JP2000266281A - Vacuum heat-insulating panel and its manufacture - Google Patents

Vacuum heat-insulating panel and its manufacture

Info

Publication number
JP2000266281A
JP2000266281A JP11073535A JP7353599A JP2000266281A JP 2000266281 A JP2000266281 A JP 2000266281A JP 11073535 A JP11073535 A JP 11073535A JP 7353599 A JP7353599 A JP 7353599A JP 2000266281 A JP2000266281 A JP 2000266281A
Authority
JP
Japan
Prior art keywords
core material
vacuum
groove
core
packaging material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11073535A
Other languages
Japanese (ja)
Inventor
Yoshio Nishimoto
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11073535A priority Critical patent/JP2000266281A/en
Publication of JP2000266281A publication Critical patent/JP2000266281A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Abstract

PROBLEM TO BE SOLVED: To efficiently discharge gas in a core from the core surface by providing the core whose surface of a plate foaming resin is notched to form groove parts and has match parts fitted to the groove parts and flatting the surface. SOLUTION: A core 13 of this vacuum heat-insulating panel 11 is formed of a porous material into a plate shape. U-cross sectional grooves 14 are formed by continuously cutting from one side, for example, to the other opposite side and a lot of match parts 15 fitted to the groove parts 14 and possible to be cut and raised are formed. When the core 13 having the match parts cut and raised at a prescribed angle is stored in the packaging material 12, this constitution can form a clearance in a packaging material 12 and expose the surface of the groove 14 of the core 13 so that gas in the core 13 can be discharged in a short time in evacuation. In finishing, the match parts 15 are so formed as to be stored in the groove 14 so that the surface of the vacuum heat- insulating panel 11 becomes flat and its design is prevented from being damaged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、包装材の内部が真
空保持されてなる真空断熱パネルに係わり、さらに詳し
くは、製造時に包装材内部のガスを排出して真空状態を
良好にする芯材を具備した真空断熱パネルとその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum insulation panel in which the inside of a packaging material is held in a vacuum, and more particularly, to a core material which discharges gas inside the packaging material during manufacturing to improve the vacuum state. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、冷蔵庫や保冷車等の断熱箱体は、
鉄板等の金属製薄板で成形された外箱と、外箱に嵌合さ
れ樹脂等で成形された内箱と、内箱と外箱の間の空間部
に充填された断熱材の発泡ウレタンとで構成されてい
る。断熱材である発泡ウレタンの発泡剤には、断熱性の
優れたハイドロクロロフルオロカーボン類の1,1-ジクロ
ロ-1- フルオロエタンが用いられてきたが、オゾン層破
壊の原因となる塩素を分子中に含まないハイドロフルオ
ロカーボン類やハイドロカーボン類に代替えが進んでい
る。
2. Description of the Related Art Conventionally, insulated boxes such as refrigerators and insulated cars are
An outer box formed of a thin metal plate such as an iron plate, an inner box fitted with the outer box and formed of resin, and a urethane foam of a heat insulating material filled in a space between the inner box and the outer box. It is composed of As a foaming agent for urethane foam as a heat insulating material, 1,1-dichloro-1-fluoroethane, a hydrochlorofluorocarbon with excellent heat insulation properties, has been used. Hydrocarbons and hydrocarbons that are not included in methane are being replaced.

【0003】これら発泡剤の適用は、例えば、特開平2
−235982号公報、特開平3−152160号公報
等に開示されている。前者の先行技術では1,1,2,2,3-ペ
ンタフルオロプロパンや1,1,1,4,4,4-ヘキサフルオロブ
タン等のハイドロフルオロカーボン類を、後者の先行技
術ではシクロペンタン等の可燃性物質を発泡剤として適
用したことが記載され、これら発泡剤の冷蔵庫等への適
用品で最も優れた断熱性は17〜20mw/mK であった。
The application of these foaming agents is described in, for example,
No. 2,359,982 and Japanese Patent Application Laid-Open No. 3-152160. In the former prior art, hydrofluorocarbons such as 1,1,2,2,3-pentafluoropropane and 1,1,1,4,4,4-hexafluorobutane are used, and in the latter prior art, cyclopentane and the like are used. It was described that a flammable substance was used as a foaming agent, and the most excellent heat insulating property of a product applied to a refrigerator or the like was 17 to 20 mw / mK.

【0004】オゾン層破壊の原因物質を用いず、しかも
リサイクル等によって資源を有効に活用できることに併
せて、消費電力の低減が求められている冷蔵庫等では、
断熱材である発泡ウレタンに対する断熱性能向上が限界
にあることから、図6の比較図から明らかなように発泡
ウレタンの2倍以上の断熱性能を有する真空断熱パネル
を応用する技術が提案されている。
[0004] Refrigerators and the like that require reduction of power consumption in addition to being able to use resources effectively by recycling without using substances causing ozone depletion,
Since there is a limit to the improvement of the heat insulation performance of urethane foam as a heat insulator, a technique for applying a vacuum heat insulation panel having heat insulation performance twice or more that of urethane foam has been proposed, as is apparent from the comparison diagram of FIG. .

【0005】真空断熱パネルの断熱性能を確保するに
は、材料に熱が伝達し難い物質を用いること、材料間の
接触面積を少なくして物質内を伝達する熱量を抑制する
こと、空隙を小さくして輻射伝熱を抑制することが有効
であり、このような条件を満たす物質(芯材)として、
樹脂やガラス等の多孔質物質が用いられている。特に、
ガラス繊維のマットや連続気泡を有する樹脂発泡体のボ
ード、樹脂や無機物の微粒子の成型品等が一般的であ
る。
[0005] In order to ensure the heat insulating performance of the vacuum heat insulating panel, it is necessary to use a material to which heat is unlikely to be transmitted, to reduce the contact area between the materials to suppress the amount of heat transmitted through the material, and to reduce the gap. It is effective to suppress radiation heat transfer as a material (core material) that satisfies such conditions.
Porous materials such as resin and glass are used. In particular,
Glass fiber mats, resin foam boards having open cells, molded products of resin or inorganic fine particles, and the like are common.

【0006】例えば、特開昭60−71881ではパー
ライト粉末を、特開昭60−243471ではPUF
(発泡ウレタン)粉砕品をそれぞれ合成樹脂袋に投入し
てボード状に真空パックしたものが提案されている。ま
たこの他に、特開昭60−205164では連通気泡の
発泡ウレタンを、特開平4−218540では熱可塑性
ウレタン樹脂の粉体を焼結させた板状成型品を、特開平
7−96580ではガラスの長繊維を無機微粉末にフィ
ビリル化した樹脂繊維により固化保持したボードを、そ
れぞれ真空断熱パネルの芯材として応用したことが提案
されている。
For example, JP-A-60-71881 discloses a pearlite powder, and JP-A-60-243471 discloses a PUF powder.
(Urethane foam) There has been proposed a method in which pulverized products are put into synthetic resin bags and vacuum-packed in a board shape. In addition, in JP-A-60-205164, urethane foam having open cells is used, in JP-A-4-218540, a plate-like molded product obtained by sintering a thermoplastic urethane resin powder, and in JP-A-7-96580, glass is molded. It has been proposed that boards in which long fibers are solidified and held by resin fibers obtained by fibrillating inorganic fine powder into inorganic fine powder are applied as core materials for vacuum insulation panels.

【0007】このような真空断熱パネルは、厚さが10
〜30mmの板状のもので、冷蔵庫の断熱箱体に組み込ま
れた状態で用いられている。例えば図7に示すように断
熱箱体1の外箱2に真空断熱パネル5を固定し発泡ウレ
タン4と共に断熱材として使用されている。
[0007] Such a vacuum insulation panel has a thickness of 10
It is a plate having a size of about 30 mm and is used in a state of being incorporated in a heat insulating box of a refrigerator. For example, as shown in FIG. 7, a vacuum heat insulating panel 5 is fixed to an outer box 2 of a heat insulating box 1 and used together with urethane foam 4 as a heat insulating material.

【0008】ここで、この真空断熱パネルの製造方法
(図示せず)の概要を説明する。例えば2枚の多層シー
トを重ねて三方の端辺を熱シールした袋状の包装材内に
前記の連通気泡を有する発泡ウレタン等を芯材として挿
入する。包装材は、例えば、内層に熱溶着の可能な熱可
塑性樹脂が、外層に傷付き等に耐性のあるナイロンやポ
リエステル等の樹脂が、中間層に外気の侵入を完全に遮
断するアルミ等の金属箔が用いられた多層シートからな
り、この多層シートを重ねて三方の端辺を熱シールした
袋状のものである。また包装材の材質として、金属箔の
両面にプラスチックスフィルムを貼り合わせたラミネー
トシートを用いたものがある(特開昭58−14548
8号公報)。
Here, an outline of a method of manufacturing the vacuum insulation panel (not shown) will be described. For example, foamed urethane or the like having the above-mentioned open cells is inserted as a core material into a bag-like packaging material in which two multilayer sheets are stacked and three edges are heat-sealed. The packaging material is made of, for example, a thermoplastic resin that can be thermally welded to the inner layer, a resin such as nylon or polyester that is resistant to damage to the outer layer, and a metal such as aluminum that completely blocks outside air from entering the intermediate layer. It is made of a multilayer sheet using a foil, and is a bag-shaped sheet in which the multilayer sheets are stacked and three edges are heat-sealed. Further, as a material of the packaging material, there is a material using a laminated sheet in which a plastic film is bonded to both sides of a metal foil (Japanese Patent Application Laid-Open No. 58-14548).
No. 8).

【0009】次に、芯材を挿入した包装材を真空包装機
に固定して真空雰囲気を形成し(10-1〜10-3torr程
度)、芯材の気孔内に残存する空気等のガスを排出す
る。真空度は1torr以下、好ましくは5×10-2torrを
確保する。気孔内にあるガスの排出には包装材と芯材の
間に隙間があるので、芯材挿入口の端辺のみならず芯材
の表面からも排気ができるので、前記真空度への到達が
容易に行われる。
Next, the packaging material into which the core material is inserted is fixed to a vacuum packaging machine to form a vacuum atmosphere (about 10 -1 to 10 -3 torr), and gas such as air remaining in the pores of the core material. To discharge. The degree of vacuum is 1 torr or less, preferably 5 × 10 -2 torr. Since there is a gap between the packaging material and the core material in discharging the gas in the pores, it is possible to exhaust not only from the end of the core material insertion port but also from the surface of the core material, so that the degree of vacuum is not reached. Easy to do.

【0010】最後に芯材の挿入口の端辺を熱シールし、
その後、内層に用いている熱可塑性樹脂の融点以下まで
冷却し、真空包装機内部の真空を解除して常圧に戻せば
真空断熱パネルが得られる。
Finally, the end of the insertion opening of the core material is heat-sealed,
Then, it is cooled to the melting point or lower of the thermoplastic resin used for the inner layer, the vacuum inside the vacuum packaging machine is released, and the pressure is returned to normal pressure, whereby a vacuum insulation panel is obtained.

【0011】次に、前述した真空断熱パネルを用いた従
来の冷蔵庫の製造方法を図8に基づいて説明する。図8
は従来の冷蔵庫の製造方法を示す工程図である。まず、
背面を含む外箱2の内面に真空断熱パネル5を配設して
貼付ける(S1)。次に、この外箱2に内箱3を嵌合し
(S2)、その外殻の構成に関連する各種部材を装着し
て箱体を組み立てる(S3)。そして、この箱体を、背
面を上に向けた状態で治具に挿入して固定する。これ
は、発泡ウレタン4で断熱層を形成する際に受ける圧力
による変形を防止するためである。
Next, a method of manufacturing a conventional refrigerator using the above-described vacuum insulation panel will be described with reference to FIG. FIG.
FIG. 2 is a process chart showing a conventional refrigerator manufacturing method. First,
The vacuum insulation panel 5 is arranged and attached to the inner surface of the outer box 2 including the back surface (S1). Next, the inner box 3 is fitted to the outer box 2 (S2), and various members related to the configuration of the outer shell are attached to assemble the box (S3). Then, this box is inserted into a jig with the back surface facing upward and fixed. This is to prevent deformation due to the pressure received when forming the heat insulating layer with the urethane foam 4.

【0012】その後は、2種の原料を高圧発泡機等で混
合して得た発泡ウレタン4の混合液を、外箱2の背面に
設けた注入口から箱体の両側壁に注入して断熱層を形成
する(S4)。この混合液は、数秒後に発泡を開始して
注入直下の両側壁を起点として放射状に広がり、箱体の
天井面、底面及び背面に充填して真空断熱パネル5を除
く空間部を全て埋める。混合液による充填は、原料の反
応熱による気化と副生成物として生成されたガスによる
発泡とに伴って膨張する泡の状態で隅々まで流動する。
そして、混合液の注入から4〜8分後に樹脂が硬化して
断熱層が形成される。
Thereafter, a mixed liquid of urethane foam 4 obtained by mixing the two kinds of raw materials with a high-pressure foaming machine or the like is injected into both side walls of the box from an injection port provided on the back surface of the outer box 2 and is insulated. A layer is formed (S4). This mixed liquid starts foaming after a few seconds and spreads radially starting from the side walls immediately below the injection, and fills the ceiling, bottom, and back of the box to fill the space except for the vacuum insulation panel 5. The filling with the mixed liquid flows to every corner in a state of foam that expands with vaporization of the raw material by reaction heat and foaming by gas generated as a by-product.
Then, 4 to 8 minutes after the injection of the mixed solution, the resin is cured to form a heat insulating layer.

【0013】断熱層成型後は、断熱箱体1として治具か
ら取り出して、この断熱箱体1に内装部品と冷媒回路部
品を装着する製品組立を行う(S5)。組立終了時に製
品検査を行い(S6)、この検査に合格したものだけ冷
蔵庫として完成する(S7)。
After the formation of the heat insulating layer, the heat insulating box 1 is taken out of the jig and assembled into a product in which the interior parts and the refrigerant circuit parts are mounted on the heat insulating box 1 (S5). At the end of the assembly, product inspection is performed (S6), and only those that pass this inspection are completed as refrigerators (S7).

【0014】真空断熱パネル5の芯材には、内部が真空
状態であることから受ける大気圧や、発泡ウレタン4を
充填する際に受ける発泡圧等の応力の付加によって変形
を来さないよう所定以上の強度と密度が必要であるが、
この密度の上昇は、物質の相対量が多くなることに伴う
伝熱量の増加で断熱性能の悪化を招くという欠点を併せ
持つので、断熱方向の気泡径を微細化して断熱性能を向
上させる手段が講じられるようになった。
The core material of the vacuum insulation panel 5 has a predetermined shape so as not to be deformed by the application of stress such as the atmospheric pressure received due to the inside being in a vacuum state or the foaming pressure received when filling the urethane foam 4. Although the above strength and density are required,
This increase in density also has the disadvantage that the heat transfer amount is increased due to the increase in the relative amount of the substance, which leads to the deterioration of the heat insulation performance.Therefore, measures have been taken to improve the heat insulation performance by reducing the bubble diameter in the heat insulation direction. Is now available.

【0015】その手段は、例えば連通化した気泡を有す
る発泡樹脂の板状成型品をプレス機等で圧縮して断熱方
向における見掛けの大きさを減じて輻射伝熱を抑制する
ものであって、保有するセルの径0.1〜1.0mmを
0.04mm以下に扁平化して断熱性能を向上させるもの
であった(特開平6−213561号公報)。
The means is, for example, to compress a plate-shaped molded article of foamed resin having open cells by a press or the like to reduce the apparent size in the adiabatic direction to suppress radiant heat transfer. The diameter of the held cells was reduced from 0.1 to 1.0 mm to 0.04 mm or less to improve the heat insulation performance (Japanese Patent Application Laid-Open No. 6-213561).

【0016】[0016]

【発明が解決しようとする課題】しかしながら、前述し
た手段によって得られた真空断熱パネルでは、芯材に用
いる発泡樹脂のセルの大きさを小さくしたことに伴い、
芯材内部に残存する空気等のガスを排出する速度が低減
する。このため、所望する真空度に到達する時間が長く
なるという欠点が生じ、しかも芯材の表面部分には、セ
ルの破壊や発泡に至らずに形成された樹脂の層又は密度
が過度に高いスキン層ができて、その部分からのガスの
排出を妨げる構造になっていた。
However, in the vacuum insulation panel obtained by the above-mentioned means, the size of the cell of the foamed resin used for the core material is reduced,
The speed of discharging gas such as air remaining inside the core material is reduced. For this reason, there is a disadvantage that the time required to reach a desired degree of vacuum is prolonged, and the surface of the core material has a resin layer or a skin with an excessively high density formed without destruction or foaming of cells. A layer was formed, and the structure was such that gas emission from that portion was obstructed.

【0017】従来、この課題を解決するために、例え
ば、芯材に形成されたスキン層を排除して連通化したセ
ルを露出させたり(特開平6−337093号公報)、
また、スキン層の上から針状の孔を設けたりして(特開
平10−86255号公報)、芯材の表面からのガスの
排出を促進させるようにしていたが、冷蔵庫等の外箱に
配設する真空断熱パネル5は40cm以上の幅を有してい
ることから、真空断熱パネル5の製造工程の真空雰囲気
下での端辺部分の融着時に、包装材が芯材表面に密着し
た状態となり、このため、排出されるガスの拡散を妨
げ、芯材内部が所望する真空度に到達しにくかった。
Conventionally, in order to solve this problem, for example, a skin layer formed on a core material is removed to expose a cell that has been connected (Japanese Patent Laid-Open No. 6-337093),
Further, a needle-shaped hole is provided from above the skin layer (Japanese Patent Application Laid-Open No. 10-86255) to promote the discharge of gas from the surface of the core material. Since the vacuum insulation panel 5 to be provided has a width of 40 cm or more, the packaging material adhered to the surface of the core material at the time of fusing the edge portions under a vacuum atmosphere in the manufacturing process of the vacuum insulation panel 5. As a result, diffusion of the discharged gas was hindered, and it was difficult for the inside of the core material to reach a desired degree of vacuum.

【0018】この課題を解決するものとして、例えば芯
材の表面に凹凸部を設けて包装材の密着を防止する先行
技術があるが(特開昭54−105314号公報)、こ
のような構造においては、内部を真空に保持した真空断
熱パネルの包装材が芯材上に当接しなかったり、包装材
が過度に伸張された状態で凹凸になったり、また、包装
材のガスバリヤー性を発現させるアルミ等の金属箔にク
ラック等の欠陥を生んで外部からの空気等のガスの侵入
を防止することができなくなり、その結果として、高真
空度から発現される低熱伝導率の維持に係る信頼性に支
障を来すということがあった。
As a solution to this problem, for example, there is a prior art in which unevenness is provided on the surface of a core material to prevent adhesion of a packaging material (JP-A-54-105314). , The packaging material of the vacuum insulation panel holding the inside in a vacuum does not come into contact with the core material, or the packaging material becomes uneven in an excessively stretched state, and also exhibits the gas barrier property of the packaging material Defects such as cracks occur in metal foils such as aluminum, making it impossible to prevent the intrusion of gas such as air from the outside. As a result, reliability related to maintaining low thermal conductivity developed from a high vacuum degree Was a problem.

【0019】そこで、同様の構造ではあるが、芯材に設
けた凹凸部側の面を相互に対向させて真空引きをした真
空断熱パネル5が特開昭59−112093号公報に記
載されているが、この場合の凹溝の形成に際しては、溝
同志のはまりこみや溝の変形を招くことの無いように形
成されることが肝要であり、溝の切削には多大なる労力
を必要とし、併せて熱伝達に対する溝部の抑制効果は、
輻射断熱効果が無くなることから、低下を招いて真空断
熱パネルの断熱性能を低下させることにもなる。
Japanese Patent Application Laid-Open No. Sho 59-112093 discloses a vacuum heat insulating panel 5 having a similar structure, but evacuated by making the surfaces on the concave and convex portions provided on the core material face each other. However, when forming the concave groove in this case, it is important that the concave groove is formed so as not to cause the groove to be fitted and the groove to be deformed. The effect of the groove to suppress heat transfer is
Since the radiation heat insulating effect is lost, the heat insulating performance of the vacuum heat insulating panel is lowered by lowering the radiation heat insulating effect.

【0020】本発明は、かかる課題を解決するためにな
されたもので、芯材内部のガスを芯材表面からも効率よ
く排気が行えると共に、欠陥の発生を生むことの無いよ
うに包装材が芯材の表面に安定して当接し、かつ簡易に
加工のできる表面構造を備えた真空断熱パネルとその製
造方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the gas inside the core material can be efficiently exhausted from the surface of the core material, and the packaging material is formed so as not to generate defects. It is an object of the present invention to provide a vacuum heat insulating panel having a surface structure that can stably abut on the surface of a core material and that can be easily processed, and a method of manufacturing the same.

【0021】[0021]

【課題を解決するための手段】本発明の請求項1に係る
真空断熱パネルは、板状の発泡樹脂の表面を切り込んで
形成された溝部及び該溝部に嵌合して前記表面を平滑に
する符合部をそれぞれ有する芯材を備えたものである。
According to a first aspect of the present invention, there is provided a vacuum heat insulating panel having a groove formed by cutting a surface of a plate-like foamed resin, and fitting into the groove to smooth the surface. It is provided with core materials each having a matching portion.

【0022】本発明の請求項2に係る真空断熱パネル
は、発泡樹脂の一辺から他の三辺の何れかに前記溝部と
符合部が連続して形成された芯材を備えたものである。
According to a second aspect of the present invention, there is provided a vacuum heat insulating panel comprising a core material in which the groove and the mating portion are continuously formed on one of three sides from one side of the foamed resin.

【0023】本発明の請求項3に係る真空断熱パネルの
製造方法は、芯材の表面を切り込んで溝部と符合部を形
成する工程と、芯材に形成された符合部を溝部の上に保
持する工程と、その状態の芯材を包装材に収納する工程
と、包装材内部を真空引きする工程と、符合部を溝部に
格納する工程とを有することを特徴とするものである。
According to a third aspect of the present invention, there is provided a method for manufacturing a vacuum heat insulating panel, comprising the steps of cutting a surface of a core material to form a groove and a sign, and holding the sign formed on the core on the groove. And a step of housing the core material in that state in a packaging material, a step of evacuating the interior of the packaging material, and a step of storing the matching part in the groove.

【0024】本発明の請求項4に係る真空断熱パネルの
製造方法は、芯材の表面を切り込むとき溝部に嵌合する
符合部を切り起こし可能に芯材の表面を切り込み、芯材
を包装材に収納するときは符合部を所定角度起こすこと
を特徴とするものである。
According to a fourth aspect of the present invention, in the method for manufacturing a vacuum insulation panel, when cutting the surface of the core material, the mating portion fitted into the groove is cut and raised so that the surface of the core material can be cut and raised. When stored in a box, the matching part is raised by a predetermined angle.

【0025】本発明の請求項5に係る真空断熱パネルの
製造方法は、真空引きされた包装材内の芯材の符合部を
溝部に格納するときプレス板で押圧することを特徴とす
るものである。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a vacuum heat insulating panel, wherein a code portion of a core material in a vacuum-evacuated packaging material is pressed by a press plate when stored in a groove. is there.

【0026】[0026]

【発明の実施の形態】実施形態1.図1は本発明の実施
形態に係る真空断熱パネルの断面を示す斜視図、図2は
本実施形態に係る真空断熱パネルの包装材及び芯材の一
部を拡大して示す正面断面図である。本実施形態におけ
る真空断熱パネル11の芯材13は、多孔質物質からな
っていて板状に形成され、一辺から例えばその辺に対向
するもう一方の辺に連続して切り込んで形成された断面
U型の溝部14と溝部14に嵌合する切り起こし可能な
符合部15とが複数設けられている。この符合部15
は、切り込み線の入っていない部分を支点として周方向
に動かせるようになっており(図2参照)、包装材12
に収納する際には、その符合部15を溝部14から起こ
して、例えば切り込み方向に挿入する。この場合、包装
材12の上面が符合部15によって持ち上げられて芯材
13の上面との間に空隙16が形成される。符合部15
を起こす角度は90度以下、好ましくは45度以下であ
る。真空引きをするときはこの状態で行われ、完了時に
は、後述するプレス板によって符合部15を押圧して溝
部14に格納するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. FIG. 1 is a perspective view showing a cross section of a vacuum heat insulating panel according to an embodiment of the present invention, and FIG. 2 is a front cross sectional view showing a part of a packaging material and a core material of the vacuum heat insulating panel according to the present embodiment in an enlarged manner. . The core material 13 of the vacuum heat insulating panel 11 in the present embodiment is made of a porous material, is formed in a plate shape, and has a cross section U formed by cutting continuously from one side, for example, to the other side facing the side. A plurality of groove portions 14 of the mold and cut-and-raised sign portions 15 that fit into the groove portions 14 are provided. This matching part 15
Can be moved in the circumferential direction with a portion having no cut line as a fulcrum (see FIG. 2).
When it is stored in the groove, the matching part 15 is raised from the groove part 14 and inserted, for example, in the cutting direction. In this case, the upper surface of the packaging material 12 is lifted by the matching portion 15 to form a gap 16 with the upper surface of the core material 13. Sign 15
Is 90 degrees or less, preferably 45 degrees or less. The vacuuming is performed in this state, and upon completion, the matching portion 15 is pressed by a press plate described later and stored in the groove portion 14.

【0027】以上のように符合部15を所定角度起こし
た芯材13を包装材12に収納した際、包装材12内に
空隙ができ、しかも芯材13の溝部14の表面が露出さ
れるので、真空引きが行われたときは芯材13内のガス
を短時間で排出することが可能になり、また完了時に
は、符合部15を溝部14に格納できるようになってい
るので、真空断熱パネル11の表面が平らになり、意匠
性が損なわれるということがない。
As described above, when the core material 13 having the matching portion 15 raised at a predetermined angle is stored in the packaging material 12, a void is formed in the packaging material 12, and the surface of the groove 14 of the core material 13 is exposed. When the evacuation is performed, the gas in the core material 13 can be exhausted in a short time, and when the evacuation is completed, the matching portion 15 can be stored in the groove portion 14. The surface of No. 11 is flat, and the design is not impaired.

【0028】なお、本実施形態では、芯材13に設けた
溝部14と符合部15は図3(a)に示すように直線状
に切り込んで形成されたものであるが、同図(b)に示
すように不連続に分散した状態で芯材13の表面と端辺
を切り込んでもよいし、同図(c)に示すように曲線状
に切り込んでもよい。その場合、符合部15を無理なく
起こせるように分割する。また、溝部14と符合部15
の断面形状をU型にしているが、V型でもよい。これら
の形状は例えばU字状又はV字状に形成された鋭利な刃
物で切り込んだものである。
In the present embodiment, the grooves 14 and the matching portions 15 provided in the core 13 are cut in a straight line as shown in FIG. 3 (a). The surface and the edge of the core material 13 may be cut in a state of being discontinuously dispersed as shown in FIG. 7A, or may be cut in a curved shape as shown in FIG. In such a case, the division is made so that the matching part 15 can be easily raised. The groove 14 and the matching part 15
Is a U-shaped cross section, but may be a V-shaped. These shapes are, for example, cut by a sharp blade formed in a U-shape or a V-shape.

【0029】実施形態2.次に、芯材に溝部と符合部を
設ける工程を含む真空断熱パネルの製造方法を図4及び
図5に基づいて説明する。図4は真空断熱パネルの製造
方法を示す工程図、図5は真空包装機による真空引きの
説明図である。
Embodiment 2 Next, a method for manufacturing a vacuum heat insulating panel including a step of providing a groove and a matching part in a core material will be described with reference to FIGS. FIG. 4 is a process diagram showing a method of manufacturing a vacuum heat insulating panel, and FIG. 5 is an explanatory diagram of evacuation by a vacuum packaging machine.

【0030】まず、連通気泡を有する発泡ウレタンの発
泡成型品から得る板状の芯材の製造方法を説明する。例
えば、ポリオールを中心に触媒、整泡剤、破泡剤、発泡
剤等の助剤が混合されたプレミックス液と、イソシアネ
ートを主成分とするイソシアネート液の2液をインペラ
ー形のミキサー等にそれぞれ規定量投入して混合し、数
秒後に開始される発泡に間に合うように30℃〜60
℃、好ましくは40℃〜50℃に保温した一辺が350
mmで深さ40mmのアルミ製の金型内に投入する。そし
て、この混合液を5分以上放置して完全に硬化させボー
ド状に成型する。その後は、この成型品の表層部分に多
く残存する独立した気泡を排除するために、表と裏の両
面及び外周を切断して例えば300×300×20t
(mm)の大きさに加工し芯材13を作る(S1)。
First, a method for producing a plate-shaped core material obtained from a foamed molded article of urethane foam having open cells will be described. For example, two liquids of a premix liquid in which auxiliaries such as a catalyst, a foam stabilizer, a foam breaking agent, and a foaming agent are mainly mixed with a polyol, and an isocyanate liquid containing isocyanate as a main component are respectively mixed into an impeller-type mixer or the like. A prescribed amount is added and mixed, and 30 ° C. to 60 ° C. in time for foaming to be started after a few seconds.
350 ° C., preferably 40 ° C. to 50 ° C.
It is put into an aluminum mold with a depth of 40 mm and a thickness of 40 mm. Then, the mixed solution is left for at least 5 minutes to be completely cured and molded into a board shape. After that, in order to eliminate many independent air bubbles remaining in the surface layer portion of the molded product, the front and rear surfaces and the outer periphery are cut to, for example, 300 × 300 × 20 t.
(Mm) to form a core material 13 (S1).

【0031】なお、前述した芯材13の材料に発泡ウレ
タンを用いて説明したが、これに代えて発泡ポリスチレ
ンを用いてもよい。ここで、発泡ポリスチレンによる芯
材の製造方法について説明する。まず、発泡ポリスチレ
ンは、国際特許WO96/07942(特表平8−50
3720、特願平6−509062)および国際特許W
O96/16876(特表平8−505895、特願平
6−517001)に記載されているように、平均分子
量が2×105 のポリスチレンに主発泡剤の炭酸ガス、
例えばHFC−134a(1,1,1,2-tetrafluoroetane)
や、HFC−152a(1,1-difluoroetane) 等の補助発
泡剤を好適に用いて押出し混合、発泡、フォームの急冷
により、連通気泡の含有率が100%に近く、しかも気
泡径の小さな発泡ポリスチレンを得る。
Although the above description has been made using foamed urethane as the material of the core material 13, foamed polystyrene may be used instead. Here, a method for manufacturing a core material using expanded polystyrene will be described. First, expanded polystyrene is described in International Patent WO96 / 07942 (Tokuheihei 8-50).
3720, Japanese Patent Application No. 6-509062) and International Patent W
As described in O96 / 16876 (Japanese Patent Application Laid-Open No. 8-505895, Japanese Patent Application No. 6-517001), polystyrene having an average molecular weight of 2 × 10 5 is mixed with carbon dioxide gas as a main blowing agent,
For example, HFC-134a (1,1,1,2-tetrafluoroetane)
Foamed polystyrene with a closed cell content of close to 100% and a small cell diameter by extrusion mixing, foaming and rapid cooling of the foam, preferably using an auxiliary foaming agent such as HFC-152a (1,1-difluoroetane) or the like. Get.

【0032】この発泡ポリスチレンの押出し成型品は、
内部が融点以下で熱変形温度以上の温度で圧縮応力を付
加することにより、セルを容易に扁平化することができ
る。セルの扁平化に伴い樹脂内に発生した応力を除去す
ることにより、強度の低下を抑制できるので、この圧縮
された状態を維持しながら熱変形温度を維持してアニー
ルした後、その成型品を熱変形温度以下、好ましくはガ
ラス転移温度以下に冷却する。そして、このようにして
得られたブロック状の成型品を、前述した発泡ウレタン
の芯材13と同じ大きさの形状に加工する。
The extruded product of the expanded polystyrene is:
The cell can be easily flattened by applying a compressive stress at a temperature below the melting point and above the thermal deformation temperature. Since the reduction in strength can be suppressed by removing the stress generated in the resin due to the flattening of the cells, the molded product is annealed while maintaining the compressed state and maintaining the heat deformation temperature. Cooling is performed below the heat distortion temperature, preferably below the glass transition temperature. Then, the block-shaped molded product thus obtained is processed into a shape having the same size as the above-described urethane foam core 13.

【0033】次に、以上の方法によって得た板状の芯材
13の表面を、前述したように複数個所切り込んで溝部
14と溝部14に嵌合する切り起こし可能な符合部15
を設ける(S12)。そして、切り込み線の入っていな
い部分を支点として符合部15を所定角度まで起こし
(S13)、その状態で包装材12に挿入する(S1
4)。この時、符合部15によって包装材12の上面が
持ち上げられ、芯材13の上面との間に空隙16が形成
される。
Next, the surface of the plate-shaped core material 13 obtained by the above-described method is cut into a plurality of portions as described above, and the cut-and-raised sign portions 15 fitted into the groove portions 14 are formed.
Is provided (S12). Then, the matching portion 15 is raised up to a predetermined angle with the portion having no cut line as a fulcrum (S13), and inserted into the packaging material 12 in that state (S1).
4). At this time, the upper surface of the packaging material 12 is lifted by the matching portion 15, and a gap 16 is formed between the upper surface of the core material 13 and the upper surface of the core material 13.

【0034】この空隙16は、符合部15の幅に依存す
ることになり、符合部15の幅を広くすることによって
芯材13の連通化したセルの露出面積が大きくなると共
に空隙16も大きくなるが、この場合、芯材13の大き
さに対して包装材12の大きさが過剰になるから、符合
部15の幅及び角度を小さくして包装材12の弛み部分
を少なくする。
The gap 16 depends on the width of the matching portion 15. By increasing the width of the matching portion 15, the exposed area of the cells connected to the core 13 increases, and the gap 16 also increases. However, in this case, since the size of the packaging material 12 becomes excessive with respect to the size of the core material 13, the width and angle of the matching portion 15 are reduced to reduce the slack portion of the packaging material 12.

【0035】以上の如き芯材13を挿入した包装材12
を、図5に示すように真空包装機21に装着した後、真
空ポンプ(図示せず)等を用いて真空包装機21の内部
を排気して真空にする(S15)。真空包装機21の内
部を真空状態にすることにより、芯材13のセル内のガ
スは表面(溝部の表面も含む)を通じて排出され、系外
に出る。この時、真空度は、セル内に残存するガスによ
る熱伝達を抑制して、発泡体の骨格を成す樹脂部分によ
る熱伝達と輻射による熱伝達のみとするのに十分な1to
rr以下、好ましくは10-2torr以下となる。
The packaging material 12 into which the core material 13 is inserted as described above
After being mounted on the vacuum packaging machine 21 as shown in FIG. 5, the inside of the vacuum packaging machine 21 is evacuated to a vacuum using a vacuum pump (not shown) or the like (S15). By setting the inside of the vacuum packaging machine 21 to a vacuum state, the gas in the cells of the core material 13 is exhausted through the surface (including the surface of the groove) and exits the system. At this time, the degree of vacuum is 1 to 1 which is sufficient to suppress the heat transfer due to the gas remaining in the cell and to perform only the heat transfer by the resin portion forming the skeleton of the foam and the heat transfer by radiation.
rr or less, preferably 10 -2 torr or less.

【0036】真空包装機21の内部が任意の真空度に到
達し、適度な時間の放置によりセル内のガスが十分に排
出された場合、真空包装機21内に装着したプレス板2
3で芯材13をプレスして表面に突出した符合部15を
溝部14に格納する(S16)。このプレスにより、芯
材13の表面は、従来から使用されている平板状のもの
と何等変わりなく表面が平滑になり、また、プレス板2
3のプレスによって、真空引き時に発生する包装材12
の表面のしわが延びると共に、包装材12中に残存する
僅かな空気等のガスも排出される。
When the inside of the vacuum packaging machine 21 reaches an arbitrary degree of vacuum and the gas in the cell is sufficiently exhausted by leaving it for an appropriate time, the press plate 2 mounted in the vacuum packaging machine 21
In step 3, the core material 13 is pressed, and the matching part 15 protruding from the surface is stored in the groove part 14 (S16). By this pressing, the surface of the core material 13 is smoothed without any difference from the conventionally used flat plate-shaped material.
The packaging material 12 generated at the time of evacuation by the press of 3
Wrinkles on the surface of the package 12 are extended, and a small amount of gas such as air remaining in the packaging material 12 is also discharged.

【0037】次に、芯材13の挿入口である包装材12
の端辺17を真空包装機21に設けられた融着ヒータ2
2で融着して封止する(S17)。端辺17の融着は、
包装材12の内層部分の高密度ポリエチレン等の熱可塑
性樹脂が溶融した状態で加圧され、その後、冷却するこ
とによってその端辺17が封止される。包装材12の端
辺17の封止が完了すると、真空包装機21の内部を常
圧に戻す。この時、大気圧により包装材12が芯材13
に密着しその状態が保持される。そして、芯材13をプ
レスしていたプレス板23を所定位置まで引き上げて真
空断熱パネル18を取り出し(S18)、真空断熱パネ
ル18の製造を完了する。
Next, the packaging material 12 which is the insertion opening of the core material 13 is
End 17 of the fusing heater 2 provided in the vacuum packaging machine 21
2 and sealing (S17). The fusion of edge 17
The inner side portion 17 of the packaging material 12 is pressurized in a molten state of a thermoplastic resin such as high-density polyethylene, and then cooled to seal the end 17. When the sealing of the end 17 of the packaging material 12 is completed, the inside of the vacuum packaging machine 21 is returned to normal pressure. At this time, the packing material 12 is
And that state is maintained. Then, the press plate 23 that has pressed the core material 13 is pulled up to a predetermined position, and the vacuum insulation panel 18 is taken out (S18), and the manufacture of the vacuum insulation panel 18 is completed.

【0038】以上のように本実施形態によれば、芯材1
3の表面に複数個所切り込んで形成した符合部15を所
定角度起こし、その状態の芯材13を包装材12に挿入
するようにしているので、包装材12との間に空隙16
が形成されると共に溝部14の表面が露出し、しかも芯
材13の挿入口が大きく開いた状態になり、このため、
真空引きの際には、芯材13のセル内のガスを容易に、
しかも効率よく排出することができるという効果があ
る。
As described above, according to the present embodiment, the core material 1
3 is raised at a predetermined angle, and the core material 13 in that state is inserted into the packaging material 12, so that a gap 16 between the core material 13 and the packaging material 12 is formed.
Is formed and the surface of the groove 14 is exposed, and the insertion opening of the core material 13 is largely opened.
At the time of evacuation, the gas in the cell of the core material 13 is easily removed,
In addition, there is an effect that it is possible to discharge efficiently.

【0039】また、真空引き完了時にプレス板23で包
装材12内の符合部15を芯材13の溝部14に格納す
るようにしているので、芯材13の表面を平滑な面に戻
すことができ、また、この場合、包装材12にできたし
わが延びるので、しわによるクラック等の欠陥部分がな
くなって断熱性能の悪化を防止でき、さらに、プレス板
23によって包装材12内の僅かなガスも排出できるの
で、真空断熱パネル18内の真空度が増して断熱性能が
向上するという効果がある。
Further, since the matching portion 15 in the packaging material 12 is stored in the groove portion 14 of the core material 13 by the press plate 23 when the evacuation is completed, the surface of the core material 13 can be returned to a smooth surface. In this case, since the wrinkles formed in the packaging material 12 are extended, defects such as cracks due to the wrinkles can be eliminated, and the deterioration of the heat insulation performance can be prevented. Can be discharged, so that there is an effect that the degree of vacuum in the vacuum heat insulating panel 18 is increased and the heat insulating performance is improved.

【0040】なお、本実施形態では、芯材13の形状に
特徴を有する真空断熱パネル11及びその成型方法につ
いて説明したが、これに限定されることなく、例えば、
冷蔵庫や保温保冷用の各種断熱箱等の三次元構造体や、
車、建築物等の保温保冷に用いる大形の断熱板や、パイ
プ等の円筒状の断熱体に適用する芯材において、各種形
態を成す板材の中間に挟んで用いる構造材への代替えも
可能であり、その要旨を脱し得ない範囲で種々変形して
実施することができる。
In this embodiment, the vacuum heat insulating panel 11 having a characteristic shape of the core material 13 and the molding method thereof have been described. However, the present invention is not limited to this.
Three-dimensional structures such as refrigerators and various heat insulation boxes for keeping warm and cool,
It is also possible to replace the core material used for large heat insulating plates used for keeping heat and cooling of cars, buildings, etc., and for cylindrical heat insulators such as pipes, by using structural materials sandwiched between various types of plate materials. However, various modifications can be made without departing from the scope of the invention.

【0041】[0041]

【実施例】次に、前述した方法によって製造された真空
断熱パネルの排気時間、外観の平滑性、熱伝導率及び真
空度を従来の真空断熱パネルと比較した結果を述べる。
両者の真空断熱パネルは、芯材に発泡ウレタンと発泡ポ
リスチレンを用い、芯材の形状は前述のごとく300×
300×20t(mm)の板状である。芯材の材質である
発泡ウレタンの密度は65Kg/m3 、発泡ポリスチレンの
密度は110Kg/ m3である。
Next, the results of comparing the evacuation time, the smoothness of appearance, the thermal conductivity and the degree of vacuum of the vacuum insulation panel manufactured by the above-described method with those of the conventional vacuum insulation panel will be described.
Both vacuum insulation panels use foamed urethane and foamed polystyrene as the core material, and the shape of the core material is 300 × as described above.
It has a plate shape of 300 × 20 t (mm). The density of the urethane foam, which is the core material, is 65 kg / m 3 , and the density of the expanded polystyrene is 110 kg / m 3 .

【0042】本実施例の真空断熱パネルは、表1に示す
ように5種類の芯材をそれぞれ用いており、例えば、材
質が発泡ウレタン(PUF)で、表面をU型に切り込ん
だ幅10mmの溝部とその符合部をそれぞれ5本有する芯
材を用いた真空断熱パネルを具体例1とし、5本のV型
溝部とその符合部を有する芯材を用いた真空断熱パネル
を具体例2とし、10本のU型溝部とその符合部を有す
る芯材を用いた真空断熱パネルを具体例3とし、幅20
mmのU型溝部とその符合部をそれぞれ5本有する芯材を
用いた真空断熱パネルを具体例4とし、また、芯材に発
泡ポリスチレン(PSF)を用いた真空断熱パネルを具
体例5としている。
The vacuum heat insulating panel of this embodiment uses five types of core materials as shown in Table 1, for example, is made of urethane foam (PUF) and has a U-shaped 10 mm wide surface. A vacuum insulating panel using a core material having five grooves and its corresponding portions each as a specific example 1, and a vacuum insulating panel using a core material having five V-shaped grooves and its corresponding portions as a specific example 2, A vacuum heat insulating panel using a core material having ten U-shaped grooves and their matching parts is referred to as a specific example 3 and has a width of 20 mm.
A specific example 4 is a vacuum heat insulating panel using a core material having five U-shaped grooves and five corresponding portions, and a specific example 5 is a vacuum heat insulating panel using foamed polystyrene (PSF) as a core material. .

【0043】一方、従来の真空断熱パネルは、表2に示
すように3種類の芯材をそれぞれ用いており、材質がP
UFで、表面に幅10mmのU型溝部が5本設けられた芯
材を用いた真空断熱パネルを従来例1とし、溝部のない
PUFの芯材を用いた真空断熱パネルを従来例2とし、
材質がPSFで溝部のない芯材を用いた真空断熱パネル
を従来例3としている。
On the other hand, the conventional vacuum insulation panel uses three types of core materials as shown in Table 2, and the material is P
A vacuum insulation panel using a core material provided with five U-shaped grooves having a width of 10 mm on the surface is referred to as Conventional Example 1, and a vacuum insulation panel using a PUF core material without grooves is referred to as Conventional Example 2,
Conventional example 3 is a vacuum heat insulating panel using a core material made of PSF and having no groove.

【0044】従来の真空断熱パネルとの比較項目は、前
述したように排気時間、外観の平滑性、熱伝導率及び真
空度であり(表3参照)、排気時間は10-2torrの真空
度に達するまでにガスを排出するのに要した時間を測定
した結果であり、外観の平滑性はパネル表面を目視によ
って判別した結果であり、また、熱伝導率は真空断熱パ
ネルの製造直後と所定時間放置した後に熱伝導率測定装
置で測定した値である。さらに、真空度は、真空断熱パ
ネルを大気中に例えば16時間放置した後、図5に示す
真空包装機に収め、その装置内の真空度を上昇させたと
きに包装材の表面が膨れ始めたときから求めた真空断熱
パネル内の値である。
The items to be compared with the conventional vacuum insulation panel are, as described above, the evacuation time, the smoothness of appearance, the thermal conductivity and the degree of vacuum (see Table 3), and the evacuation time is 10 −2 torr vacuum degree. Is the result of measuring the time required to discharge the gas until the temperature reaches, the smoothness of the appearance is the result of visually discriminating the panel surface, and the thermal conductivity is the predetermined value immediately after the production of the vacuum insulation panel. This is a value measured by a thermal conductivity measuring device after being left for a time. Further, the degree of vacuum was such that after the vacuum insulation panel was left in the atmosphere for, for example, 16 hours, it was placed in a vacuum packaging machine shown in FIG. 5, and when the degree of vacuum in the apparatus was increased, the surface of the packaging material began to swell. It is the value in the vacuum insulation panel obtained from time.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】この表3からも明らかなように、本実施例
の真空断熱パネルは、芯材の材質が発泡ウレタン又は発
泡ポリスチレンの何れであっても、任意の真空度(10
-2torr)を得るために要する排気時間が従来の真空断熱
パネル(従来例1〜従来例3)と比べ短縮されており、
外観の平滑性については、実用に支障を来すような溝部
による凹凸が発生していないことが確認できた。また、
熱伝導率は、製造直後の測定値と放置後に測定した値と
ほとんど変化がなく、良好な熱伝導率が得られている。
真空度は、真空包装機で真空引きしたときとほとんど変
わらず安定した結果が得られている。
As is clear from Table 3, the vacuum insulation panel of this embodiment has an arbitrary degree of vacuum (10%) regardless of the material of the core material, such as urethane foam or polystyrene foam.
-2 torr) is shorter than conventional vacuum insulation panels (conventional examples 1 to 3).
Regarding the smoothness of the appearance, it was confirmed that no irregularities due to the groove portions that would hinder practical use were generated. Also,
The thermal conductivity is almost the same as the measured value immediately after production and the value measured after standing, and a good thermal conductivity is obtained.
The degree of vacuum was almost the same as when vacuum was evacuated by the vacuum packaging machine, and a stable result was obtained.

【0049】これに対し従来例1では、真空断熱パネル
の表面に激しい凹凸を備えた筋が形成されており、包装
材がその筋の凹部分の上に浮いてその凹部分の方向に押
し下げられた状態で引っ張りの張力を受けていた。この
真空断熱パネルを光源の手前で透かして見ると、包装材
が備えるガスバリヤー層のアルミ箔に亀裂が生じてお
り、これが真空度の上昇とそれに基づく熱伝導率の著し
い上昇を招いたものと推測できる。
On the other hand, in the conventional example 1, a streak having severe irregularities is formed on the surface of the vacuum insulation panel, and the packaging material floats on the recess of the streak and is pushed down in the direction of the recess. Under tension. Looking through this vacuum insulation panel in front of the light source, cracks have occurred in the aluminum foil of the gas barrier layer provided in the packaging material, and this has caused a rise in the degree of vacuum and a significant increase in the thermal conductivity based on it. I can guess.

【0050】また、従来例2と従来例3では、表面に溝
部が形成されていない芯材を用いているので、包装材が
芯材の表面を完全に覆って、セル内のガスの排出が難く
なっており、これに伴って大気中に16時間放置した後
の真空度の低下が著しく、それに起因する熱伝導率の大
きな低下も観察できた。特に、発泡ポリスチレンを用い
た芯材の場合、プレス板の圧縮によりセルの扁平化をも
たらした際、芯材表面に薄い樹脂の層が形成されるの
で、バルクから切り出した発泡ウレタンの芯材と比較し
て、一層の真空度の低下と熱伝導率の上昇(悪化)をも
たらしたと推測できる。
Further, in the conventional examples 2 and 3, since the core material having no groove formed on the surface is used, the packaging material completely covers the surface of the core material, and the gas in the cell can be discharged. Accordingly, the degree of vacuum after leaving the sample in the atmosphere for 16 hours was markedly reduced, and a significant decrease in thermal conductivity due to the reduction was observed. In particular, in the case of a core material using expanded polystyrene, when a cell is flattened by compressing a press plate, a thin resin layer is formed on the surface of the core material. In comparison, it can be assumed that the degree of vacuum was further reduced and the thermal conductivity was increased (deteriorated).

【0051】本実施例の真空断熱パネルにおいては、前
述したように、芯材の材質が発泡ウレタン又は発泡ポリ
スチレンの何れであっても排気時間が従来の真空断熱パ
ネル(従来例1〜従来例3)と比べて短縮され、パネル
の表面に実用に支障を来すような凹凸がなく、また、製
造直後の熱伝導率と放置後に測定した熱伝導率とほとん
ど変化がなく良好であるという結果が得られている。ま
た、真空包装機で真空引きしたときの真空度がほぼ同じ
値で保持されており安定した結果が得られている。
As described above, in the vacuum insulation panel of this embodiment, as described above, regardless of whether the core material is urethane foam or polystyrene foam, the evacuation time is the same as that of the conventional vacuum insulation panel (conventional examples 1 to 3). ), The surface of the panel has no irregularities that may interfere with practical use, and the thermal conductivity immediately after production and the thermal conductivity measured after standing are almost unchanged and good. Have been obtained. Further, the degree of vacuum when the vacuum was evacuated by the vacuum packaging machine was maintained at substantially the same value, and a stable result was obtained.

【0052】[0052]

【発明の効果】以上のように本願の請求項1の発明によ
れば、板状の発泡樹脂の表面を切り込んで形成された溝
部及びその溝部に嵌合して表面を平滑にする符合部をそ
れぞれ有する芯材を備えているので、真空引き後の包装
材の面が平らになり、このため、低真空度を維持するこ
とが可能になり、意匠性にも優れているという効果が得
られている。
As described above, according to the first aspect of the present invention, the groove formed by cutting the surface of the plate-like foamed resin and the mating portion that fits into the groove to smooth the surface are formed. Since each has a core material, the surface of the packaging material after vacuuming is flattened, and therefore, it is possible to maintain a low degree of vacuum, and it is possible to obtain an effect that the design is excellent. ing.

【0053】本願の請求項2の発明によれば、発泡樹脂
の一辺から他の三辺の何れかに溝部と符合部が連続して
形成された芯材を備えているので、真空引きの際には包
装材の奧のガスを容易に排出できるという効果が得られ
ている。
According to the invention of claim 2 of the present application, since the core material in which the groove portion and the matching portion are continuously formed on one of the three sides from one side of the foamed resin is provided, Has an effect that the gas inside the packaging material can be easily discharged.

【0054】本願の請求項3の発明によれば、芯材の表
面を切り込んで形成された溝部の上に符合部を保持し、
その状態の芯材を包装材に収納するようにしているの
で、包装材内に空隙が形成されると共に溝部の表面が露
出し、しかも包装材の芯材の挿入口が大きく開いた状態
となり、このため、真空引きの際には、芯材内のガスを
容易に、しかも効率よく排出することができるという効
果が得られている。また、真空引き完了時に包装材内の
芯材の符合部を溝部に格納して包装材の表面を平滑な面
に戻すようにしているので、低真空度を維持することが
可能になり、しかも意匠性に優れているという効果が得
られている。
According to the invention of claim 3 of the present application, the matching portion is held on the groove formed by cutting the surface of the core material,
Since the core material in that state is stored in the packaging material, a void is formed in the packaging material, the surface of the groove is exposed, and the insertion opening of the core material of the packaging material is greatly opened, Therefore, there is an effect that the gas in the core material can be easily and efficiently discharged during the evacuation. Also, when the evacuation is completed, the matching part of the core material in the packaging material is stored in the groove so that the surface of the packaging material is returned to a smooth surface, so that it is possible to maintain a low degree of vacuum, and The effect of being excellent in design is obtained.

【0055】本願の請求項4の発明によれば、芯材の表
面を切り込むとき溝部に嵌合する符合部を切り起こし可
能に芯材の表面を切り込み、芯材を包装材に収納すると
きは符合部を所定角度起こすようにしているので、包装
材内部に空隙ができ、このため、真空引き時には包装材
が芯材表面に密着することがなくなり、容易に芯材内の
ガスを排出することができ、また、符合部を切り起こし
た状態で突出させているので、符合部を容易に溝部に格
納することができるという効果が得られている。
According to the invention of claim 4 of the present application, when cutting the surface of the core material, the mating portion that fits into the groove portion is cut so as to be able to cut and raise, and when the core material is stored in the packaging material, Since the matching portion is raised at a predetermined angle, a gap is formed inside the packaging material, so that the packaging material does not adhere to the surface of the core material during evacuation, and the gas in the core material is easily discharged. In addition, since the matching portion is protruded in a cut and raised state, an effect is obtained that the matching portion can be easily stored in the groove portion.

【0056】本願の請求項5の発明によれば、真空引き
された包装材内の芯材の符合部を溝部に格納するときプ
レス板で押圧するようにしているので、包装材にできた
しわを延ばすことができ、また、しわによるクラック等
の欠陥部分がなくなって断熱性能の悪化を防止でき、さ
らに、押圧によって包装材内の僅かなガスも排出できる
ので、真空断熱パネル内の真空度が増して断熱性能が向
上するという効果が得られている。
According to the invention of claim 5 of the present application, since the code portion of the core material in the evacuated packaging material is pressed by the press plate when it is stored in the groove, wrinkles formed in the packaging material. In addition, since defects such as cracks due to wrinkles are eliminated and deterioration of heat insulation performance can be prevented, and even a small amount of gas in the packaging material can be discharged by pressing, the degree of vacuum in the vacuum insulation panel can be reduced. The effect that the heat insulation performance is further improved is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る真空断熱パネルの断
面を示す斜視図である。
FIG. 1 is a perspective view showing a cross section of a vacuum heat insulating panel according to an embodiment of the present invention.

【図2】 本実施形態に係る真空断熱パネルの包装材及
び芯材の一部を拡大して示す正面断面図である。
FIG. 2 is an enlarged front sectional view showing a part of a packaging material and a core material of the vacuum heat insulating panel according to the embodiment.

【図3】 芯材表面に設けた溝部及び符合部の配置状態
を示す説明図である。
FIG. 3 is an explanatory diagram showing an arrangement state of grooves and matching portions provided on a surface of a core material.

【図4】 真空断熱パネルの製造方法を示す工程図であ
る。
FIG. 4 is a process chart showing a method for manufacturing a vacuum heat insulating panel.

【図5】 真空包装機による真空引きの説明図である。FIG. 5 is an explanatory diagram of evacuation by a vacuum packaging machine.

【図6】 各種断熱材の断熱性能を示す比較図。FIG. 6 is a comparative diagram showing the heat insulating performance of various heat insulating materials.

【図7】 従来の冷蔵庫の断熱箱体の斜視図及びその断
熱箱体の構造を示す断面図である。
FIG. 7 is a perspective view of a heat insulating box of a conventional refrigerator and a cross-sectional view showing a structure of the heat insulating box.

【図8】 従来の冷蔵庫の製造方法を示す工程図であ
る。
FIG. 8 is a process diagram showing a conventional refrigerator manufacturing method.

【符号の説明】[Explanation of symbols]

11 真空断熱パネル、12 包装材、13 芯材、1
4 溝部、15 符合部、16 空隙。
11 vacuum insulation panel, 12 packaging material, 13 core material, 1
4 grooves, 15 matching parts, 16 voids.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H036 AA08 AA09 AB18 AB25 AB28 AC03 AE13 4F100 AK01A AK01B AK12 AK51 BA02 BA15 DB03B DD03A DD05A DJ01A DJ01B EA031 EH112 EJ262 GB15 JJ02 JL02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3H036 AA08 AA09 AB18 AB25 AB28 AC03 AE13 4F100 AK01A AK01B AK12 AK51 BA02 BA15 DB03B DD03A DD05A DJ01A DJ01B EA031 EH112 EJ262 GB15 JJ02 JL02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 板状の発泡樹脂の表面を切り込んで形成
された溝部及び該溝部に嵌合して前記表面を平滑にする
符合部をそれぞれ有する芯材を備えたことを特徴とする
真空断熱パネル。
1. Vacuum insulation provided with a core material having a groove formed by cutting a surface of a plate-like foamed resin and a sign fitting into the groove to smooth the surface. panel.
【請求項2】 発泡樹脂の一辺から他の三辺の何れかに
前記溝部と符合部が連続して形成された芯材を備えたこ
とを特徴とする請求項2記載の真空断熱パネル。
2. The vacuum heat insulating panel according to claim 2, further comprising a core material having the groove and the sign formed continuously from one side to the other three sides of the foamed resin.
【請求項3】 芯材の表面を切り込んで溝部と符合部を
形成する工程と、 芯材に形成された符合部を溝部の上に保持する工程と、 その状態の芯材を包装材に収納する工程と、 包装材内部を真空引きする工程と、 符合部を溝部に格納する工程とを有することを特徴とす
る真空断熱パネルの製造方法。
3. A step of cutting a surface of the core material to form a groove and a sign, a step of holding the sign formed in the core on the groove, and storing the core in that state in a packaging material. A step of vacuuming the inside of the packaging material; and a step of storing the code part in the groove part.
【請求項4】 芯材の表面を切り込むとき溝部に嵌合す
る符合部を切り起こし可能に芯材の表面を切り込み、芯
材を包装材に収納するときは符合部を所定角度起こすこ
とを特徴とする請求項3記載の真空断熱パネルの製造方
法。
4. When cutting the surface of the core material, the mating portion fitted into the groove is cut and raised so that the surface of the core material can be cut and raised, and when the core material is stored in the packaging material, the matching portion is raised by a predetermined angle. The method for producing a vacuum heat insulating panel according to claim 3.
【請求項5】 真空引きされた包装材内の芯材の符合部
を溝部に格納するときプレス板で押圧することを特徴と
する請求項3又は4の何れかに記載の真空断熱パネルの
製造方法。
5. The production of a vacuum insulation panel according to claim 3, wherein the matching portion of the core material in the evacuated packaging material is pressed by a press plate when storing it in the groove. Method.
JP11073535A 1999-03-18 1999-03-18 Vacuum heat-insulating panel and its manufacture Pending JP2000266281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11073535A JP2000266281A (en) 1999-03-18 1999-03-18 Vacuum heat-insulating panel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11073535A JP2000266281A (en) 1999-03-18 1999-03-18 Vacuum heat-insulating panel and its manufacture

Publications (1)

Publication Number Publication Date
JP2000266281A true JP2000266281A (en) 2000-09-26

Family

ID=13521034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11073535A Pending JP2000266281A (en) 1999-03-18 1999-03-18 Vacuum heat-insulating panel and its manufacture

Country Status (1)

Country Link
JP (1) JP2000266281A (en)

Similar Documents

Publication Publication Date Title
JP3968612B2 (en) FULL VACUUM INSULATION BOX, REFRIGERATOR USING THE VACUUM VACUUM INSULATION BOX, METHOD FOR PRODUCING THE FULL VACUUM INSULATION BOX, AND METHOD OF DECOMPOSING
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
JP3781598B2 (en) Deformation method of vacuum heat insulating material, fixing method of vacuum heat insulating material, freezer / refrigerated container and heat insulating box
TW568929B (en) Open-celled rigid polyurethane foam and method for producing the same
JPH04337195A (en) Vacuum heat insulator
US8470217B2 (en) Foamed molding and its manufacturing method
JP2006194559A (en) Heat insulating box body using vacuum heat insulating material
JPH07120138A (en) Vacuum insulated box
JP2008248618A (en) Heat-insulating and sound-insulating material
JP3876551B2 (en) Insulation and refrigerator
JP2000304428A (en) Heat insulation box body
JPH06213561A (en) Insulating material and refrigerator using the same
JP2000266281A (en) Vacuum heat-insulating panel and its manufacture
JP2007106973A (en) Foamed molded article and method for producing the same
JP2000266459A (en) Heat-insulating box body
JP2000283385A (en) Vacuum heat insulating material and manufacture thereof
JP2000283643A (en) Vacuum heat insulation panel and its manufacture
JP4273466B2 (en) Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel
JP2000000894A (en) Production of thermoplastic resin foam molding
JPH07148752A (en) Heat insulating box body
JP2000104889A (en) Manufacture of vacuum heat insulating material
JP3823507B2 (en) Vacuum insulation panel, manufacturing method thereof and refrigerator
JPH1086255A (en) Vacuum heat insulation material
KR100356540B1 (en) vacuum adiabatic panel is adapted
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method