JP2000269162A - Member for integrated circuit and its manufacture - Google Patents

Member for integrated circuit and its manufacture

Info

Publication number
JP2000269162A
JP2000269162A JP15423299A JP15423299A JP2000269162A JP 2000269162 A JP2000269162 A JP 2000269162A JP 15423299 A JP15423299 A JP 15423299A JP 15423299 A JP15423299 A JP 15423299A JP 2000269162 A JP2000269162 A JP 2000269162A
Authority
JP
Japan
Prior art keywords
metal
alloy
electrode
wiring material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15423299A
Other languages
Japanese (ja)
Inventor
Tamon Miyakai
多聞 宮廻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15423299A priority Critical patent/JP2000269162A/en
Publication of JP2000269162A publication Critical patent/JP2000269162A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a member in which the adhesion force of Cu to the surface of Si or SiO2 is enhanced, in which the diffusion of an alloy is inhibited at a high temperature and whose smoothness is enhanced remarkably, by a method wherein the member is composed of the alloy in which a Cu metal as a main component contains at least an Ni metal. SOLUTION: This member is composed of an alloy whose main component is a Cu metal and which contains at least an Ni metal. Preferably, the alloy contains about less than 50 wt.% of an Ni metal. More preferably, the alloy contains about 0.1 to about 40 wt.% of an Ni metal. Most preferably, the alloy contains about 3 to about 35 wt.% of an Ni metal. The thickness of the alloy is about less than 5 μm. Preferably, the thickness is about 3 nm to about 1 μm. More preferably, the thickness is about 5 nm to about 0.5 μm. As a metal which is added to the alloy, Au, Ag, Al, Zn, Mn, Fe, Cr, Ti, Mo, Zr, Mg, Si or Pt is preferable. An additional amount is about 5 wt.% or lower, and, preferably, it is about of 0.01 to about 3 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエレクトロニクス用
の集積回路、トランジスタおよびFETに関する.
The present invention relates to integrated circuits, transistors and FETs for electronics.

【0002】[0002]

【従来の技術】従来、コンタクト電極又は配線材には、
アルミニウム(Al)又はその合金が使われていた.そ
して、ゲート電極にはポリシリコンが使用されていた。
マイクロプロセッサ又はメモリ等の高速化、微細化を可
能にする次世代材料として銅が注目されているが、Si
及びSiO表面に対する付着力が弱く、均一な膜を形
成するのは困難であった。更に200℃で以上になる
と、金属がシリコン中に拡散してしまい、電極あるいは
配線材としては使用できない。半導体素子の使用時の内
部温度は通常170〜180℃に達するのでどんなに低
温プロセスが発達しても200℃以上での拡散を防止し
なければならない。
2. Description of the Related Art Conventionally, a contact electrode or a wiring material includes:
Aluminum (Al) or its alloy was used. Then, polysilicon was used for the gate electrode.
Copper is attracting attention as a next-generation material that enables high-speed and miniaturization of microprocessors or memories.
And the adhesion to the SiO 2 surface was weak, making it difficult to form a uniform film. If the temperature exceeds 200 ° C., the metal diffuses into silicon and cannot be used as an electrode or a wiring material. Since the internal temperature of a semiconductor device during use usually reaches 170 to 180 ° C., diffusion at 200 ° C. or higher must be prevented even if a low-temperature process develops.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明の目的
は銅に金属を少量添加した銅合金薄膜により、銅のSi
あるいはSiO表面への付着力を向上させ、200℃
以上での拡散を禁止し、更に平滑性を著しく改善するこ
とにより、次世代のオーミック電極、配線材及びゲート
電極、コンデンサー電極及びインダクタを開発すること
である。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a copper alloy thin film obtained by adding a small amount of metal to copper to form copper Si.
Alternatively, the adhesion to the SiO 2 surface is improved,
The object of the present invention is to develop next-generation ohmic electrodes, wiring materials and gate electrodes, capacitor electrodes, and inductors by inhibiting the above diffusion and further improving the smoothness significantly.

【0004】[0004]

【発明を解決するための手段】本発明は主成分がCu金
属であって少なくともNi金属を含む合金からなること
を特徴とする、オーミック電極、配線材、ゲート電極、
インダクタ又はコンデンサ電極及びそれらの製造方法に
より達成された。
According to the present invention, there is provided an ohmic electrode, a wiring material, a gate electrode, comprising an alloy containing Cu metal as a main component and containing at least Ni metal.
This has been achieved by inductor or capacitor electrodes and their manufacturing method.

【0005】[0005]

【発明の実施の形態】本発明に使用される合金は主成分
がCu金属であって少なくともNi金属を含む合金から
なる。好ましくは、合金が50重量%未満のNi金属を
含有し、更に好ましくは、0.1重量%以上40重量%
以下のNi金属を含有する。最も好ましくは3重量%以
上35重量%以下Ni金属を含有する。又、0.1重量
%以上3重量%以下であっても十分作用効果を発生する
ことが可能である.合金の厚みは5μm未満である。好
ましくは3nm以上1μm以下であり、更に好ましくは
5nm以上0.5μm以下である。SiO以外の保護
膜(絶縁体)としてはSi、SiOxNy、Al
N、GaN、PSG膜、Al等をあげることがで
きる.Si以外のコンタクト対象(半導体)としてはI
II−V族化合物半導体、II−VI族化合物半導体、
IV−VI族化合物半導体、酸化物半導体、磁性半導
体、有機物半導体などの化合物半導体(代表例:GaA
s、AlGaAs、InP、AlAs、InSb)、G
e等をあげることができる。Ni−Cu合金に添加する
金属としてはAu、Ag、Al、Zn、Mn、Fe、C
r、Ti、Mo、Zr、Mg、SiまたはPtが好まし
い.添加量は5重量%以下、好ましくは0.01%重量
以上3%重量以下の範囲で添加することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy used in the present invention is an alloy whose main component is Cu metal and contains at least Ni metal. Preferably, the alloy contains less than 50 wt% Ni metal, more preferably 0.1 wt% or more and 40 wt%.
Contains the following Ni metal. Most preferably, Ni metal is contained in an amount of 3% by weight or more and 35% by weight or less. Further, even when the content is 0.1% by weight or more and 3% by weight or less, a sufficient effect can be obtained. The thickness of the alloy is less than 5 μm. Preferably it is 3 nm or more and 1 μm or less, more preferably 5 nm or more and 0.5 μm or less. As a protective film (insulator) other than SiO 2 , Si 3 N 4 , SiOxNy, Al
N, GaN, PSG film, Al 2 O 3 and the like can be mentioned. The contact target (semiconductor) other than Si is I
II-V compound semiconductors, II-VI compound semiconductors,
Compound semiconductors such as IV-VI compound semiconductors, oxide semiconductors, magnetic semiconductors, and organic semiconductors (typical examples: GaAs
s, AlGaAs, InP, AlAs, InSb), G
e and the like. Au, Ag, Al, Zn, Mn, Fe, C as metals to be added to the Ni-Cu alloy
r, Ti, Mo, Zr, Mg, Si or Pt are preferred. The amount of addition is preferably 5% by weight or less, more preferably 0.01% to 3% by weight.

【0006】合金薄膜の展開はCVD又はスパッタリン
グにより実施するのが好ましい。金属薄膜を使用する場
合、絶縁膜であるSiOあるいは基板であるSi表面
に対する付着力が重要である。付着力は一般的に膜構成
原子とのマイクロ的な相互作用によるから、膜の付着形
成法、基板の種類とその前処理法(洗剤処理、化学的洗
浄、有機溶剤洗浄、超音波洗浄、イオン衝撃など)ある
いは後熱処理法によって変化する。薄膜の展開後、熱処
理することも好ましい。そのときの温度は好ましくは3
50℃以下である。
[0006] The development of the alloy thin film is preferably carried out by CVD or sputtering. When a metal thin film is used, its adhesion to SiO 2 as an insulating film or Si surface as a substrate is important. Since the adhesive force is generally based on micro-interactions with the atoms constituting the film, the film formation method, the type of substrate and its pretreatment method (detergent treatment, chemical cleaning, organic solvent cleaning, ultrasonic cleaning, ion cleaning) Impact, etc.) or post heat treatment. After the development of the thin film, it is also preferable to perform a heat treatment. The temperature at that time is preferably 3
50 ° C. or less.

【0007】付着力は引っかき試験法により測定でき
る。例えば、半径0.03〜0.045mmの剛体球に
種々の荷重をかけてガラス面上の金属膜を引っかくこと
により評価することができる。この場合付着力は引っか
き操作で膜が剥離する時の臨界荷重で表される。
[0007] The adhesive force can be measured by a scratch test method. For example, it can be evaluated by applying various loads to a hard sphere having a radius of 0.03 to 0.045 mm and scratching a metal film on a glass surface. In this case, the adhesive force is represented by a critical load when the film is peeled off by a scratching operation.

【0008】基本的には銅を電極あるいは配線材として
使用するには薄膜の付着力、平滑性及び200℃での拡
散を改善しなければならないが、銅より付着性の強い金
属を添加することが考えられる。一般的に、Si単結晶
上に展開される金属薄膜はランダムに堆積するのではな
くSi結晶の配列の支配を受ける。このため凸凹が生ず
ることは純銅では避けられない。又、熱により拡散する
物質を止めることは出来ない。そのためSi、SiO
中に予め固溶限界以上のCu金属を染み込ませておく
か、他の物質にCu金属を溶かしCu金属を留まらせる
ことが必要である。
Basically, in order to use copper as an electrode or wiring material, it is necessary to improve the adhesion, smoothness, and diffusion at 200 ° C. of a thin film. Can be considered. Generally, a metal thin film developed on a Si single crystal is not randomly deposited but is governed by the arrangement of Si crystals. For this reason, the occurrence of irregularities cannot be avoided with pure copper. Also, it is impossible to stop substances that diffuse by heat. Therefore, Si, SiO 2
It is necessary to infiltrate Cu metal in excess of the solid solution limit in advance, or to dissolve Cu metal in other substances to allow the Cu metal to remain.

【0009】[0009]

【実施例】以下に本発明を具体例をあげ更に詳しく説明
するが、本発明の範囲はこれに限定されるものではな
い。合金薄膜の展開にはRFスパッタリング装置JEC
−SP360R(日本電子)を用いた。添加する材料の
小片をターゲットに載せ、その全体での占有面積を変え
て組成比を変化せしめた。次に、合金膜(5重量%のN
i金属含有)を展開したウェハを10−7torrの真
空中で1時間熱処理した。加熱温度はそれぞれ200
℃、300℃、400℃である。出来あがったサンプル
を走査型電子顕微鏡(日本電子のJSM−5600)及
びオージェ分析装置(日本電子のJAMP−7800)
により分析評価した。200℃、300℃及び400℃
でサイクル10〜サイクル15の場合についていわゆる
デプスプロファイルを測定した結果、Cuのは下記の通
りであった。
EXAMPLES The present invention will be described in more detail with reference to specific examples, but the scope of the present invention is not limited thereto. RF sputtering system JEC for the development of alloy thin films
-SP360R (JEOL) was used. A small piece of the material to be added was placed on a target, and the composition ratio was changed by changing the area occupied by the whole. Next, an alloy film (5% by weight of N
The wafer developed with i metal) was heat-treated for 1 hour in a vacuum of 10 −7 torr. Heating temperature is 200
℃, 300 ℃, 400 ℃. Scanning electron microscope (JEOL JSM-5600) and Auger analyzer (JEOL JAMP-7800)
The analysis was evaluated by 200 ° C, 300 ° C and 400 ° C
As a result of measuring a so-called depth profile in the case of cycle 10 to cycle 15, the content of Cu was as follows.

【0010】 [0010]

【0011】上記の結果は意外にも200℃以上であっ
ても室温と同様合金の基板中への拡散は殆どないことを
示している。SiOの場合も同様の結果が得られた。
一方、Cuの場合、200℃でも拡散していることが確
認された。
The above results show that the alloy hardly diffuses into the substrate even at 200 ° C. or higher, as at room temperature. Similar results were obtained with SiO 2 .
On the other hand, it was confirmed that Cu was diffused even at 200 ° C.

【0012】次いで、合金のNi添加量を変えて厚みが
0.1μmの配線材を作製し、付着力、拡散及び平滑性
を測定した。その結果を◎、○、△ 及び×の評価項目
で以下に示す。◎はきわめて良好、○は良好△は可及び
×は不可であることを示す。
Next, a wiring material having a thickness of 0.1 μm was prepared by changing the amount of Ni added to the alloy, and the adhesion, diffusion and smoothness were measured. The results are shown below in the evaluation items of ◎, △, Δ and ×. ◎ indicates extremely good, は indicates good, △ indicates acceptable, and × indicates impossible.

【0013】 [0013]

【0014】上記の結果より本発明の合金膜の付着力、
拡散及び平滑性、とくに付着力がきわめて良好であるこ
とを示した。その結果、Cu−Ni合金によるオーミッ
ク電極はSi(とくにp型Si)とのコンタクトが良好
であり、p型Siに対するSchottkyバリアの高
さはAlの80%程度で、従来のAl電極よりも優れて
いることが明らかとなった。又、Cu−Ni合金配線材
は、Cu並みの低抵抗であり、許容電流密度がAlの1
0倍以上あるため、従来用いられるAl配線材の3分の
1〜5分の1という配線幅を可能にした。また更に、C
u−Ni合金ゲート電極は、従来のポリシリコン電極よ
りはるかに低抵抗であり、従来の集積回路の300倍以
上の高速化が実現された。
From the above results, the adhesive force of the alloy film of the present invention,
It showed very good diffusion and smoothness, especially adhesion. As a result, the ohmic electrode made of the Cu—Ni alloy has good contact with Si (particularly p-type Si), and the height of the Schottky barrier to p-type Si is about 80% of Al, which is superior to the conventional Al electrode. It became clear that. Further, the Cu—Ni alloy wiring material has a low resistance equivalent to Cu and an allowable current density of 1
Since it is 0 times or more, a wiring width of 1/3 to 1/5 of the conventionally used Al wiring material is made possible. Furthermore, C
The u-Ni alloy gate electrode has a much lower resistance than the conventional polysilicon electrode, and achieves a speedup of 300 times or more that of the conventional integrated circuit.

【0015】[0015]

【発明の効果】本発明により、ニッケル等の金属を少量
添加したCu−Ni合金薄膜により、SiあるいはSi
表面への付着力が向上し、200℃以上での金属原
子の拡散が防止された。更に平滑性が著しく改善され、
次世代のオーミック電極、配線材、ゲート電極、コンデ
ンサー電極及びインダクタとしての実用化を可能にし
た。
According to the present invention, a Cu—Ni alloy thin film to which a small amount of a metal such as nickel is added can form Si or Si.
The adhesion to the O 2 surface was improved, and diffusion of metal atoms at 200 ° C. or higher was prevented. Furthermore, the smoothness is significantly improved,
This has enabled the practical use of next-generation ohmic electrodes, wiring materials, gate electrodes, capacitor electrodes, and inductors.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/78 H01L 27/04 C // C22F 1/00 661 L 691 29/78 301G ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 29/78 H01L 27/04 C // C22F 1/00 661 L 691 29/78 301G

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 主成分がCu金属であって少なくともN
i金属を含む合金からなることを特徴とする、オーミッ
ク電極、配線材、ゲート電極、インダクタ又はコンデン
サ電極。
1. The method according to claim 1, wherein the main component is Cu metal and at least N
An ohmic electrode, a wiring material, a gate electrode, an inductor or a capacitor electrode, comprising an alloy containing i metal.
【請求項2】 該合金を50重量%未満のNi金属を含
有することを特徴とする、請求項1に記載の、オーミッ
ク電極、配線材、ゲート電極、インダクタ又はコンデン
サ電極。
2. The ohmic electrode, wiring material, gate electrode, inductor or capacitor electrode according to claim 1, wherein the alloy contains less than 50% by weight of Ni metal.
【請求項3】 0.1重量%以上40重量%以下のNi
金属を含有することを特徴とする請求項1又は請求項2
に記載の、オーミック電極、、配線材、ゲート電極、イ
ンダクタ又はコンデンサ電極。
3. Ni not less than 0.1% by weight and not more than 40% by weight.
3. The method according to claim 1, further comprising a metal.
4. The ohmic electrode, wiring material, gate electrode, inductor or capacitor electrode according to item 1.
【請求項4】 3重量%以上35重量%以下のNi金属
を含有することを特徴とする請求項1〜請求項3に記載
のオーミック電極、配線材、ゲート電極、インダクタ又
はコンデンサ電極。
4. The ohmic electrode, a wiring material, a gate electrode, an inductor or a capacitor electrode according to claim 1, further comprising 3% by weight or more and 35% by weight or less of Ni metal.
【請求項5】 絶縁膜がSiOであることをを特徴と
する請求項1〜請求項4に記載の配線材又はゲート電
極。
5. The wiring material or the gate electrode according to claim 1, wherein the insulating film is SiO 2 .
【請求項6】 コンタクト対象がn型あるいはp型Si
の結晶であることをを特徴とする請求項1〜請求項4に
記載オーミック電極、。
6. An n-type or p-type Si contact object.
The ohmic electrode according to claim 1, wherein the ohmic electrode is a crystal.
【請求項7】 該合金の厚みが5μm未満であることを
特徴とする請求項1〜請求項6に記載の、オーミック電
極、配線材、ゲート電極、インダクタ又はコンデンサ電
極。
7. The ohmic electrode, wiring material, gate electrode, inductor or capacitor electrode according to claim 1, wherein the thickness of the alloy is less than 5 μm.
【請求項8】 該厚みが3nm以上1μm以下であるこ
とを特徴とする請求項7に記載の、オーミック電極、配
線材、ゲート電極、インダクタ又はコンデンサ電極。
8. The ohmic electrode, wiring material, gate electrode, inductor or capacitor electrode according to claim 7, wherein the thickness is 3 nm or more and 1 μm or less.
【請求項9】 該厚みが5nm以上0.5μm以下であ
ることを特徴とする請求項8に記載の、オーミック電
極、配線材、ゲート電極、インダクタ又はコンデンサ電
極。
9. The ohmic electrode, wiring material, gate electrode, inductor or capacitor electrode according to claim 8, wherein the thickness is 5 nm or more and 0.5 μm or less.
【請求項10】 該合金の展開をCVD又はスパッタリ
ングにより実施することを特徴とする、請求項1〜請求
項9に記載のオーミック電極、配線材、ゲート電極、イ
ンダクタ又はコンデンサ電極の製造方法。
10. The method for manufacturing an ohmic electrode, a wiring material, a gate electrode, an inductor or a capacitor electrode according to claim 1, wherein the alloy is developed by CVD or sputtering.
JP15423299A 1999-03-13 1999-03-13 Member for integrated circuit and its manufacture Pending JP2000269162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15423299A JP2000269162A (en) 1999-03-13 1999-03-13 Member for integrated circuit and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15423299A JP2000269162A (en) 1999-03-13 1999-03-13 Member for integrated circuit and its manufacture

Publications (1)

Publication Number Publication Date
JP2000269162A true JP2000269162A (en) 2000-09-29

Family

ID=15579747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15423299A Pending JP2000269162A (en) 1999-03-13 1999-03-13 Member for integrated circuit and its manufacture

Country Status (1)

Country Link
JP (1) JP2000269162A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033752A1 (en) * 2001-10-18 2003-04-24 Canadian Electronic Powders Corporation (Cepc) Powder for laminated ceramic capacitor internal electrode
JP2007012922A (en) * 2005-06-30 2007-01-18 Toshiba Corp Semiconductor device and its fabrication process
JP2008277685A (en) * 2007-05-07 2008-11-13 Mitsubishi Materials Corp Interconnection film and electrode film for flat panel display using thin film transistor (tft) superior in adhesiveness, and sputtering target for forming them
CN101984108A (en) * 2010-12-03 2011-03-09 中南大学 CuNiSiAl elastic copper alloy with ultrahigh strength and high stress relaxation resistance
JP2013133489A (en) * 2011-12-26 2013-07-08 Sumitomo Metal Mining Co Ltd Cu ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING THE SAME, AND METAL THIN FILM
CN107201460A (en) * 2017-04-28 2017-09-26 杭州前进齿轮箱集团股份有限公司 A kind of leadless environment-friendly type wet copper-based friction plate and preparation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033752A1 (en) * 2001-10-18 2003-04-24 Canadian Electronic Powders Corporation (Cepc) Powder for laminated ceramic capacitor internal electrode
US7277268B2 (en) 2001-10-18 2007-10-02 Candian Electronic Powers Corporation Laminated ceramic capacitor
US7857886B2 (en) 2001-10-18 2010-12-28 Canadian Electronic Powders Corporation Powder for laminated ceramic capacitor internal electrode
JP2007012922A (en) * 2005-06-30 2007-01-18 Toshiba Corp Semiconductor device and its fabrication process
JP2008277685A (en) * 2007-05-07 2008-11-13 Mitsubishi Materials Corp Interconnection film and electrode film for flat panel display using thin film transistor (tft) superior in adhesiveness, and sputtering target for forming them
CN101984108A (en) * 2010-12-03 2011-03-09 中南大学 CuNiSiAl elastic copper alloy with ultrahigh strength and high stress relaxation resistance
JP2013133489A (en) * 2011-12-26 2013-07-08 Sumitomo Metal Mining Co Ltd Cu ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING THE SAME, AND METAL THIN FILM
CN107201460A (en) * 2017-04-28 2017-09-26 杭州前进齿轮箱集团股份有限公司 A kind of leadless environment-friendly type wet copper-based friction plate and preparation method

Similar Documents

Publication Publication Date Title
Baca et al. A survey of ohmic contacts to III-V compound semiconductors
Howard et al. Intermetallic compounds of Al and transitions metals: Effect of electromigration in 1–2‐μm‐wide lines
US9934976B2 (en) Methods of forming low interface resistance rare earth metal contacts and structures formed thereby
US4300149A (en) Gold-tantalum-titanium/tungsten alloy contact for semiconductor devices and having a gold/tantalum intermetallic barrier region intermediate the gold and alloy elements
Len et al. An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor (MOS) capacitor structures
JPS59108348A (en) Integrated semiconductor circuit
US20020105081A1 (en) Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization
US4316209A (en) Metal/silicon contact and methods of fabrication thereof
US5091338A (en) Process for forming heat resistant ohmic electrode
Lee et al. Factors affecting passivation of Cu (Mg) alloy films
JP2004506814A5 (en)
JP2000269162A (en) Member for integrated circuit and its manufacture
JP5774005B2 (en) Thin film transistor (TFT) with copper electrode
De Felipe et al. Capacitance–voltage, current–voltage, and thermal stability of copper alloyed with aluminium or magnesium
Kohn et al. The role of microstructure in nanocrystalline conformal Co0. 9W0. 02P0. 08 diffusion barriers for copper metallization
US20110147936A1 (en) Semiconductor device and damascene structure
Chen et al. Backside copper metallisation of GaAs MESFETs
JP2002083954A (en) Integrated circuit member and its manufacturing method
Glickman et al. Electrical resistivity of thin electroless Ag–W films for metallization
Inberg et al. Electroless and sputtered silver–tungsten thin films for microelectronics applications
Chang et al. Use of WN/sub X/as the diffusion barrier for interconnect copper metallization of InGaP-GaAs HBTs
US20100176478A1 (en) Semiconductor device and method for manufacturing the same
JPH0378258A (en) Metal cover for semiconductor device and its manufacture
KR100327092B1 (en) Formation Method of Copper Alloy Wiring of Semiconductor Device
Pramanik et al. Barrier Metals for ULSI; processing and reliability