JP2000266763A - Automatic analyzer - Google Patents

Automatic analyzer

Info

Publication number
JP2000266763A
JP2000266763A JP7313899A JP7313899A JP2000266763A JP 2000266763 A JP2000266763 A JP 2000266763A JP 7313899 A JP7313899 A JP 7313899A JP 7313899 A JP7313899 A JP 7313899A JP 2000266763 A JP2000266763 A JP 2000266763A
Authority
JP
Japan
Prior art keywords
water
pure water
automatic analyzer
tank
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7313899A
Other languages
Japanese (ja)
Inventor
Hiromichi Sato
弘道 佐藤
Hideyasu Chiba
英康 千葉
Kahei Shiraishi
嘉平 白石
Isao Shindo
勲夫 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7313899A priority Critical patent/JP2000266763A/en
Publication of JP2000266763A publication Critical patent/JP2000266763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate structural waste so as to lower a production cost and a running cost by incorporating a pure water producing function as a part of functions, using a housing in common, and self-sufficiently producing pure water inside the device. SOLUTION: Crude water from a water tap 3 is introduced into an automatic analyzer main body when a solenoid valve 210 is opened, and by means of a filter 211, dust and rust in the crude water is eliminated. Then, a high-pressure pump 212 applies a high pressure ranging about 10-15 kgf/cm2 to the water to a reverse osmosis film module 213. A pressure is regulated by means of a throttle valve 216. The water penetrates the module 213 because of the high pressure, and the water, from which chlorine, fine particles, germs are eliminate, is passed through an ion exchange resin filled device 214 further for eliminating Ca ions, Mg ions, and the like. Finally, water is turned into pure water with an electric conductivity 1 μs/cm or less in water quality so as to be stored in a tank 140. A solenoid valve 215 is opened occasionally for washing away substances adhering to a film by water for durably using the module 213, while it is closed during preparation of pure water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、血液や尿等の検体
特性を分析する自動分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic analyzer for analyzing sample characteristics such as blood and urine.

【0002】[0002]

【従来の技術】自動分析装置は、分析を主たる目的とし
ているため分析に直接係る機構で全体を構成され、適用
される純水は自動分析装置とは別の機械でという従来か
らの通念であった。そのため一般に使用者は自動分析装
置と純水製造装置の機械2点を購入し、これらの間を配
管や給水指令信号線で接続して分析できるシステムを構
築し、運用していた(図1)。
2. Description of the Related Art An automatic analyzer is mainly composed of a mechanism directly related to analysis because of its main purpose of analysis, and the conventional wisdom is that pure water to be applied is a separate machine from the automatic analyzer. Was. Therefore, in general, the user purchased two machines, an automatic analyzer and a pure water generator, and constructed and operated a system that can connect and analyze them with piping or a water supply command signal line (Fig. 1). .

【0003】また自動分析装置内で使用されている水質
に言及すれば、装置内に取り込んでいるのは純水のみ
で、自動分析装置内の使用水をすべて賄っていた。
[0003] Further, referring to the water quality used in the automatic analyzer, only pure water is taken in the apparatus, and all the water used in the automatic analyzer is covered.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では自動
分析装置と純水製造装置を個々に製造したが故のハード
ウェア的無駄を発生させ、その金銭負担は全て購入使用
者にかかってしまっていた。
In the above-mentioned prior art, hardware wasted because the automatic analyzer and the pure water producing device were individually manufactured, and all the financial burden was on the purchaser. Was.

【0005】例えば、上記純水製造装置は自動分析装置
に適用する以外の目的で製造販売されているので、種々
のメータ・スイッチ・電光表示のパネルがついている。
For example, since the above-mentioned pure water producing apparatus is manufactured and sold for purposes other than application to an automatic analyzer, it has various types of meters, switches, and light-emitting display panels.

【0006】しかし自動分析装置を使用している者にと
っては純水が正常に自動分析装置本体に送られてさえい
れば目を向けることもなく、結果的顧客は活用頻度の少
ない部位にも金を払っていることになっていた。
[0006] However, the person using the automatic analyzer does not look as long as the pure water is normally sent to the main body of the automatic analyzer. Was to be paid.

【0007】またランニングコスト的無駄もある。純水
を製造する過程においては、原水の一部を純水化し自動
分析装置に取り入れるが、純水を採った後の残りの水、
すなわち溶存している不純物濃度が原水に比べて高くな
った濃縮水は、そのまま排水として排水溝に捨てられて
いた。環境保全意識が高まってきた昨今、使用者に無駄
を感じさせその負担を負わせることは製品としてマイナ
スである。
[0007] There is also waste in running costs. In the process of producing pure water, part of the raw water is purified and taken into the automatic analyzer.
That is, the concentrated water in which the concentration of the dissolved impurities has become higher than that of the raw water has been discarded as it is in the drain. In recent years, as environmental consciousness has been increasing, it is a minus for products to make users feel useless and burden them.

【0008】従って本発明の目的は、純水製造装置と自
動分析装置の組み合わせにおいて構造的な無駄を省き、
製造コスト,ランニングコスト低減を実現し、水資源を
有効に活用できる自動分析装置およびそのシステムを提
供することである。
Accordingly, an object of the present invention is to eliminate structural waste in a combination of a pure water production apparatus and an automatic analyzer,
It is an object of the present invention to provide an automatic analyzer and a system therefor which can reduce production costs and running costs and can effectively utilize water resources.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明によれば、自動分析装置の機能の一部として純水
製造機能を組み入れ、ハウジングを共用し、純水を装置
内部で自給生産できる自動分析装置とした点にある。
According to the present invention, a pure water producing function is incorporated as a part of the function of an automatic analyzer, a housing is shared, and pure water is self-sufficiently produced inside the apparatus. The point is that the automatic analyzer can be used.

【0010】[0010]

【発明の実施の形態】以下本発明の実施例を図面を用い
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は従来技術として広く適用されている
自動分析装置と純水製造装置との構築システムである。
FIG. 1 shows a construction system of an automatic analyzer and a pure water producing apparatus widely applied as a conventional technique.

【0012】1は自動分析装置、2は純水製造装置、3
は水道蛇口、4は排水溝、5,7,8は送水管、6は信
号線、11は自動分析装置の分析部、12は自動分析装
置の操作パネル、13は電子制御部、14はタンク、1
5は送水ポンプ、16はフィルタ、17は電磁弁、21
は純水精製部、22は送水ポンプ、23は純水製造装置
の操作パネルである。
1 is an automatic analyzer, 2 is a pure water producing device, 3
Is a water faucet, 4 is a drainage ditch, 5, 7 and 8 are water pipes, 6 is a signal line, 11 is an analyzer of the automatic analyzer, 12 is an operation panel of the automatic analyzer, 13 is an electronic control unit, and 14 is a tank. , 1
5 is a water pump, 16 is a filter, 17 is a solenoid valve, 21
Denotes a pure water purifying unit, 22 denotes a water pump, and 23 denotes an operation panel of the pure water producing apparatus.

【0013】自動分析装置の分析部11で精度良い分析
を実施するために純水を導入する。純水製造装置2は、
送水管7を介し、水道蛇口3につながれ上水道水をひき
こみ純水精製部21でごみ,雑菌,電解質イオンを除き
純水を精製する。
Pure water is introduced in order to perform an accurate analysis in the analyzer 11 of the automatic analyzer. The pure water production device 2
It is connected to the tap faucet 3 via the water supply pipe 7 to draw in tap water, and the purified water purification unit 21 purifies pure water except for garbage, germs and electrolyte ions.

【0014】そして純水は送水ポンプ22で揚水され送
水管5を経て自動分析装置1へと導かれる。純水を精製
するための技術としては、近年逆浸透膜とイオン交換樹
脂を組み合わせ使用した方法が主流であり、純水精製部
21にはこれらが組み込まれている。
The pure water is pumped by a water pump 22 and guided to the automatic analyzer 1 through a water pipe 5. In recent years, as a technique for purifying pure water, a method using a combination of a reverse osmosis membrane and an ion exchange resin has been mainly used, and these are incorporated in the pure water purifying section 21.

【0015】逆浸透膜に取り込まれる上水道水、この場
合純水の原料となっているので原水と呼ぶが、この原水
に高圧をかけ、逆浸透膜で微粒子,雑菌,第一次脱塩ろ
過する。逆浸透膜を透過した水は更にイオン交換樹脂充
填器を通過し、Ca,Mgなどのイオンが除去され、最
終的に電気伝導度1μS/cm以下レベルの純水を得るこ
とができる。一方、逆浸透膜を透過しなかった水は雑
菌,塩などが濃縮された状態となり、不必要水として図
1の送水管8を流れ排水溝4に下水として流される。
Tap water taken into the reverse osmosis membrane, which is called raw water because it is a raw material of pure water in this case, is subjected to high pressure, and fine particles, various germs, and primary desalination filtration are performed by the reverse osmosis membrane. . The water that has passed through the reverse osmosis membrane further passes through an ion-exchange resin filler to remove ions such as Ca and Mg, so that pure water having an electric conductivity of 1 μS / cm or less can be finally obtained. On the other hand, water that has not passed through the reverse osmosis membrane is in a state in which various bacteria, salts, and the like are concentrated, flows through the water supply pipe 8 in FIG. 1 as unnecessary water, and flows into the drain 4 as sewage.

【0016】原水量に対する採水量比率は精製装置の仕
様によっても異なるが3分の1程度であり、3分の2は
前述のごとく下水として捨てられている。自動分析装置
1と純水製造装置2との間には信号線6が接続されてお
り、自動分析装置1から送水要求指令の信号を純水製造
装置2に送ったり、片や純水製造装置2で発生した警報
の信号を自動分析装置1側に送ったりして電子制御部1
3で情報の処理が行われている。純水製造装置2の操作
パネル23は、純水製造装置2内の運転状況,警報,水
質を示す導電率値等を表示する。
The ratio of the amount of water taken to the amount of raw water varies depending on the specifications of the refining apparatus, but is about one-third, and two-thirds are discarded as sewage as described above. A signal line 6 is connected between the automatic analyzer 1 and the pure water producing apparatus 2, and sends a signal of a water supply request command from the automatic analyzer 1 to the pure water producing apparatus 2. The electronic control unit 1 sends the alarm signal generated in step 2 to the automatic analyzer 1 side.
In step 3, information processing is performed. The operation panel 23 of the pure water production device 2 displays an operation status, an alarm, a conductivity value indicating water quality, and the like in the pure water production device 2.

【0017】自動分析装置1では、分析部11へ純水を
送るために送水ポンプ15が設けられタンク14と接
続、タンク14への給水側には電磁弁17とフィルタ1
6がある。フィルタ16は自動分析装置外部からの塵埃
微粒子侵入を防止するものであり、電磁弁17の開閉制
御および純水製造装置2内の送水ポンプ22動作のON
−OFFでタンク14の水位を一定範囲で維持制御す
る。
In the automatic analyzer 1, a water supply pump 15 is provided for sending pure water to the analyzer 11, and is connected to the tank 14. The electromagnetic valve 17 and the filter 1 are provided on the water supply side to the tank 14.
There are six. The filter 16 prevents dust particles from entering from outside the automatic analyzer, controls the opening and closing of the electromagnetic valve 17 and turns on the operation of the water supply pump 22 in the pure water producing apparatus 2.
With -OFF, the water level of the tank 14 is controlled to be maintained within a certain range.

【0018】ちなみにタンク14の存在は水消費速さ変
化に対応するための緩衝機能を有している。自動分析装
置の操作パネル12は操作に関する入出力をつかさど
り、タンク14の水質異常警報なども表示することもで
きる。
Incidentally, the presence of the tank 14 has a buffer function to cope with a change in water consumption speed. The operation panel 12 of the automatic analyzer controls input and output relating to the operation, and can also display an alarm on water quality abnormality of the tank 14 and the like.

【0019】以上従来のシステムについて説明してきた
が、自動分析装置1と純水製造装置2とが個別製品であ
るゆえに欠かざる得ないとなったパーツがある。
Although the conventional system has been described above, there are some parts that are indispensable because the automatic analyzer 1 and the pure water producing apparatus 2 are individual products.

【0020】たとえば、送水ポンプ22は単に二機械間
をつないだための送水機能であったり、フィルタ16は
使用者の持ち込んだ悪質水がそのまま自動分析装置1に
取り込まれないための万一に備えた部品であったりであ
る。また個々にある操作パネルも重複機能といえる。
For example, the water supply pump 22 has a water supply function for simply connecting the two machines, and the filter 16 is provided in case the bad water brought by the user is not taken into the automatic analyzer 1 as it is. Parts. The individual operation panels can also be said to be redundant functions.

【0021】そこで自動分析装置1が自ら純水を製造
し、精製過程で生じた排水も利用することに着眼し、本
発明を考案する。
Therefore, the present invention is devised by focusing on the fact that the automatic analyzer 1 produces pure water by itself and also uses the wastewater generated in the purification process.

【0022】図2及び図3は本発明の一実施例による自
動分析装置の構成と配管の説明図である。
FIG. 2 and FIG. 3 are explanatory views of the configuration and piping of an automatic analyzer according to one embodiment of the present invention.

【0023】図2,図3は同一の自動分析装置で機能と
してのまとまりを2つに大別、図2は純水製造に関与す
る範囲を、図3は分析部11を詳細に図示した。
FIGS. 2 and 3 show the same automatic analyzer, which is roughly classified into two groups as functions. FIG. 2 shows a range related to pure water production, and FIG. 3 shows the analyzer 11 in detail.

【0024】図2において、00はハウジング、11は
分析部、12は操作パネルである。210,215は電
磁弁、211はフィルタ、212は高圧ポンプ、213
は逆浸透膜モジュール、214はイオン交換樹脂充填
器、216は絞り弁、140,141はタンク、142
はフロートスイッチ、151,152は送水ポンプ、1
53はオリフィス、180はエアポンプ、181はエア
フィルタ、182はエア減圧タンク、50,51,18
3は配管を指す。
In FIG. 2, 00 is a housing, 11 is an analysis unit, and 12 is an operation panel. 210 and 215 are solenoid valves, 211 is a filter, 212 is a high-pressure pump, 213
Is a reverse osmosis membrane module, 214 is an ion exchange resin filler, 216 is a throttle valve, 140 and 141 are tanks, 142
Is a float switch, 151 and 152 are water pumps, 1
53 is an orifice, 180 is an air pump, 181 is an air filter, 182 is an air decompression tank, 50, 51, and 18
3 indicates a pipe.

【0025】他に各配管を図示しているが符号は設け
ず、矢印で水や空気の流れ方向を示す。
Other pipes are illustrated, but reference numerals are not provided, and arrows indicate the flow directions of water and air.

【0026】分析部11の詳細構造は図3にて説明す
る。
The detailed structure of the analyzer 11 will be described with reference to FIG.

【0027】99は反応容器、110は反応テーブル、
111は測定器、112は検体テーブル、113は試薬
テーブル、114は検体ノズル、115は試薬ノズル、
116は攪拌棒、117は容器洗浄機構、118,119
は検体,試薬分注器、120は恒温水槽、121は循環
ポンプ、122は温度制御器、123,124,125は
それぞれ検体ノズル,試薬ノズル,攪拌棒の各洗浄槽、
a,b〜k,lは電磁弁、127は減圧弁、128は廃
液トラップ瓶である。
99 is a reaction vessel, 110 is a reaction table,
111 is a measuring instrument, 112 is a sample table, 113 is a reagent table, 114 is a sample nozzle, 115 is a reagent nozzle,
116 is a stirring rod, 117 is a container washing mechanism, 118 and 119
Is a sample and reagent dispenser, 120 is a constant temperature water bath, 121 is a circulating pump, 122 is a temperature controller, 123, 124, and 125 are cleaning tanks for a sample nozzle, a reagent nozzle, and a stirring rod, respectively.
a, b to k, l are solenoid valves, 127 is a pressure reducing valve, and 128 is a waste liquid trap bottle.

【0028】自動分析装置の基本動作は以下の通りであ
る。
The basic operation of the automatic analyzer is as follows.

【0029】図3において検体テーブル112に架設さ
れた血液や尿などの検体は検体ノズル114でもって反
応容器99に吐出され、ひきつづき試薬テーブル113
上の特定試薬が試薬ノズル115で検体の入った反応容
器に吐出される。
In FIG. 3, a sample such as blood or urine provided on a sample table 112 is discharged to a reaction container 99 by a sample nozzle 114, and the reagent table 113 is continued.
The above specific reagent is discharged from the reagent nozzle 115 to the reaction container containing the sample.

【0030】その後攪拌棒116でよく混合され混合液
の色の変化を測定器111で測定、結果をプリンタや前
出の操作パネル12や他のコンピュータ等で表示する。
Thereafter, a change in the color of the mixed liquid that has been well mixed with the stirring rod 116 is measured by the measuring instrument 111, and the result is displayed on a printer, the above-mentioned operation panel 12, or another computer.

【0031】測定終了液は容器洗浄機構117で反応容
器から吸い上げられ、洗浄されて再び次検体測定へと利
用される。また容器洗浄機構117では混合液の光学的
変化差を求めるための基準液(ブランク水)として純水
を反応容器99に吐く。
The measurement termination liquid is sucked up from the reaction container by the container washing mechanism 117, washed, and reused for the next sample measurement. Further, the container cleaning mechanism 117 discharges pure water into the reaction container 99 as a reference liquid (blank water) for obtaining an optical change difference of the mixed liquid.

【0032】複数の反応容器99は反応テーブル110
に円周懸架され、シーケンス動作1サイクルごと反応テ
ーブル110が1セルピッチずつ位置をずれていき、反
応容器配列数に等しいサイクル数で一周を経て各所定位
置の全分析作業を完了させる。
A plurality of reaction vessels 99 are equipped with a reaction table 110.
The reaction table 110 shifts its position by one cell pitch every cycle of the sequence operation, and completes all the analysis work at each predetermined position through one round with the number of cycles equal to the number of reaction vessel arrangements.

【0033】反応容器99は恒温水槽120内の水に浸
り、混合液の昇温,恒温を行い分析のための反応を促進
させる。この水は温度制御器122で一定温度に保たれ
循環ポンプ121で循環している。操作パネル12によ
り分析開始の操作が行われると分析部11では各機構の
動作に従い水を消費し始める。その水の精製については
図2を用いて以下説明する。
The reaction vessel 99 is immersed in water in a thermostatic water bath 120 to raise the temperature of the liquid mixture and maintain the temperature to promote the reaction for analysis. This water is kept at a constant temperature by a temperature controller 122 and circulated by a circulation pump 121. When the operation of starting the analysis is performed by the operation panel 12, the analyzer 11 starts consuming water according to the operation of each mechanism. The purification of the water will be described below with reference to FIG.

【0034】図2において水道蛇口3の原水は電磁弁2
10の開栓により自動分析装置本体に導入され、まずフ
ィルタ211で原水中のごみ,錆を除かれる。そして高
圧ポンプ212が逆浸透膜モジュール213に対し10
kgf/cm2から15kgf/cm2程度の高圧を水にかける。圧
力の調整は絞り弁216の絞り加減で調整する。
In FIG. 2, the raw water of the tap 3 is a solenoid valve 2
10 is introduced into the main body of the automatic analyzer by opening the plug, and first, dust and rust in raw water are removed by the filter 211. Then, the high-pressure pump 212 moves the reverse osmosis membrane module 213 to 10
calling from kgf / cm 2 to 15 kgf / cm 2 about the high-pressure water. The pressure is adjusted by adjusting the throttle of the throttle valve 216.

【0035】高圧により逆浸透膜モジュール213を透
過し、塩素,微粒子,雑菌を除去された水は、さらにイ
オン交換樹脂充填器214を通過しCaイオン,Mgイ
オン等を除去される。最終的に水質が電気伝導度1μS
/cm以下の純水となってタンク140に貯水される。
The water which has passed through the reverse osmosis membrane module 213 at high pressure and has been freed of chlorine, fine particles and germs is further passed through an ion-exchange resin filler 214 to remove Ca ions, Mg ions and the like. Finally, the water quality is 1μS
/ Cm or less as pure water and stored in the tank 140.

【0036】なお原水に対する採水率は加圧力大小によ
り異なるが、3分の1以下が一般的である。したがって
3分の2以上が絞り弁216を通過していくわけであ
り、純水として採水された分微粒子や雑菌が濃縮された
水となっている。そしてこの水は別のタンク141に貯
水される。
The rate of water withdrawal from the raw water varies depending on the magnitude of the pressing force, but is generally one third or less. Therefore, two-thirds or more of the water passes through the throttle valve 216, and is water in which fine particles and various bacteria collected as pure water are concentrated. This water is stored in another tank 141.

【0037】電磁弁215は逆浸透膜モジュール213
を耐久して使用するため時折膜に付着した物質を水流で
流し去る(フラッシュ洗浄)のに開栓し、純水精製中は
閉栓している。
The solenoid valve 215 is a reverse osmosis membrane module 213
To endurance use, the substance is occasionally opened by removing the substance adhering to the membrane with a stream of water (flash washing), and closed during the purification of pure water.

【0038】なお本実施例においてはフラッシュ水を貯
水しているが、水の汚れ具合によっては排水溝に排出し
た方がよい場合もある。
Although the flush water is stored in this embodiment, it may be better to discharge the flush water to a drain depending on the degree of contamination of the water.

【0039】以上のように本発明の自動分析装置ハウジ
ング00内部には純水精製部と2つの貯水タンクがあ
り、純水とその対局の原水濃縮水の二種類が貯水されて
いる。そしてタンク140の純水は送水ポンプ151で
配管50を経て、タンク141の水は送水ポンプ152
で配管51を経てそれぞれ分析部11へと送られる。
As described above, inside the automatic analyzer housing 00 of the present invention, there is a pure water purifying section and two water storage tanks, and two kinds of pure water and raw water concentrated water of the opposite side are stored. The pure water in the tank 140 passes through the pipe 50 by the water supply pump 151, and the water in the tank 141 is supplied to the water supply pump 152.
Are sent to the analysis unit 11 via the pipe 51.

【0040】本発明においては分析動作中の純水精製始
動停止制御は、フロートスイッチ142でタンク140
内の水位を検出することで行い、一方タンク141には
オーバーフローのドレイン管をタンク141の水面維持
高さに設置し、溢れた水は排水溝4へ流される構造とし
た。
In the present invention, the pure water purification start / stop control during the analysis operation is performed by the float switch 142 and the tank 140.
By detecting the water level in the tank 141, an overflow drain pipe is installed in the tank 141 at the water surface maintaining height of the tank 141, and the overflow water is caused to flow to the drainage ditch 4.

【0041】この構造による純水精製起動タイミングと
タンク140,タンク141の水位変化の関係を模式的
に図4で示す。
FIG. 4 schematically shows the relationship between the pure water purification start timing and the water level change of the tanks 140 and 141 according to this structure.

【0042】(A)は純水精製が終了した時点の状況
で、その後分析部11の水消費により(B)の如く水位
が低下してくる。(C)の如くフロートスイッチ142
の下位を検出すると純水精製の動作が開始され両タンク
共に給水が行われる。
(A) shows a state at the time when the purification of pure water is completed, and thereafter the water level decreases as shown in (B) due to the consumption of water by the analysis unit 11. (C) Float switch 142
Is detected, the operation of pure water purification is started, and water is supplied to both tanks.

【0043】(D)の状態では水位がフロートスイッチ
の上位に達していないため純水精製が続行されているが
タンク141は満水でオーバーフローをおこし、再び
(A)の状態に達したときにフロートスイッチ142か
ら停止指令を発して純水精製が停止する。これはタンク
140の水位が最下点から最上点に達する時間がタンク
141のそれに比して長いことが条件となるが、精製時
の排水量が純水量の2倍以上あるゆえ好都合条件であ
る。
In the state (D), the pure water purification is continued because the water level has not reached the upper position of the float switch. However, the tank 141 overflows when the water is full, and when the tank 141 reaches the state (A) again, the float is overflowed. By issuing a stop command from the switch 142, the pure water purification is stopped. This is a condition that the time required for the water level of the tank 140 to reach the highest point from the lowest point is longer than that of the tank 141, but is a favorable condition because the amount of wastewater at the time of purification is twice or more the pure water amount.

【0044】よってフロートスイッチを2つのタンクに
それぞれ設けずに片方だけで純水精製起動及び停止制御
が可能となる。
Therefore, pure water purification start and stop control can be performed by only one of the two tanks without providing the float switch.

【0045】本実施例図2の配管図中に圧力センサや水
質センサを図示していないが、純水精製過程で発生した
警報、たとえば高圧ポンプ圧力が上がらない、あるいは
タンク140の水質が良くない等のセンサからの情報
は、信号線を経て自動分析装置内の電子制御部で処理さ
れ、操作パネル等に表示される。
Although a pressure sensor and a water quality sensor are not shown in the piping diagram of FIG. 2, an alarm generated during the purification process of pure water, for example, the high-pressure pump pressure does not increase or the water quality of the tank 140 is not good. The information from the sensors is processed by an electronic control unit in the automatic analyzer via a signal line, and displayed on an operation panel or the like.

【0046】原水から純水を精製,分析部11に送るま
でのハードウェア構成について図1と図2を見比べる
と、図1の送水ポンプ22,フィルタ16,電磁弁1
7,操作パネル23が本発明では削除されたことがわか
る。
When comparing the hardware configuration from the purification of the raw water to the purified water and sending it to the analysis unit 11 with reference to FIG. 1 and FIG. 2, the water supply pump 22, the filter 16 and the solenoid valve 1 of FIG.
7. It can be seen that the operation panel 23 has been deleted in the present invention.

【0047】以上詳述したように、純水自給のための純
水製造装置を自動分析装置の構成要素としてハウジング
00内に組み入れたことにより部品を削減でき製造コス
ト低減が可能となる。
As described in detail above, by incorporating the pure water producing apparatus for pure water self-sufficiency into the housing 00 as a component of the automatic analyzer, the number of parts can be reduced and the production cost can be reduced.

【0048】前記実施例の自動分析装置においては分析
部と純水精製部とが同一ハウジング00に収められた構
造であるが、分析部は分析部で1つのまとまりとしてハ
ウジングで覆い、一方の自動分析装置に係る送水ポン
プ,エアポンプ,純水精製部も別のハウジングで覆った
ツーピース構成の自動分析装置であってもよい。2つの
ユニット間は配管50,51,183,信号線6で結合
する。
The automatic analyzer of the above embodiment has a structure in which the analysis unit and the pure water purification unit are housed in the same housing 00, but the analysis unit is covered by the analysis unit as a single unit, and the one automatic The water supply pump, the air pump, and the pure water purification unit of the analyzer may be a two-piece automatic analyzer covered with another housing. The two units are connected by pipes 50, 51, 183 and signal line 6.

【0049】図5にその外観斜視図を示す。FIG. 5 shows a perspective view of the appearance.

【0050】図5の18は純水精製部及び給水に係る機
能他前出のエアポンプ180も収納されているが、あえ
てポンプ部と命名し、9は事務机、19はキャスターで
ある。分析部11は事務机9の上に載せられてあり、ポ
ンプ部は事務机9下に配置してある。そして事務机9と
コンポーネントシステム化したことで、使用者の事務ワ
ークの利便性が改善される。
In FIG. 5, reference numeral 18 denotes a pure water purifying section and a function relating to water supply, and the above-mentioned air pump 180 is also accommodated. The analysis unit 11 is mounted on the office desk 9, and the pump unit is arranged below the office desk 9. The use of the office desk 9 as a component system improves the convenience of the user's office work.

【0051】また、ポンプ部18のハウジング底にはキ
ャスター19が取り付けられている。図2に示すフィル
タ211,逆浸透膜モジュール213,イオン交換樹脂
充填器214は純水水質維持の交換保守が必要であり、
タンク140,141内も清掃を要し、エアポンプフィ
ルタ181も交換保守をしなければならない。
A caster 19 is attached to the bottom of the housing of the pump section 18. The filter 211, the reverse osmosis membrane module 213, and the ion exchange resin filling device 214 shown in FIG.
The tanks 140 and 141 also need to be cleaned, and the air pump filter 181 must be replaced and maintained.

【0052】机下にあっては窮屈な姿勢でこれらの作業
をやらねばならぬが、本発明のポンプ部18ではキャス
タ19がついているのでポンプ部18を机下より引き出
しハウジングを取り去れば、底面を除く5面方向から作
業が容易にできる。
Although these operations must be performed in a cramped position under the desk, the caster 19 is attached to the pump section 18 of the present invention, so if the pump section 18 is pulled out from the desk and the housing is removed, Work can be easily performed from five directions except the bottom surface.

【0053】更に前述のまとまりで分割構成されたこと
で微弱電流電圧を扱う分析部11に対して、動力源に交
流の大電流電圧を流すポンプ部18を距離的に遠ざける
ことができるので、電気ノイズや機械振動の影響を受け
がたく精度信頼の高い分析結果を得られる利点もある。
Further, the pump unit 18 for supplying a large AC voltage to the power source can be distanced from the analyzing unit 11 which handles the weak current voltage by the divided configuration described above. There is also an advantage that an analysis result with high accuracy and reliability can be obtained without being affected by noise or mechanical vibration.

【0054】次に図2に示したタンク140及び141
の二種類の水使用について説明する。
Next, the tanks 140 and 141 shown in FIG.
The two types of water use will be described.

【0055】図3において自動分析装置では検体や試薬
が変わる毎に検体ノズル114,試薬ノズル115,攪
拌棒116の接液範囲を洗浄しなければならず、洗浄槽
123,124,125を設置している。
In FIG. 3, in the automatic analyzer, the sample contact area of the sample nozzle 114, the reagent nozzle 115, and the stirring rod 116 must be washed every time the sample or the reagent changes.
123, 124 and 125 are installed.

【0056】本発明のこれら洗浄槽には図6の如く2つ
の水吐出口を設けた。一方の吐出口からはタンク141
の原水濃縮水が、他方からはタンク140の純水が出る
ように配管接続されている。破線が原水濃縮水,実線が
純水の配管を示す。図6では両吐出口が相対する向きに
なっているが互いに90度となるような向きでもよい。
These cleaning tanks of the present invention were provided with two water discharge ports as shown in FIG. From one outlet, tank 141
Is connected to the pipe so that pure water in the tank 140 comes out from the other. The dashed line indicates the raw water concentrate and the solid line indicates the pure water piping. In FIG. 6, the two discharge ports face each other, but may have a direction that is 90 degrees to each other.

【0057】攪拌棒116の洗浄を例に取り上げると、
反応容器99の混合液を攪拌した後に攪拌棒116は洗
浄槽125中に先端を突っ込み電磁弁aの開栓で原水濃
縮水が(1)の如く浴びせられる。
Taking the washing of the stirring rod 116 as an example,
After stirring the liquid mixture in the reaction container 99, the stirring rod 116 is inserted into the washing tank 125 at its tip, and the electromagnetic valve a is opened, so that concentrated raw water is poured as shown in (1).

【0058】次に電磁弁aを閉栓と同時に電磁弁fを開
栓し(2)のとおり純水を吐出する。すなわち汚染物質
をはじめ原水濃縮水で流し去り仕上げに純水を浴びせる
二段方式をとっている。同様に検体ノズル洗浄槽12
3、試薬ノズル洗浄槽124にも適用している。
Next, the electromagnetic valve f is opened at the same time as the electromagnetic valve a is closed, and pure water is discharged as shown in (2). In other words, a two-stage system is used, in which the contaminated material and the raw water concentrated water are washed away and pure water is applied to finish. Similarly, the sample nozzle cleaning tank 12
3. It is also applied to the reagent nozzle cleaning tank 124.

【0059】これまで廃水とされてきた原水濃縮水が純
水にくらべてふんだんに得られることから、図3では無
駄水を生じても一個の電磁弁aの開閉で対応をしている
が、三個の電磁弁を設置し送水先に応じて独自タイミン
グの供給としてもよい。
Since the concentrated raw water, which has been used as wastewater, can be obtained in abundance in comparison with pure water, in FIG. 3, even if wastewater is generated, one solenoid valve a is opened and closed. It is also possible to install individual solenoid valves and supply them at their own timing according to the water supply destination.

【0060】以上のように、純水を精製する際の副生物
であるところの原水濃縮水を用いてノズルや攪拌棒の付
着汚染物質を一次洗浄し、次に純水で仕上げ洗浄を実施
し、これまで純水オンリーであった洗浄をやめ従来に比
べて純水の消費量を減らしたところが本発明の特徴であ
る。
As described above, the contaminants adhering to the nozzle and the stirring rod are primarily cleaned using the concentrated raw water, which is a by-product of the purification of the purified water, and then the final cleaning is performed with the purified water. The feature of the present invention is that the cleaning which has been pure water only is stopped and the consumption of pure water is reduced as compared with the conventional one.

【0061】同様に従来純水のみで行われていた反応容
器99の洗浄、容器洗浄機構117にも適用したので本
件について以下説明する。
Similarly, the present invention is applied to the cleaning of the reaction vessel 99 and the vessel cleaning mechanism 117, which has been conventionally performed only with pure water.

【0062】図7は容器洗浄機構117におけるシーケ
ンスサイクル経過ごとの反応容器99の洗浄状態遷移を
摸式化したものである。
FIG. 7 is a schematic diagram showing a transition of the cleaning state of the reaction vessel 99 in the vessel cleaning mechanism 117 every time a sequence cycle elapses.

【0063】図7において符号117は容器洗浄機構で
符号(イ)(ロ)〜(リ)までのノズルを保持し、上下に
動作、ノズルを反応容器99内へ出し入れをする。それ
ぞれの役割で(イ),(ロ),(ハ),(ニ),(ホ)は液吸引
ノズル、(ヘ),(ト),(チ),(リ)は水吐出ノズルであ
り、(イ)と(ヘ),(ロ)と(ト),(ハ)と(チ)は二
本組の形で反応容器99に入る。
In FIG. 7, reference numeral 117 denotes a container cleaning mechanism which holds the nozzles (a), (b), (b) and (f), moves up and down, and moves the nozzles into and out of the reaction vessel 99. In each role, (a), (b), (c), (d), and (e) are liquid suction nozzles, (f), (g), (h), and (li) are water discharge nozzles. (A) and (f), (b) and (g), (c) and (h) enter the reaction vessel 99 in the form of a pair.

【0064】反応容器99は反応テーブル110に円周
配列されてテーブル回転で位置を移動し、ここ図7では
紙面右から左へと移動するものとする。
The reaction vessels 99 are arranged circumferentially on the reaction table 110 and move by rotating the table. In FIG. 7, it is assumed that the reaction vessels move from right to left on the sheet.

【0065】また当該自動分析装置では容器洗浄機構1
17が1サイクルのシーケンス動作の中で1往復動作
し、往復動作の間(イ),(ロ),(ハ),(ニ),(ホ)は吸
引を続け、(ヘ),(ト),(チ),(リ)は下死点到達後上
昇時に水を吐出する。その結果個々の反応容器99中の
前の液を排出し新しい水での置換が行われる。
In the automatic analyzer, the container washing mechanism 1
17 performs one reciprocation in the sequence operation of one cycle. During the reciprocation, (a), (b), (c), (d), and (e) continue suction, and (f) and (g). , (H) and (li) discharge water when the ascent rises after reaching the bottom dead center. As a result, the previous liquid in each of the reaction vessels 99 is discharged and replaced with fresh water.

【0066】反応容器99が1サイクル経過毎に1ピッ
チずつ左へ位置を移動していけば、反応終了液がごく微
量の残留を伴いながらも次々水で置換が繰り返され、数
サイクル後には分析に支障無きレベルまで洗浄到達し、
再び検体ノズル114で検体を貰い受け分析過程に進
む。
If the reaction vessel 99 moves to the left by one pitch every one cycle, the reaction-terminated liquid is replaced with water one after another with a very small amount of residue, and after several cycles the analysis is completed. To a level that does not hinder
The sample is received again by the sample nozzle 114 and the process proceeds to the analysis process.

【0067】図7では4サイクル経過で洗浄を終え、5
サイクル目(図として示していない)にノズル(リ)によ
って光学分析のための基準水(ブランク水)を分注され
るまでの、置換水の汚染状態をハッチング濃淡を利用し
模式的に示している。
In FIG. 7, the cleaning is completed after the elapse of four cycles.
The contamination state of the replacement water until the reference water (blank water) for optical analysis is dispensed by the nozzle (R) at the cycle (not shown in the drawing) is schematically shown by using the shading density. I have.

【0068】洗浄行程説明について長くなってしまった
が、本発明自動分析装置の特徴は第1サイクル目の洗浄
置換水として前出純水精製時の副生物として派生した原
水濃縮水を使用した点にある。したがってノズル(ヘ)
は電磁弁cへと接続されている。
Although the description of the washing process has been lengthened, the feature of the automatic analyzer of the present invention is that raw water concentrated water derived as a by-product at the time of purification of purified water is used as the washing replacement water in the first cycle. It is in. Therefore the nozzle (f)
Is connected to the solenoid valve c.

【0069】一方ノズル(ト),(チ)による置換水は仕
上げ洗浄として純水を用い電磁弁bに、またブランク水
にも純水が使われるためノズル(リ)は電磁弁lに接続
されている。
On the other hand, the replacement water by the nozzles (g) and (h) is pure water used as finish cleaning, and the pure water is used for the blank water, and the pure water is also used for the blank water. ing.

【0070】ちなみに吸引に関わる全ノズルは、図3中
の廃液トラップ瓶128にチューブで接続、エアポンプ
180で廃液トラップ瓶128内を減圧することで吸引
動作が実施される。
Incidentally, all the nozzles involved in the suction are connected to the waste liquid trap bottle 128 in FIG. 3 by a tube, and the air pump 180 reduces the pressure inside the waste liquid trap bottle 128 to perform the suction operation.

【0071】さて検体ノズル114,試薬ノズル11
5,攪拌棒116、及び反応容器99の洗浄水として原
水濃縮水を使用することへの是非であるが、生化学反応
を扱う分析装置においてまずもって問題はない。
Now, the sample nozzle 114 and the reagent nozzle 11
5, It is a necessity to use concentrated raw water as washing water for the stirring rod 116 and the reaction vessel 99, but there is no problem in an analyzer handling biochemical reactions.

【0072】なぜなら原水濃縮水といっても病院や検査
センターでの原水には市中上水道水が用いられており、
測定物質が付着したことによる被洗浄物のキャリオーバ
ーした汚れ程度にくらべて、洗浄水中に溶存している物
質濃度はきわめて低いからである。
[0086] Even though raw water concentrate is used in the hospital and inspection center, city tap water is used.
This is because the concentration of the substance dissolved in the cleaning water is extremely low as compared with the degree of contamination of the object to be cleaned which has been carried over due to the adhesion of the measurement substance.

【0073】以上のべたように検体ノズル,試薬ノズ
ル,攪拌棒,反応容器の一次洗浄水に純水を精製する際
派生した原水濃縮水を使用し、仕上げ洗浄用に純水を使
い分けることで、純水のみの洗浄に頼っていた従来装置
に比べ水使用量を減らし、すなわち水の有功利用を図り
ながらこれまでと遜色ない分析性能結果が得られる。
As described above, the raw water concentrated water derived when purifying pure water is used as the primary cleaning water for the sample nozzle, the reagent nozzle, the stirring rod, and the reaction vessel, and the pure water is selectively used for the final cleaning. Compared with the conventional apparatus that relies on washing with pure water only, the amount of water used is reduced, that is, analytical performance results comparable to those of the past can be obtained while effectively using water.

【0074】併せて水使用量に応じて交換頻度が左右さ
れる逆浸透膜モジュールとイオン交換樹脂の耐久使用期
間が伸長し、装置使用者のランニングコスト負担軽減と
なる。
In addition, the durable use period of the reverse osmosis membrane module and the ion exchange resin whose replacement frequency depends on the amount of water used is extended, and the running cost of the apparatus user is reduced.

【0075】[0075]

【発明の効果】本発明によれば自動分析装置の製造コス
トを低減し、さらに水の消費量が減るため、装置使用者
のランニングコスト負担軽減の効果もある。
According to the present invention, the manufacturing cost of the automatic analyzer can be reduced and the amount of water consumption can be reduced, so that the running cost of the user can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による自動分析装置と純水製造装置と
の構築システム図。
FIG. 1 is a diagram showing a construction system of an automatic analyzer and a pure water production apparatus according to a conventional technique.

【図2】純水製造範囲の構成,配管を詳細表示した本発
明実施例の自動分析装置図。
FIG. 2 is a diagram showing an automatic analyzer according to an embodiment of the present invention in which the configuration of the pure water production range and the piping are displayed in detail.

【図3】分析部の構成,配管を詳細表示した本発明実施
例の自動分析装置図。
FIG. 3 is a diagram showing an automatic analyzer according to an embodiment of the present invention in which the configuration and piping of an analyzer are displayed in detail.

【図4】本発明実施例の自動分析装置における純水精製
起動タイミングと内蔵タンク水位変化の関係模式図。
FIG. 4 is a schematic diagram showing a relationship between a pure water purification start timing and a change in a built-in tank water level in the automatic analyzer according to the embodiment of the present invention.

【図5】本発明実施例のツーピース構成自動分析装置外
観斜視図。
FIG. 5 is an external perspective view of a two-piece automatic analyzer according to an embodiment of the present invention.

【図6】本発明実施例洗浄槽の断面図。FIG. 6 is a sectional view of a cleaning tank according to an embodiment of the present invention.

【図7】反応容器洗浄状態遷移摸式図。FIG. 7 is a schematic diagram of a transition state of a cleaning state of a reaction vessel.

【符号の説明】[Explanation of symbols]

1…自動分析装置、2…純水製造装置、9…事務机、0
0…ハウジング、11…分析部、12…自動分析装置操
作パネル、18…ポンプ部、19…キャスター、23…
純水製造装置操作パネル、99…反応容器、117…容
器洗浄機構、123…検体ノズル洗浄槽、124…試薬
ノズル洗浄槽、125…攪拌洗浄槽、140,141…
タンク、142…フロートスイッチ、213…逆浸透膜
モジュール、214…イオン交換樹脂充填器。
1 ... automatic analyzer, 2 ... pure water production equipment, 9 ... office desk, 0
0 ... housing, 11 ... analyzing section, 12 ... automatic analyzer operation panel, 18 ... pump section, 19 ... caster, 23 ...
Pure water production device operation panel, 99: reaction container, 117: container cleaning mechanism, 123: sample nozzle cleaning tank, 124: reagent nozzle cleaning tank, 125: stirring cleaning tank, 140, 141 ...
Tank, 142: float switch, 213: reverse osmosis membrane module, 214: ion-exchange resin filler.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 嘉平 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 進藤 勲夫 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 Fターム(参考) 2G058 HA00  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kahei Shiraishi 1040 Ma, Ichiki, Hitachinaka City, Ibaraki Prefecture Inside Hitachi Science Systems Co., Ltd. F-term in Science Systems (reference) 2G058 HA00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】検体及び試薬を分取分注するピペッタノズ
ルとその洗浄槽、分析のための反応容器及びその恒温槽
と、攪拌棒とその洗浄槽、測定終了後に分析液を排出・
反応容器を洗浄する容器洗浄ノズルと、光学測定の基準
水吐出ノズルと、これらで構成された分析主要部への送
水加圧ポンプと、各種配管及び送止水弁を備えた自動分
析装置において、逆浸透膜モジュールを利用した純水製
造装置を自動分析装置の構成ユニットとして装置内部に
組み入れ、当ユニットで精製生産した純水を前記分析部
で運用することを特徴とする自動分析装置。
1. A pipettor nozzle for dispensing and dispensing a sample and a reagent, a washing tank therefor, a reaction vessel for analysis and a constant temperature tank, a stirrer and a washing tank therefor, and an analysis liquid after the measurement is completed.
In a container washing nozzle for washing a reaction container, a reference water discharge nozzle for optical measurement, a water supply pressurizing pump configured to these components, and an automatic analyzer equipped with various piping and a stop water valve, An automatic analyzer, wherein a pure water producing apparatus using a reverse osmosis membrane module is incorporated as a constituent unit of an automatic analyzer inside the apparatus, and pure water purified and produced by the unit is operated by the analyzer.
【請求項2】請求項1において、自動分析装置内部で精
製した純水と、精製過程で副生物として生じた原水濃縮
水の両方を前記分析部に送水し、分析液に浸った被汚染
部品の予備洗浄に後者を使用し、且つ仕上げ洗浄水に純
水を用いて、水消費を削減する手段及びその機能を備え
たことを特徴とする自動分析装置。
2. The contaminated part according to claim 1, wherein both the purified water purified inside the automatic analyzer and the raw water concentrated water generated as a by-product in the purification process are sent to the analysis section and immersed in the analysis solution. An automatic analyzer characterized by comprising means for reducing water consumption by using the latter for preliminary washing and using pure water for finish washing water, and a function thereof.
【請求項3】請求項2において、純水及び原水濃縮水個
別に貯水タンクを設け、純水貯水タンク内にはフロート
スイッチを設置し、一方原水濃縮水タンクにはオーバー
フロー排水管を設置、そのフロートスイッチにより純水
精製の起動停止制御することを特徴とする自動分析装
置。
3. The pure water storage tank is provided with separate water storage tanks, a float switch is installed in the pure water storage tank, and an overflow drain pipe is installed in the raw water concentrated water tank. An automatic analyzer characterized by controlling start and stop of pure water purification by a float switch.
【請求項4】請求項2において、純水及び原水濃縮水の
両種類の水が吐出する、検体・試薬ピペッタノズル洗浄
槽と攪拌棒洗浄槽を分析部に設置したことを特徴とする
自動分析装置。
4. An automatic analyzer according to claim 2, wherein a sample / reagent pipettor nozzle washing tank and a stirring rod washing tank for discharging both types of water, pure water and raw water concentrated water, are installed in the analyzer. .
【請求項5】請求項1において、純水精製に係る各種の
異常情報を分析運用に係る操作画面上に表示したことを
特徴とする自動分析装置。
5. The automatic analyzer according to claim 1, wherein various kinds of abnormality information relating to pure water purification are displayed on an operation screen relating to analysis operation.
【請求項6】請求項1において、純水製造装置と自動分
析装置に係るポンプを同じ1つのハウジング内に納め、
これとは別に分析主要部についても1つのハウジングで
まとめ構成し、これらツーピース間を配管と電気信号線
で結合したことを特徴とする自動分析装置。
6. A pump according to claim 1, wherein the pump for the pure water production apparatus and the pump for the automatic analyzer are housed in the same one housing,
Separately, the analysis main part is also constituted by one housing, and these two pieces are connected by a pipe and an electric signal line.
【請求項7】請求項6において、事務机と前出純水製造
装置・ポンプを納めたユニットを、事務机下に配置し、
分析部を机上に載せてコンポーネントしたことを特徴と
する自動分析装置のシステム。
7. The unit according to claim 6, wherein the unit containing the office desk and the above-mentioned pure water production apparatus / pump is arranged under the office desk.
An automatic analyzer system comprising an analyzer mounted on a desk as a component.
【請求項8】請求項7において、純水製造装置・ポンプ
ユニットのハウジング下にキャスターを設置し、机下部
への出し入れを容易としたことを特徴とする自動分析装
置。
8. The automatic analyzer according to claim 7, wherein a caster is provided under a housing of the pure water producing apparatus / pump unit to facilitate access to a desk lower part.
JP7313899A 1999-03-18 1999-03-18 Automatic analyzer Pending JP2000266763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7313899A JP2000266763A (en) 1999-03-18 1999-03-18 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7313899A JP2000266763A (en) 1999-03-18 1999-03-18 Automatic analyzer

Publications (1)

Publication Number Publication Date
JP2000266763A true JP2000266763A (en) 2000-09-29

Family

ID=13509557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7313899A Pending JP2000266763A (en) 1999-03-18 1999-03-18 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP2000266763A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498733A1 (en) 2003-07-18 2005-01-19 Millipore Corporation A system equipped with water purification means
JP2006329774A (en) * 2005-05-25 2006-12-07 Yaskawa Electric Corp Automatic chemical analyzer
WO2007062504A1 (en) * 2005-11-17 2007-06-07 Alberta Research Council Inc. Light measurement automated zeroing and referencing system for a water quality analysis system
JP2008135769A (en) * 2003-08-29 2008-06-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2009001464A1 (en) 2007-06-28 2008-12-31 Olympus Corporation Cleaning device, method for detecting clogging of cleaning nozzle, and automatic analyzer
JP2010045174A (en) * 2008-08-12 2010-02-25 Contact Co Ltd Hoop cleaning and drying device
JP2010133784A (en) * 2008-12-03 2010-06-17 Toshiba Corp Automatic analyzer
JP2010190681A (en) * 2009-02-17 2010-09-02 Beckman Coulter Inc Automatic analysis device, and method of controlling purified water of the same
JP2010197292A (en) * 2009-02-26 2010-09-09 Sysmex Corp Reagent preparing device, specimen measuring device, and reagent preparing method
JP2011153848A (en) * 2010-01-26 2011-08-11 Sysmex Corp Reagent preparation device
JP2011215012A (en) * 2010-03-31 2011-10-27 Toshiba Corp Automatic analyzer and ac motor monitoring device
US8082113B2 (en) 2007-09-03 2011-12-20 Sysmex Corporation Sample analysis system and reagent preparation device
CN102688528A (en) * 2012-05-17 2012-09-26 杭州欧亚流体技术开发有限公司 Hemodialysis water making equipment with biological detection and hemodialysis water detection method
JP2013145252A (en) * 2013-04-30 2013-07-25 Sysmex Corp Reagent preparation device, specimen measurement device and reagent preparation method
JP2013213771A (en) * 2012-04-03 2013-10-17 Toshiba Corp Autoanalyzer
US8894948B2 (en) 2007-06-28 2014-11-25 Beckman Coulter, Inc. Cleaning device, method for detecting suction nozzle clogging, and automatic analyzer
US9665852B2 (en) 2014-05-13 2017-05-30 Vws (Uk) Ltd. Water purification unit
JP2018063227A (en) * 2016-10-14 2018-04-19 株式会社日立ハイテクノロジーズ Autoanalyzer
CN109313205A (en) * 2016-06-10 2019-02-05 积水医疗株式会社 The method of supplying water and water supply device of automatic analysing apparatus
CN112763738A (en) * 2019-11-01 2021-05-07 深圳迈瑞生物医疗电子股份有限公司 Liquid supply system
CN113008788A (en) * 2019-12-20 2021-06-22 恩德莱斯和豪瑟尔分析仪表两合公司 Method of operating an analyzer for determining permanganate index and analyzer
CN117147273A (en) * 2023-10-31 2023-12-01 成都博瑞科传科技有限公司 Background sample concentrating device, concentrating method thereof and calibrating method of detection equipment

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682569B2 (en) 2003-07-18 2010-03-23 Millipore Corporation System equipped with water purification means
FR2857753A1 (en) * 2003-07-18 2005-01-21 Millipore Corp ANALYZER APPARATUS EQUIPPED WITH MEANS FOR PURIFYING WATER
EP1498733A1 (en) 2003-07-18 2005-01-19 Millipore Corporation A system equipped with water purification means
CN1316252C (en) * 2003-07-18 2007-05-16 米利波尔公司 System equipped with water purification means
US8953144B2 (en) 2003-08-29 2015-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008135769A (en) * 2003-08-29 2008-06-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009055062A (en) * 2003-08-29 2009-03-12 Asml Netherlands Bv Lithographic equipment, and device manufacturing method
JP2009055061A (en) * 2003-08-29 2009-03-12 Asml Netherlands Bv Lithographic equipment, and device manufacturing method
US9581914B2 (en) 2003-08-29 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025127B2 (en) 2003-08-29 2015-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006329774A (en) * 2005-05-25 2006-12-07 Yaskawa Electric Corp Automatic chemical analyzer
JP4618001B2 (en) * 2005-05-25 2011-01-26 株式会社安川電機 Automatic chemical analyzer
WO2007062504A1 (en) * 2005-11-17 2007-06-07 Alberta Research Council Inc. Light measurement automated zeroing and referencing system for a water quality analysis system
WO2009001464A1 (en) 2007-06-28 2008-12-31 Olympus Corporation Cleaning device, method for detecting clogging of cleaning nozzle, and automatic analyzer
US8894949B2 (en) 2007-06-28 2014-11-25 Beckman Coulter, Inc. Cleaning device, method for cleaning nozzle clogging, and automatic analyzer
US8894948B2 (en) 2007-06-28 2014-11-25 Beckman Coulter, Inc. Cleaning device, method for detecting suction nozzle clogging, and automatic analyzer
US8082113B2 (en) 2007-09-03 2011-12-20 Sysmex Corporation Sample analysis system and reagent preparation device
JP4722974B2 (en) * 2008-08-12 2011-07-13 株式会社コンタクト Hoop cleaning and drying equipment
JP2010045174A (en) * 2008-08-12 2010-02-25 Contact Co Ltd Hoop cleaning and drying device
JP2010133784A (en) * 2008-12-03 2010-06-17 Toshiba Corp Automatic analyzer
JP2010190681A (en) * 2009-02-17 2010-09-02 Beckman Coulter Inc Automatic analysis device, and method of controlling purified water of the same
JP2010197292A (en) * 2009-02-26 2010-09-09 Sysmex Corp Reagent preparing device, specimen measuring device, and reagent preparing method
JP2011153848A (en) * 2010-01-26 2011-08-11 Sysmex Corp Reagent preparation device
JP2011215012A (en) * 2010-03-31 2011-10-27 Toshiba Corp Automatic analyzer and ac motor monitoring device
JP2013213771A (en) * 2012-04-03 2013-10-17 Toshiba Corp Autoanalyzer
CN102688528A (en) * 2012-05-17 2012-09-26 杭州欧亚流体技术开发有限公司 Hemodialysis water making equipment with biological detection and hemodialysis water detection method
JP2013145252A (en) * 2013-04-30 2013-07-25 Sysmex Corp Reagent preparation device, specimen measurement device and reagent preparation method
US9665852B2 (en) 2014-05-13 2017-05-30 Vws (Uk) Ltd. Water purification unit
CN109313205A (en) * 2016-06-10 2019-02-05 积水医疗株式会社 The method of supplying water and water supply device of automatic analysing apparatus
JP2018063227A (en) * 2016-10-14 2018-04-19 株式会社日立ハイテクノロジーズ Autoanalyzer
CN112763738A (en) * 2019-11-01 2021-05-07 深圳迈瑞生物医疗电子股份有限公司 Liquid supply system
CN112763738B (en) * 2019-11-01 2024-04-05 深圳迈瑞生物医疗电子股份有限公司 Liquid supply system
CN113008788A (en) * 2019-12-20 2021-06-22 恩德莱斯和豪瑟尔分析仪表两合公司 Method of operating an analyzer for determining permanganate index and analyzer
CN117147273A (en) * 2023-10-31 2023-12-01 成都博瑞科传科技有限公司 Background sample concentrating device, concentrating method thereof and calibrating method of detection equipment
CN117147273B (en) * 2023-10-31 2024-02-02 成都博瑞科传科技有限公司 Background sample concentrating device, concentrating method thereof and calibrating method of detection equipment

Similar Documents

Publication Publication Date Title
JP2000266763A (en) Automatic analyzer
CN202936241U (en) Device capable of circularly cleaning MBR (Membrane Biological Reactor) membrane unit in offline way
CN211904845U (en) Full-automatic water sample pretreatment system for online monitoring equipment
CN109336222A (en) Immersion gravity stream ceramic membrane microkinetic ultrafiltration system sewage disposal device and method
CN104803426A (en) Water purifier and water purifier control method
CN202683079U (en) Membrane separation treating device
CN111487112A (en) Full-automatic water sample pretreatment system for online monitoring equipment and pretreatment process thereof
JP2783376B2 (en) Automatic chemical analyzer
CN206391884U (en) Efficient reverse osmosis membrane on-line cleaning system
US20230175947A1 (en) Automated permeability test for a filter basket
JPH05264555A (en) Method and apparatus for water supply for automatic analysis system
CN214096752U (en) Water intake device of pollution source wastewater online monitoring system
CN209210442U (en) A kind of immersion gravity stream ceramic membrane microkinetic ultrafiltration system sewage disposal device
JPH0735760A (en) Automatic analyzer
JP3440594B2 (en) Electrolyzed water generator
CN110078205A (en) A kind of membrane bioreactor pilot plant test device
CN220766556U (en) Water purifier
JPH06103316B2 (en) Cleaning device for automatic dispensing nozzle
TW200424136A (en) Fluidized-bed process drain treatment system
CN210626466U (en) Total phosphorus on-line monitoring appearance
JP2996827B2 (en) Automatic analyzer
JP4025862B2 (en) Aerobic biodegradation measuring device
JPH10267939A (en) Cleaning tank
CN219239456U (en) Sewage recovery device and system
JP2011191148A (en) Automatic analyzer