JP2000278869A - Secondary battery charging circuit, charger, and electric apparatus - Google Patents

Secondary battery charging circuit, charger, and electric apparatus

Info

Publication number
JP2000278869A
JP2000278869A JP11083133A JP8313399A JP2000278869A JP 2000278869 A JP2000278869 A JP 2000278869A JP 11083133 A JP11083133 A JP 11083133A JP 8313399 A JP8313399 A JP 8313399A JP 2000278869 A JP2000278869 A JP 2000278869A
Authority
JP
Japan
Prior art keywords
charging current
charging
circuit
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083133A
Other languages
Japanese (ja)
Inventor
Shinichi Osada
慎一 長田
Tomozo Yamanouchi
知三 山之内
Yuichi Takaoka
祐一 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11083133A priority Critical patent/JP2000278869A/en
Publication of JP2000278869A publication Critical patent/JP2000278869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress charging current when charged with a large current flow and secure proper charging current for a battery cell in the normal charging by installing a positive characteristic thermistor in a resistor circuit for controlling charging current connected in series with a diode for preventing the back flow of charging current in a lithium ion secondary battery. SOLUTION: A rectifier circuit 3 rectifies and smoothes the input to the voltage close to the DC voltage of the peak voltage. A DC-DC converter 4 is a switching regulator and steps down the DC supply voltage. A transistor Tr serves for a series regulator circuit. A charging control circuit 5 operates from the voltage outputted from the DC-DC converter 4 as the supply voltage, and controls the base current of the transistor Tr based on a voltage detection signal from a Vdtc terminal and a temperature detection signal from a Vth terminal of a battery pack to control charging current. A positive characteristic thermistor is used for a resistor of a circuit for controlling charging current. Due to this structure, when large charging current is caused flow at the time of charging, the excessive charging current can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、リチウムイオン
2次電池やリチウムポリマー2次電池等の2次電池用の
充電回路と、それを備えた充電器および電気機器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging circuit for a secondary battery such as a lithium ion secondary battery or a lithium polymer secondary battery, and a charger and an electric device having the same.

【0002】[0002]

【従来の技術】リチウム2次電池は、その高い容積効率
および重量効率が活かされて、例えばノート型パソコ
ン、携帯電話または電気自動車などの電源装置として用
いられている。
2. Description of the Related Art A lithium secondary battery is used as a power supply device for, for example, a notebook personal computer, a mobile phone, or an electric vehicle due to its high volumetric efficiency and weight efficiency.

【0003】特にリチウムイオン2次電池は、その電池
パック自体の安全性を高めるために、充放電に関する制
御回路が組み込まれている。
In particular, a lithium-ion secondary battery has a built-in charge / discharge control circuit for enhancing the safety of the battery pack itself.

【0004】図8に、このような従来のリチウムイオン
2次電池パックの回路構成を示す。この例では、満充電
時の電圧が約4Vとなる電池セル1が3個直列に接続さ
れ、Vout−Gnd端子間で12Vの出力を取り出し
ている。Vchr,Vdtc,Vthの各端子は充電器
に接続され、リチウムイオン2次電池を充電する際に使
用される。D1は逆流防止ダイオード、R1は充電電流
制御用抵抗であり、この例では抵抗R1が充電電流制御
用抵抗回路を構成している。充電時には、VchrとG
nd端子間に充電電圧が印加され、Vchr→ダイオー
ドD1→抵抗R1→電池セル→FET→Gndの経路で
充電電流が流れる。
FIG. 8 shows a circuit configuration of such a conventional lithium ion secondary battery pack. In this example, three battery cells 1 whose voltage at the time of full charge is about 4 V are connected in series, and an output of 12 V is taken out between the Vout-Gnd terminals. Each terminal of Vchr, Vdtc, and Vth is connected to a charger and used when charging a lithium ion secondary battery. D1 is a backflow prevention diode, and R1 is a charging current control resistor. In this example, the resistor R1 forms a charging current control resistor circuit. When charging, Vchr and G
A charging voltage is applied between the nd terminals, and a charging current flows through a path of Vchr → diode D1 → resistance R1 → battery cell → FET → Gnd.

【0005】図8において、過電圧・過電流・過放電検
出制御回路2は、電池セル1に対する過電圧・過電流・
過放電を検出した時、FETをオフして電池セルに対す
る充放電電流を遮断する。Rntc は電池セル1の温度を
検出する温度センサとしての負特性サーミスタである。
In FIG. 8, an overvoltage / overcurrent / overdischarge detection control circuit 2 controls an overvoltage / overcurrent / overcurrent
When overdischarge is detected, the FET is turned off to interrupt the charge / discharge current for the battery cell. Rntc is a negative characteristic thermistor as a temperature sensor for detecting the temperature of the battery cell 1.

【0006】[0006]

【発明が解決しようとする課題】図8に示した従来のリ
チウムイオン2次電池パックにおいて、充電電流制御用
の抵抗R1は、例えば50Ω(以下抵抗R1の抵抗値を
R1で表す。)に設定されている。通常の(平均的な)
充電時(以下、「通常充電時」という。)の電池セル電
圧Vcは11V程度であり、この時の充電電流は、 I=(Vchr−Vc)/R1=(12−11)/50
=20mA となる。
In the conventional lithium ion secondary battery pack shown in FIG. 8, the resistance R1 for controlling the charging current is set to, for example, 50Ω (hereinafter, the resistance value of the resistance R1 is represented by R1). Have been. Normal (average)
The battery cell voltage Vc during charging (hereinafter, referred to as “normal charging”) is about 11 V, and the charging current at this time is I = (Vchr−Vc) / R1 = (12−11) / 50
= 20 mA.

【0007】もし、電池セル1が放電されきっていて、
その蓄積電荷が略0であるときに、充電電圧Vchr
(略12V)が供給された場合、(以下、この状態を
「大電流充電時」という。)逆流防止ダイオードD1の
電圧降下および充電電流経路途中の各部の電圧降下を0
とすれば、両者の電位差(Vchr−Vc=12V)が
抵抗R1の両端に印加され、抵抗R1には240mAの
電流が流れる。この電流により抵抗R1は、 P=I2 R1=2.88W の電力を消費する。このような大電力に耐え得る抵抗器
は相対的に極めて大型である。
If the battery cell 1 has been completely discharged,
When the accumulated charge is substantially zero, the charging voltage Vchr
When (approximately 12 V) is supplied (hereinafter, this state is referred to as “during large current charging”), the voltage drop of the backflow prevention diode D1 and the voltage drop of each part in the charging current path are reduced to 0.
Then, the potential difference between them (Vchr-Vc = 12 V) is applied to both ends of the resistor R1, and a current of 240 mA flows through the resistor R1. With this current, the resistor R1 consumes power of P = I 2 R1 = 2.88W. Resistors that can withstand such high power are relatively extremely large.

【0008】図9は従来のリチウムイオン2次電池パッ
クの内部に設けられる回路基板の構成を示す図である。
この回路基板は低コスト化および電池パック内での取り
付け性を考慮して通常片面実装基板が使用される。図9
に示すように、上記の大電力に耐え得る抵抗回路をチッ
プ抵抗器で構成する場合、3216型(縦3.2×横
1.6mm角)のチップ抵抗器を4個程度並列接続する
ことになる。
FIG. 9 is a diagram showing a configuration of a circuit board provided inside a conventional lithium ion secondary battery pack.
As this circuit board, a single-sided mounting board is usually used in consideration of cost reduction and mountability in a battery pack. FIG.
As shown in the figure, when a resistor circuit capable of withstanding the above-mentioned high power is constituted by a chip resistor, about 4 chip resistors of type 3216 (3.2 × 1.6 mm square) are connected in parallel. Become.

【0009】これらのチップ抵抗器の回路基板上に占め
る占有面積は非常に大きなものであり、このことが小型
化、低コスト化の妨げとなっていた。また、上記240
mAという大きな充電電流が流れることは、充電器内の
シリーズレギュレーション用のトランジスタや整流ダイ
オードの電流定格を決定する上でも大きな影響を与え
る。すなわち上記トランジスタやダイオードとして、上
記大電流に耐えるだけの大容量の部品を使用する必要が
生じ、このことが充電器側でも小型化および低コスト化
の妨げとなっていた。
The area occupied by these chip resistors on the circuit board is very large, which has hindered miniaturization and cost reduction. In addition, the above 240
The flow of a large charging current of mA has a great effect on determining the current rating of a series-regulating transistor and a rectifier diode in a charger. That is, it is necessary to use a large-capacity component capable of withstanding the large current as the transistor and the diode, which has hindered miniaturization and cost reduction on the charger side.

【0010】尚、上記充電電流制御用抵抗R1の抵抗値
を予め高く設定すれば、最大充電電流を抑えることがで
きるが、それに伴い通常充電時の充電電流も小さくな
り、充電に長時間を要することになる。したがって、充
電電流制御用抵抗の抵抗値を必要以上に大きくすること
もできない。
If the resistance value of the charging current control resistor R1 is set to a high value in advance, the maximum charging current can be suppressed. However, the charging current during normal charging also decreases, and a long time is required for charging. Will be. Therefore, the resistance value of the charging current control resistor cannot be increased more than necessary.

【0011】この発明の目的は、上記問題を解消して、
大電流充電時の充電電流を抑え、且つ通常充電時の電池
セルへの適度な充電電流を確保し得るようにした2次電
池充電回路と、それを用いた充電器および電気機器を提
供することにある。
An object of the present invention is to solve the above problems,
To provide a secondary battery charging circuit capable of suppressing a charging current at the time of large current charging and securing an appropriate charging current to a battery cell at the time of normal charging, and a charger and an electric device using the same. It is in.

【0012】[0012]

【課題を解決するための手段】この発明は、大電流充電
時の充電電流を抑え、且つ通常充電時の電池セルへの適
度な充電電流を確保するため、リチウムイオン2次電池
の充電電流経路の逆流防止ダイオードに直列に接続され
る充電電流制御用抵抗回路に正特性サーミスタを設ける
ことを特徴とする。このことにより、蓄積電荷が0に近
い電池セルへの充電時に大きな充電電流が流れた場合
に、正特性サーミスタの自己発熱により抵抗値が上昇
し、その結果、過大な充電電流が抑制される。
SUMMARY OF THE INVENTION The present invention provides a charging current path for a lithium ion secondary battery in order to suppress the charging current at the time of large current charging and to secure an appropriate charging current to the battery cell at the time of normal charging. Wherein a positive-characteristic thermistor is provided in the charging current control resistor circuit connected in series to the backflow prevention diode. As a result, when a large charge current flows when charging a battery cell having a stored charge close to 0, the self-heating of the positive temperature coefficient thermistor increases the resistance value, and as a result, an excessive charge current is suppressed.

【0013】また、この発明は前記正特性サーミスタの
キュリー点における抵抗値(Rcp)とトリップ(キュ
リー点を超えて高抵抗になった状態)後の安定抵抗値
(Rtn)の比(Rtn/Rcp)を100〜1000
の範囲内とする。また、この発明は前記充電電流制御用
抵抗回路を、前記正特性サーミスタと固定抵抗器との並
列回路とする。これにより正特性サーミスタと固定抵抗
器の合成による抵抗温度特性を定める。これらにより、
大電流充電時の充電電流の上限と通常充電時の充電電流
値との関係をより最適に定めることができる。
The present invention also relates to a ratio (Rtn / Rcp) of the resistance value (Rcp) at the Curie point of the positive temperature coefficient thermistor to the stable resistance value (Rtn) after a trip (high resistance beyond the Curie point). ) From 100 to 1000
Within the range. Further, according to the present invention, the charging current control resistor circuit is a parallel circuit of the PTC thermistor and a fixed resistor. This determines the resistance-temperature characteristic by combining the positive characteristic thermistor and the fixed resistor. By these,
The relationship between the upper limit of the charging current during large-current charging and the charging current value during normal charging can be determined more optimally.

【0014】[0014]

【発明の実施の形態】まずリチウムイオン2次電池パッ
ク(以下電池パックという)に対する充電器の回路構成
を図1に示す。図1において整流回路3はAC100V
入力をピーク電圧約140Vの略直流電圧に整流平滑す
る。DC−DCコンバータ4はスイッチングレギュレー
タであり、入力されたDC電源電圧をDC12Vに降圧
する。トランジスタTrはシリーズレギュレータ回路を
構成し、充電制御回路5はDC−DCコンバータ4から
出力される電圧を電源電圧として動作し、電池パックの
Vdtc端子からの電圧検出信号に応じて、また電池パ
ックのVth端子からの温度検出信号に応じて、トラン
ジスタTrのベース電流を制御することにより、電池パ
ックに対する充電電流を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a circuit configuration of a charger for a lithium ion secondary battery pack (hereinafter referred to as a battery pack). In FIG. 1, the rectifier circuit 3 is 100 V AC.
The input is rectified and smoothed to a substantially DC voltage having a peak voltage of about 140V. The DC-DC converter 4 is a switching regulator, and reduces the input DC power supply voltage to DC12V. The transistor Tr forms a series regulator circuit, the charging control circuit 5 operates using the voltage output from the DC-DC converter 4 as a power supply voltage, and responds to a voltage detection signal from the Vdtc terminal of the battery pack, By controlling the base current of the transistor Tr according to the temperature detection signal from the Vth terminal, the charging current to the battery pack is controlled.

【0015】図2は電池パックの回路構成を示す図であ
る。図8に示した従来の回路と異なり、充電電流制御用
抵抗回路の抵抗として正特性サーミスタRptc を用いて
いる。
FIG. 2 is a diagram showing a circuit configuration of the battery pack. Unlike the conventional circuit shown in FIG. 8, a positive-characteristic thermistor Rptc is used as the resistance of the charging current control resistance circuit.

【0016】なお、Vdtc端子に接続される抵抗R2
は、電圧検出保護用抵抗である。このVdtc端子に接
続される電圧検出回路側のモードによって大電流が流れ
る場合には、固定抵抗に代えて正特性サーミスタを用い
ることもできる。
A resistor R2 connected to the Vdtc terminal
Is a voltage detection protection resistor. When a large current flows depending on the mode of the voltage detection circuit connected to the Vdtc terminal, a positive temperature coefficient thermistor can be used instead of the fixed resistor.

【0017】図3は上記Rptc の抵抗−温度特性であ
る。この例では、キュリー点CP(抵抗値が25℃にお
ける抵抗値の2倍となるときの温度)が100℃であ
り、常温25℃で50Ωを示し、通常の使用温度環境0
℃〜60℃で50±10Ωを示す。また、トリップ後の
安定抵抗値は50kΩを示す。ここでキュリー点におけ
る抵抗値をRcp、トリップ後の安定抵抗値をRtnと
すれば、Rtn/Rcp比は1000となる。
FIG. 3 shows the resistance-temperature characteristics of Rptc. In this example, the Curie point CP (the temperature at which the resistance value becomes twice the resistance value at 25 ° C.) is 100 ° C., which indicates 50Ω at normal temperature 25 ° C.
It shows 50 ± 10Ω between 60 ° C and 60 ° C. Further, the stable resistance value after the trip indicates 50 kΩ. If the resistance value at the Curie point is Rcp and the stable resistance value after the trip is Rtn, the Rtn / Rcp ratio is 1000.

【0018】上記抵抗温度特性の正特性サーミスタRpt
c を用いて、図2に示したように回路を構成することに
より、通常充電時には使用温度環境に応じて50±10
Ωのチップ抵抗器として作用し、電池セルの蓄積電荷が
略0であるときの充電に際しては、正特性サーミスタR
ptc の抵抗値が自己発熱によりキュリー点CPを超え、
例えば50kΩの高抵抗となる。
The positive temperature coefficient thermistor Rpt of the temperature resistance characteristic
By using c to configure the circuit as shown in FIG. 2, during normal charging, 50 ± 10
Acting as a chip resistor of Ω, the positive-characteristic thermistor R
The resistance value of ptc exceeds the Curie point CP due to self-heating,
For example, the resistance becomes high at 50 kΩ.

【0019】ここで、先ず、通常の状態の電池セルへの
充電電流を検討すると、電池セル電圧Vcが11Vの
時、正特性サーミスタRptc に流れる充電電流は、 I=(Vchr−Vc)/R1=(12−11)/50
=20mA となる。
First, when the charging current to the battery cell in the normal state is examined, when the battery cell voltage Vc is 11 V, the charging current flowing through the positive characteristic thermistor Rptc is I = (Vchr-Vc) / R1 = (12-11) / 50
= 20 mA.

【0020】この時の正特性サーミスタRptc で消費さ
れる電力(自己発熱電力)は、 (自己発熱電力)=I2 R=0.022 ×50=0.0
2W であり、自己発熱による温度上昇は、 (自己発熱による温度上昇)=自己発熱電力/熱放散定
数=0.02/0.001=20℃ となり、正特性サーミスタRptc の温度は使用環境温度
に対し+20℃程度となる。このときの使用環境温度が
60℃と高い場合でも、正特性サーミスタRptcの温度
は80℃になるだけであって、図3から明らかなよう
に、抵抗値は依然として安定抵抗値(50±10Ω)の
領域である。
The power consumed by the PTC thermistor Rptc when the (self-heating power), (self-heating power) = I 2 R = 0.02 2 × 50 = 0.0
The temperature rise due to self-heating is as follows: (Temperature rise due to self-heating) = self-heating power / heat dissipation constant = 0.02 / 0.001 = 20 ° C. The temperature of the positive characteristic thermistor Rptc is equal to the operating temperature. On the other hand, it is about + 20 ° C. Even if the use environment temperature at this time is as high as 60 ° C., the temperature of the positive temperature coefficient thermistor Rptc is only 80 ° C., and as is clear from FIG. 3, the resistance value is still a stable resistance value (50 ± 10Ω). Area.

【0021】次に、放電されきった状態の電池セルへの
充電電流を検討すると、このとき電池セル電圧Vcは略
0Vであり、 I=(Vchr−Vc)/R1=(12−0)/50=
240mA となる。この時の正特性サーミスタRptc の自己発熱を
計算すると、 (自己発熱電力)=I2 R=0.242 ×50=2.2
8W であり、自己発熱による温度上昇は、 (自己発熱による温度上昇)=自己発熱電力/熱放散定
数=2.28/0.001=2880℃ となり、極めて急峻な自己発熱によりキュリー点=10
0℃を超えることがわかる。
Next, when examining the charging current to the battery cell in a completely discharged state, the battery cell voltage Vc at this time is approximately 0 V, and I = (Vchr-Vc) / R1 = (12-0) / 50 =
240 mA. Calculating the self-heating of the PTC thermistor Rptc at this time (self-heating power) = I 2 R = 0.24 2 × 50 = 2.2
The temperature rise due to self-heating is as follows: (temperature rise due to self-heating) = self-heating power / heat dissipation constant = 2.28 / 0.001 = 2880 ° C., and the Curie point = 10 due to extremely steep self-heating.
It turns out that it exceeds 0 degreeC.

【0022】ここで、正特性サーミスタRptc の自己発
熱による温度上昇が100℃となる電池セル電圧Vcを
求めると、 自己発熱電力/熱放散定数=Q/0.001=100℃ の関係より、Q=0.1W 自己発熱電力=I2 R=I2 ×50=0.1W の関係より、I=0.045Aとして求まる。したがっ
て、 12−Vc=I・R1=0.045×50=2.25V の関係より、Vc=9.75Vとなる。
Here, when the battery cell voltage Vc at which the temperature rise due to self-heating of the positive temperature coefficient thermistor Rptc becomes 100 ° C. is obtained, from the relationship of self-heating power / heat dissipation constant = Q / 0.001 = 100 ° C. = 0.1 W Self-heating power = I 2 R = I 2 × 50 = 0.1 W From the relationship, I = 0.045 A is obtained. Therefore, Vc = 9.75V from the relationship of 12−Vc = I · R1 = 0.045 × 50 = 2.25V.

【0023】このように、電池セルの放電が進み、Vc
<9.75Vとなった電池セルに対しては、過大な充電
電流が約1/1000のレベルに抑制される。また、こ
の電池セルに対する充電を開始した後、正特性サーミス
タRptc の温度が低下するにしたがって抵抗値が小さく
なることにより、充電電流が増大していく。しかし、充
電電流の増大→温度上昇→抵抗値増大→充電電流の減少
という自己負帰還作用により、適度な充電電流による充
電が進行する。そして充電が進んでVc>9.75Vと
なった時、正特性サーミスタの抵抗値は50Ω程度にま
で復帰し、通常の充電電流による充電に移行する。
As described above, the discharge of the battery cell proceeds, and Vc
For a battery cell of <9.75 V, the excessive charging current is suppressed to a level of about 1/1000. After the charging of the battery cell is started, the resistance value decreases as the temperature of the positive temperature coefficient thermistor Rptc decreases, so that the charging current increases. However, due to the self-negative feedback action of increasing the charging current → increasing the temperature → increasing the resistance value → decreasing the charging current, charging with an appropriate charging current proceeds. When the charging proceeds and Vc> 9.75V, the resistance value of the positive temperature coefficient thermistor returns to about 50Ω, and the charging shifts to the normal charging current.

【0024】図4は電池パックに内蔵される回路基板の
構成を示す図である。図9に示した従来の電池パックに
おける回路基板と比較すれば明らかなように、充電電流
制御用の抵抗として正特性サーミスタRptc を用いたこ
とにより、従来は大型のチップ抵抗が多数必要であった
のに比べて、本願発明によれば、小型のチップ状正特性
サーミスタ素子を1個だけ用いればよい。その結果、回
路基板上の占有面積を縮小化でき、回路基板全体が小型
化される。図中二点鎖線は図9に示した従来の回路基板
の大きさを示している。
FIG. 4 is a diagram showing a configuration of a circuit board incorporated in the battery pack. As is apparent from comparison with the circuit board of the conventional battery pack shown in FIG. 9, the use of a positive temperature coefficient thermistor Rptc as a resistor for controlling the charging current required a large number of large chip resistors in the past. In contrast, according to the present invention, only one small chip-shaped positive temperature coefficient thermistor element needs to be used. As a result, the occupied area on the circuit board can be reduced, and the entire circuit board can be downsized. The two-dot chain line in the figure indicates the size of the conventional circuit board shown in FIG.

【0025】ここで正特性サーミスタRptc は1608
型(縦1.6×横0.8mm角)のチップ状正特性サー
ミスタであり、熱放散係数1.0mW/℃(静止空気
中)のものを用いる。これにより充電電流制御用抵抗部
分の実装スペースを約1/20にまで省スペース化を図
ることができ、逆流防止ダイオードD1としても低容量
のダイオードを使用できるため、基板形状全体でも20
〜30%の小型化を図ることができる。
Here, the positive characteristic thermistor Rptc is 1608
This is a type (1.6 × 0.8 mm square) chip-type positive temperature coefficient thermistor having a heat dissipation coefficient of 1.0 mW / ° C. (in still air). As a result, the mounting space for the charging current control resistor can be reduced to about 1/20, and a low-capacity diode can be used as the backflow prevention diode D1.
A size reduction of up to 30% can be achieved.

【0026】以上に示した例では、充電電流制御用の正
特性サーミスタのRtn/Rcp比を1000とした
が、この比が1000を超えると、充電電流抑制時の充
電電流が非常に小さな値となって、電池セルの電圧Vc
が上記の例では9.75Vを超えるまでに長時間を要す
ることになる。そこで上記抵抗変化率(Rtn/Rc
p)としては、意図的に1000より低くした正特性サ
ーミスタを用いる。ただし、抵抗変化率が小さすぎると
充電電流抑制効果が小さくなって目的が達せられない。
In the example described above, the Rtn / Rcp ratio of the positive-characteristic thermistor for controlling the charging current is set to 1000. However, if this ratio exceeds 1000, the charging current when suppressing the charging current becomes a very small value. And the voltage Vc of the battery cell
However, in the above example, it takes a long time to exceed 9.75V. Then, the resistance change rate (Rtn / Rc)
As p), a positive temperature coefficient thermistor intentionally lower than 1000 is used. However, if the rate of change in resistance is too small, the effect of suppressing the charging current becomes small, and the object cannot be achieved.

【0027】ここで、抵抗変化が50Ω〜5kΩの範囲
で変化する(Rtn/Rcp比が100の)正特性サー
ミスタを用いた場合について考察する。まず大電流充電
時に流れる充電電流は、上記のとおり、240mAとな
り、そのときの、自己発熱による温度上昇は、急峻に1
00℃を超え、正特性サーミスタRptc の抵抗値は5k
Ωとなって、充電電流は、 I=(Vchr−Vc)/R1 =(12−0)/5k=
2.4mA となる。この時の正特性サーミスタRptc の自己発熱を
計算すると、 (自己発熱電力)=I2 R=0.00242 ×5k=
0.0288W であり、自己発熱による温度上昇は、 (自己発熱による温度上昇)=自己発熱電力/熱放散定
数=0.0288/0.001=29℃ となり、このときの正特性サーミスタの温度がキュリー
点の温度100℃+29℃=129℃となる。もし、こ
れ以上の温度に達すると、回路基板が焦げる等の不具合
が発生する。したがって、上記抵抗変化率の値は100
程度が限度である。
Here, consider the case where a positive temperature coefficient thermistor (Rtn / Rcp ratio is 100) that changes in resistance in the range of 50 Ω to 5 kΩ is used. First, the charging current flowing during large-current charging is 240 mA, as described above, and the temperature rise due to self-heating at this time steeply increases by 1%.
Exceeds 00 ° C and the resistance of the positive temperature coefficient thermistor Rptc is 5k
Ω, and the charging current becomes: I = (Vchr−Vc) / R1 = (12-0) / 5k =
2.4 mA. When the self-heating of the positive characteristic thermistor Rptc at this time is calculated, (self-heating power) = I 2 R = 0.0024 2 × 5k =
0.0288W, and the temperature rise due to self-heating is as follows: (temperature rise due to self-heating) = self-heating power / heat dissipation constant = 0.0288 / 0.001 = 29 ° C. The Curie point temperature is 100 ° C. + 29 ° C. = 129 ° C. If the temperature reaches a temperature higher than this, problems such as burning of the circuit board occur. Therefore, the value of the resistance change rate is 100
The degree is the limit.

【0028】なお、抵抗変化率を低く抑えた正特性サー
ミスタの製造方法としては、主成分となるBaTiO
3 に対しBaと置換するPbやストロンチウムの含有量
を抑制した正特性サーミスタ材料を使用する。仮焼・
混合・成形後のBaTiO3を主成分とするセラミック
正特性サーミスタ材料の焼成を還元性雰囲気中で行う方
法などが有効である。
As a method of manufacturing a positive temperature coefficient thermistor with a low rate of change in resistance, BaTiO as a main component is used.
A positive temperature coefficient thermistor material in which the content of Pb or strontium which replaces Ba with respect to 3 is suppressed is used. Calcined
It is effective to bake the ceramic positive temperature coefficient thermistor material mainly composed of BaTiO 3 after mixing and molding in a reducing atmosphere.

【0029】次に、充電電流制御用抵抗回路の異なっ
た、他の実施形態のリチウムイオン2次電池充電回路の
構成を図6および図7を参照して説明する。図6は電池
パックの回路構成を示す図である。図2に示した回路と
異なり、充電電流制御用抵抗回路を、正特性サーミスタ
Rptc と固定抵抗器R3との並列回路で構成している。
Next, the configuration of a lithium ion secondary battery charging circuit according to another embodiment, which is different from the charging current control resistance circuit, will be described with reference to FIGS. 6 and 7. FIG. FIG. 6 is a diagram showing a circuit configuration of the battery pack. Unlike the circuit shown in FIG. 2, the charging current control resistor circuit is configured by a parallel circuit of a positive characteristic thermistor Rptc and a fixed resistor R3.

【0030】図7は図6に示した正特性サーミスタRpt
c の抵抗温度特性が図3に示したものに等しく、固定抵
抗器R3が50kΩである場合の抵抗温度特性を示す図
である。ここで実線が合成抵抗温度特性、破線が正特性
サーミスタRptc 単体での抵抗温度特性である。
FIG. 7 shows the positive temperature coefficient thermistor Rpt shown in FIG.
FIG. 4 is a diagram showing resistance-temperature characteristics when the resistance-temperature characteristic of c is equal to that shown in FIG. 3 and the fixed resistor R3 is 50 kΩ. Here, the solid line is the combined resistance temperature characteristic, and the broken line is the resistance temperature characteristic of the positive characteristic thermistor Rptc alone.

【0031】この回路により、通常充電時の電流Iは、 I=(12−11)/50=20mA となり、効率よく充電される。With this circuit, the current I during normal charging is I = (12−11) / 50 = 20 mA, and charging is efficient.

【0032】大電流充電時の電流Iは、 I=12/25kΩ=0.48mA となり、充電開始直後の充電電流が適度に抑制される。The current I during large-current charging is I = 12/25 kΩ = 0.48 mA, and the charging current immediately after the start of charging is appropriately suppressed.

【0033】なお、以上に示した実施形態では、チップ
部品としての正特性サーミスタを回路基板上に表面実装
する例を示したが、リード端子付きの正特性サーミスタ
を用いてもよい。
In the above-described embodiment, an example is shown in which a PTC thermistor as a chip component is surface-mounted on a circuit board, but a PTC thermistor with lead terminals may be used.

【0034】また、主にノート型パソコンに使用される
DC12V系のリチウムイオン2次電池の充電回路につ
いて示したが、本発明は、携帯電話機や電気自動車など
のリチウムイオン電池セルを用いた他の電圧系の電池に
対しても適用できる。
Although the charging circuit of a DC12V lithium-ion secondary battery mainly used in a notebook personal computer has been described, the present invention relates to another battery using a lithium-ion battery cell such as a mobile phone or an electric vehicle. It can also be applied to voltage type batteries.

【0035】また、図1、図2、図4、図6等に示した
例では、リチウムイオン2次電池パックに2次電池充電
回路を内蔵させた例を示したが、本発明は充電器自体に
も適用できるものである。すなわち、上記各図に示した
2次電池充電回路を充電器側に設けてもよい。さらに、
同様にして本発明は、2次電池充電回路が組み込まれた
電気機器にも適用可能である。
Also, in the examples shown in FIGS. 1, 2, 4, 6 and the like, examples are shown in which a rechargeable battery charging circuit is built in a lithium ion rechargeable battery pack. It can be applied to itself. That is, the secondary battery charging circuit shown in each of the above drawings may be provided on the charger side. further,
Similarly, the present invention is also applicable to electric equipment in which a secondary battery charging circuit is incorporated.

【0036】また、本発明の好ましい用途は、リチウム
イオン2次電池およびリチウムポリマー2次電池である
が、本発明は他の2次電池に対しても同様に適用でき
る。
The preferred uses of the present invention are a lithium ion secondary battery and a lithium polymer secondary battery, but the present invention can be similarly applied to other secondary batteries.

【0037】[0037]

【発明の効果】請求項1、4、5に記載の発明によれ
ば、蓄積電荷が0に近い電池セルへの充電時に大きな充
電電流が流れた場合(大電流充電時)に、正特性サーミ
スタの自己発熱により抵抗値が上昇し、その結果、過大
な充電電流が抑制される。
According to the first, fourth and fifth aspects of the present invention, when a large charging current flows during charging of a battery cell having a stored charge close to 0 (during large current charging), a positive temperature coefficient thermistor is obtained. The self-heating causes the resistance value to increase, and as a result, excessive charging current is suppressed.

【0038】特に請求項2に記載の発明によれば、通常
充電時の電流を確保するとともに、大電流充電時の電流
を適度に抑制することができる。
In particular, according to the second aspect of the present invention, the current during normal charging can be ensured, and the current during large-current charging can be appropriately suppressed.

【0039】また、請求項3に記載の発明によれば、正
特性サーミスタの特性と固定抵抗器の抵抗値を適宜設定
することによって、大電流充電時の充電電流の上限と通
常充電時の充電電流値との関係をより容易に定めること
ができる。
According to the third aspect of the present invention, by appropriately setting the characteristics of the positive temperature coefficient thermistor and the resistance value of the fixed resistor, the upper limit of the charging current at the time of large current charging and the charging at the time of normal charging are set. The relationship with the current value can be more easily determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態で用いるリチウムイオン2次電池の充
電器の回路構成を示す図
FIG. 1 is a diagram showing a circuit configuration of a charger for a lithium ion secondary battery used in an embodiment.

【図2】第1の実施形態に係るリチウムイオン2次電池
の電池パックの構成を示す図
FIG. 2 is a diagram showing a configuration of a battery pack of the lithium ion secondary battery according to the first embodiment.

【図3】同電池パックに内蔵される充電電流制御用の正
特性サーミスタの抵抗温度特性を示す図
FIG. 3 is a diagram showing a resistance temperature characteristic of a positive-characteristic thermistor for charging current control built in the battery pack.

【図4】電池パックに内蔵される回路基板の構成を示す
FIG. 4 is a diagram showing a configuration of a circuit board incorporated in the battery pack.

【図5】正特性サーミスタの他の抵抗温度特性を示す図FIG. 5 is a diagram showing another resistance temperature characteristic of the positive temperature coefficient thermistor;

【図6】第2の実施形態に係るリチウムイオン2次電池
の電池パックの構成を示す図
FIG. 6 is a diagram showing a configuration of a battery pack of a lithium ion secondary battery according to a second embodiment.

【図7】同回路における充電電流制御用抵抗回路の抵抗
温度特性を示す図
FIG. 7 is a diagram showing a resistance temperature characteristic of a charging current control resistance circuit in the same circuit.

【図8】従来のリチウムイオン2次電池の電池パックの
構成を示す図
FIG. 8 is a diagram showing a configuration of a battery pack of a conventional lithium ion secondary battery.

【図9】同電池パックに内蔵される回路基板の構成を示
す図
FIG. 9 is a diagram showing a configuration of a circuit board built in the battery pack.

【符号の説明】[Explanation of symbols]

1−電池セル Rptc −正特性サーミスタ R1−充電電流制御用抵抗 1-Battery cell Rptc-Positive thermistor R1-Charge current control resistor

フロントページの続き (72)発明者 高岡 祐一 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 5G003 AA01 BA01 CC01 FA04 FA08 GA01 GB03 5G013 AA09 BA01 CA02 Continued on the front page (72) Inventor Yuichi Takaoka 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto F-term in Murata Manufacturing Co., Ltd. (Reference) 5G003 AA01 BA01 CC01 FA04 FA08 GA01 GB03 5G013 AA09 BA01 CA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2次電池の充電電流経路の逆流防止ダイ
オードに直列に接続される充電電流制御用抵抗回路に正
特性サーミスタを設けたことを特徴とする2次電池充電
回路。
1. A rechargeable battery charging circuit, comprising a positive current thermistor provided in a charging current control resistor circuit connected in series to a backflow prevention diode in a charging current path of a rechargeable battery.
【請求項2】 前記正特性サーミスタのキュリー点にお
ける抵抗値(Rcp)とトリップ後の安定抵抗値(Rt
n)の比(Rtn/Rcp)を100〜1000の範囲
内とした請求項1に記載の2次電池充電回路。
2. The resistance (Rcp) at the Curie point of the positive temperature coefficient thermistor and the stable resistance (Rt) after a trip.
2. The secondary battery charging circuit according to claim 1, wherein the ratio (Rtn / Rcp) of n) is in a range of 100 to 1000. 3.
【請求項3】 前記充電電流制御用抵抗回路を、前記正
特性サーミスタと固定抵抗器との並列回路とした請求項
1に記載の2次電池充電回路。
3. The secondary battery charging circuit according to claim 1, wherein the charging current control resistance circuit is a parallel circuit of the positive temperature coefficient thermistor and a fixed resistor.
【請求項4】 請求項1、2または3に記載の2次電池
充電回路を備えて成る充電器。
4. A charger comprising the secondary battery charging circuit according to claim 1.
【請求項5】 請求項1、2または3に記載の2次電池
充電回路を備えて成る電気機器。
5. An electric device comprising the secondary battery charging circuit according to claim 1, 2 or 3.
JP11083133A 1999-03-26 1999-03-26 Secondary battery charging circuit, charger, and electric apparatus Pending JP2000278869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083133A JP2000278869A (en) 1999-03-26 1999-03-26 Secondary battery charging circuit, charger, and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083133A JP2000278869A (en) 1999-03-26 1999-03-26 Secondary battery charging circuit, charger, and electric apparatus

Publications (1)

Publication Number Publication Date
JP2000278869A true JP2000278869A (en) 2000-10-06

Family

ID=13793713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083133A Pending JP2000278869A (en) 1999-03-26 1999-03-26 Secondary battery charging circuit, charger, and electric apparatus

Country Status (1)

Country Link
JP (1) JP2000278869A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005025029A1 (en) * 2003-09-03 2006-11-16 松下電器産業株式会社 Power storage device and wiring pattern
US7737658B2 (en) 2003-10-27 2010-06-15 Sony Corporation Battery packs having a charging mode and a discharging mode
CN104052135A (en) * 2013-03-11 2014-09-17 宏达国际电子股份有限公司 Mobile electronic system and charging accessory
EP2858202A4 (en) * 2012-05-25 2015-09-30 Panasonic Ip Man Co Ltd In-vehicle power supply device and photovoltaic power generation device
CN110797942A (en) * 2019-11-05 2020-02-14 中国船舶重工集团公司第七0五研究所 Trickle charge circuit based on super capacitor
JP2020519225A (en) * 2017-05-08 2020-06-25 ブラウン ゲーエムベーハー Electric circuit and method for charging a secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005025029A1 (en) * 2003-09-03 2006-11-16 松下電器産業株式会社 Power storage device and wiring pattern
JP4732897B2 (en) * 2003-09-03 2011-07-27 パナソニック株式会社 Power storage device and wiring pattern
US7737658B2 (en) 2003-10-27 2010-06-15 Sony Corporation Battery packs having a charging mode and a discharging mode
EP2858202A4 (en) * 2012-05-25 2015-09-30 Panasonic Ip Man Co Ltd In-vehicle power supply device and photovoltaic power generation device
US9834102B2 (en) 2012-05-25 2017-12-05 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply device
CN104052135A (en) * 2013-03-11 2014-09-17 宏达国际电子股份有限公司 Mobile electronic system and charging accessory
US9478999B2 (en) 2013-03-11 2016-10-25 Htc Corporation Mobile electronic system and charging accessory
JP2020519225A (en) * 2017-05-08 2020-06-25 ブラウン ゲーエムベーハー Electric circuit and method for charging a secondary battery
CN110797942A (en) * 2019-11-05 2020-02-14 中国船舶重工集团公司第七0五研究所 Trickle charge circuit based on super capacitor
CN110797942B (en) * 2019-11-05 2023-06-02 中国船舶重工集团公司第七0五研究所 Trickle charging circuit based on super capacitor

Similar Documents

Publication Publication Date Title
US8363370B2 (en) Over-voltage protection circuit
US7808212B2 (en) Temperature-based charge and discharge control for a battery
US8673469B2 (en) Apparatus for protection of secondary battery
JP2961853B2 (en) Battery protection device
US7880449B2 (en) Capacitor start-up apparatus and method with fail-safe short circuit protection
CA2561189C (en) Safety device for preventing overcharge and secondary battery therewith
US6989981B2 (en) Battery over voltage and over protection circuit and adjustable adapter current limit circuit
US8093865B2 (en) Charging device with backflow prevention
JP2000278869A (en) Secondary battery charging circuit, charger, and electric apparatus
JP2006304557A (en) Protection circuit and power supply device
JP3534309B2 (en) Battery pack with temperature protection
JP2000069689A (en) Battery pack device
KR100679970B1 (en) Charge/discharge controlling semiconductor device
US6147472A (en) Non-rechargeable battery pack
JP2905582B2 (en) Rechargeable battery device
KR101855941B1 (en) Power management device for charging and discharging of lithium battery
JP4323405B2 (en) Semiconductor device for power supply control
CN215528904U (en) No electrolytic capacitor inverter circuit and air conditioner
JP3642105B2 (en) Battery pack
JPH11144770A (en) Battery package, device and method of charging battery package
JP4333907B2 (en) Overdischarge prevention circuit for lithium ion secondary battery
JPH034127Y2 (en)
JPH0445405Y2 (en)
JP2004350468A (en) Discharge control circuit for lithium-ion secondary battery
JPH06150977A (en) Charging circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703