JP4323405B2 - Semiconductor device for power supply control - Google Patents

Semiconductor device for power supply control Download PDF

Info

Publication number
JP4323405B2
JP4323405B2 JP2004287597A JP2004287597A JP4323405B2 JP 4323405 B2 JP4323405 B2 JP 4323405B2 JP 2004287597 A JP2004287597 A JP 2004287597A JP 2004287597 A JP2004287597 A JP 2004287597A JP 4323405 B2 JP4323405 B2 JP 4323405B2
Authority
JP
Japan
Prior art keywords
power
power supply
fuel cell
terminal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004287597A
Other languages
Japanese (ja)
Other versions
JP2006101669A (en
Inventor
泰明 乗松
玲彦 叶田
睦 菊地
伸児 田中
重秋 南畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Solutions Technology Ltd
Original Assignee
Hitachi ULSI Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Systems Co Ltd filed Critical Hitachi ULSI Systems Co Ltd
Priority to JP2004287597A priority Critical patent/JP4323405B2/en
Publication of JP2006101669A publication Critical patent/JP2006101669A/en
Application granted granted Critical
Publication of JP4323405B2 publication Critical patent/JP4323405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Secondary Cells (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、2種類以上の電源を備えた電源装置の制御用半導体装置に関する。   The present invention relates to a control semiconductor device for a power supply device including two or more types of power supplies.

近年の電子技術の進歩によって、携帯電話機、ノート型パーソナルコンピュータ(以下、ノートPCと記す)、オーディオ・ビジュアル機器、モバイル端末機器などの携帯電子機器の普及が急速に進んでいる。これらの携帯電子機器は二次電池によって駆動するシステムであり、新型二次電池の出現、小型軽量化および高エネルギー密度化によって、シール鉛バッテリからNi/Cd電池、Ni水素電池、さらにはLiイオン電池へと発展してきた。いずれの二次電池においてもエネルギー密度を高めるために、電池活物質の開発や高容量電池構造の開発が行われ、より使用時間の長い電源を実現する努力が払われている。   With recent advances in electronic technology, portable electronic devices such as mobile phones, notebook personal computers (hereinafter referred to as notebook PCs), audio-visual devices, and mobile terminal devices are rapidly spreading. These portable electronic devices are systems driven by secondary batteries. With the advent of new secondary batteries, the reduction in size and weight, and the increase in energy density, sealed lead batteries, Ni / Cd batteries, Ni hydrogen batteries, and even Li-ion batteries are used. It has evolved into a battery. In any secondary battery, in order to increase the energy density, a battery active material and a high-capacity battery structure have been developed, and efforts have been made to realize a power source having a longer usage time.

このように、携帯電子機器は、一層の低消費電力化に向けて努力がなされているが、これとは別にユーザニーズの向上のために新しい機能を追加する必要があるため、携帯機器トータルの消費電力は増加する傾向が予想される。そのため、より高密度の電源、すなわち、連続使用時間の長い電源を必要とする方向に向かうことになる。   In this way, efforts are being made to further reduce the power consumption of portable electronic devices, but it is necessary to add new functions to improve user needs. Power consumption is expected to increase. For this reason, the power source is directed to a direction where a higher density power source, that is, a power source having a long continuous use time is required.

連続使用時間の長い電源は二次電池を用いて実現するのが一般的であるが、充電時間の長さが問題である。そのため、充電を必要としない電源の必要性が高まっていて、その解決策として太陽電池や燃料電池が考えられる。燃料電池については改質するなどして水素を燃料として用いるタイプが一般的に知られている。これらが主に80℃以上を動作温度とするのに対し、室温でも動作する燃料電池には、液体燃料を燃料極において直接酸化するタイプのものがあり、代表的なものにメタノールを直接酸化するタイプの燃料電池(DMFC)がある。主にDMFCに関しては、温度に関する安全性が高いことから、携帯電子機器用途の機器に適用した例が知られる(例えば特許文献1参照)。太陽電池や燃料電池は連続使用時間の向上が期待されているが、出力密度が小さいため、大出力のアプリケーションへの適用は難しいのが実情である。アプリケーションによっては高出力への対応がより重要であるものもあるが、そのような高出力密度に特化した電源として、電気二重層キャパシタ等のファラッドオーダーのキャパシタが近年注目を集めている。   A power source having a long continuous use time is generally realized by using a secondary battery, but the length of the charging time is a problem. Therefore, the need for a power source that does not require charging is increasing, and solar cells and fuel cells can be considered as a solution. Regarding the fuel cell, a type in which hydrogen is used as a fuel by reforming or the like is generally known. While these operating temperatures are mainly 80 ° C. or higher, some fuel cells that operate at room temperature directly oxidize liquid fuel at the fuel electrode, and typically oxidize methanol directly. There is a type of fuel cell (DMFC). Mainly regarding DMFC, since the safety regarding temperature is high, the example applied to the apparatus for portable electronic devices is known (for example, refer patent document 1). Solar cells and fuel cells are expected to improve continuous use time, but their actual situation is that they are difficult to apply to high-power applications due to their low power density. In some applications, it is more important to respond to high output, but as a power supply specialized for such high output density, farad order capacitors such as electric double layer capacitors have attracted attention in recent years.

特開2002−32154号公報(要約)JP 2002-32154 A (summary)

前述のように、体積エネルギー密度(Wh/L)や重量エネルギー密度(Wh/kg)の点で高密度化が期待できる燃料電池などの電源は、出力密度の低さが課題である。そのため、高出力が要求されるアプリケーションに燃料電池などの電源を搭載することを想定すると、その大出力を出力可能な大きさに設計せざるを得ず、そのような大きな電源はアプリケーションである携帯機器本体と比較して、サイズも重量も同等程度か、それ以上になる可能性が高い。   As described above, a power source such as a fuel cell that can be expected to have a high density in terms of volume energy density (Wh / L) and weight energy density (Wh / kg) has a problem of low output density. Therefore, if it is assumed that a power source such as a fuel cell is installed in an application that requires high output, the large output must be designed to be large enough to be output. Compared to the device itself, the size and weight are likely to be the same or higher.

現在の携帯電子機器用途において、高出力アプリケーションの一つとして外付けのバッテリチャージャーがある。携帯電子機器用の外付けバッテリチャージャーには通常、対象機器のACアダプタと同等の電力を出力可能な能力が要求されるため、携帯機器の駆動電力と携帯機器が搭載している二次電池の充電電力の合計を出力可能な性能がチャージャーには必要である。しかしながら、燃料電池の出力密度の低さから、携帯機器用の外付けバッテリチャージャーに燃料電池などの電源を適用し、小型・軽量化を実現することは非常に難しい。また、小型・軽量であるが発電面積が小さく、したがって出力電力の小さい燃料電池などの電源を外付けバッテリチャージャーとして使うためには、電力を一定以上は要求しないような専用設計をした新しい電子機器が必要であり、互換性が乏しい。   In current portable electronic device applications, an external battery charger is one of high-power applications. Since external battery chargers for portable electronic devices are usually required to have the ability to output the same power as the AC adapter of the target device, the driving power of the portable device and the secondary battery installed in the portable device The charger must be capable of outputting the total charge power. However, due to the low output density of the fuel cell, it is very difficult to apply a power source such as a fuel cell to an external battery charger for portable devices to achieve a reduction in size and weight. In addition, in order to use a power source such as a fuel cell that is small and lightweight but has a small power generation area and therefore low output power as an external battery charger, it is a new electronic device that has been designed exclusively so that it does not require more than a certain amount of power. Is necessary and incompatible.

本発明の目的は、燃料電池などの高エネルギー密度の電源を大型化することなく携帯電子機器の外付けバッテリチャージャーとして使うことを可能にする制御用ICを提供することにある。   An object of the present invention is to provide a control IC that can be used as an external battery charger for portable electronic devices without increasing the size of a high energy density power source such as a fuel cell.

本発明では燃料電池のような高エネルギー密度電源のほかに、電気二重層キャパシタ,Ni水素電池,HEVやEV用に使われるLi電池のような高出力密度電源を備え、従来の電子機器にそのまま使うことを可能とする互換性の高い電源装置用制御ICを提案する。   In the present invention, in addition to a high energy density power source such as a fuel cell, a high power density power source such as an electric double layer capacitor, a Ni hydrogen battery, a Li battery used for HEV and EV, and the like is used in a conventional electronic device. We propose a highly compatible power supply control IC that can be used.

本発明は、少なくとも2種類の電源と、外部への供給電力端子の通電と遮断が可能なスイッチを備えた電源装置の制御用半導体装置であって、前記スイッチの通電が断続的になるように制御する機能を持つことを特徴とする電源装置の制御用半導体装置にある。   The present invention provides a control semiconductor device for a power supply device including at least two types of power supplies and a switch capable of energizing and shutting off a power supply terminal to be externally provided so that the energization of the switches is intermittent. The power semiconductor device control semiconductor device has a function of controlling.

本発明により、電源装置全体での小型・軽量化、低コスト化を実現でき、特別な仕様変更無しで現行の電子機器にそのまま使うことが可能になった。   According to the present invention, the entire power supply device can be reduced in size, weight, and cost, and can be used as it is in an existing electronic device without any special specification change.

以下、本発明に係る制御ICの仕様およびその制御方法の詳細について、図を用いて説明する。ただし、以下では8つの実施例を示すが、これらの実施例に限定されるものではなく、また、これらの実施例のいくつかを組み合わせて使用することが可能である。   Hereinafter, the details of the control IC specification and the control method according to the present invention will be described with reference to the drawings. However, although eight examples are shown below, it is not limited to these examples, and it is possible to use some of these examples in combination.

第一の実施例について図1を用いて説明する。本実施例では、電池1と電気二重層コンデンサ(EDLC)2の二つの電源を備える。本実施例においては、電池1には、Liイオン電池などの二次電池、太陽電池或いは燃料電池を使うことを想定する。なお、電池1が燃料電池である場合は、構成の簡略化のために直接メタノール型燃料電池(DMFC)を用いることが望ましい。また、図1においてはEDLC2を一直列にして使用しているが、出力のために必要とされる電池1の直列セル数から算出される最大電圧がEDLC2の耐圧を超えないセル数で良い。例えば電池1が燃料電池である場合は、燃料電池の単セルの最大電圧(約1.2〜0.8V)から勘案して、EDLCの1セルに対して燃料電池を2〜4セルの範囲に設計することが適当である。   A first embodiment will be described with reference to FIG. In the present embodiment, two power sources, that is, a battery 1 and an electric double layer capacitor (EDLC) 2 are provided. In the present embodiment, it is assumed that the battery 1 uses a secondary battery such as a Li ion battery, a solar battery, or a fuel battery. When the battery 1 is a fuel cell, it is desirable to use a direct methanol fuel cell (DMFC) for simplification of the configuration. In FIG. 1, EDLC 2 is used in series, but the maximum voltage calculated from the number of series cells of battery 1 required for output may be the number of cells that does not exceed the breakdown voltage of EDLC 2. For example, when the battery 1 is a fuel cell, the range of 2 to 4 fuel cells per EDLC cell is taken into consideration from the maximum voltage (approximately 1.2 to 0.8 V) of a single cell of the fuel cell. It is appropriate to design.

以上の二つの電源を使った回路部分には、二つの電源電圧を一定の出力電圧(Vout,GND間電圧)に変換するDC/DCコンバータ5、負荷への供給と遮断を制御する負荷遮断スイッチ4、負荷遮断スイッチ4のON,OFFを制御する制御IC3を備える。DC/DCコンバータ5は、絶縁型(フォワード,フライバック,プッシュプル等)、チョッパ型の昇圧コンバータを用いる方が、前記二つの電源のセル数を下げる上で効果的であるが、もちろん負荷電圧によっては降圧型コンバータや昇降圧型コンバータを用いても良い。図1において負荷遮断スイッチ4にはNチャネルパワーMOS FETを用いているが、DC/DCコンバータ5のVout側にPチャネルパワーMOS FETを用いることで実現しても良いし、その他のスイッチング素子を用いても良い。   The circuit portion using the above two power supplies includes a DC / DC converter 5 that converts the two power supply voltages into a constant output voltage (voltage between Vout and GND), and a load cut-off switch that controls supply and cut-off to the load. 4. A control IC 3 for controlling ON / OFF of the load cutoff switch 4 is provided. For the DC / DC converter 5, it is more effective to reduce the number of cells of the two power sources by using an insulation type (forward, flyback, push-pull, etc.) or chopper type boost converter. Depending on the case, a step-down converter or a buck-boost converter may be used. In FIG. 1, an N-channel power MOS FET is used for the load cutoff switch 4, but it may be realized by using a P-channel power MOS FET on the Vout side of the DC / DC converter 5, and other switching elements may be used. It may be used.

次に制御IC3の仕様について以下に述べる。制御IC3はEDLC2の電圧監視用および電源用の端子と負荷遮断スイッチ4の制御端子とGND端子の少なくとも3端子を備えたICである。もちろん、電圧監視用端子と電源用端子を分けた4端子の構成にしても良い。内部には上限電圧判定手段と下限電圧判定手段をもち、フリップフロップの出力が負荷遮断スイッチのON,OFFに対応する。EDLCの電圧が下限電圧に達すると出力スイッチがOFFとなる。このことにより、負荷がほぼ0となり、燃料電池の発電が正常であるならば燃料電池からEDLC2への充電が開始され、EDLC2の電圧が上昇する。なお、このときの出力スイッチはOFFのままである。その後、EDLCの電圧が上限電圧に達すると出力スイッチがONとなる。このことにより、負荷への電力供給が開始され、燃料電池とEDLC2の両方が放電し、負荷が燃料電池の放電量を超えている場合は、EDLC2が不足分を放電するため、EDLC2の電圧が低下する。なお、電圧低下中も負荷遮断スイッチはONのままである。その後、EDLCの電圧が下限電圧に達すると出力スイッチがOFFとなり、以後、このサイクルを繰り返す。また、図10に示すようにIC内部のリファレンス電圧を1.2Vなどの共通電圧にし、上限電圧用の端子と下限電圧用の端子を別にして、外付けの分圧抵抗によって上限電圧と下限電圧を設計できるようにして、前記機能を実現するICとしても良い。この構成にした場合は各端子の耐圧を気にすることなく設計することが可能になる。   Next, the specification of the control IC 3 will be described below. The control IC 3 is an IC provided with at least three terminals: a voltage monitoring and power supply terminal of the EDLC 2, a control terminal of the load cutoff switch 4, and a GND terminal. Of course, a four-terminal configuration in which the voltage monitoring terminal and the power supply terminal are separated may be used. There are an upper limit voltage determination means and a lower limit voltage determination means inside, and the output of the flip-flop corresponds to ON / OFF of the load cutoff switch. When the EDLC voltage reaches the lower limit voltage, the output switch is turned off. As a result, when the load becomes almost zero and the power generation of the fuel cell is normal, charging from the fuel cell to the EDLC 2 is started, and the voltage of the EDLC 2 rises. Note that the output switch at this time remains OFF. Thereafter, when the voltage of the EDLC reaches the upper limit voltage, the output switch is turned on. As a result, power supply to the load is started, both the fuel cell and the EDLC 2 are discharged, and when the load exceeds the discharge amount of the fuel cell, the EDLC 2 discharges the shortage, so the voltage of the EDLC 2 descend. Note that the load cut-off switch remains ON even during the voltage drop. Thereafter, when the voltage of the EDLC reaches the lower limit voltage, the output switch is turned off, and thereafter this cycle is repeated. Further, as shown in FIG. 10, the reference voltage inside the IC is set to a common voltage such as 1.2 V, the upper limit voltage terminal and the lower limit voltage terminal are separated, and the upper limit voltage and the lower limit are set by an external voltage dividing resistor. An IC that realizes the above-described function by allowing the voltage to be designed may be used. In this case, it is possible to design without worrying about the breakdown voltage of each terminal.

なお、以上に述べた制御を行ったときの機器への放電電力と電池出力の電力波形を図2に示す。図2に示すように、この制御ICを用いることにより、燃料電池の供給能力以上の電力を負荷に供給することができる。それに加えて、機器への放電時間が数秒以上になるようにEDLCの容量を設計することで、負荷側から見るとACアダプタの抜き差しに相当する動作であるため、チャタリングを起こすような異常動作の心配もない。また、電池1が燃料電池や太陽電池の場合は、発電面積を小電力設計にすることで小型化することも可能である。なお、電池1が燃料電池である場合は、燃料電池の電力が温度等の条件で定格よりも小さくなった場合でも問題なく動作する。   FIG. 2 shows the discharge power to the device and the power waveform of the battery output when the control described above is performed. As shown in FIG. 2, by using this control IC, it is possible to supply power exceeding the supply capacity of the fuel cell to the load. In addition, by designing the capacity of the EDLC so that the discharge time to the device is several seconds or more, it is an operation equivalent to plugging in and out of the AC adapter when viewed from the load side. No worries. Moreover, when the battery 1 is a fuel cell or a solar cell, it is possible to reduce the size by making the power generation area a low power design. In addition, when the battery 1 is a fuel cell, even if the electric power of the fuel cell becomes smaller than the rating under conditions such as temperature, it operates without any problem.

本発明の第二の実施例について図3を用いて説明する。本実施例は実施例1に加えて、負荷への供給端子間の短絡などが原因となって過電流が生ずるのを防止する過電流防止機能を加えた構成である。   A second embodiment of the present invention will be described with reference to FIG. In this embodiment, in addition to the first embodiment, an overcurrent prevention function for preventing an overcurrent from occurring due to a short circuit between supply terminals to a load is added.

制御IC3の仕様について以下に述べる。制御IC3はEDLC2の電圧監視用および電源用の端子、負荷遮断スイッチ4にかかる電圧監視用の端子、負荷遮断スイッチの制御端子、GND端子の少なくとも4端子を備えたICである。もちろん、電圧監視用端子と電源用端子を分けた5端子の構成にしても良い。   The specification of the control IC 3 will be described below. The control IC 3 is an IC provided with at least four terminals of a voltage monitoring terminal and a power supply terminal of the EDLC 2, a voltage monitoring terminal applied to the load cutoff switch 4, a control terminal of the load cutoff switch, and a GND terminal. Of course, a five-terminal configuration in which the voltage monitoring terminal and the power supply terminal are separated may be used.

EDLC2に基づくサイクル動作は実施例1と変わらない。負荷遮断スイッチ4にかかる電圧が或る閾値以下であるならば、正常状態と判断して実施例1と変わらないサイクル動作が繰り返される。負荷遮断スイッチ4にかかる電圧が或る閾値以上であるならば、過電流状態と判断して負荷遮断スイッチ4が強制的にOFFとなる。過電流状態から正常状態への復帰に関しては、図3に示すように負荷遮断スイッチ4と並列に接続されたコンデンサ成分の一定電圧までの放電で決まる電圧低下時間を利用した待ち時間を設けても良いし、制御IC3にタイマー機能を設けても良い。   The cycle operation based on EDLC2 is the same as that in the first embodiment. If the voltage applied to the load cut-off switch 4 is below a certain threshold value, it is determined as a normal state, and the cycle operation that is the same as in the first embodiment is repeated. If the voltage applied to the load cutoff switch 4 is equal to or higher than a certain threshold value, it is determined that the current is in an overcurrent state, and the load cutoff switch 4 is forcibly turned off. Regarding the return from the overcurrent state to the normal state, a waiting time using a voltage drop time determined by the discharge of the capacitor component connected in parallel with the load cutoff switch 4 to a certain voltage as shown in FIG. Alternatively, the control IC 3 may be provided with a timer function.

この制御ICを用いることにより、実施例1で述べた利点に加えて、短絡時の保護や最大定格を超える出力の制限をかけることができる。   By using this control IC, in addition to the advantages described in the first embodiment, protection at the time of a short circuit and output limitation exceeding the maximum rating can be applied.

本発明の第三の実施例について図4を用いて説明する。本実施例は実施例2に加えて、EDLC2の耐圧を超えないように過電圧防止機能を加えた構成である。図4において、EDLC充電スイッチ6はPチャネルパワーMOS FETを使用しているため、LowでON,HighでOFFの仕様となっているが、EDLC2のマイナス側にNチャネルパワーMOS FETを用いて、HighでON,LowでOFFの仕様にしても良い。また、過電圧防止機能を加えたことにより、電池1の電圧範囲において、EDLC2の耐圧を超える範囲が存在するような電池1のセル数を選択することも可能になる。   A third embodiment of the present invention will be described with reference to FIG. In this embodiment, in addition to the second embodiment, an overvoltage prevention function is added so as not to exceed the withstand voltage of the EDLC 2. In FIG. 4, since the EDLC charge switch 6 uses a P-channel power MOS FET, it has a specification of ON at Low and OFF at High, but using an N-channel power MOS FET on the negative side of EDLC2, The specification may be ON for High and OFF for Low. Further, by adding the overvoltage prevention function, it is possible to select the number of cells of the battery 1 such that there is a range exceeding the withstand voltage of the EDLC 2 in the voltage range of the battery 1.

制御IC3の仕様について以下に述べる。制御IC3はEDLC2の電圧監視用および電源用の端子、負荷遮断スイッチ4にかかる電圧監視用の端子、電池1の電圧監視用の端子、負荷遮断スイッチの制御端子、EDLC充電スイッチ制御端子、GND端子の少なくとも6端子を備えたICである。もちろん、電圧監視用端子と電源用端子を分けた7端子の構成にしても良い。   The specification of the control IC 3 will be described below. The control IC 3 is a terminal for voltage monitoring and power supply of the EDLC 2, a terminal for voltage monitoring applied to the load cutoff switch 4, a terminal for voltage monitoring of the battery 1, a control terminal of the load cutoff switch, an EDLC charge switch control terminal, and a GND terminal This is an IC having at least six terminals. Of course, a 7-terminal configuration in which the voltage monitoring terminal and the power supply terminal are separated may be used.

本実施例において大きく変わる部分は、電池1の電圧がEDLC2の耐圧を超える危険性のある電圧値に達したときの制御IC3の動作である。電池1の電圧値から耐圧を超える危険性ありと判断されたときには、EDLC充電スイッチ6を遮断する。なお、そのときの負荷遮断スイッチはONの状態のままになり、負荷への供給電力は電池1からのみ放電される状態となる。電池1に燃料電池を用いた場合には、この状態にすることで、軽負荷時において燃料利用効率を向上させることができる。   The part that greatly changes in the present embodiment is the operation of the control IC 3 when the voltage of the battery 1 reaches a voltage value with a risk of exceeding the withstand voltage of the EDLC 2. When it is determined from the voltage value of the battery 1 that there is a risk of exceeding the withstand voltage, the EDLC charge switch 6 is shut off. Note that the load cutoff switch at that time remains in the ON state, and the power supplied to the load is discharged only from the battery 1. When a fuel cell is used for the battery 1, the fuel utilization efficiency can be improved at a light load by setting this state.

この制御ICを用いることにより、実施例2で述べた利点に加えて、EDLC2に対する安全性が高まるとともに、設定する上限電圧と下限電圧の閾値を上げることができる。特に燃料電池(DMFC)のように無負荷時の電圧が大きく出るような電池との組み合わせに適している。   By using this control IC, in addition to the advantages described in the second embodiment, the safety for the EDLC 2 can be increased, and the threshold values of the upper limit voltage and the lower limit voltage to be set can be increased. In particular, it is suitable for combination with a battery such as a fuel cell (DMFC) in which a voltage at no load is large.

本発明の第四の実施例について図5を用いて説明する。本実施例は実施例3に加えて、EDLCを1セル以上にした場合に、各セルにかかる電圧バランスが崩れて、どれか1つのセルの耐圧を超えることを防止するセルバランス調整機能を加えた構成である。   A fourth embodiment of the present invention will be described with reference to FIG. In addition to the third embodiment, this embodiment adds a cell balance adjustment function that prevents the voltage balance applied to each cell from being lost and exceeding the breakdown voltage of any one cell when the EDLC is one or more cells. It is a configuration.

制御IC3の仕様について以下に述べる。制御IC3はEDLC2の電圧監視用および電源用の端子、負荷遮断スイッチ4にかかる電圧監視用の端子、電池1の電圧監視用の端子、負荷遮断スイッチの制御端子、EDLC充電スイッチ制御端子、EDLCセル間入力端子、GND端子の少なくとも7端子を備えたICである。もちろん、電圧監視用端子と電源用端子を分けて8端子の構成にしても良い。図5においてはEDLCが2セルの場合になっているが、もちろん3セルの場合は、EDLCセル間入力端子を2端子に増やして機能を追加すればよいし、それ以上のセル数においても同様である。   The specification of the control IC 3 will be described below. The control IC 3 is a terminal for voltage monitoring and power supply of the EDLC 2, a terminal for voltage monitoring applied to the load cutoff switch 4, a terminal for voltage monitoring of the battery 1, a control terminal of the load cutoff switch, an EDLC charge switch control terminal, an EDLC cell It is an IC provided with at least 7 terminals of an intermediate input terminal and a GND terminal. Of course, the voltage monitoring terminal and the power supply terminal may be divided into eight terminals. In FIG. 5, the EDLC has 2 cells. Of course, in the case of 3 cells, the function can be added by increasing the input terminals between the EDLC cells to 2 terminals, and the same applies to the case of more cells. It is.

本実施例において大きく変わる部分は複数セルのEDLCのセルバランス調整機能である。なお、EDLCの一般的な耐圧である2.3Vから3.3V以上の電圧がEDLCにかからないようにする保護機能であれば良く、図5においては定電圧ダイオードにて実現しているが、同じ値の抵抗にてセルバランスの安定化を実現しても良い。また、シャントレギュレータにて定電圧ダイオードと同様の機能を実現しても良いし、スイッチング素子を使って高くなったセルを放電させることでセルバランスの安定化を実現しても良い。   A significant change in the present embodiment is the cell balance adjustment function of the EDLC of a plurality of cells. It should be noted that the protection function is not limited as long as it is a protection function that prevents a voltage of 2.3V to 3.3V or more, which is a general breakdown voltage of EDLC, from being applied to EDLC. The cell balance may be stabilized by a value resistor. In addition, a function similar to that of the constant voltage diode may be realized by a shunt regulator, or stabilization of the cell balance may be realized by discharging a raised cell using a switching element.

この制御ICを用いることにより、実施例3で述べた利点に加えて、安全に複数セルのEDLC2の構成にすることができる。ノートPC用の充電端子のように16〜20VへDC/DCコンバータ5にて昇圧しなければならない場合や携帯電話やPDAなどのような内蔵Li電池が1セルの充電端子のように5〜5.5VへDC/DCコンバータ5にて降圧しなければならない場合の構成に適している。   By using this control IC, in addition to the advantages described in the third embodiment, it is possible to safely configure the EDLC 2 having a plurality of cells. When the DC / DC converter 5 has to boost the voltage to 16 to 20 V like a charging terminal for a notebook PC, or a built-in Li battery such as a mobile phone or PDA is 5 to 5 like a charging terminal for one cell. Suitable for a configuration in which the DC / DC converter 5 needs to step down to 5 V.

本発明の第五の実施例について図6を用いて説明する。本実施例は電池1が燃料電池や太陽電池のように電流の逆流ができない電源であり、実施例3に加えて、EDLC2から電池1への逆流防止機能として逆流防止スイッチ7を加えた構成である。   A fifth embodiment of the present invention will be described with reference to FIG. In this embodiment, the battery 1 is a power source that cannot reverse the current, such as a fuel cell or a solar battery. In addition to the third embodiment, a backflow prevention switch 7 is added as a backflow prevention function from the EDLC 2 to the battery 1. is there.

制御IC3の仕様について以下に述べる。制御IC3はEDLC2の電圧監視用および電源用の端子、負荷遮断スイッチ4にかかる電圧監視用の端子、電池1の電圧監視用の端子、負荷遮断スイッチの制御端子、EDLC充電スイッチ制御端子、逆流防止スイッチ制御端子、GND端子の少なくとも7端子を備えたICである。もちろん、電圧監視用端子と電源用端子を分けた8端子の構成にしても良い。   The specification of the control IC 3 will be described below. The control IC 3 is a terminal for voltage monitoring and power supply of the EDLC 2, a terminal for voltage monitoring applied to the load cutoff switch 4, a terminal for voltage monitoring of the battery 1, a control terminal of the load cutoff switch, an EDLC charge switch control terminal, a backflow prevention This is an IC having at least 7 terminals of a switch control terminal and a GND terminal. Of course, an eight-terminal configuration in which the voltage monitoring terminal and the power supply terminal are separated may be used.

この制御ICを用いることにより、電池1が燃料電池や太陽電池のように充電ができない電源である場合において、出力可能な電力が変化した場合などに起こり得る逆流を防止することができる。例えば燃料電池の場合では燃料切れで電圧が0へ向かって減少している場合、太陽電池の場合では光量が減少した場合が考えられ、これらの場合に有効である。   By using this control IC, when the battery 1 is a power source that cannot be charged, such as a fuel cell or a solar cell, it is possible to prevent a backflow that may occur when the power that can be output changes. For example, in the case of a fuel cell, when the voltage is decreasing toward 0 due to running out of fuel, in the case of a solar cell, it is conceivable that the amount of light is reduced, which is effective in these cases.

本発明の第六の実施例について図7を用いて説明する。本実施例は電池1が燃料電池であり、実施例2に加えて、無負荷時に燃料電池が開放電圧(OCV)まで上がって寿命が低下することを防ぐために、ある電圧以上とならないようにするOCVカット機能を加えた構成である。   A sixth embodiment of the present invention will be described with reference to FIG. In this embodiment, the battery 1 is a fuel cell. In addition to the embodiment 2, in order to prevent the life of the fuel cell from rising to the open circuit voltage (OCV) when there is no load, the battery 1 is prevented from exceeding a certain voltage. It is the structure which added the OCV cut function.

制御IC3の仕様について以下に述べる。制IC3はEDLC2の電圧監視用および電源用の端子、負荷遮断スイッチ4にかかる電圧監視用の端子、負荷遮断スイッチの制御端子、GND端子の少なくと4端子を備えたICである。もちろん、電圧監視用端子と電源用端子を分けた5端子の構成にしても良い。   The specification of the control IC 3 will be described below. The control IC 3 is an IC provided with at least four terminals of a voltage monitoring and power supply terminal of the EDLC 2, a voltage monitoring terminal applied to the load cutoff switch 4, a control terminal of the load cutoff switch, and a GND terminal. Of course, a five-terminal configuration in which the voltage monitoring terminal and the power supply terminal are separated may be used.

なお、本構成においては、例えばOCVカット電圧をEDLC2の一般的な耐圧である2.3Vから3.3Vに設定することで、実施例3に述べたようなEDLCの過電圧防止機能と兼用させることも可能である。   In this configuration, for example, by setting the OCV cut voltage from 2.3 V to 3.3 V, which is a general withstand voltage of EDLC 2, it can be used as the overvoltage prevention function of EDLC as described in the third embodiment. Is also possible.

図7においては定電圧ダイオードにて実現しているが、高抵抗にて実現しても良いし、シャントレギュレータにて定電圧ダイオードと同様の機能を実現しても良いし、スイッチング素子を使って高くなったセルを放電させることでOCVのカット機能を実現しても良い。   In FIG. 7, it is realized by a constant voltage diode, but it may be realized by a high resistance, a function similar to that of the constant voltage diode may be realized by a shunt regulator, or a switching element is used. The OCV cut function may be realized by discharging the raised cell.

本発明の第七の実施例について図8を用いて説明する。本実施例は電池1が燃料電池であり、実施例6に加えて、燃料電池の温度情報を取得し、温度に応じて下限電圧と上限電圧を変更することにより温度上昇を一定以内に抑える温度制限機能を加えた構成である。   A seventh embodiment of the present invention will be described with reference to FIG. In this embodiment, the battery 1 is a fuel cell. In addition to the sixth embodiment, the temperature information of the fuel cell is acquired, and the temperature rise is controlled within a certain range by changing the lower limit voltage and the upper limit voltage according to the temperature. It is the structure which added the restriction function.

制御IC3の仕様について以下に述べる。制御IC3はEDLC2の電圧監視用および電源用の端子、負荷遮断スイッチ4にかかる電圧監視用の端子、負荷遮断スイッチの制御端子、温度入力端子、GND端子の少なくとも5端子を備えたICである。もちろん、電圧監視用端子と電源用端子を分けた6端子の構成にしても良い。   The specification of the control IC 3 will be described below. The control IC 3 is an IC provided with at least five terminals of a voltage monitoring and power supply terminal of the EDLC 2, a voltage monitoring terminal applied to the load cutoff switch 4, a control terminal of the load cutoff switch, a temperature input terminal, and a GND terminal. Of course, a 6-terminal configuration in which the voltage monitoring terminal and the power supply terminal are separated may be used.

図7に示すように、本実施例の制御ICは燃料電池の温度を取得し、温度が45℃以上のように一定よりも高い場合に下限電圧と上限電圧を上昇させる基準電圧変更のロジックを持つ。もちろん、下限電圧のみを上昇させるだけの機能にしても構わない。燃料電池の発熱は電流量に比例して高くなる傾向があるため、特に下限電圧値を上昇させることで発熱を抑制することができる。温度を取得する手段としては、特に図示していないが、サーミスタや温度センサICなどを用いることで実現すればよい。   As shown in FIG. 7, the control IC of this embodiment obtains the temperature of the fuel cell, and when the temperature is higher than a certain value such as 45 ° C. or higher, the reference voltage changing logic for increasing the lower limit voltage and the upper limit voltage is provided. Have. Of course, the function may be such that only the lower limit voltage is raised. Since the heat generation of the fuel cell tends to increase in proportion to the amount of current, the heat generation can be suppressed particularly by increasing the lower limit voltage value. As a means for acquiring the temperature, although not particularly shown, it may be realized by using a thermistor, a temperature sensor IC, or the like.

本発明の第八の実施例について図9を用いて説明する。本実施例は実施例4の制御ICを用いて、別用途に転用した場合の実施例である。本実施例は電池1がLiイオン電池である。Liイオン電池の残量は50%以下の時に高出力での電圧変動が大きくなる傾向があるが、本実施例はLiイオン電池の残量低下時の高出力補助機能を加えた構成である。セル構成についてはLiイオン電池の単セルが3.7V以下の電圧範囲でEDLCの耐電圧が3.3〜2.3Vであることを考慮すると、Liイオン電池が3セルの場合ではEDLCは4〜5セルの組み合わせ、Liイオン電池が2セルの場合ではEDLCは3〜4セルの組み合わせ、Liイオン電池が1セルの場合ではEDLCは1〜2セルの組み合わせとなる。   An eighth embodiment of the present invention will be described with reference to FIG. The present embodiment is an embodiment in which the control IC of the fourth embodiment is used for another purpose. In this embodiment, the battery 1 is a Li ion battery. Although the voltage fluctuation at high output tends to increase when the remaining amount of the Li ion battery is 50% or less, this embodiment has a configuration in which a high output auxiliary function is added when the remaining amount of the Li ion battery is lowered. Considering that the cell configuration of a single cell of a Li ion battery is 3.7 V or less and the withstand voltage of EDLC is 3.3 to 2.3 V, the EDLC is 4 in the case of 3 Li ion batteries. When the combination of ˜5 cells and the number of Li ion batteries is 2 cells, the EDLC is a combination of 3 to 4 cells. When the number of Li ion batteries is 1 cell, the EDLC is a combination of 1 to 2 cells.

本実施例での各構成について述べる。V+とV−は電池パックの出力端となる。図9に示すように、出力スイッチ駆動端子は電池パックの過放電を示す信号として使用する構成としても良い。   Each configuration in the present embodiment will be described. V + and V− are output terminals of the battery pack. As shown in FIG. 9, the output switch drive terminal may be configured to be used as a signal indicating overdischarge of the battery pack.

この制御ICを用いることにより、Liイオン電池の小残量領域での高出力サポートが可能であり、高出力開始時の電圧変動の緩和やLiイオン電池の放電下限電圧まで達する時間の延長が可能である。特にパルス的な高出力が多い、デジタルスチルカメラや携帯電話等のアプリケーションに適している。また、単セルあたり3.7V以下の低い電圧値からのサポートであるため、Liイオン電池の全電圧範囲(単セルで4.2〜2.7V)をサポートする場合と比較して、Liイオン電池1セルに対するEDLC2のセル数をより少なくすることが可能である。   By using this control IC, it is possible to support high output in the small remaining area of the Li-ion battery, ease voltage fluctuation at the start of high output, and extend the time to reach the discharge lower limit voltage of the Li-ion battery. It is. It is particularly suitable for applications such as digital still cameras and mobile phones that have many high pulse outputs. In addition, since it is a support from a low voltage value of 3.7 V or less per single cell, compared to the case of supporting the entire voltage range of Li ion battery (4.2 to 2.7 V in a single cell), Li ion It is possible to further reduce the number of cells of the EDLC 2 with respect to one battery cell.

本発明により、燃料電池を大型化することなく携帯電子機器の外付けバッテリチャージャーとして使用することを可能にできた。   According to the present invention, the fuel cell can be used as an external battery charger for a portable electronic device without increasing the size.

電源装置と制御ICの一例を示す構成図。The block diagram which shows an example of a power supply device and control IC. 放電電力と電池出力の電力波形を示した図である。It is the figure which showed the electric power waveform of discharge electric power and a battery output. 本発明の第二の実施例を示す構成図。The block diagram which shows the 2nd Example of this invention. 本発明の第三の実施例を示す構成図。The block diagram which shows the 3rd Example of this invention. 本発明の第四の実施例を示す構成図。The block diagram which shows the 4th Example of this invention. 本発明の第五の実施例を示す構成図。The block diagram which shows the 5th Example of this invention. 本発明の第六の実施例を示す構成図。The block diagram which shows the 6th Example of this invention. 本発明の第七の実施例を示す構成図。The block diagram which shows the 7th Example of this invention. 本発明の第八の実施例を示す構成図。The block diagram which shows the 8th Example of this invention. 本発明の第一の実施例による別の構成を示す構成図。The block diagram which shows another structure by the 1st Example of this invention.

符号の説明Explanation of symbols

1…電池、2…電気二重層コンデンサ、3…制御IC、4…負荷遮断スイッチ、5…DC/DCコンバータ、6…EDLC充電スイッチ、7…逆流防止スイッチ。   DESCRIPTION OF SYMBOLS 1 ... Battery, 2 ... Electric double layer capacitor, 3 ... Control IC, 4 ... Load cutoff switch, 5 ... DC / DC converter, 6 ... EDLC charge switch, 7 ... Backflow prevention switch

Claims (5)

燃料電池と該燃料電池により充電される高出力密度電源とを含む少なくとも2種類の並列に接続された電源と、
該電源からの出力を変換し、外部負荷へ供給する供給電力端子に出力するDC/DCコンバータと、
前記DC/DCコンバータの出力端と前記供給電力端子間の経路の通電と遮断が可能なスイッチを備えた外付けバッテリーチャージャ用の電源装置の制御用半導体装置であって、
前記スイッチの通電が前記電源の電圧の上限閾値及び下限閾値の設定によって断続的になるように制御する機能を持ち、前記電源の電圧が上限閾値よりも高いことを検出したときに前記スイッチを通電に制御し前記供給電力端子に電力を出力し、下限閾値よりも低いことを検出したときに前記スイッチを遮断に制御し前記供給電力端子への出力を遮断して前記燃料電池から前記高出力密度電源への充電を行い、更に前記燃料電池の温度情報を取得し、前記燃料電池の温度が所定の温度よりも高くなると温度に応じて前記下限閾値と上限閾値の少なくとも1つの値を上昇させる閾値変更制御機能を有し、この閾値変更制御により前記燃料電池の温度上昇を防止する機能を持つことを特徴とする電源装置の制御用半導体装置。
At least two types of power sources connected in parallel, including a fuel cell and a high power density power source charged by the fuel cell;
A DC / DC converter that converts an output from the power source and outputs the converted power to a supply power terminal supplied to an external load;
A semiconductor device for controlling a power supply device for an external battery charger comprising a switch capable of energizing and interrupting a path between an output terminal of the DC / DC converter and the supply power terminal;
The switch has a function of controlling the energization of the switch to be intermittent by setting the upper limit threshold and the lower limit threshold of the power supply, and energizes the switch when it is detected that the voltage of the power supply is higher than the upper limit threshold. The power is output to the supply power terminal, and when it is detected that the power is lower than a lower limit threshold, the switch is controlled to be cut off and the output to the supply power terminal is cut off from the fuel cell to the high output density. A threshold value for charging the power source , further acquiring temperature information of the fuel cell, and increasing the value of at least one of the lower limit threshold value and the upper limit threshold value according to the temperature when the temperature of the fuel cell becomes higher than a predetermined temperature A semiconductor device for controlling a power supply device having a change control function and a function of preventing a temperature rise of the fuel cell by the threshold value change control .
請求項1において、
前記電源装置の出力端から流れる電流値を取得し、或る閾値以上で前記スイッチを遮断する過電流遮断機能を更に備えたことを特徴とする電源装置の制御用半導体装置。
Oite to claim 1,
A semiconductor device for controlling a power supply device, further comprising an overcurrent cutoff function for acquiring a current value flowing from an output terminal of the power supply device and shutting off the switch when a threshold value is exceeded.
請求項1又は2において、
少なくとも2種類の前記電源電圧を監視し、一方の電源への電流の逆流を防止する機能を更に備えたことを特徴とする電源装置の制御用半導体装置。
In claim 1 or 2 ,
Monitoring the at least two kinds of voltages of the power supply, control semiconductor device of the power supply apparatus characterized by further comprising a function of preventing backflow of current to one of the power supply.
請求項において、前記逆流防止を行う対象が前記燃料電池であることを特徴とする電源装置の制御用半導体装置。 In claim 3, the controlling semiconductor device of the power supply apparatus characterized by subjected to the prevention of the reverse flow is the fuel cell. 請求項1ないし4のいずれか1項において、
前記高出力密度電源が電気二重層キャパシタであり、前記電気二重層キャパシタにかかる電圧が或る閾値以上にならないように制御する過電圧防止機能を更に備えたことを特徴とする電源装置の制御用半導体装置。
In any one of Claims 1 thru | or 4 ,
The high-power density power supply is an electric double layer capacitor , and further includes an overvoltage prevention function for controlling the voltage applied to the electric double layer capacitor so as not to exceed a certain threshold value. apparatus.
JP2004287597A 2004-09-30 2004-09-30 Semiconductor device for power supply control Active JP4323405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287597A JP4323405B2 (en) 2004-09-30 2004-09-30 Semiconductor device for power supply control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287597A JP4323405B2 (en) 2004-09-30 2004-09-30 Semiconductor device for power supply control

Publications (2)

Publication Number Publication Date
JP2006101669A JP2006101669A (en) 2006-04-13
JP4323405B2 true JP4323405B2 (en) 2009-09-02

Family

ID=36240941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287597A Active JP4323405B2 (en) 2004-09-30 2004-09-30 Semiconductor device for power supply control

Country Status (1)

Country Link
JP (1) JP4323405B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767766B2 (en) * 2006-06-19 2011-09-07 株式会社Nttファシリティーズ Battery management system and battery management method
JP4971773B2 (en) * 2006-12-15 2012-07-11 株式会社日立製作所 FUEL CELL POWER SUPPLY DEVICE AND FUEL CELL CONTROL METHOD
JP5491169B2 (en) * 2009-12-29 2014-05-14 旭化成株式会社 Power supply system, portable device including power supply system, charging method of power supply system, discharging method of power supply system, and charging / discharging method of power supply system
JP5829999B2 (en) * 2012-11-12 2015-12-09 Fdk株式会社 Charger

Also Published As

Publication number Publication date
JP2006101669A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US7667350B2 (en) Electric power source apparatus using fuel cell and method of controlling the same
JP3826929B2 (en) Battery pack
US7883808B2 (en) Power supply apparatus with fuel cell and method of controlling the same
US10141551B2 (en) Battery system
JP4783454B2 (en) Power supply device, system, and charge / discharge control method
US20060068239A1 (en) Electric power source apparatus using fuel cell and method of controlling the same
US20110234151A1 (en) Platform with power boost
KR20060047861A (en) Power source device and charge controlling method to be used in same
JP2005137054A (en) Power source circuit
CN204316150U (en) A kind of circuit extending series-connected batteries useful life
JP2010075032A (en) Charging method and charging circuit for hybrid capacitor
JP5565603B2 (en) Power supply system and electronic device
JP2016201990A (en) Vehicle power supply management device
JP2007280741A (en) Fuel cell device
JP2007066757A (en) Hybrid fuel cell
JP2009148110A (en) Charger/discharger and power supply device using the same
JP4323405B2 (en) Semiconductor device for power supply control
JP2005130664A (en) Battery pack
JP2006196296A (en) Power backup device
JP2009136124A (en) Backup power supply and its control method
CN211880118U (en) Battery management chip, battery management system and electronic equipment
JP2011139614A (en) Power supply system, power supply module used in the same, and portable equipment having the system and module
JP2007282347A (en) Power system
CN111404220A (en) Battery management chip, battery management system, electronic equipment and power supply method
JP4990573B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250