社 Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells
JP2013004236A (en) * 2011-06-14 2013-01-07 Dainippon Printing Co Ltd Conductive base material for forming wring pattern of current collection sheet for solar cell
CN103732798A (en) * 2011-06-14 2014-04-16 大日本印刷株式会社 Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells
US9666746B2 (en) 2011-06-14 2017-05-30 Dai Nippon Printing Co., Ltd. Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells

Similar Documents

Publication Publication Date Title
JP4656209B2 (en) Metal foil with resin, metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
WO2011090174A1 (en) Surface-treated copper foil, method for producing same, and copper clad laminated board
JP4728723B2 (en) Ultra-thin copper foil with carrier
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
JP2849059B2 (en) Processing method of copper foil for printed circuit
WO2019208521A1 (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
JP4241098B2 (en) Metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
KR101078234B1 (en) Copper-clad laminate
JP2000269637A (en) Copper foil for high-density ultrafine wiring board
JP4961023B2 (en) Copper foil for printed wiring boards
KR20160034915A (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
JP2000331537A (en) Copper foil for high density hyperfine wiring board
JP3735485B2 (en) Copper foil with resin film, and copper foil with resin using the same
KR20080054442A (en) Process for producing metal wiring board
JPH11340595A (en) Copper foil for printed circuit board and copper foil attached with resin
JPH11340596A (en) Copper foil for printed circuit board and copper foil attached with resin
JP2000280401A (en) Resin-clad copper foil
JP4407680B2 (en) Copper foil with resin, printed wiring board using the same, and manufacturing method thereof
JP2005193400A (en) Resin film with metal foil, resin sheet with metal foil and metal clad laminated sheet
JP2755058B2 (en) Metal foil for printed wiring board, method of manufacturing the same, and method of manufacturing wiring board using the metal foil
WO2014051123A1 (en) Copper foil provided with carrier, and copper-clad laminate using said copper foil provided with carrier
JP2006261650A (en) Flexible printed wiring board copper foil, method of manufacturing the foil, and flexible printed wiring board
JP3559598B2 (en) Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil
JP4911296B2 (en) Manufacturing method of metal wiring heat-resistant resin substrate
JP2005005458A (en) Method for manufacturing multilayer wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20060525

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A02 Decision of refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A02