JP2000266305A - Combustion method by means of collision and agitation - Google Patents

Combustion method by means of collision and agitation

Info

Publication number
JP2000266305A
JP2000266305A JP11070552A JP7055299A JP2000266305A JP 2000266305 A JP2000266305 A JP 2000266305A JP 11070552 A JP11070552 A JP 11070552A JP 7055299 A JP7055299 A JP 7055299A JP 2000266305 A JP2000266305 A JP 2000266305A
Authority
JP
Japan
Prior art keywords
combustion air
fuel
combustion
exhaust gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11070552A
Other languages
Japanese (ja)
Other versions
JP3031908B1 (en
Inventor
Kimitake Taniyama
公勇 谷山
Junnosuke Daimon
淳之介 大門
Kiyokazu Nagai
精和 永井
Masao Kamiide
雅男 上出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP11070552A priority Critical patent/JP3031908B1/en
Application granted granted Critical
Publication of JP3031908B1 publication Critical patent/JP3031908B1/en
Publication of JP2000266305A publication Critical patent/JP2000266305A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent exhaustion of unburned gas from a flue and to improve a thermal efficiency by forming a collision agitating region of combustion air by colliding the air, setting deviation of a fuel supply amount to a specific range of set value to inject the fuel in parallel with an injecting direction of the air, and causing the fuel to burn. SOLUTION: Burners B1-1 to B6-2 have a combustion air supply passage having a combustion air jet port 11 and a fuel supply passage having a plurality of fuel jet ports 19 substantially equally and substantially equally divided and distributed on a substantially concentric circle, with the port at a position of 1.4 to 4.0 times as large as a combustion air supply port diameter at the outside of the port 11. The burners B1-1 to B6-2 are arranged opposed to a furnace wall 3 so that portions of the port 11 are superposed with each other, and the airs are made to undergo collisions with each other to form a collision agitating area of the air. The fuel is injected at its deviation of the each fuel supply amount, in parallel with an injecting direction of the air toward the agitating region within 20% or below of a set value and burned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バーナの燃焼方
法、特に、炉壁にバーナを対向配置して燃焼させるバー
ナの燃焼方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for burning a burner, and more particularly to a method for burning a burner in which a burner is disposed opposite a furnace wall and burned.

【0002】[0002]

【従来の技術】従来、NOxの発生を抑制する炉内燃焼
方法として、たとえば、第2683545号特許公報に
開示されたように、燃焼用空気と燃料とを炉壁3に設け
た燃焼用空気供給管1と燃料供給管2から別々に炉T内
に噴出することにより、すなわち、空気と燃料とが直接
混合する前に、空気と燃料とを各々炉内燃焼ガスと混合
させてから混合させ、この酸素濃度の低い状態で燃焼さ
せることによりNOx低減を図る炉内燃焼方法が提案さ
れている(図4)。
2. Description of the Related Art Conventionally, as an in-furnace combustion method for suppressing the generation of NOx, for example, as disclosed in Japanese Patent No. 2683545, a combustion air supply system in which combustion air and fuel are provided on a furnace wall 3 is disclosed. By jetting separately from the pipe 1 and the fuel supply pipe 2 into the furnace T, that is, before the air and the fuel are directly mixed, the air and the fuel are respectively mixed with the combustion gas in the furnace, and then mixed. An in-furnace combustion method for reducing NOx by burning in a low oxygen concentration state has been proposed (FIG. 4).

【0003】また、近年、省エネルギーを図るため、特
開平10−60536号公報等にて、蓄熱体を内蔵する
蓄熱式バーナを炉壁3に対向配置するとともに、対向す
る蓄熱式バーナで対をなし、対向する一方のバーナB
1-1 ,B3-1,B5-1,B2-2,B4-2,B6-2を燃焼させ、他方
のバーナB1-2,B2-2, B5-2,B2-1,B4-1,B6-1が燃焼
排ガスを吸引排気して排ガス顕熱をその蓄熱体4に回収
し、所定時間毎に燃焼と熱回収とを交互に切換えて燃焼
用空気を前記蓄熱体4を通して供給することにより予熱
し、省エネルギーを図る燃焼方法が提案されている(図
5)。
In recent years, in order to conserve energy, a regenerative burner containing a heat storage body is arranged opposite to a furnace wall 3 in Japanese Patent Application Laid-Open No. H10-60536, and a pair is formed by the opposing regenerative burners. , One burner B facing
1-1 , B 3-1 , B 5-1 , B 2-2 , B 4-2 , B 6-2 are burned, and the other burners B 1-2 , B 2-2 , B 5-2 , B 2-1 , B 4-1 , and B 6-1 suction and exhaust the combustion exhaust gas, recover the sensible heat of the exhaust gas to the heat storage unit 4, and alternately switch between combustion and heat recovery at predetermined intervals for combustion. A combustion method has been proposed in which air is preheated by supplying air through the heat storage body 4 to save energy (FIG. 5).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
方法は、前述したように、燃焼用空気と燃料とが直接混
合する前に、それぞれの噴出運動量によって形成される
炉内燃焼ガスの再循環流と混合してから炉内空間で緩慢
燃焼をする。つまり、炉内ガスは未反応の燃料と、燃焼
に寄与する以前の燃焼用空気と、燃焼反応途中の中間生
成物および燃焼排ガスとからなる混合ガスであるので、
燃焼が未完結の未燃ガスが煙道から排出され、熱効率が
悪いばかりか安全性に課題を有する。
However, the former method, as described above, uses the recirculation flow of the combustion gas in the furnace formed by the respective injection momentums before the combustion air and the fuel are directly mixed. And then slowly burn in the furnace space. In other words, the furnace gas is a mixed gas composed of unreacted fuel, combustion air before contributing to combustion, and intermediate products and combustion exhaust gas during the combustion reaction.
Unburned gas, whose combustion has not been completed, is discharged from the flue, which has a problem in safety as well as poor thermal efficiency.

【0005】一方、後者の方法は、火炎長さに比べて相
対的に炉幅が狭いと、高温の燃焼ガスが炉内を十分に循
環せず、炉内の被加熱物を効率よく均一に加熱すること
ができないばかりか、燃焼反応が未完結の燃焼ガスを対
向配置されたバーナ(燃焼用空気供給兼排ガス排出口)
から吸引排気されるので、排ガス中の一酸化炭素濃度が
高くなり、吸引排気動作中の蓄熱式バーナ内部の蓄熱体
をオーバーヒートさせる等の課題を有する。
On the other hand, in the latter method, when the furnace width is relatively narrower than the flame length, the high-temperature combustion gas does not sufficiently circulate in the furnace, and the object to be heated in the furnace is efficiently and uniformly. Burner (combustion air supply / exhaust gas outlet) not only incapable of heating, but also opposed combustion gas whose combustion reaction is not completed.
Therefore, there is a problem in that the concentration of carbon monoxide in the exhaust gas increases, and the heat storage body inside the regenerative burner during the suction / exhaust operation is overheated.

【0006】これを解決するには、燃焼火炎を相対的に
短くすればよいが、火炎を短くするには限られた領域内
(燃焼空間)で急速燃焼させなければならず、NOxが
増加するという新たなる課題を有する。
In order to solve this problem, the combustion flame may be shortened relatively. However, in order to shorten the flame, rapid combustion must be performed in a limited area (combustion space), and NOx increases. It has a new problem.

【0007】本発明は、燃焼用空気噴出口と燃料噴出口
とを別個に設けたバーナを炉壁に対向配設して燃焼させ
ると、両バーナから噴出した燃焼用空気が炉内中央部で
衝突して衝突撹拌領域を形成する。そして、燃料をこの
衝突撹拌領域に向けて燃焼用空気の噴出方向と平行に噴
出させ、燃料の一部を燃焼用空気噴出口からの燃焼用空
気の運動量によって誘引混合させ、燃焼用空気が衝突撹
拌領域に到達する前に燃焼する一方、燃料の大部分は衝
突撹拌領域でいわゆる緩慢燃焼し、その高温の燃焼排ガ
スは衝突撹拌領域でのガス拡散力により炉内を活発に移
動する。したがって、この燃焼方法を利用すれば、前記
2者の課題を解決することができるということを見出し
てなされたものである。
According to the present invention, when a burner having a combustion air outlet and a fuel outlet separately provided is opposed to a furnace wall and burned, the combustion air ejected from both burners is generated at a central portion in the furnace. Collide to form a collision stir zone. Then, the fuel is ejected toward the collision stirring area in parallel with the ejection direction of the combustion air, and a part of the fuel is attracted and mixed by the momentum of the combustion air from the combustion air ejection port. While the fuel burns before reaching the stirring region, most of the fuel burns so-called slowly in the collision stirring region, and the high-temperature flue gas moves actively in the furnace due to the gas diffusion force in the collision stirring region. Therefore, it has been found that the use of this combustion method can solve the above two problems.

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成するために、先端に燃焼用空気噴出口を有する燃焼用
空気供給路と、前記燃焼用空気噴出口の外側で該燃焼用
空気噴出口と略同心円上に、かつ、略等分割に配設され
た複数の燃料噴出口を有する燃料供給路とからなるバー
ナを、前記燃焼用空気噴出口の少なくとも一部が互いに
重なるように炉壁に対向配設し、前記対向するバーナか
らの燃焼用空気を炉内で互いに衝突させて燃焼用空気の
衝突撹拌領域を形成するとともに、燃料を前記衝突撹拌
領域に向けて燃焼用空気の噴出方向と平行に噴出させて
燃焼させるものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a combustion air supply passage having a combustion air jet at the tip thereof, and a combustion air supply passage outside the combustion air jet. A burner comprising a fuel supply passage having a plurality of fuel outlets disposed substantially concentrically with the injection port and substantially equally divided, so that at least a part of the combustion air injection port overlaps with the furnace. The combustion air from the opposed burners is arranged opposite to the wall to collide with each other in the furnace to form a collision stirring area of the combustion air, and the fuel is jetted toward the collision stirring area. It is ejected and burned in parallel to the direction.

【0009】また、先端に燃焼用空気噴出兼排ガス排出
口を有する燃焼用空気供給兼排ガス排出路と、前記燃焼
用空気噴出兼排ガス排出口の外側で該燃焼用空気噴出兼
排ガス排出口と略同心円上に、かつ、略等分割に配設さ
れた複数の燃料噴出口を有する燃料供給路と、前記燃焼
用空気供給兼排ガス排出路中に配設され排ガス排出路に
切換え接続される蓄熱室を備えた蓄熱式バーナを、前記
燃焼用空気噴出兼排ガス排出口の少なくとも一部が互い
に重なるように炉壁に偶数対対向配設し、前記対向配設
した蓄熱式バーナの燃料、燃焼用空気の供給および炉内
燃焼排ガスの排気を同期させてこの偶数対の半分以下の
所定対の蓄熱式バーナの燃焼用空気供給兼排ガス排出口
からの燃焼用空気を炉内中央部で互いに衝突させて燃焼
用空気の衝突撹拌領域を形成するとともに、燃料を前記
衝突撹拌領域に向けて燃焼用空気の噴出方向と平行に噴
出させて炉内で燃焼させる一方、他の対の蓄熱式バーナ
の燃焼用空気噴出兼排ガス排出口から炉内燃焼排ガスを
吸引排気して次回燃焼時の燃焼用空気の予熱に利用する
熱を蓄熱室の蓄熱体に回収することを所定時間毎に交互
に切換えて燃焼させるものである。
A combustion air supply / exhaust gas discharge passage having a combustion air discharge / exhaust gas discharge port at an end thereof, and a combustion air discharge / exhaust gas discharge port outside the combustion air discharge / exhaust gas discharge port. A fuel supply passage having a plurality of fuel injection ports arranged concentrically and substantially equally divided, and a heat storage chamber disposed in the combustion air supply / exhaust gas discharge passage and connected to the exhaust gas discharge passage by switching An even number of regenerative burners are provided on the furnace wall such that at least a part of the combustion air ejection and exhaust gas outlets overlap with each other, and the fuel and combustion air of the regenerative burners disposed opposite to each other are provided. Supply and exhaust of combustion flue gas in the furnace are synchronized so that combustion air from a combustion air supply and exhaust gas outlet of a predetermined number of regenerative burners of less than half of the even-numbered pairs collides with each other at a central portion in the furnace. Impact stirring of combustion air While forming a zone, the fuel is jetted in parallel with the jetting direction of the combustion air toward the collision stir zone and burned in the furnace, while the other pair of regenerative burners emits the combustion air and exhaust gas. In this case, the combustion exhaust gas in the furnace is sucked and exhausted, and the heat used for preheating the combustion air in the next combustion is recovered in the heat storage body of the heat storage chamber alternately at predetermined time intervals for combustion.

【0010】さらに、複数の燃料噴出口からのそれぞれ
の燃料供給量の偏差が設定値の±20%以内とするのが
好ましい。
Further, it is preferable that the deviation of the fuel supply amount from each of the plurality of fuel injection ports is within ± 20% of the set value.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態につい
て図1〜図3にしたがって説明する。図1は、本発明に
適用される蓄熱式バーナBを示す。この蓄熱式バーナB
は、大略、先端に燃焼用空気噴出兼排ガス排出口11を
有し、途中に蓄熱室12と備えた燃焼用空気供給兼排ガ
ス排出路10と、燃焼用空気噴出兼排ガス排出口11の
外側で該燃焼用空気噴出兼排ガス排出口と略同心円上
に、かつ、略等分割に配設された複数(図では2箇所)
の燃料噴出口19を有する燃料供給路18とからなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a regenerative burner B applied to the present invention. This regenerative burner B
In general, a combustion air supply / exhaust gas discharge passage 10 provided with a combustion air discharge / exhaust gas discharge port 11 at the end and a heat storage chamber 12 provided on the way, and an outside of the combustion air discharge / exhaust gas discharge port 11 are provided. A plurality (two in the figure) disposed substantially concentrically with the combustion air ejection and exhaust gas outlet and substantially equally divided
And a fuel supply passage 18 having a fuel ejection port 19.

【0012】そして、前記蓄熱室12には蓄熱体13が
設けられ、前記燃焼用空気噴出兼排ガス排出口11側に
ヘッダ14、反対側に風箱15が形成され、風箱15は
下記するように、燃焼用空気用開閉弁V1と排ガス用開
閉弁V2とにより燃焼用空気供給管P1と排ガス排出管P
2とに切換え連通するようになっている。
A heat storage body 13 is provided in the heat storage chamber 12, a header 14 is formed on the side of the combustion air ejection and exhaust gas discharge port 11, and a wind box 15 is formed on the opposite side. a combustion air supply pipe P 1 by the combustion air on-off valve V 1 and the exhaust gas on-off valve V 2 and the exhaust gas discharge pipe P
The communication is switched to 2 .

【0013】また、燃焼用空気供給兼排ガス排出路10
の所定位置には、点火用燃料ノズル16と前記燃焼用空
気噴出兼排ガス排出口11側の斜め前方に向かって火炎
を噴出するパイロットバーナ17がそれぞれ設けてあ
る。
A combustion air supply and exhaust gas discharge passage 10
At a predetermined position, there are provided an ignition fuel nozzle 16 and a pilot burner 17 for ejecting a flame obliquely forward on the side of the combustion air ejection and exhaust gas outlet 11 side.

【0014】図2は、前記蓄熱式バーナBを炉壁3に配
設した図を示し、蓄熱式バーナBは、炉壁3の隣接する
蓄熱式バーナB1-1とB1-2、B2-1とB2-2、B3-1とB
3-2およびB4-1とB4-2、B5-1とB5-2、B6-1とB6-2
で対をなし、所定時間毎に燃焼と排気を繰り返す構成の
蓄熱式バーナBを対向配設したものである。なお、本図
は複数に区画されたゾーンのうちの1つとして以下動作
説明する。
[0014] Figure 2, the regenerative burners B a shows a diagram which is disposed in furnace wall 3, regenerative burners B is regenerative burner B 1-1 and B 1-2 adjacent the furnace wall 3, B 2-1 and B 2-2 , B 3-1 and B
3-2 and B4-1 and B4-2 , B5-1 and B5-2 , B6-1 and B6-2
, And a regenerative burner B having a configuration in which combustion and exhaust are repeated at predetermined time intervals is disposed opposite to each other. In this figure, the operation will be described below as one of a plurality of divided zones.

【0015】ただし、対向する蓄熱式バーナBの燃焼用
空気噴出兼排ガス排出口11は、少なくとも一部が互い
に重なるように配置している。そして、前記各蓄熱式バ
ーナBの蓄熱室12は、前述のように燃焼用空気用開閉
弁V1と排ガス用開閉弁V2とを介して燃焼用空気供給管
1と排ガス排出管P2とに連通している。
However, the combustion air ejection and exhaust gas outlets 11 of the regenerative burner B are arranged so that at least a part thereof overlaps each other. Then, the heat storage chambers 12 of each regenerative burner B is the combustion air supply pipe P 1 through the combustion air on-off valve V 1 and the exhaust gas on-off valve V 2 as described above and the exhaust gas discharge pipe P 2 And communicates with

【0016】また、前記燃料供給路18は、燃料用制御
弁V3を介して燃料供給管P3に連通している。
The fuel supply passage 18 communicates with a fuel supply pipe P 3 via a fuel control valve V 3 .

【0017】さらに、前記燃焼用空気供給管P1、排ガ
ス排出管P2および燃料供給管P3にはそれぞれ燃焼用空
気用制御弁V11、排ガス用制御弁V12と燃料用制御弁V
13を備え、前記各開閉弁V11,V12,V13は制御信号に
よりそれぞれの弁開度を調整する。
Further, the combustion air supply pipe P 1 , the exhaust gas discharge pipe P 2 and the fuel supply pipe P 3 are respectively provided with a control valve V 11 for combustion air, a control valve V 12 for exhaust gas and a control valve V for fuel.
The opening / closing valves V 11 , V 12 , and V 13 adjust the respective valve openings according to control signals.

【0018】つぎに、前記構成からなる蓄熱式バーナB
の操業について図1〜図3を参照して説明する。
Next, the regenerative burner B constructed as described above
Will be described with reference to FIGS.

【0019】まず、炉の立上げ時、すなわち、炉温が常
温(燃料の自然着火温度以下)である場合、前記各蓄熱
式バーナBのうち所定数の蓄熱式バーナBにおいて、パ
イロットバーナ17を着火させ、燃焼用空気供給兼排ガ
ス排出路10に燃焼用空気を供給し、これに見合う燃料
を点火用燃料ノズル16から供給して燃焼させ、残りの
蓄熱式バーナBの燃焼用空気噴出兼排ガス排出口11を
排ガス排出管P2に連通させて排気する。なお、前記蓄
熱式バーナBの全数を燃焼させ、燃焼排ガスを図示しな
い煙道から排出して炉を昇温してもよい。
First, when the furnace is started up, that is, when the furnace temperature is normal temperature (lower than the natural ignition temperature of the fuel), the pilot burner 17 is activated in a predetermined number of the regenerative burners B among the regenerative burners B. The fuel is ignited, combustion air is supplied to the combustion air supply / exhaust gas discharge passage 10, and fuel corresponding to the combustion air is supplied from the ignition fuel nozzle 16 and burned. the discharge port 11 is exhausted to communicate with the exhaust gas discharge pipe P 2. Alternatively, all of the regenerative burners B may be burned, and the exhaust gas may be discharged from a flue (not shown) to heat the furnace.

【0020】そして、炉温が燃料の自然着火温度以上に
なると、前記常温点火用燃料ノズル16への燃料供給を
停止するとともにパイロットバーナ17を消火し、たと
えば、蓄熱式バーナB1-1とB4-1、B2-1とB5-1、B
3-1とB6-1において、燃焼用空気用開閉弁V1を開、燃
料用開閉弁V3を開、排ガス用開閉弁V2を閉とする一
方、残りの蓄熱式バーナB1-2とB4-2、B2-2とB5-2
3-2とB6-2においては、燃焼用空気用開閉弁V1
閉、燃料用開閉弁V3を閉、排ガス用制御弁V2を開とす
る。
[0020] When the furnace temperature is above spontaneous ignition temperature of the fuel, and extinguishing the pilot burner 17 stops the fuel supply to the cold ignition fuel nozzle 16, for example, regenerative burners B 1-1 and B 4-1 , B 2-1 and B 5-1 , B
In 3-1 and B 6-1, the combustion air-off valve V 1 open, the fuel on-off valve V 3 opened, while the exhaust gas on-off valve V 2 is closed, the remaining regenerative burners B 1- 2 and B 4-2 , B 2-2 and B 5-2 ,
In B 3-2 and B 6-2, to the combustion air on-off valve V 1 is closed, the fuel on-off valve V 3 closed, and the exhaust gas control valve V 2 opens.

【0021】これにより、蓄熱式バーナB1-1とB4-1
2-1とB5-1、B3-1とB6-1から噴出した燃焼用空気は
炉内中央部付近で衝突し衝突撹拌領域Aを形成する。燃
料は、燃料噴出口19から前記衝突撹拌領域Aに向かっ
て噴出し、噴出した燃料の一部が前記燃焼用空気の運動
量によって誘引され、燃焼用空気が衝突撹拌領域Aに到
達する前に、燃焼用空気と混合燃焼する一方、残りの大
部分は衝突撹拌領域Aで燃料と混合して燃焼する。つま
り、緩慢燃焼することになりNOxを低減する。
As a result, the regenerative burners B1-1 and B4-1 ,
The combustion air ejected from B 2-1 and B 5-1 and from B 3-1 and B 6-1 collide near the center of the furnace and form a collision stirring area A. The fuel is ejected from the fuel ejection port 19 toward the collision stirring area A, and a part of the ejected fuel is attracted by the momentum of the combustion air, and before the combustion air reaches the collision stirring area A, Most of the remaining fuel is mixed with the fuel in the collision agitation zone A and burnt while being mixed with the combustion air. In other words, slow combustion occurs, and NOx is reduced.

【0022】そして、前記高温の燃焼排ガスは衝突撹拌
領域Aでの複雑な流れにより炉内を活発に移動する。こ
のため、炉内の温度分や残留O2%が均一化され、被加
熱物Wを効率よく均一に加熱することになる。
Then, the high-temperature combustion exhaust gas actively moves in the furnace by a complicated flow in the collision stirring area A. Therefore, the temperature in the furnace and the residual O 2 % are uniformed, and the object to be heated W is efficiently and uniformly heated.

【0023】一方、蓄熱式バーナB1-2とB4-2、B2-2
とB5-2、B3-2とB6-2においては、燃焼用空気噴出兼
排ガス排出口11が排ガス排出管P2を介して排気ファ
ン(図示せず)に連通しているため、この燃焼用空気噴
出兼排ガス排出口11から炉内の高温の燃焼排ガスを吸
引排気し、その顕熱を蓄熱体13に回収する。
On the other hand, regenerative burners B 1-2 and B 4-2 , B 2-2
And B 5-2 , B 3-2 and B 6-2 , the combustion air ejection and exhaust gas outlet 11 communicates with an exhaust fan (not shown) via an exhaust gas exhaust pipe P 2 . High-temperature combustion exhaust gas in the furnace is sucked and exhausted from the combustion air jet / exhaust gas exhaust port 11, and the sensible heat is recovered in the heat storage body 13.

【0024】所定時間経過後、前記燃焼用空気用開閉弁
1、排ガス用開閉弁V2、燃料用開閉弁V3をそれぞれ
逆に動作させ、一方の蓄熱式バーナB1-1とB4-1、B
2-1とB 5-1、B3-1とB6-1で排ガスを吸引排気し、他方
の蓄熱式バーナB1-2とB4-2、B2-2とB5-2、B3-2
6-2で燃焼を行う。この場合、先に蓄熱された蓄熱体
13を通過して高温に予熱された燃焼用空気が炉内へ供
給されるため、省エネルギーを図ることができる。
After a lapse of a predetermined time, the on-off valve for combustion air
V1, Exhaust gas on-off valve VTwo, Fuel on-off valve VThreeEach
Operate in the opposite direction, and use one regenerative burner B1-1And B4-1, B
2-1And B 5-1, B3-1And B6-1To exhaust and exhaust the exhaust gas
Regenerative burner B1-2And B4-2, B2-2And B5-2, B3-2When
B6-2Combustion is performed. In this case, the heat storage element that has been stored first
The combustion air preheated to a high temperature through the
Energy can be saved.

【0025】また、前述のように各蓄熱式バーナBの操
業が開始すれば、炉内温度は燃料の自然着火温度以上と
なっているため、蓄熱式バーナBの燃焼・吸引切換え時
にパイロットバーナ17の点火、常温点火用燃料ノズル
16は使用しないことはいうまでもない。
When the operation of each regenerative burner B is started as described above, the temperature in the furnace is equal to or higher than the natural ignition temperature of the fuel. It is needless to say that the fuel nozzle 16 for normal temperature ignition and normal temperature ignition is not used.

【0026】なお、前記蓄熱式バーナBにおいて、燃焼
用空気噴出兼排ガス排出口11からの燃焼用空気の噴出
速度は80m/sから120m/sの範囲が好ましい。こ
れは、噴出速度が80m/sより遅いと、燃料を拡散混
合するに十分な乱れを有する衝突撹拌領域Aが形成され
ないばかりか、隣接する蓄熱式バーナBの吸引排気動作
(熱回収作用)を行っている燃焼用空気噴出兼排ガス排
出口11へ向かおうとする流れ場(所謂ショートパス)
が形成され、投入された燃焼用空気および燃焼が未完結
の燃料および燃焼排ガスが短時間で吸引排気され、被処
理材Wへの伝熱効率が低下するためであり、逆に120
m/s以上であると、燃料との混合拡散が促進されすぎ
てNOxの発生量が増大するためである。
In the regenerative burner B, the velocity of the combustion air jet from the combustion air jet / exhaust gas discharge port 11 is preferably in the range of 80 m / s to 120 m / s. This means that if the jetting speed is lower than 80 m / s, not only the collision stirring area A having sufficient turbulence for diffusing and mixing the fuel is not formed, but also the suction / exhaust operation (heat recovery action) of the adjacent regenerative burner B is performed. Flow field (so-called short path) that is going to the combustion air emission and exhaust gas outlet 11 that is being performed
Is formed, the injected combustion air and the incompletely combusted fuel and combustion exhaust gas are sucked and exhausted in a short time, and the heat transfer efficiency to the workpiece W is reduced.
If the speed is not less than m / s, the mixing and diffusion with the fuel is promoted too much, and the generation amount of NOx increases.

【0027】燃料の噴出速度は燃焼用空気の噴出速度の
1/3から1/5の範囲が好ましい。その理由は、1/5
以下であると、燃料が燃焼用空気の衝突で形成された衝
突撹拌領域Aまで流れの方向性を維持しながら到達でき
る運動量に足らないからであり、1/3以上であると、
燃料は衝突撹拌領域Aに達したのち燃焼用空気の乱れに
打ち勝つことにより燃焼用空気の乱れによって拡散混合
する量が減少するからである。
The fuel injection speed is preferably in the range of 1/3 to 1/5 of the combustion air injection speed. The reason is 1/5
If it is less than the above, the momentum that the fuel can reach to the collision stirring area A formed by the collision of the combustion air while maintaining the directionality of the flow is not enough.
This is because the fuel overcomes the turbulence of the combustion air after reaching the collision agitation area A, and the turbulence of the combustion air reduces the amount of diffusion and mixing.

【0028】また、前記燃料噴出口19におけるそれぞ
れの燃料供給量の偏差は±20%以内で許容され、好ま
しくは、同量である。これは、燃料噴出口19が3以上
であっても同様である。その理由は、隣接する熱回収状
態の蓄熱式バーナBに近い側の燃料噴出口19からの供
給量が多くなると、燃焼が炉内で完結し難くなり、CO
等の未焼分が発生するためであり、逆に、遠い側の燃料
噴出口19からの供給量が多くなると燃料と燃焼用空気
の混合領域が狭くなり、局所加熱傾向が顕著になると同
時にNOxの発生量が増大するためである。
The deviation of the fuel supply amount at the fuel injection port 19 is allowed within ± 20%, and is preferably the same. This is the same even if the number of fuel outlets 19 is three or more. The reason is that when the supply amount from the fuel injection port 19 on the side close to the regenerative burner B in the adjacent heat recovery state increases, the combustion becomes difficult to complete in the furnace, and CO
Conversely, when the amount of supply from the distant fuel injection port 19 increases, the mixing region of the fuel and the combustion air becomes narrow, and the local heating tendency becomes remarkable, and at the same time NOx This is because the amount of generation increases.

【0029】さらに、燃焼用空気噴出兼排ガス排出口1
1の軸心から燃料噴出口19の軸心までの距離Lは、前
記燃焼用空気噴出兼排ガス排気口11の外径の1.4か
ら4.0倍までの範囲が好ましい。その理由は、前記距
離が近すぎると、燃料噴出口19からの燃料が燃焼用空
気の運動量に誘引され、燃料と燃焼用空気とが急速混合
するのでNOxの発生量が増大するためである。逆に、
前記距離が遠すぎると前述した燃焼用空気の衝突撹拌領
域Aに燃料を供給できないので局部的に燃料リッチの部
分が炉内で形成され、未燃焼分が発生するからである。
Further, a combustion air jet and exhaust gas discharge port 1 is provided.
The distance L from the axis 1 to the axis of the fuel outlet 19 is preferably in the range of 1.4 to 4.0 times the outer diameter of the combustion air outlet / exhaust gas outlet 11. The reason is that if the distance is too short, the fuel from the fuel injection port 19 is attracted to the momentum of the combustion air, and the fuel and the combustion air mix rapidly, so that the generation amount of NOx increases. vice versa,
If the distance is too long, fuel cannot be supplied to the combustion air collision stirring area A, so that a fuel-rich portion is locally formed in the furnace, and unburned components are generated.

【0030】前記説明は、隣接する蓄熱式バーナ同志で
対をなす例を述べたが、本実施例に限定されるものでは
なく、燃料、燃焼用空気の供給および炉内燃焼排ガスの
排気を対向配設したバーナで同期すれば、どのような対
を構成しても構わない。
In the above description, an example in which adjacent regenerative burners are paired has been described. However, the present invention is not limited to this embodiment, and the supply of fuel and combustion air and the exhaust of combustion exhaust gas in the furnace are opposed to each other. Any pair may be formed as long as they are synchronized by the arranged burners.

【0031】また、前記説明は、蓄熱式バーナBの燃焼
方法であるが、この蓄熱式バーナBから蓄熱室12を除
いた構成のバーナを、炉壁3に対向して配設して燃焼す
れば、前記蓄熱式バーナにおける蓄熱作用と燃焼用空気
の予熱作用を除き、同一の作用効果を得ることができ
る。この場合、燃焼用空気噴出兼排ガス排出口11から
は燃焼用空気の噴出のみであることは勿論である。
The above description relates to a method of burning the regenerative burner B. A burner having a configuration in which the regenerative burner B is removed from the regenerative chamber 12 is disposed opposite the furnace wall 3 for combustion. For example, the same function and effect can be obtained except for the heat storage function and the preheating function of the combustion air in the regenerative burner. In this case, it goes without saying that only the combustion air is ejected from the combustion air ejection and exhaust gas discharge port 11.

【0032】なお、燃焼用空気と燃料の噴出速度および
燃焼用空気噴出兼排ガス排出口11の軸心から燃料噴出
口19の軸心までの距離Lについては、前記蓄熱式バー
ナについて述べたことと同一である。また、燃料噴出口
19におけるそれぞれの燃料供給量の偏差は前記蓄熱式
バーナについて述べたように、±20%以内で許容さ
れ、好ましくは、同量である。これは、燃料供給量のバ
ランスが崩れると、炉内で燃料リッチ部分(濃部分)と
燃料リーン部分(淡部分)が形成されて、燃焼用空気の
衝突による衝突撹拌領域Aで燃料と燃焼用空気とが均一
に混合できなくなり、結果的に従来例で示した特許26
83545号公報と同様の現象、すなわち、炉内で未反
応の燃料、燃焼に寄与する前の燃焼用空気、燃焼反応途
中の中間生成物および燃焼排ガスが介在することにな
り、煙道に燃焼未反応の燃料が排出され、熱効率、安全
面に課題を有するからである。
The injection speed of the combustion air and the fuel and the distance L from the axis of the combustion air jet / exhaust gas discharge port 11 to the axis of the fuel jet port 19 are the same as those described for the regenerative burner. Are identical. Further, as described in the regenerative burner, the deviation of each fuel supply amount at the fuel injection port 19 is allowed within ± 20%, and is preferably the same. This is because when the balance of the fuel supply is lost, a fuel-rich portion (rich portion) and a fuel-lean portion (light portion) are formed in the furnace, and the fuel and the fuel are mixed in the collision stirring area A due to the collision of the combustion air. As a result, the air cannot be mixed uniformly, resulting in the patent 26 shown in the conventional example.
A phenomenon similar to that in JP-A-83545, that is, unreacted fuel in the furnace, combustion air before contributing to combustion, intermediate products during combustion reaction, and combustion exhaust gas are interposed, and unburned fuel flows into the flue. This is because the fuel of the reaction is discharged, and there are problems in terms of thermal efficiency and safety.

【0033】[0033]

【発明の効果】以上の説明で明らかなように、請求項1
の発明では、相対向するバーナの燃焼用空気を高速で噴
出し、燃焼用空気を互いに炉内中央部で衝突させて衝突
撹拌領域を形成するとともに、燃料をこの衝突撹拌領域
に向けて燃焼用空気の噴出方向と平行に噴出させ、燃料
の一部を燃焼用空気噴出口からの燃焼用空気の運動量に
よって誘引混合させ、燃焼用空気が衝突撹拌領域に到達
する前に燃焼する一方、燃料の大部分は衝突撹拌領域で
燃料と混合燃焼させ、いわゆる緩慢燃焼を行う。しかも
高温の燃焼排ガスが衝突撹拌領域の影響を受けて炉内を
活発に移動するため、燃料は完全に燃焼し、かつ、炉内
の温度分布や残留O2%が均一化され、被加熱物を効率
よく加熱することができるとともに、炉内での局部的な
燃焼、発熱領域を抑制してNOxの発生を抑制できる。
したがって、煙道から未燃ガスが排出されることはな
い。
As is apparent from the above description, claim 1
According to the invention, combustion air from opposing burners is ejected at a high speed, and the combustion air collides with each other at a central portion in the furnace to form a collision stirring area, and fuel is directed toward the collision stirring area. The fuel is ejected in parallel to the direction of air ejection, and a part of the fuel is attracted and mixed by the momentum of the combustion air from the combustion air ejection port.The combustion air burns before reaching the collision stirring area, while the fuel Most of the fuel is mixed and burned with the fuel in the collision agitation region, so-called slow combustion is performed. In addition, since the high-temperature flue gas moves actively in the furnace under the influence of the collision agitation zone, the fuel is completely burned, and the temperature distribution and the residual O 2 % in the furnace are made uniform, and the heated object is heated. Can be efficiently heated, and the generation of NOx can be suppressed by suppressing local combustion and heat generation in the furnace.
Therefore, no unburned gas is emitted from the flue.

【0034】請求項2の発明では、前記同様燃料は炉内
中央部の衝突撹拌領域にて完全に燃焼するため、炉幅が
狭くても、吸引排気中の蓄熱体をオーバヒートさせるこ
となく、かつ、高温の燃焼ガスは炉内を十分に循環する
ため被加熱物を効率よく加熱することができる。
According to the second aspect of the present invention, since the fuel is completely burned in the collision stir zone in the central part of the furnace, even if the furnace width is narrow, the heat storage body in the suction exhaust is not overheated, and Since the high-temperature combustion gas circulates sufficiently in the furnace, the object to be heated can be efficiently heated.

【0035】請求項3の発明によれば、前記請求項1,
2の効果をより一層高めることができる。
According to the third aspect of the present invention, the first aspect is provided.
2 can be further enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (A)は本発明に使用する蓄熱式バーナの断
面図、(B)は(A)の正面図。
1A is a sectional view of a regenerative burner used in the present invention, and FIG. 1B is a front view of FIG.

【図2】 図1に示す蓄熱式バーナの炉内配置と配管関
係を示す図。
FIG. 2 is a view showing the arrangement of the regenerative burner shown in FIG.

【図3】 図2における燃焼状態を示す図。FIG. 3 is a view showing a combustion state in FIG. 2;

【図4】 (A)は従来のバーナの断面図、(B)は
(A)のIV−IV線断面図。
4A is a sectional view of a conventional burner, and FIG. 4B is a sectional view taken along line IV-IV of FIG.

【図5】 従来の蓄熱式バーナの燃焼状態を示す図。FIG. 5 is a diagram showing a combustion state of a conventional regenerative burner.

【符号の説明】[Explanation of symbols]

10〜燃焼用空気供給兼排ガス排出路、11〜燃焼用空
気噴出兼排ガス排出口、12〜蓄熱室、13〜蓄熱体、
A〜衝突撹拌領域、B〜バーナ、V1〜燃焼用空気用開
閉弁、V2〜排ガス用開閉弁、V3〜燃料用開閉弁。
10-combustion air supply / exhaust gas discharge path, 11-combustion air ejection / exhaust gas exhaust port, 12-heat storage chamber, 13-heat storage element,
A to collision stir zone, B to burner, V 1 to on-off valve for combustion air, V 2 to on-off valve for exhaust gas, V 3 to on-off valve for fuel.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年12月2日(1999.12.
2)
[Submission date] December 2, 1999 (1999.12.
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 衝突撹拌式燃焼方法[Title of the Invention] Impact stirring type combustion method

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バーナの燃焼方
法、特に、炉壁にバーナを対向配置して燃焼させるバー
ナの燃焼方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for burning a burner, and more particularly to a method for burning a burner in which a burner is disposed opposite a furnace wall and burned.

【0002】[0002]

【従来の技術】従来、NOxの発生を抑制する炉内燃焼
方法として、たとえば、第2683545号特許公報に
開示されたように、燃焼用空気と燃料とを炉壁3に設け
た燃焼用空気供給管1と燃料供給管2から別々に炉T内
に噴出することにより、すなわち、空気と燃料とが直接
混合する前に、空気と燃料とを各々炉内燃焼ガスと混合
させてから混合させ、この酸素濃度の低い状態で燃焼さ
せることによりNOx低減を図る炉内燃焼方法が提案さ
れている(図4)。
2. Description of the Related Art Conventionally, as an in-furnace combustion method for suppressing the generation of NOx, for example, as disclosed in Japanese Patent No. 2683545, a combustion air supply system in which combustion air and fuel are provided on a furnace wall 3 is disclosed. By jetting separately from the pipe 1 and the fuel supply pipe 2 into the furnace T, that is, before the air and the fuel are directly mixed, the air and the fuel are respectively mixed with the combustion gas in the furnace, and then mixed. An in-furnace combustion method for reducing NOx by burning in a low oxygen concentration state has been proposed (FIG. 4).

【0003】また、近年、省エネルギーを図るため、特
開平10−60536号公報等にて、蓄熱体を内蔵する
蓄熱式バーナを炉壁3に対向配置するとともに、対向す
る蓄熱式バーナで対をなし、対向する一方のバーナB
1-1 ,B3-1,B5-1,B2-2,B4-2,B6-2を燃焼させ、他方
のバーナB1-2,B2-2, B5-2,B2-1,B4-1,B6-1が燃焼
排ガスを吸引排気して排ガス顕熱をその蓄熱体4に回収
し、所定時間毎に燃焼と熱回収とを交互に切換えて燃焼
用空気を前記蓄熱体4を通して供給することにより予熱
し、省エネルギーを図る燃焼方法が提案されている(図
5)。
In recent years, in order to conserve energy, a regenerative burner containing a heat storage body is arranged opposite to a furnace wall 3 in Japanese Patent Application Laid-Open No. H10-60536, and a pair is formed by the opposing regenerative burners. , One burner B facing
1-1 , B 3-1 , B 5-1 , B 2-2 , B 4-2 , B 6-2 are burned, and the other burners B 1-2 , B 2-2 , B 5-2 , B 2-1 , B 4-1 , and B 6-1 suction and exhaust the combustion exhaust gas, recover the sensible heat of the exhaust gas to the heat storage unit 4, and alternately switch between combustion and heat recovery at predetermined intervals for combustion. A combustion method has been proposed in which air is preheated by supplying air through the heat storage body 4 to save energy (FIG. 5).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
方法は、前述したように、燃焼用空気と燃料とが直接混
合する前に、それぞれの噴出運動量によって形成される
炉内燃焼ガスの再循環流と混合してから炉内空間で緩慢
燃焼をする。つまり、炉内ガスは未反応の燃料と、燃焼
に寄与する以前の燃焼用空気と、燃焼反応途中の中間生
成物および燃焼排ガスとからなる混合ガスであるので、
燃焼が未完結の未燃ガスが煙道から排出され、熱効率が
悪いばかりか安全性に課題を有する。
However, the former method, as described above, uses the recirculation flow of the combustion gas in the furnace formed by the respective injection momentums before the combustion air and the fuel are directly mixed. And then slowly burn in the furnace space. In other words, the furnace gas is a mixed gas composed of unreacted fuel, combustion air before contributing to combustion, and intermediate products and combustion exhaust gas during the combustion reaction.
Unburned gas, whose combustion has not been completed, is discharged from the flue, which has a problem in safety as well as poor thermal efficiency.

【0005】一方、後者の方法は、火炎長さに比べて相
対的に炉幅が狭いと、高温の燃焼ガスが炉内を十分に循
環せず、炉内の被加熱物を効率よく均一に加熱すること
ができないばかりか、燃焼反応が未完結の燃焼ガスを対
向配置されたバーナ(燃焼用空気供給兼排ガス排出口)
から吸引排気されるので、排ガス中の一酸化炭素濃度が
高くなり、吸引排気動作中の蓄熱式バーナ内部の蓄熱体
をオーバーヒートさせる等の課題を有する。
On the other hand, in the latter method, when the furnace width is relatively narrower than the flame length, the high-temperature combustion gas does not sufficiently circulate in the furnace, and the object to be heated in the furnace is efficiently and uniformly. Burner (combustion air supply / exhaust gas outlet) not only incapable of heating, but also opposed combustion gas whose combustion reaction is not completed.
Therefore, there is a problem in that the concentration of carbon monoxide in the exhaust gas increases, and the heat storage body inside the regenerative burner during the suction / exhaust operation is overheated.

【0006】これを解決するには、燃焼火炎を相対的に
短くすればよいが、火炎を短くするには限られた領域内
(燃焼空間)で急速燃焼させなければならず、NOxが
増加するという新たなる課題を有する。
In order to solve this problem, the combustion flame may be shortened relatively. However, in order to shorten the flame, rapid combustion must be performed in a limited area (combustion space), and NOx increases. It has a new problem.

【0007】本発明は、燃焼用空気噴出口と燃料噴出口
とを別個に設けたバーナを炉壁に対向配設して燃焼させ
ると、両バーナから噴出した燃焼用空気が炉内中央部で
衝突して衝突撹拌領域を形成する。そして、燃料をこの
衝突撹拌領域に向けて燃焼用空気の噴出方向と平行に噴
出させ、燃料の一部を燃焼用空気噴出口からの燃焼用空
気の運動量によって誘引混合させ、燃焼用空気が衝突撹
拌領域に到達する前に燃焼する一方、燃料の大部分は衝
突撹拌領域でいわゆる緩慢燃焼し、その高温の燃焼排ガ
スは衝突撹拌領域でのガス拡散力により炉内を活発に移
動する。したがって、この燃焼方法を利用すれば、前記
2者の課題を解決することができるということを見出し
てなされたものである。
According to the present invention, when a burner having a combustion air outlet and a fuel outlet separately provided is opposed to a furnace wall and burned, the combustion air ejected from both burners is generated at a central portion in the furnace. Collide to form a collision stir zone. Then, the fuel is ejected toward the collision stirring area in parallel with the ejection direction of the combustion air, and a part of the fuel is attracted and mixed by the momentum of the combustion air from the combustion air ejection port. While the fuel burns before reaching the stirring region, most of the fuel burns so-called slowly in the collision stirring region, and the high-temperature flue gas moves actively in the furnace due to the gas diffusion force in the collision stirring region. Therefore, it has been found that the use of this combustion method can solve the above two problems.

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成するために、先端に燃焼用空気噴出口を有する燃焼用
空気供給路と、前記燃焼用空気噴出口の外側で該燃焼用
空気供給口径1.4〜4.0倍の位置に該燃焼用空気噴
出口と略同心円上に、かつ、略等分割に配設された複数
の燃料噴出口を有する燃料供給路とからなり、前記燃焼
用空気噴出口および燃料噴出口を炉内に直接開口するこ
とからなるバーナを、前記燃焼用空気噴出口の少なくと
も一部が互いに重なるように炉壁に対向配設し、前記対
向するバーナから燃焼用空気を炉内に噴出して互いに衝
突させて燃焼用空気の衝突撹拌領域を形成するととも
に、燃料を各燃料供給量の偏差を設定値の±20%以内
で前記衝突撹拌領域に向けて燃焼用空気の噴出方向と平
行に噴出させて燃焼させるものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a combustion air supply passage having a combustion air jet at the tip thereof, and a combustion air supply passage outside the combustion air jet. A fuel supply passage having a plurality of fuel injection ports disposed substantially concentrically with the combustion air injection port at a position of a supply port diameter of 1.4 to 4.0 times and substantially equally divided; A burner comprising a combustion air jet and a fuel jet directly opened in the furnace is disposed opposite to the furnace wall such that at least a part of the combustion air jet overlaps with each other. The combustion air is blown into the furnace and collides with each other to form a collision stirring area of the combustion air, and the fuel is directed toward the collision stirring area within ± 20% of the set value of the fuel supply amount. Combustion by ejecting air in parallel with the direction of combustion air It is intended to.

【0009】また、先端に燃焼用空気噴出兼排ガス排出
口を有する燃焼用空気供給兼排ガス排出路と、前記燃焼
用空気噴出兼排ガス排出口の外側で該燃焼用空気供給口
径1.4〜4.0倍の位置に該燃焼用空気噴出兼排ガス
排出口と略同心円上に、かつ、略等分割に配設された複
数の燃料噴出口を有する燃料供給路とからなり、前記燃
焼用空気供給口および燃料噴出口を炉内に直接開口する
とともに、前記燃焼用空気供給兼排ガス排出路中に配設
され排ガス排出路に切換え接続される蓄熱室を備えた蓄
熱式バーナを、前記燃焼用空気噴出兼排ガス排出口の少
なくとも一部が互いに重なるように炉壁に偶数対対向配
設し、前記対向配設した蓄熱式バーナの燃料、燃焼用空
気の供給および炉内燃焼排ガスの排気を同期させてこの
偶数対の半分以下の所定対の蓄熱式バーナの燃焼用空気
供給兼排ガス排出口から燃焼用空気を炉内に噴出して互
いに衝突させて燃焼用空気の衝突撹拌領域を形成すると
ともに、燃料を各燃料供給量の偏差を設定値の±20%
以内で前記衝突撹拌領域に向けて燃焼用空気の噴出方向
と平行に噴出させて炉内で燃焼させる一方、他の対の蓄
熱式バーナの燃焼用空気噴出兼排ガス排出口から炉内燃
焼排ガスを吸引排気して次回燃焼時の燃焼用空気の予熱
に利用する熱を蓄熱室の蓄熱体に回収することを所定時
間毎に交互に切換えて燃焼させるものである。
A combustion air supply / exhaust gas discharge passage having a combustion air discharge / exhaust gas discharge port at a tip thereof, and a combustion air supply port diameter of 1.4 to 4 outside the combustion air discharge / exhaust gas discharge port. And a fuel supply passage having a plurality of fuel outlets disposed approximately concentrically with the combustion air discharge and exhaust gas discharge port at a position of about 0.0 times and substantially equally divided. A regenerative burner having a heat storage chamber which is directly open in the furnace and has a fuel storage chamber disposed in the combustion air supply / exhaust gas discharge passage and connected to the exhaust gas discharge passage. An even-numbered pair is disposed on the furnace wall such that at least a part of the exhaust and exhaust gas outlets overlap each other, and the fuel of the regenerative burner disposed opposite to the supply, the supply of combustion air, and the exhaust of the combustion exhaust gas in the furnace are synchronized. Less than half of the even pair of levers Combustion air is injected into the furnace from the combustion air supply / exhaust gas discharge port of a predetermined pair of regenerative burners and collides with each other to form a collision stirring area of the combustion air, and the fuel is supplied with a deviation of each fuel supply amount. ± 20% of set value
Within the impingement agitating region, the combustion air is ejected in parallel with the ejection direction of the combustion air and burned in the furnace, and the combustion exhaust gas in the furnace is discharged from the combustion air ejection and exhaust gas outlet of the other pair of regenerative burners. The heat is used for preheating the air for combustion at the next combustion by suction and exhaust, and the heat is recovered in the heat storage body of the heat storage chamber.

【0010】[0010]

【発明の実施の形態】次に、本発明の実施の形態につい
て図1〜図3にしたがって説明する。図1は、本発明に
適用される蓄熱式バーナBを示す。この蓄熱式バーナB
は、大略、先端に燃焼用空気噴出兼排ガス排出口11を
有し、途中に蓄熱室12と備えた燃焼用空気供給兼排ガ
ス排出路10と、燃焼用空気噴出兼排ガス排出口11の
外側で該燃焼用空気噴出兼排ガス排出口と略同心円上
に、かつ、略等分割に配設された複数(図では2箇所)
の燃料噴出口19を有する燃料供給路18とからなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a regenerative burner B applied to the present invention. This regenerative burner B
In general, a combustion air supply / exhaust gas discharge passage 10 provided with a combustion air discharge / exhaust gas discharge port 11 at the end and a heat storage chamber 12 provided on the way, and an outside of the combustion air discharge / exhaust gas discharge port 11 are provided. A plurality (two in the figure) disposed substantially concentrically with the combustion air ejection and exhaust gas outlet and substantially equally divided
And a fuel supply passage 18 having a fuel ejection port 19.

【0011】そして、前記蓄熱室12には蓄熱体13が
設けられ、前記燃焼用空気噴出兼排ガス排出口11側に
ヘッダ14、反対側に風箱15が形成され、風箱15は
下記するように、燃焼用空気用開閉弁V1と排ガス用開
閉弁V2とにより燃焼用空気供給管P1と排ガス排出管P
2とに切換え連通するようになっている。
A heat storage body 13 is provided in the heat storage chamber 12, a header 14 is formed on the side of the combustion air ejection and exhaust gas discharge port 11, and a wind box 15 is formed on the opposite side. a combustion air supply pipe P 1 by the combustion air on-off valve V 1 and the exhaust gas on-off valve V 2 and the exhaust gas discharge pipe P
The communication is switched to 2 .

【0012】また、燃焼用空気供給兼排ガス排出路10
の所定位置には、点火用燃料ノズル16と前記燃焼用空
気噴出兼排ガス排出口11側の斜め前方に向かって火炎
を噴出するパイロットバーナ17がそれぞれ設けてあ
る。
A combustion air supply and exhaust gas discharge passage 10
At a predetermined position, there are provided an ignition fuel nozzle 16 and a pilot burner 17 for ejecting a flame obliquely forward on the side of the combustion air ejection and exhaust gas outlet 11 side.

【0013】図2は、前記蓄熱式バーナBを炉壁3に配
設した図を示し、蓄熱式バーナBは、炉壁3の隣接する
蓄熱式バーナB1-1とB1-2、B2-1とB2-2、B3-1とB
3-2およびB4-1とB4-2、B5-1とB5-2、B6-1とB6-2
で対をなし、所定時間毎に燃焼と排気を繰り返す構成の
蓄熱式バーナBを対向配設したものである。なお、本図
は複数に区画されたゾーンのうちの1つとして以下動作
説明する。
[0013] Figure 2, the regenerative burners B a shows a diagram which is disposed in furnace wall 3, regenerative burners B is regenerative burner B 1-1 and B 1-2 adjacent the furnace wall 3, B 2-1 and B 2-2 , B 3-1 and B
3-2 and B4-1 and B4-2 , B5-1 and B5-2 , B6-1 and B6-2
, And a regenerative burner B having a configuration in which combustion and exhaust are repeated at predetermined time intervals is disposed opposite to each other. In this figure, the operation will be described below as one of a plurality of divided zones.

【0014】ただし、対向する蓄熱式バーナBの燃焼用
空気噴出兼排ガス排出口11は、少なくとも一部が互い
に重なるように配置している。そして、前記各蓄熱式バ
ーナBの蓄熱室12は、前述のように燃焼用空気用開閉
弁V1と排ガス用開閉弁V2とを介して燃焼用空気供給管
1と排ガス排出管P2とに連通している。
However, the combustion air ejection and exhaust gas outlets 11 of the regenerative burner B are arranged so that at least a part thereof overlaps each other. Then, the heat storage chambers 12 of each regenerative burner B is the combustion air supply pipe P 1 through the combustion air on-off valve V 1 and the exhaust gas on-off valve V 2 as described above and the exhaust gas discharge pipe P 2 And communicates with

【0015】また、前記燃料供給路18は、燃料用制御
弁V3を介して燃料供給管P3に連通している。
Further, the fuel supply passage 18 through the fuel control valve V 3 is communicated with the fuel supply pipe P 3.

【0016】さらに、前記燃焼用空気供給管P1、排ガ
ス排出管P2および燃料供給管P3にはそれぞれ燃焼用空
気用制御弁V11、排ガス用制御弁V12と燃料用制御弁V
13を備え、前記各開閉弁V11,V12,V13は制御信号に
よりそれぞれの弁開度を調整する。
Further, the combustion air supply pipe P 1 , the exhaust gas discharge pipe P 2 and the fuel supply pipe P 3 are respectively provided with a control valve V 11 for combustion air, a control valve V 12 for exhaust gas and a control valve V for fuel.
The opening / closing valves V 11 , V 12 , and V 13 adjust the respective valve openings according to control signals.

【0017】つぎに、前記構成からなる蓄熱式バーナB
の操業について図1〜図3を参照して説明する。
Next, the regenerative burner B constructed as described above
Will be described with reference to FIGS.

【0018】まず、炉の立上げ時、すなわち、炉温が常
温(燃料の自然着火温度以下)である場合、前記各蓄熱
式バーナBのうち所定数の蓄熱式バーナBにおいて、パ
イロットバーナ17を着火させ、燃焼用空気供給兼排ガ
ス排出路10に燃焼用空気を供給し、これに見合う燃料
を点火用燃料ノズル16から供給して燃焼させ、残りの
蓄熱式バーナBの燃焼用空気噴出兼排ガス排出口11を
排ガス排出管P2に連通させて排気する。なお、前記蓄
熱式バーナBの全数を燃焼させ、燃焼排ガスを図示しな
い煙道から排出して炉を昇温してもよい。
First, when the furnace is started up, that is, when the furnace temperature is at room temperature (below the natural ignition temperature of the fuel), the pilot burner 17 is activated in a predetermined number of the regenerative burners B among the regenerative burners B. The fuel is ignited, combustion air is supplied to the combustion air supply / exhaust gas discharge passage 10, and fuel corresponding to the combustion air is supplied from the ignition fuel nozzle 16 and burned. the discharge port 11 is exhausted to communicate with the exhaust gas discharge pipe P 2. Alternatively, all of the regenerative burners B may be burned, and the exhaust gas may be discharged from a flue (not shown) to heat the furnace.

【0019】そして、炉温が燃料の自然着火温度以上に
なると、前記常温点火用燃料ノズル16への燃料供給を
停止するとともにパイロットバーナ17を消火し、たと
えば、蓄熱式バーナB1-1とB4-1、B2-1とB5-1、B
3-1とB6-1において、燃焼用空気用開閉弁V1を開、燃
料用開閉弁V3を開、排ガス用開閉弁V2を閉とする一
方、残りの蓄熱式バーナB1-2とB4-2、B2-2とB5-2
3-2とB6-2においては、燃焼用空気用開閉弁V1
閉、燃料用開閉弁V3を閉、排ガス用制御弁V2を開とす
る。
[0019] When the furnace temperature is above spontaneous ignition temperature of the fuel, and extinguishing the pilot burner 17 stops the fuel supply to the cold ignition fuel nozzle 16, for example, regenerative burners B 1-1 and B 4-1 , B 2-1 and B 5-1 , B
In 3-1 and B 6-1, the combustion air-off valve V 1 open, the fuel on-off valve V 3 opened, while the exhaust gas on-off valve V 2 is closed, the remaining regenerative burners B 1- 2 and B 4-2 , B 2-2 and B 5-2 ,
In B 3-2 and B 6-2, to the combustion air on-off valve V 1 is closed, the fuel on-off valve V 3 closed, and the exhaust gas control valve V 2 opens.

【0020】これにより、蓄熱式バーナB1-1とB4-1
2-1とB5-1、B3-1とB6-1から噴出した燃焼用空気は
炉内中央部付近で衝突し衝突撹拌領域Aを形成する。燃
料は、燃料噴出口19から前記衝突撹拌領域Aに向かっ
て噴出し、噴出した燃料の一部が前記燃焼用空気の運動
量によって誘引され、燃焼用空気が衝突撹拌領域Aに到
達する前に、燃焼用空気と混合燃焼する一方、残りの大
部分は衝突撹拌領域Aで燃料と混合して燃焼する。つま
り、緩慢燃焼することになりNOxを低減する。
As a result, the regenerative burners B1-1 and B4-1 ,
The combustion air ejected from B 2-1 and B 5-1 and from B 3-1 and B 6-1 collide near the center of the furnace and form a collision stirring area A. The fuel is ejected from the fuel ejection port 19 toward the collision stirring area A, and a part of the ejected fuel is attracted by the momentum of the combustion air, and before the combustion air reaches the collision stirring area A, Most of the remaining fuel is mixed with the fuel in the collision agitation zone A and burnt while being mixed with the combustion air. In other words, slow combustion occurs, and NOx is reduced.

【0021】そして、前記高温の燃焼排ガスは衝突撹拌
領域Aでの複雑な流れにより炉内を活発に移動する。こ
のため、炉内の温度分や残留O2%が均一化され、被加
熱物Wを効率よく均一に加熱することになる。
Then, the high-temperature combustion exhaust gas actively moves in the furnace by a complicated flow in the collision stirring area A. Therefore, the temperature in the furnace and the residual O 2 % are uniformed, and the object to be heated W is efficiently and uniformly heated.

【0022】一方、蓄熱式バーナB1-2とB4-2、B2-2
とB5-2、B3-2とB6-2においては、燃焼用空気噴出兼
排ガス排出口11が排ガス排出管P2を介して排気ファ
ン(図示せず)に連通しているため、この燃焼用空気噴
出兼排ガス排出口11から炉内の高温の燃焼排ガスを吸
引排気し、その顕熱を蓄熱体13に回収する。
On the other hand, regenerative burners B 1-2 , B 4-2 and B 2-2
And B 5-2 , B 3-2 and B 6-2 , the combustion air ejection and exhaust gas outlet 11 communicates with an exhaust fan (not shown) via an exhaust gas exhaust pipe P 2 . High-temperature combustion exhaust gas in the furnace is sucked and exhausted from the combustion air jet / exhaust gas exhaust port 11, and the sensible heat is recovered in the heat storage body 13.

【0023】所定時間経過後、前記燃焼用空気用開閉弁
1、排ガス用開閉弁V2、燃料用開閉弁V3をそれぞれ
逆に動作させ、一方の蓄熱式バーナB1-1とB4-1、B
2-1とB 5-1、B3-1とB6-1で排ガスを吸引排気し、他方
の蓄熱式バーナB1-2とB4-2、B2-2とB5-2、B3-2
6-2で燃焼を行う。この場合、先に蓄熱された蓄熱体
13を通過して高温に予熱された燃焼用空気が炉内へ供
給されるため、省エネルギーを図ることができる。
After a lapse of a predetermined time, the on-off valve for combustion air
V1, Exhaust gas on-off valve VTwo, Fuel on-off valve VThreeEach
Operate in the opposite direction, and use one regenerative burner B1-1And B4-1, B
2-1And B 5-1, B3-1And B6-1To exhaust and exhaust the exhaust gas
Regenerative burner B1-2And B4-2, B2-2And B5-2, B3-2When
B6-2Combustion is performed. In this case, the heat storage element that has been stored first
The combustion air preheated to a high temperature through the
Energy can be saved.

【0024】また、前述のように各蓄熱式バーナBの操
業が開始すれば、炉内温度は燃料の自然着火温度以上と
なっているため、蓄熱式バーナBの燃焼・吸引切換え時
にパイロットバーナ17の点火、常温点火用燃料ノズル
16は使用しないことはいうまでもない。
When the operation of each regenerative burner B is started as described above, the temperature in the furnace is equal to or higher than the spontaneous ignition temperature of the fuel. It is needless to say that the fuel nozzle 16 for normal temperature ignition and normal temperature ignition is not used.

【0025】なお、前記蓄熱式バーナBにおいて、燃焼
用空気噴出兼排ガス排出口11からの燃焼用空気の噴出
速度は80m/sから120m/sの範囲が好ましい。こ
れは、噴出速度が80m/sより遅いと、燃料を拡散混
合するに十分な乱れを有する衝突撹拌領域Aが形成され
ないばかりか、隣接する蓄熱式バーナBの吸引排気動作
(熱回収作用)を行っている燃焼用空気噴出兼排ガス排
出口11へ向かおうとする流れ場(所謂ショートパス)
が形成され、投入された燃焼用空気および燃焼が未完結
の燃料および燃焼排ガスが短時間で吸引排気され、被処
理材Wへの伝熱効率が低下するためであり、逆に120
m/s以上であると、燃料との混合拡散が促進されすぎ
てNOxの発生量が増大するためである。
In the regenerative burner B, the velocity of the combustion air jet from the combustion air jet / exhaust gas discharge port 11 is preferably in the range of 80 m / s to 120 m / s. This means that if the jetting speed is lower than 80 m / s, not only the collision stirring area A having sufficient turbulence for diffusing and mixing the fuel is not formed, but also the suction / exhaust operation (heat recovery action) of the adjacent regenerative burner B is performed. Flow field (so-called short path) that is going to the combustion air emission and exhaust gas outlet 11 that is being performed
Is formed, the injected combustion air and the incompletely combusted fuel and combustion exhaust gas are sucked and exhausted in a short time, and the heat transfer efficiency to the workpiece W is reduced.
If the speed is not less than m / s, the mixing and diffusion with the fuel is promoted too much, and the generation amount of NOx increases.

【0026】燃料の噴出速度は燃焼用空気の噴出速度の
1/3から1/5の範囲が好ましい。その理由は、1/5
以下であると、燃料が燃焼用空気の衝突で形成された衝
突撹拌領域Aまで流れの方向性を維持しながら到達でき
る運動量に足らないからであり、1/3以上であると、
燃料は衝突撹拌領域Aに達したのち燃焼用空気の乱れに
打ち勝つことにより燃焼用空気の乱れによって拡散混合
する量が減少するからである。
The ejection speed of the fuel is preferably in the range of 1/3 to 1/5 of the ejection speed of the combustion air. The reason is 1/5
If it is less than the above, the momentum that the fuel can reach to the collision stirring area A formed by the collision of the combustion air while maintaining the directionality of the flow is not enough.
This is because the fuel overcomes the turbulence of the combustion air after reaching the collision agitation area A, and the turbulence of the combustion air reduces the amount of diffusion and mixing.

【0027】また、前記燃料噴出口19におけるそれぞ
れの燃料供給量の偏差は±20%以内で許容され、好ま
しくは、同量である。これは、燃料噴出口19が3以上
であっても同様である。その理由は、隣接する熱回収状
態の蓄熱式バーナBに近い側の燃料噴出口19からの供
給量が多くなると、燃焼が炉内で完結し難くなり、CO
等の未焼分が発生するためであり、逆に、遠い側の燃料
噴出口19からの供給量が多くなると燃料と燃焼用空気
の混合領域が狭くなり、局所加熱傾向が顕著になると同
時にNOxの発生量が増大するためである。
The deviation of the fuel supply amount at the fuel injection port 19 is allowed within ± 20%, and is preferably the same. This is the same even if the number of fuel outlets 19 is three or more. The reason is that when the supply amount from the fuel injection port 19 on the side close to the regenerative burner B in the adjacent heat recovery state increases, the combustion becomes difficult to complete in the furnace, and CO
Conversely, when the amount of supply from the distant fuel injection port 19 increases, the mixing region of the fuel and the combustion air becomes narrow, and the local heating tendency becomes remarkable, and at the same time NOx This is because the amount of generation increases.

【0028】さらに、燃焼用空気噴出兼排ガス排出口1
1の軸心から燃料噴出口19の軸心までの距離Lは、前
記燃焼用空気噴出兼排ガス排気口11の外径の1.4か
ら4.0倍までの範囲が好ましい。その理由は、前記距
離が近すぎると、燃料噴出口19からの燃料が燃焼用空
気の運動量に誘引され、燃料と燃焼用空気とが急速混合
するのでNOxの発生量が増大するためである。逆に、
前記距離が遠すぎると前述した燃焼用空気の衝突撹拌領
域Aに燃料を供給できないので局部的に燃料リッチの部
分が炉内で形成され、未燃焼分が発生するからである。
Further, a combustion air jet and exhaust gas discharge port 1 is provided.
The distance L from the axis 1 to the axis of the fuel outlet 19 is preferably in the range of 1.4 to 4.0 times the outer diameter of the combustion air outlet / exhaust gas outlet 11. The reason is that if the distance is too short, the fuel from the fuel injection port 19 is attracted to the momentum of the combustion air, and the fuel and the combustion air mix rapidly, so that the generation amount of NOx increases. vice versa,
If the distance is too long, fuel cannot be supplied to the combustion air collision stirring area A, so that a fuel-rich portion is locally formed in the furnace, and unburned components are generated.

【0029】前記説明は、隣接する蓄熱式バーナ同志で
対をなす例を述べたが、本実施例に限定されるものでは
なく、燃料、燃焼用空気の供給および炉内燃焼排ガスの
排気を対向配設したバーナで同期すれば、どのような対
を構成しても構わない。
In the above description, an example has been described in which adjacent regenerative burners are paired. However, the present invention is not limited to this embodiment, and the supply of fuel and combustion air and the exhaust of combustion exhaust gas in the furnace are opposed to each other. Any pair may be formed as long as they are synchronized by the arranged burners.

【0030】また、前記説明は、蓄熱式バーナBの燃焼
方法であるが、この蓄熱式バーナBから蓄熱室12を除
いた構成のバーナを、炉壁3に対向して配設して燃焼す
れば、前記蓄熱式バーナにおける蓄熱作用と燃焼用空気
の予熱作用を除き、同一の作用効果を得ることができ
る。この場合、燃焼用空気噴出兼排ガス排出口11から
は燃焼用空気の噴出のみであることは勿論である。
The above description relates to a method of burning the regenerative burner B. A burner having a configuration obtained by removing the regenerator 12 from the regenerative burner B is disposed opposite the furnace wall 3 for combustion. For example, the same function and effect can be obtained except for the heat storage function and the preheating function of the combustion air in the regenerative burner. In this case, it goes without saying that only the combustion air is ejected from the combustion air ejection and exhaust gas discharge port 11.

【0031】なお、燃焼用空気と燃料の噴出速度および
燃焼用空気噴出兼排ガス排出口11の軸心から燃料噴出
口19の軸心までの距離Lについては、前記蓄熱式バー
ナについて述べたことと同一である。また、燃料噴出口
19におけるそれぞれの燃料供給量の偏差は前記蓄熱式
バーナについて述べたように、±20%以内で許容さ
れ、好ましくは、同量である。これは、燃料供給量のバ
ランスが崩れると、炉内で燃料リッチ部分(濃部分)と
燃料リーン部分(淡部分)が形成されて、燃焼用空気の
衝突による衝突撹拌領域Aで燃料と燃焼用空気とが均一
に混合できなくなり、結果的に従来例で示した特許26
83545号公報と同様の現象、すなわち、炉内で未反
応の燃料、燃焼に寄与する前の燃焼用空気、燃焼反応途
中の中間生成物および燃焼排ガスが介在することにな
り、煙道に燃焼未反応の燃料が排出され、熱効率、安全
面に課題を有するからである。
The injection speed of the combustion air and the fuel and the distance L from the axis of the combustion air jet / exhaust gas discharge port 11 to the axis of the fuel injection port 19 are the same as those described for the regenerative burner. Are identical. Further, as described in the regenerative burner, the deviation of each fuel supply amount at the fuel injection port 19 is allowed within ± 20%, and is preferably the same. This is because when the balance of the fuel supply is lost, a fuel-rich portion (rich portion) and a fuel-lean portion (light portion) are formed in the furnace, and the fuel and the fuel are mixed in the collision stirring area A due to the collision of the combustion air. As a result, the air cannot be mixed uniformly, resulting in the patent 26 shown in the conventional example.
A phenomenon similar to that in JP-A-83545, that is, unreacted fuel in the furnace, combustion air before contributing to combustion, intermediate products during combustion reaction, and combustion exhaust gas are interposed, and unburned fuel flows into the flue. This is because the fuel of the reaction is discharged, and there are problems in terms of thermal efficiency and safety.

【0032】[0032]

【発明の効果】以上の説明で明らかなように、請求項1
の発明では、相対向するバーナの燃焼用空気を高速で噴
出し、燃焼用空気を互いに炉内中央部で衝突させて衝突
撹拌領域を形成するとともに、燃料をこの衝突撹拌領域
に向けて燃焼用空気の噴出方向と平行に噴出させ、燃料
の一部を燃焼用空気噴出口からの燃焼用空気の運動量に
よって誘引混合させ、燃焼用空気が衝突撹拌領域に到達
する前に燃焼する一方、燃料の大部分は衝突撹拌領域で
燃料と混合燃焼させ、いわゆる緩慢燃焼を行う。しかも
高温の燃焼排ガスが衝突撹拌領域の影響を受けて炉内を
活発に移動するため、燃料は完全に燃焼し、かつ、炉内
の温度分布や残留O2%が均一化され、被加熱物を効率
よく加熱することができるとともに、炉内での局部的な
燃焼、発熱領域を抑制してNOxの発生を抑制できる。
したがって、煙道から未燃ガスが排出されることはな
い。
As is apparent from the above description, claim 1
According to the invention, combustion air from opposing burners is ejected at a high speed, and the combustion air collides with each other at a central portion in the furnace to form a collision stirring area, and fuel is directed toward the collision stirring area. The fuel is ejected in parallel to the direction of air ejection, and a part of the fuel is attracted and mixed by the momentum of the combustion air from the combustion air ejection port.The combustion air burns before reaching the collision stirring area, while the fuel Most of the fuel is mixed and burned with the fuel in the collision agitation region, so-called slow combustion is performed. In addition, since the high-temperature flue gas moves actively in the furnace under the influence of the collision agitation zone, the fuel is completely burned, and the temperature distribution and the residual O 2 % in the furnace are made uniform, and the heated object is heated. Can be efficiently heated, and the generation of NOx can be suppressed by suppressing local combustion and heat generation in the furnace.
Therefore, no unburned gas is emitted from the flue.

【0033】請求項2の発明では、前記同様燃料は炉内
中央部の衝突撹拌領域にて完全に燃焼するため、炉幅が
狭くても、吸引排気中の蓄熱体をオーバヒートさせるこ
となく、かつ、高温の燃焼ガスは炉内を十分に循環する
ため被加熱物を効率よく加熱することができる。
According to the second aspect of the present invention, since the fuel is completely burned in the collision stir zone in the central part of the furnace, even if the furnace width is narrow, the heat storage body in the suction exhaust is not overheated, and Since the high-temperature combustion gas circulates sufficiently in the furnace, the object to be heated can be efficiently heated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (A)は本発明に使用する蓄熱式バーナの断
面図、(B)は(A)の正面図。
1A is a sectional view of a regenerative burner used in the present invention, and FIG. 1B is a front view of FIG.

【図2】 図1に示す蓄熱式バーナの炉内配置と配管関
係を示す図。
FIG. 2 is a view showing the arrangement of the regenerative burner shown in FIG.

【図3】 図2における燃焼状態を示す図。FIG. 3 is a view showing a combustion state in FIG. 2;

【図4】 (A)は従来のバーナの断面図、(B)は
(A)のIV−IV線断面図。
4A is a sectional view of a conventional burner, and FIG. 4B is a sectional view taken along line IV-IV of FIG.

【図5】 従来の蓄熱式バーナの燃焼状態を示す図。FIG. 5 is a diagram showing a combustion state of a conventional regenerative burner.

【符号の説明】 10〜燃焼用空気供給兼排ガス排出路、11〜燃焼用空
気噴出兼排ガス排出口、12〜蓄熱室、13〜蓄熱体、
A〜衝突撹拌領域、B〜バーナ、V1〜燃焼用空気用開
閉弁、V2〜排ガス用開閉弁、V3〜燃料用開閉弁。
[Description of Signs] 10-combustion air supply / exhaust gas discharge path, 11-combustion air ejection / exhaust gas exhaust port, 12-heat storage chamber, 13-heat storage element,
A to collision stir zone, B to burner, V 1 to on-off valve for combustion air, V 2 to on-off valve for exhaust gas, V 3 to on-off valve for fuel.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 精和 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 (72)発明者 上出 雅男 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 Fターム(参考) 3K091 AA01 AA03 BB05 BB25 EC06 EC14  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Seiwa Nagai 2-4-7 Kyomachibori, Nishi-ku, Osaka-shi, Osaka Inside Chugai Furnace Industry Co., Ltd. (72) Masao Kamide, 2 Kyomachibori, Nishi-ku, Osaka-shi, Osaka 4-7, Chugai Furnace Industry Co., Ltd. F-term (reference) 3K091 AA01 AA03 BB05 BB25 EC06 EC14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 先端に燃焼用空気噴出口を有する燃焼用
空気供給路と、前記燃焼用空気噴出口の外側で該燃焼用
空気噴出口と略同心円上に、かつ、略等分割に配設され
た複数の燃料噴出口を有する燃料供給路とからなるバー
ナを、前記燃焼用空気噴出口の少なくとも一部が互いに
重なるように炉壁に対向配設し、前記対向するバーナか
らの燃焼用空気を炉内で互いに衝突させて燃焼用空気の
衝突撹拌領域を形成するとともに、燃料を前記衝突撹拌
領域に向けて燃焼用空気の噴出方向と平行に噴出させて
燃焼させることを特徴とする衝突撹拌式燃焼方法。
1. A combustion air supply passage having a combustion air ejection port at a tip thereof, and disposed substantially concentrically with the combustion air ejection port outside the combustion air ejection port and in substantially equal divisions. A burner comprising a plurality of fuel supply passages having a plurality of fuel outlets arranged in the furnace wall so that at least a part of the combustion air outlets overlap with each other, and combustion air from the opposed burner is provided. Impinging each other in a furnace to form a collision stirring area of combustion air, and burning the fuel by spraying the fuel toward the collision stirring area in a direction parallel to the ejection direction of the combustion air. Combustion method.
【請求項2】 先端に燃焼用空気噴出兼排ガス排出口を
有する燃焼用空気供給兼排ガス排出路と、前記燃焼用空
気噴出兼排ガス排出口の外側で該燃焼用空気噴出兼排ガ
ス排出口と略同心円上に、かつ、略等分割に配設された
複数の燃料噴出口を有する燃料供給路と、前記燃焼用空
気供給兼排ガス排出路中に配設され排ガス排出路に切換
え接続される蓄熱室を備えた蓄熱式バーナを、前記燃焼
用空気噴出兼排ガス排出口の少なくとも一部が互いに重
なるように炉壁に偶数対対向配設し、前記対向配設した
蓄熱式バーナの燃料、燃焼用空気の供給および炉内燃焼
排ガスの排気を同期させてこの偶数対の半分以下の所定
対の蓄熱式バーナの燃焼用空気噴出兼排ガス排出口から
の燃焼用空気を炉内で互いに衝突させて燃焼用空気の衝
突撹拌領域を形成するとともに、燃料を前記衝突撹拌領
域に向けて燃焼用空気の噴出方向と平行に噴出させて炉
内で燃焼させる一方、他の対の蓄熱式バーナの燃焼用空
気噴出兼排ガス排出口から炉内燃焼排ガスを吸引排気し
て次回燃焼時の燃焼用空気の予熱に利用する熱を蓄熱室
の蓄熱体に回収することを所定時間毎に交互に切換える
ことを特徴とする衝突撹拌式燃焼方法。
2. A combustion air supply / exhaust gas discharge passage having a combustion air discharge / exhaust gas discharge port at an end thereof, and a combustion air discharge / exhaust gas discharge port outside the combustion air discharge / exhaust gas discharge port. A fuel supply passage having a plurality of fuel injection ports arranged concentrically and substantially equally divided, and a heat storage chamber disposed in the combustion air supply / exhaust gas discharge passage and connected to the exhaust gas discharge passage by switching An even number of regenerative burners are provided on the furnace wall such that at least a part of the combustion air ejection and exhaust gas outlets overlap with each other, and the fuel and combustion air of the regenerative burners disposed opposite to each other are provided. Supply and exhaust of combustion flue gas in the furnace are synchronized, so that combustion air from the combustion air jets and exhaust gas discharge ports of a predetermined pair of regenerative burners of less than half of this even number pair collide with each other in the furnace for combustion. Creates an air impingement stir zone At the same time, the fuel is ejected toward the collision stirring region in parallel with the ejection direction of the combustion air and burned in the furnace, while the other pair of regenerative burners emit combustion air and exhaust gas from the exhaust gas outlet into the furnace. A collision stirring type combustion method characterized by alternately switching, at predetermined intervals, suctioning and exhausting combustion exhaust gas to recover heat used for preheating combustion air in the next combustion in a heat storage body of a heat storage chamber.
【請求項3】 複数の燃料噴出口からのそれぞれ燃料供
給量の偏差が設定値の±20%以内とすることを特徴と
する請求項1または請求項2記載のバーナの燃焼方法。
3. The burner combustion method according to claim 1, wherein a deviation of a fuel supply amount from each of the plurality of fuel injection ports is within ± 20% of a set value.
JP11070552A 1999-03-16 1999-03-16 Impact stirring type combustion method Expired - Lifetime JP3031908B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11070552A JP3031908B1 (en) 1999-03-16 1999-03-16 Impact stirring type combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11070552A JP3031908B1 (en) 1999-03-16 1999-03-16 Impact stirring type combustion method

Publications (2)

Publication Number Publication Date
JP3031908B1 JP3031908B1 (en) 2000-04-10
JP2000266305A true JP2000266305A (en) 2000-09-29

Family

ID=13434815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11070552A Expired - Lifetime JP3031908B1 (en) 1999-03-16 1999-03-16 Impact stirring type combustion method

Country Status (1)

Country Link
JP (1) JP3031908B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078331A (en) * 2005-09-16 2007-03-29 Petroleum Energy Center Burner, and high-temperature air combustion furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202594B2 (en) * 2010-09-09 2013-06-05 中外炉工業株式会社 Regenerative combustion apparatus and heating furnace
KR102274101B1 (en) * 2017-09-18 2021-07-07 현대자동차주식회사 Apparatus and method for correction of intake pulsation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078331A (en) * 2005-09-16 2007-03-29 Petroleum Energy Center Burner, and high-temperature air combustion furnace

Also Published As

Publication number Publication date
JP3031908B1 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
WO2001013041A1 (en) Combustion method and burner
KR100880330B1 (en) Single end regenerative radiant tube burner and combustion method thereof
JPH10338527A (en) Method for decreasing nitrogen oxide (nox) emission in glass melting furnace
JP4551971B2 (en) Reactor using high temperature air combustion technology
US5571006A (en) Regenerative burner, burner system and method of burning
JPH08208240A (en) Glass-melting oven
JP3031908B1 (en) Impact stirring type combustion method
US5931653A (en) Low nitrogen oxide burner and burning method
JP2002286225A (en) Operating method and device of combustion device for heating furnace
TWI712762B (en) Burner device and heat treatment facility
JPH08128608A (en) Double-end type radiant tube burner system
JP4033127B2 (en) Combustion control method for tubular flame burner
JP4060990B2 (en) Alternating combustion type regenerative burner system and heating furnace using the same
JP2004354041A (en) Furnace gas circulation unit
JP2000356310A (en) Regenerative radiant tube burner
JP2002005415A (en) Heat storage type reducing combustion device
JP3305506B2 (en) Thermal storage combustion device
JP2849062B2 (en) Continuous combustion type regenerative combustion device
KR20010065375A (en) Three step combustion type burner of an oxide rare combustion type
JP2002061806A (en) LOW NOx COMBUSTION METHOD AND BURNER
JPH09166317A (en) Adjusting structure of air flow rate in regenerative burner
JP2001124307A (en) Anoxidation-reduction combustion method and burner
JP3529517B2 (en) Burner device
CA2155173C (en) Regenerative burner, burner system and method of burning
JPH10169971A (en) Heat storage regenerative combustor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

EXPY Cancellation because of completion of term