JP2000256877A - Formation of organic thin film and organic thin film forming device - Google Patents

Formation of organic thin film and organic thin film forming device

Info

Publication number
JP2000256877A
JP2000256877A JP11061380A JP6138099A JP2000256877A JP 2000256877 A JP2000256877 A JP 2000256877A JP 11061380 A JP11061380 A JP 11061380A JP 6138099 A JP6138099 A JP 6138099A JP 2000256877 A JP2000256877 A JP 2000256877A
Authority
JP
Japan
Prior art keywords
organic compound
container
thin film
temperature
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11061380A
Other languages
Japanese (ja)
Other versions
JP3740557B2 (en
Inventor
Takashi Hiraga
隆 平賀
Tetsuo Moriya
哲郎 守谷
Keiei Chin
啓嬰 陳
Junji Tominaga
淳二 富永
Nobufumi Atoda
伸史 阿刀田
Norio Tanaka
教雄 田中
Hiromitsu Yanagimoto
宏光 柳本
Ichiro Ueno
一郎 上野
Koji Tsujita
公二 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Victor Company of Japan Ltd
Moriya Tetsuo
Original Assignee
Agency of Industrial Science and Technology
Dainichiseika Color and Chemicals Mfg Co Ltd
Victor Company of Japan Ltd
Moriya Tetsuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Dainichiseika Color and Chemicals Mfg Co Ltd, Victor Company of Japan Ltd, Moriya Tetsuo filed Critical Agency of Industrial Science and Technology
Priority to JP06138099A priority Critical patent/JP3740557B2/en
Publication of JP2000256877A publication Critical patent/JP2000256877A/en
Application granted granted Critical
Publication of JP3740557B2 publication Critical patent/JP3740557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Medicinal Preparation (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly infiltrate and disperse the surface of a resin molding with an organic compd. having affinity with the resin and also having sublimability. SOLUTION: A resin molding and a sublimable organic compd. having affinity with the resin are charged to a sealed type vessel, the pressure and temp. at the inside are controlled, and it is placed in the saturated sublimating pressure state of the organic compd., by which the organic compd. vapor is uniformly deposited on the surface of the resin molding and is furthermore infiltrated and dispersed to the inside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、有機薄膜作製方
法および有機薄膜作製装置に関するものである。更に詳
しくは、この発明は、波長選択透過膜、反射膜、光非線
形効果膜、光電変換装置、フォトクロミック素子、光記
録媒体等の光技術およびエレクトロニクス技術に有用
な、高機能性の有機薄膜作製方法に関し、更に有機薄膜
を高品質、高効率で製造することのできる新しい有機薄
膜作製装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic thin film manufacturing method and an organic thin film manufacturing apparatus. More specifically, the present invention relates to a method for producing a highly functional organic thin film useful for optical technology and electronic technology such as a wavelength selective transmission film, a reflection film, an optical nonlinear effect film, a photoelectric conversion device, a photochromic element, and an optical recording medium. Further, the present invention relates to a new organic thin film production apparatus capable of producing an organic thin film with high quality and high efficiency.

【0002】[0002]

【従来の技術】従来より、各種の組成からなる光学薄膜
が様々な応用分野において使用されており、光の吸収あ
るいは干渉を利用した波長選択透過や反射機能を利用し
たものが古くから知られている。そして特に近年は、レ
ーザー光を利用したオプトエレクトロニクスおよびオプ
トロニクスの分野において、用途面では光の多重性を利
用した情報の多元並列高速処理のための応用や、現象面
では光非線形効果ないし光電気効果の応用のため、従来
とは異なる高い機能を有する光学薄膜の開発が盛んに進
められている。
2. Description of the Related Art Conventionally, optical thin films having various compositions have been used in various application fields, and those utilizing a wavelength selective transmission or reflection function utilizing light absorption or interference have been known for a long time. I have. In recent years, in recent years, in the field of optoelectronics and optronics using laser light, in terms of applications, applications for multi-parallel high-speed processing of information using the multiplexing of light, and in terms of phenomena, optical nonlinear effects or optoelectric effects For the application of the optical thin film, development of an optical thin film having a high function different from the conventional one has been actively promoted.

【0003】このような新しい高機能光学薄膜を形成す
るための素材、その組成として注目されているものに有
機系光学材料がある。この有機系光学材料を用いた有機
系光学薄膜の製造方法についても各種の検討がこれまで
にも進められており、例えば以下のような方法が知られ
ている。
An organic optical material has attracted attention as a material for forming such a new high-performance optical thin film and as a composition thereof. Various studies have been made on a method of manufacturing an organic optical thin film using the organic optical material, and the following methods are known, for example.

【0004】(1)溶液、分散液、または、展開液を用
いる湿式法としては、以下のものが知られている。
(1) The following is known as a wet method using a solution, a dispersion, or a developing solution.

【0005】例えば、塗布法、ブレードコート法、ロー
ルコート法、スピンコート法、ディッピング法、スプレ
ー法などの塗工法、平版、凸版、凹版、孔版、スクリー
ン、転写などの印刷法、電着法、電解重合法、ミセル電
解法(特開昭63−243298号公報)などの電気化
学的手法、水の上に形成させた単分子膜を移し取るラン
グミア・ブロジェット法などである。
[0005] For example, coating methods such as coating method, blade coating method, roll coating method, spin coating method, dipping method, spraying method, printing methods such as lithographic printing, letterpress, intaglio, stencil, screen, transfer, electrodeposition method, Electrochemical methods such as an electrolytic polymerization method and a micellar electrolysis method (Japanese Patent Application Laid-Open No. 63-243298), a Langmuir-Blodgett method for transferring a monomolecular film formed on water, and the like.

【0006】(2)原料モノマー(液体)の重合ないし
重縮合反応を利用する方法としては、以下のものが知ら
れている。
(2) The following methods are known as methods utilizing polymerization or polycondensation of raw material monomers (liquid).

【0007】例えば、キャスティング法、リアクション
・インジェクション・モールド法、プラズマ重合法、光
重合法などである。
For example, there are a casting method, a reaction injection molding method, a plasma polymerization method, a photopolymerization method and the like.

【0008】(3)気体分子を用いる方法(加熱による
気化法)としては、以下のものが知られている。
(3) The following are known as methods using gas molecules (vaporization method by heating).

【0009】例えば、昇華転写法、蒸着法、真空蒸着
法、イオンビーム法、スパッタリング法、プラズマ重合
法、光重合法などである。
For example, there are a sublimation transfer method, an evaporation method, a vacuum evaporation method, an ion beam method, a sputtering method, a plasma polymerization method, a photopolymerization method and the like.

【0010】(4)溶融あるいは軟化を利用する方法と
しては、以下のものが知られている。
(4) The following methods are known as methods utilizing melting or softening.

【0011】例えば、ホットプレス法(特開平4−99
609号公報)、溶媒再沈殿・加熱溶融法(特開平6−
263885号公報)、射出成形法、延伸法、溶融薄膜
の単結晶化方法などである。
For example, a hot press method (Japanese Patent Laid-Open No. 4-99)
609), a solvent reprecipitation / heating melting method (Japanese Unexamined Patent Publication No.
263885), an injection molding method, a stretching method, a method for single crystallization of a molten thin film, and the like.

【0012】(5)真空下に置いた基板上に溶液または
分散液を噴霧する方法としては、以下のものが知られて
いる特開平6−306181号公報および特開平7−2
52671号公報に記載の方法である。
(5) As a method of spraying a solution or a dispersion on a substrate placed under vacuum, the following methods are known: Japanese Patent Application Laid-Open Nos. 6-306181 and 7-2.
No. 52671.

【0013】[0013]

【発明が解決しようとする課題】樹脂薄膜中に昇華性の
有機化合物を固溶化または分散させて、薄膜を製造する
場合、次のような問題がある。
When a sublimable organic compound is dissolved or dispersed in a resin thin film to produce a thin film, there are the following problems.

【0014】(i)昇華性有機化合物と樹脂からなる組
成物を薄膜化する場合、製造工程で昇華性有機化合物が
昇華してしまうことがある。このため、組成を一定にす
るための制御および組成を均一化するための制御が容易
でない。
(I) When a composition comprising a sublimable organic compound and a resin is formed into a thin film, the sublimable organic compound may be sublimated in the production process. For this reason, it is not easy to control to make the composition constant and to make the composition uniform.

【0015】(ii)昇華性有機化合物のみを残留させ
て、その他の揮発性不純物を除去することは極めて困難
である。従って、昇華性有機化合物以外の揮発性不純物
を含まない有機薄膜を作製することが容易でない。
(Ii) It is extremely difficult to remove only the sublimable organic compound and remove other volatile impurities. Therefore, it is not easy to produce an organic thin film containing no volatile impurities other than the sublimable organic compound.

【0016】(iii)昇華性有機化合物と樹脂からなる
組成物を薄膜化する方法は、薄膜製造工程において昇華
性有機化合物の昇華を防ぐ必要がある。このため、予め
樹脂単独で薄膜を製造した後、昇華性有機化合物を含有
させる方法よりも生産性の面で劣る場合が多い。
(Iii) In the method of thinning a composition comprising a sublimable organic compound and a resin, it is necessary to prevent sublimation of the sublimable organic compound in a thin film manufacturing process. For this reason, the productivity is often inferior to the method of preparing a thin film using only a resin in advance and then containing a sublimable organic compound.

【0017】(iv)予め樹脂単独で薄膜を製造した後、
昇華性有機化合物を含有させる方法として、次のような
ものを用いることができる。すなわち、樹脂単独の薄膜
の表面へ、上記いずれかの方法(例えば、塗布法、ブレ
ードコート法、ロールコート法、スピンコート法、ディ
ッピング法、スプレー法などの塗工法、平版、凸版、凹
版、孔版、スクリーン、転写などの印刷法、電着法、電
解重合法、ミセル電解法などの電気化学的手法、ラング
ミア・ブロジェット法、昇華転写法、蒸着法、真空蒸着
法など)を用いて、昇華性有機化合物の薄膜を形成さ
せ、その後、昇華性有機化合物を樹脂薄膜中へ浸透させ
る方法を用いることができる。しかしながら、薄膜中の
昇華性有機化合物濃度の制御およびその濃度の均一化を
制御することは容易ではない。
(Iv) After previously producing a thin film using the resin alone,
The following method can be used as a method for containing a sublimable organic compound. That is, any one of the above methods (for example, a coating method, a blade coating method, a roll coating method, a spin coating method, a dipping method, a coating method such as a spraying method, a lithographic printing plate, a relief printing plate, an intaglio printing plate, a stencil printing plate) is applied to the surface of a thin film of a resin alone. Sublimation using printing methods such as screen, transfer, etc., electrochemical methods such as electrodeposition method, electrolytic polymerization method, micellar electrolytic method, Langmuir-Blodgett method, sublimation transfer method, evaporation method, vacuum evaporation method, etc. A method of forming a thin film of a water-soluble organic compound, and then allowing the sublimable organic compound to penetrate into the resin thin film can be used. However, it is not easy to control the concentration of the sublimable organic compound in the thin film and to control the uniformity of the concentration.

【0018】(v)特に塗工法を用いる場合、薄膜表面
の平滑性などが、塗工溶剤による溶解や膨潤によって損
なわれるおそれがある。そこで、樹脂薄膜の溶解や膨潤
を避けようとすると、適当な塗工溶剤が見つからず、塗
工法の適用が困難になる場合がある。
(V) Particularly when the coating method is used, the smoothness of the surface of the thin film may be impaired by dissolution or swelling by the coating solvent. Therefore, if an attempt is made to avoid dissolution or swelling of the resin thin film, a suitable coating solvent cannot be found, and it may be difficult to apply the coating method.

【0019】(vi)予め樹脂単独で製造された薄膜中
へ、昇華性有機化合物を上記イオンビーム法やスパッタ
リング法によって「打ち込む」ことができれば目的を達
成することは可能である。しかしながら、通常の有機化
合物にとって、上記イオンビーム法やスパッタリング法
による製造条件は極めて過酷な製造条件であるため、適
用可能な昇華性有機化合物が限定されてしまう。
(Vi) The objective can be achieved if the sublimable organic compound can be "implanted" into a thin film made of a resin alone in advance by the above-described ion beam method or sputtering method. However, the production conditions by the ion beam method or the sputtering method are extremely severe production conditions for ordinary organic compounds, so that applicable sublimable organic compounds are limited.

【0020】(vii)通常の蒸着法では、蒸着源の温度
を被成膜基板の温度よりも高くして、蒸着源から飛来し
た有機化合物蒸気をより低温の被成膜基板表面に堆積さ
せる。このような非平衡条件下の成膜方法において、膜
厚制御はもっぱら機械的手段によって行われる。すなわ
ち、蒸着源から被成膜基板に至る空間に、マスクまたは
スリットを設置し、有機化合物蒸気の濃度を空間的に制
御し、また、被成膜基板を回転させるなどを行い、蒸着
膜の膜厚の均一化を図っている。しかしながら、有機化
合物の蒸気圧が高くて昇華しやすい場合、このような機
械的手段だけで蒸着膜の膜厚を均一にすることは容易で
ない。
(Vii) In the ordinary vapor deposition method, the temperature of the vapor deposition source is set higher than the temperature of the substrate on which the film is to be formed, and the organic compound vapor that has flown from the vapor deposition source is deposited on the surface of the substrate on which the film is formed at a lower temperature. In the film forming method under such non-equilibrium conditions, the film thickness is controlled exclusively by mechanical means. That is, a mask or a slit is provided in the space from the deposition source to the deposition target substrate, the concentration of the organic compound vapor is spatially controlled, and the deposition target substrate is rotated to perform the deposition. The thickness is made uniform. However, when the organic compound has a high vapor pressure and easily sublimates, it is not easy to make the thickness of the deposited film uniform by such mechanical means alone.

【0021】(viii)通常の昇華転写法は画像印刷方法
として用いられいる。すなわち、昇華転写リボンまたは
シートの表面に成膜された昇華性色素を、加熱ヘッドで
加熱して昇華させ、近傍に置かれた紙表面の転写層(熱
可塑性樹脂からなる)へ堆積・浸透させる方法である。
原理的には蒸着法と同等であり、画像の濃淡は加熱ヘッ
ドにおける加熱面積および加熱量によって制御される。
従って、「点描画」の原理で、微細な階調のある画像を
印刷する用途には適しているが、大面積について均一な
濃度で「成膜」を行うには不適当である。
(Viii) An ordinary sublimation transfer method is used as an image printing method. That is, the sublimation dye formed on the surface of the sublimation transfer ribbon or sheet is heated by a heating head to sublimate, and is deposited and penetrates into a transfer layer (made of a thermoplastic resin) on the paper surface located nearby. Is the way.
In principle, this is equivalent to the vapor deposition method, and the density of the image is controlled by the heating area and heating amount in the heating head.
Therefore, the method is suitable for printing an image having a fine gradation based on the principle of “dot drawing”, but is not suitable for performing “film formation” with a uniform density over a large area.

【0022】この発明は以上のような課題を解決し、
(a)昇華性有機化合物と樹脂からなり、これらの組成
が均一な有機薄膜を作製する方法、(b)昇華性有機化
合物を含有し、かつ、揮発性の不純物を含まない有機薄
膜の作製方法、(c)昇華性有機化合物と樹脂からな
り、これらの組成が均一な有機薄膜を効率よく作製する
方法、(d)有機薄膜の表面平滑性を損なわずに、昇華
性有機化合物を含有した有機薄膜を作製する方法、
(e)表面に微細加工が施されている場合、この有機薄
膜の表面構造を損なわずに、昇華性有機化合物を含有し
た有機薄膜を作製する方法、(f)広範な種類の昇華性
有機化合物を含有した有機薄膜の作製方法、(g)複雑
な機械的制御なしに、膜厚および/または組成が均一な
昇華性有機化合物を含有した有機薄膜を作製する方法、
(h)薄膜の面積の大小に関わらず、均一な膜厚および
/または組成を有する昇華性有機化合物を含有した有機
薄膜の作製方法、(i)上記(a)〜(h)の特徴を有
する有機薄膜を作製するための装置、を提供することを
目的とする。
The present invention solves the above problems,
(A) a method of preparing an organic thin film composed of a sublimable organic compound and a resin and having a uniform composition thereof, and (b) a method of preparing an organic thin film containing a sublimable organic compound and containing no volatile impurities. (C) a method of efficiently producing an organic thin film comprising a sublimable organic compound and a resin, and having a uniform composition thereof, and (d) an organic film containing a sublimable organic compound without impairing the surface smoothness of the organic thin film. How to make a thin film,
(E) a method of producing an organic thin film containing a sublimable organic compound without impairing the surface structure of the organic thin film when the surface is finely processed; (f) a wide variety of sublimable organic compounds (G) a method for producing an organic thin film containing a sublimable organic compound having a uniform thickness and / or composition without complicated mechanical control;
(H) a method for producing an organic thin film containing a sublimable organic compound having a uniform thickness and / or composition regardless of the area of the thin film, and (i) having the features of (a) to (h) above. It is an object to provide an apparatus for manufacturing an organic thin film.

【0023】[0023]

【課題を解決するための手段】上記目的を達成するため
に、本願の請求項1記載の発明に係る有機薄膜作製方法
は、昇華性を有しかつ被覆される樹脂成形物の樹脂と親
和性を有する有機化合物と、前記樹脂成形物とを、閉じ
た空間内に載置し、前記閉じた空間内を前記有機化合物
の飽和昇華圧状態に置き、前記有機化合物蒸気を前記樹
脂成形物表面に均一に付着させ、付着した前記有機化合
物を前記樹脂成形物表面から内部に浸透・分散させるこ
とを特徴とする。
In order to achieve the above object, an organic thin film forming method according to the invention of claim 1 of the present application has a sublimation property and an affinity for a resin of a resin molded article to be coated. And the resin molded product is placed in a closed space, the closed space is placed in a saturated sublimation pressure state of the organic compound, and the organic compound vapor is applied to the surface of the resin molded product. The method is characterized in that the organic compound is uniformly attached, and the attached organic compound is permeated and dispersed from the surface of the resin molded product to the inside.

【0024】ここで、飽和昇華圧とは、飽和蒸気圧とも
呼ばれ、熱力学系のある一定の温度における蒸気圧であ
って、物質の固相の表面で、物質の蒸気圧が平衡状態に
あることをいう。飽和蒸気圧は、物質の量に依存せず、
温度のみに依存し、温度の上昇とともに単調に増加す
る。その変化の様子は、以下に示すクラウジス−クラペ
イロン(Clausis-Clapeyron)の式で示される。
Here, the saturated sublimation pressure is also referred to as a saturated vapor pressure, which is a vapor pressure at a certain temperature in a thermodynamic system, and the vapor pressure of a substance is in an equilibrium state on the surface of a solid phase of the substance. It means something. The saturated vapor pressure does not depend on the amount of the substance,
It depends only on temperature and increases monotonically with increasing temperature. The state of the change is represented by the following Clausis-Clapeyron equation.

【0025】[0025]

【数1】dp/dT=Q/TΔV …(1) ここで、Qは単位質量の物質(固体)が気体(蒸気)に
なるときに吸収する熱量(昇華熱;この熱量吸収によっ
て物質の温度は上昇しない)を、ΔVは固体から気体へ
の相変化における単位質量当たりの体積の差を、pは飽
和蒸気圧を、Tは温度を表す。
Dp / dT = Q / TΔV (1) Here, Q is the amount of heat (sublimation heat) absorbed when a substance (solid) having a unit mass turns into a gas (vapor); Does not rise), ΔV represents the difference in volume per unit mass in the phase change from solid to gas, p represents the saturated vapor pressure, and T represents the temperature.

【0026】上記目的を達成するために、また、本願の
請求項2記載の発明に係る有機薄膜作製方法は、請求項
1に記載の有機薄膜作製方法において、前記有機化合物
は、前記樹脂成形物表面に付着可能なように、以下の
(A)〜(E)の5つの態様からなる群の中から選択さ
れる少なくとも1つの態様で、昇華源基板に付着または
含有されていることを特徴とする。
According to a second aspect of the present invention, there is provided an organic thin film manufacturing method according to the first aspect of the present invention, wherein the organic compound comprises the resin molded product. Characterized in that it is attached to or contained in the sublimation source substrate in at least one mode selected from the group consisting of the following five modes (A) to (E) so that it can be attached to the surface. I do.

【0027】(A)前記有機化合物が単独で昇華源基板
の表面に塗工または成膜されている、(B)前記有機化
合物とバインダー樹脂とが昇華源基板の表面に塗工また
は成膜されている(C)前記有機化合物を含浸している
多孔質粒子が昇華源基板の表面に塗工または成膜されて
いる、(D)前記有機化合物を含浸している多孔質粒子
とバインダー樹脂とが昇華源基板の表面に塗工または成
膜されている、(E)多孔性の昇華源基板表面の孔に前
記有機化合物が含浸されている。
(A) The organic compound is independently applied or formed on the surface of the sublimation source substrate. (B) The organic compound and the binder resin are applied or formed on the surface of the sublimation source substrate. (C) the porous particles impregnated with the organic compound are coated or formed on the surface of the sublimation source substrate, and (D) the porous particles impregnated with the organic compound and a binder resin Is coated or formed on the surface of the sublimation source substrate. (E) The organic compound is impregnated in pores on the surface of the porous sublimation source substrate.

【0028】上記目的を達成するために、また、本願の
請求項3記載の発明に係る有機薄膜作製方法は、請求項
2に記載の有機薄膜作製方法において、上記(A)〜
(E)のいずれかの態様でその表面に前記有機化合物を
付着または含有する前記昇華源基板の表面を前記樹脂成
形物表面の近傍に配置することを特徴とする。
In order to achieve the above object, the method for producing an organic thin film according to the third aspect of the present invention is the same as the method for producing an organic thin film according to the second aspect, wherein
(E) The surface of the sublimation source substrate having the organic compound adhered to or containing the surface in any one of the modes (E) is disposed near the surface of the resin molded product.

【0029】ここで、「近傍」とは前記昇華源基板の表
面と前記樹脂成形物表面とが接触しない限りにおいて、
できる限り接近させることを意味する。例えば、前記昇
華源基板および前記樹脂成形物表面ともに表面の凹凸が
1μm未満の平滑平面であったとすれば、平面間の距離
をマイクロメーターオーダーで接近させることが至適で
ある。但し、有機薄膜作製時の操作の容易性を考慮する
と、これを下限として、数ミリメートルないし10ミリ
メートル程度まで接近させることが好ましい。
Here, “near” means that the surface of the sublimation source substrate does not come into contact with the surface of the resin molded product.
It means getting as close as possible. For example, if both the surface of the sublimation source substrate and the surface of the resin molded product are smooth flat surfaces having irregularities of less than 1 μm, it is optimal to reduce the distance between the flat surfaces in the order of micrometers. However, in consideration of the easiness of the operation at the time of producing the organic thin film, it is preferable that the distance is approached to several millimeters to about 10 millimeters with this as a lower limit.

【0030】上記目的を達成するために、また、本願の
請求項4記載の発明に係る有機薄膜作製方法は、請求項
1に記載の有機薄膜作製方法において、前記樹脂成形物
および前記有機化合物を一端が封止され他端が開放され
た容器に入れ、前記容器の他端開放口より前記容器内の
圧力を、室温以上であって前記有機化合物および/また
は前記樹脂の熱分解温度を越えない温度における前記有
機化合物の飽和昇華圧まで減圧し、前記容器の他端開放
口を封止して密閉し、密閉された前記容器内部の温度
を、上記減圧状態において前記有機化合物の分圧が飽和
昇華圧に到達する温度まで加熱し、所定時間加熱後前記
容器を徐冷することを特徴とする。
In order to achieve the above object, a method for producing an organic thin film according to the invention of claim 4 of the present application is directed to the method for producing an organic thin film according to claim 1, wherein One end is sealed and the other end is opened, and the pressure in the container through the other end opening of the container is not less than room temperature and does not exceed the thermal decomposition temperature of the organic compound and / or the resin. The pressure is reduced to the saturation sublimation pressure of the organic compound at a temperature, the other end opening of the container is sealed and sealed, and the temperature inside the sealed container is reduced to a partial pressure of the organic compound under the reduced pressure. The container is heated to a temperature at which the sublimation pressure is reached, and after the heating for a predetermined time, the container is gradually cooled.

【0031】上記目的を達成するために、また、本願の
請求項5記載の発明に係る有機薄膜作製方法は、請求項
2に記載の有機薄膜作製方法において、前記請求項2に
記載のいずれかの態様で昇華源基板に付着または含有さ
れた前記有機化合物および前記樹脂成形物を、一端が封
止され他端が開放された容器に入れ、前記容器の他端開
放口より前記容器内の圧力を、室温以上であって前記有
機化合物および/または前記樹脂の熱分解温度を越えな
い温度における前記有機化合物の飽和昇華圧まで減圧
し、前記容器の他端開放口を封止して密閉し、密閉され
た前記容器内部の温度を、上記減圧状態において前記有
機化合物の分圧が飽和昇華圧に到達する温度まで加熱
し、所定時間加熱後前記容器を徐冷することを特徴とす
る。
In order to achieve the above object, an organic thin film manufacturing method according to a fifth aspect of the present invention is the same as the organic thin film manufacturing method according to the second aspect. The organic compound and the resin molded product adhered or contained on the sublimation source substrate in the mode described above are placed in a container having one end sealed and the other end opened, and the pressure inside the container is set through the other end opening of the container. Is reduced to a saturated sublimation pressure of the organic compound at a temperature not lower than room temperature and not exceeding the thermal decomposition temperature of the organic compound and / or the resin, and sealing and sealing the other end opening of the container, The temperature inside the sealed container is heated to a temperature at which the partial pressure of the organic compound reaches a saturation sublimation pressure in the reduced pressure state, and the container is gradually cooled after heating for a predetermined time.

【0032】上記目的を達成するために、また、本願の
請求項6記載の発明に係る有機薄膜作製方法は、請求項
3に記載の有機薄膜作製方法において、前記請求項2に
記載のいずれかの態様で昇華源基板に付着または含有さ
れた前記有機化合物および前記樹脂成形物を、一端が封
止され他端が開放された容器に入れ、前記容器の他端開
放口より前記容器内の圧力を、室温以上であって前記有
機化合物および/または前記樹脂の熱分解温度を越えな
い温度における前記有機化合物の飽和昇華圧まで減圧
し、前記容器の他端開放口を封止して密閉し、密閉され
た前記容器内部の温度を、上記減圧状態において前記有
機化合物の分圧が飽和昇華圧に到達する温度まで加熱
し、所定時間加熱後徐冷することを特徴とする。
In order to achieve the above object, a method for producing an organic thin film according to the invention of claim 6 of the present application is directed to the method for producing an organic thin film according to claim 3, wherein The organic compound and the resin molded product adhered or contained on the sublimation source substrate in the mode described above are placed in a container having one end sealed and the other end opened, and the pressure inside the container is set through the other end opening of the container. Is reduced to a saturated sublimation pressure of the organic compound at a temperature not lower than room temperature and not exceeding the thermal decomposition temperature of the organic compound and / or the resin, and sealing and sealing the other end opening of the container, The temperature inside the sealed container is heated to a temperature at which the partial pressure of the organic compound reaches a saturation sublimation pressure in the above-mentioned reduced pressure state, and the temperature is gradually lowered after heating for a predetermined time.

【0033】上記目的を達成するために、また、本願の
請求項7記載の発明に係る有機薄膜作製方法は、請求項
4または請求項5または請求項6に記載の有機薄膜作製
方法において、前記密閉された容器内部の温度を前記樹
脂のガラス転移温度以上であって、前記有機化合物およ
び/または前記樹脂の熱分解温度を越えない温度まで加
熱することを特徴とする。
In order to achieve the above object, an organic thin film production method according to the invention of claim 7 of the present application is directed to an organic thin film production method according to claim 4 or 5 or 6, wherein The method is characterized in that the inside of the sealed container is heated to a temperature not lower than the glass transition temperature of the resin and not exceeding the thermal decomposition temperature of the organic compound and / or the resin.

【0034】上記目的を達成するために、また、本願の
請求項8記載の発明に係る有機薄膜作製方法は、請求項
1に記載の有機薄膜作製方法において、前記樹脂成形物
および前記有機化合物を一端が封止され他端が開放され
た容器に入れ、前記容器内部の温度を室温以上であっ
て、前記有機化合物および/または前記樹脂の熱分解温
度を越えない温度まで加熱し、上記温度に保ちながら、
前記容器の他端開放口より前記容器内の圧力を上記温度
における前記有機化合物の飽和昇華圧まで減圧し、前記
容器の他端開放口を密閉し、所定時間加熱減圧後、前記
容器を徐冷することを特徴とする。
[0034] In order to achieve the above object, an organic thin film manufacturing method according to the invention of claim 8 of the present application is the organic thin film manufacturing method according to claim 1, wherein the resin molded product and the organic compound are combined with each other. Put in a container having one end sealed and the other end open, and heat the inside of the container to a temperature equal to or higher than room temperature and not exceeding the thermal decomposition temperature of the organic compound and / or the resin. While keeping
The pressure in the container is reduced to the saturation sublimation pressure of the organic compound at the above temperature through the other end opening of the container, the other end opening of the container is closed, and after heating and depressurizing for a predetermined time, the container is gradually cooled. It is characterized by doing.

【0035】上記目的を達成するために、また、本願の
請求項9記載の発明に係る有機薄膜作製方法は、請求項
2に記載の有機薄膜作製方法において、前記請求項2に
記載のいずれかの態様で昇華源基板に付着または含有さ
れた前記有機化合物および前記樹脂成形物を、一端が封
止され他端が開放された容器に入れ、前記容器内部の温
度を室温以上であって、前記有機化合物および/または
前記樹脂の熱分解温度を越えない温度まで加熱し、上記
温度に保ちながら、前記容器の他端開放口より前記容器
内の圧力を上記温度における前記有機化合物の飽和昇華
圧まで減圧し、前記容器の他端開放口を密閉し、所定時
間加熱減圧後、前記容器を徐冷することを特徴とする。
In order to achieve the above object, an organic thin film manufacturing method according to a ninth aspect of the present invention is directed to the organic thin film manufacturing method according to the second aspect, wherein The organic compound and the resin molded product adhered to or contained in the sublimation source substrate in the aspect of, placed in a container having one end sealed and the other end opened, and the temperature inside the container is room temperature or higher, Heat to a temperature not exceeding the thermal decomposition temperature of the organic compound and / or the resin, and while maintaining the above temperature, increase the pressure in the container from the other end opening of the container to the saturation sublimation pressure of the organic compound at the above temperature. The pressure is reduced, the opening at the other end of the container is closed, and after heating and reducing the pressure for a predetermined time, the container is gradually cooled.

【0036】上記目的を達成するために、また、本願の
請求項10記載の発明に係る有機薄膜作製方法は、請求
項3に記載の有機薄膜作製方法において、前記請求項2
に記載のいずれかの態様で昇華源基板に付着または含有
された前記有機化合物および前記樹脂成形物を、一端が
封止され他端が開放された容器に入れ、前記容器内部の
温度を室温以上であって、前記有機化合物および/また
は前記樹脂の熱分解温度を越えない温度まで加熱し、上
記温度に保ちながら、前記容器の他端開放口より前記容
器内の圧力を上記温度における前記有機化合物の飽和昇
華圧まで減圧し、前記容器の他端開放口を密閉し、所定
時間加熱減圧後、前記容器を徐冷することを特徴とす
る。
In order to achieve the above object, an organic thin film manufacturing method according to a tenth aspect of the present invention is directed to the organic thin film manufacturing method according to the third aspect.
The organic compound and the resin molded product adhered to or contained in the sublimation source substrate in any one of the above modes, placed in a container having one end sealed and the other end opened, and the temperature inside the container is set to room temperature or higher. And heating the organic compound and / or the resin to a temperature that does not exceed the thermal decomposition temperature of the resin, and while maintaining the temperature, increasing the pressure in the container from the other end opening of the container at the temperature. The pressure is reduced to the saturation sublimation pressure, the other end opening of the container is closed, the container is heated and depressurized for a predetermined time, and then the container is gradually cooled.

【0037】上記目的を達成するために、また、本願の
請求項11記載の発明に係る有機薄膜作製方法は、請求
項8、請求項9、または請求項10に記載の有機薄膜作
製方法において、前記容器内部の温度を前記樹脂のガラ
ス転移温度以上であって、前記有機化合物および/また
は前記樹脂の熱分解温度を越えない温度まで加熱するこ
とを特徴とする。
To achieve the above object, an organic thin film manufacturing method according to the invention of claim 11 of the present application is a method for manufacturing an organic thin film according to claim 8, 9 or 10, The temperature inside the container is heated to a temperature not lower than the glass transition temperature of the resin and not exceeding the thermal decomposition temperature of the organic compound and / or the resin.

【0038】上記目的を達成するために、また、本願の
請求項12記載の発明に係る有機薄膜作製装置は、昇華
性を有しかつ被覆される樹脂成形物の樹脂と親和性を有
する有機化合物を、飽和昇華圧状態に置くための密閉可
能な容器と、前記有機化合物が昇華して有機化合物の蒸
気が前記樹脂成形物表面に付着した後、更に前記有機化
合物が前記樹脂成形物中に浸透・分散するための加熱手
段と、を設けたことを特徴とする。
To achieve the above object, an organic thin film production apparatus according to the invention of claim 12 of the present application comprises an organic compound having sublimability and having an affinity for a resin of a resin molded product to be coated. And a sealable container for placing in a saturated sublimation pressure state, and after the organic compound sublimates and the vapor of the organic compound adheres to the surface of the resin molded product, the organic compound further penetrates into the resin molded product. -A heating means for dispersing is provided.

【0039】上記目的を達成するために、また、本願の
請求項13記載の発明に係る有機薄膜作製装置は、請求
項12に記載の有機薄膜作製装置であって、更に、前記
有機化合物が、前記樹脂成形物表面に付着可能なよう
に、上記5つの態様からなる群の中から選択される少な
くとも1つの態様で、保持されるための昇華源基板を設
けたことを特徴とする。
In order to achieve the above object, an organic thin film production apparatus according to claim 13 of the present application is the organic thin film production apparatus according to claim 12, further comprising: A sublimation source substrate to be held is provided in at least one mode selected from the group consisting of the above five modes so that the substrate can be attached to the surface of the resin molded product.

【0040】[0040]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、詳説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0041】〔樹脂成形物〕本発明の有機薄膜作製方法
は、昇華性を有しかつ被覆される樹脂成形物の樹脂と親
和性を有する有機化合物を、前記有機化合物の飽和昇華
圧状態に置き、前記有機化合物蒸気を前記樹脂成形物表
面に均一に付着させ、付着した前記有機化合物を前記樹
脂成形物表面から内部に浸透・分散させることを特徴と
するものである。
[Resin Molded Article] In the method for producing an organic thin film of the present invention, an organic compound having sublimability and having an affinity for the resin of the resin molded article to be coated is placed in a saturated sublimation pressure state of the organic compound. The organic compound vapor is uniformly attached to the surface of the resin molded product, and the attached organic compound is permeated and dispersed from the surface of the resin molded product to the inside.

【0042】ここで、樹脂成形物は、任意の形態であっ
てよい。具体的には、樹脂素材をブロック状、球状、半
球状、ペレット状、円柱状、パイプ状、チューブ状、直
方体、立方体、プリズム状、円錐、三角錐、四角錐、レ
ンズ状、平板状、シート状、フィルム状、薄膜状、ガラ
ス等の基板上に設けられた薄膜状、ファイバー状、など
の形態に成形したもの、または射出成形法などの成形方
法によって任意の形状を賦与されたプラスチック成形
物、などを用いることができる。
Here, the resin molded product may be in any form. Specifically, the resin material is formed into a block, a sphere, a hemisphere, a pellet, a column, a pipe, a tube, a rectangular parallelepiped, a cube, a prism, a cone, a triangular pyramid, a quadrangular pyramid, a lens, a flat plate, and a sheet. , Film, thin film, thin film provided on a substrate such as glass, molded into a fiber, etc., or plastic molded article given an arbitrary shape by a molding method such as injection molding , Etc. can be used.

【0043】また、樹脂成形物の大きさについて特に制
限はない。
There is no particular limitation on the size of the resin molded product.

【0044】また、2種類以上の樹脂を組み合わせて成
形したものであってもよい。例えば、昇華性有機化合物
と親和性のある樹脂を表面第1層にして、この第1層の
下に他の2種類以上の樹脂を積層構造にしたシート状の
構造の樹脂成形物を用いることができる。更に、樹脂以
外の材質からなる構造体の表面を昇華性有機化合物と親
和性のある樹脂の膜で覆ったものであってもよい。例え
ば、ガラスレンズまたはプラスチックレンズの表面に昇
華性有機化合物と親和性のある樹脂の薄膜をコートした
ものを用いることもできる。
Further, a resin molded by combining two or more kinds of resins may be used. For example, using a resin molded article having a sheet-like structure in which a resin having an affinity for a sublimable organic compound is used as a first layer on the surface and two or more other resins are laminated under the first layer. Can be. Further, the surface of a structure made of a material other than the resin may be covered with a resin film having an affinity for the sublimable organic compound. For example, a glass lens or a plastic lens coated with a thin film of a resin having an affinity for a sublimable organic compound can be used.

【0045】〔樹脂〕本発明において「樹脂」とは、有
機化合物の重合体、有機高分子化合物、プラスチック
ス、ポリマー、オリゴマーを含む。その具体例として
は、ポリスチレン、ポリ(α−メチルスチレン)、ポリ
インデン、ポリ(4−メチル−1−ペンテン)、ポリビ
ニルピリジン、ポリビニルホルマール、ポリビニルアセ
タール、ポリビニルブチラール、ポリ酢酸ビニル、ポリ
ビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリビニルメチルエーテル、ポリビニルエチルエー
テル、ポリビニルベンジルエーテル、ポリビニルメチル
ケトン、ポリ(N−ビニルカルバゾール)、ポリ(N−
ビニルピロリドン)、ポリアクリル酸メチル、ポリアク
リル酸エチル、ポリアクリル酸、ポリアクリロニトリ
ル、ポリメタクリル酸メチル、ポリメタクリル酸エチ
ル、ポリメタクリル酸ブチル、ポリメタクリル酸ベンジ
ル、ポリメタクリル酸シクロヘキシル、ポリメタクリル
酸、ポリメタクリル酸アミド、ポリメタクリロニトリ
ル、ポリアセトアルデヒド、ポリクロラール、ポリエチ
レンオキシド、ポリプロピレンオキシド、ポリエチレン
テレフタレート、ポリブチレンテレフタレート、ポリカ
ーボネイト類(ビスフェノール類+炭酸)、ポリ(ジエ
チレングリコール・ビスアリルカーボネイト)類、6−
ナイロン、6,6−ナイロン、12−ナイロン、6,1
2−ナイロン、ポリアスパラギン酸エチル、ポリグルタ
ミン酸エチル、ポリリジン、ポリプロリン、ポリ(γ−
ベンジル−L−グルタメート)、メチルセルロース、エ
チルセルロース、ベンジルセルロース、ヒドロキシエチ
ルセルロース、ヒドロキシプロピルセルロース、アセチ
ルセルロース、セルローストリアセテート、セルロース
トリブチレート、アルキド樹脂(無水フタル酸+グリセ
リン)、脂肪酸変性アルキド樹脂(脂肪酸+無水フタル
酸+グリセリン)、不飽和ポリエステル樹脂(無水マレ
イン酸+無水フタル酸+プロピレングリコール)、エポ
キシ樹脂(ビスフェノール類+エピクロルヒドリン)、
ポリウレタン樹脂、フェノール樹脂、尿素樹脂、メラミ
ン樹脂、キシレン樹脂、トルエン樹脂、グアナミン樹脂
などの樹脂、ポリ(フェニルメチルシラン)などの有機
ポリシラン、有機ポリゲルマンおよびこれらの共重合・
共重縮合体が挙げられる。また、二硫化炭素、四フッ化
炭素、エチルベンゼン、パーフルオロベンゼン、パーフ
ルオロシクロヘキサンまたはトリメチルクロロシラン
等、通常では重合性のない化合物をプラズマ重合して得
た高分子化合物などを使用することができる。
[Resin] In the present invention, the term "resin" includes polymers of organic compounds, organic high molecular compounds, plastics, polymers and oligomers. Specific examples thereof include polystyrene, poly (α-methylstyrene), polyindene, poly (4-methyl-1-pentene), polyvinylpyridine, polyvinylformal, polyvinylacetal, polyvinylbutyral, polyvinyl acetate, polyvinyl alcohol, and polyvinyl chloride. Vinyl, polyvinylidene chloride, polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl benzyl ether, polyvinyl methyl ketone, poly (N-vinyl carbazole), poly (N-
Vinylpyrrolidone), polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polyacrylonitrile, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polybenzyl methacrylate, polyhexyl methacrylate, polymethacrylic acid, Polymethacrylamide, polymethacrylonitrile, polyacetaldehyde, polychloral, polyethylene oxide, polypropylene oxide, polyethylene terephthalate, polybutylene terephthalate, polycarbonates (bisphenols + carbonic acid), poly (diethylene glycol bisallyl carbonate), 6-
Nylon, 6,6-nylon, 12-nylon, 6,1
2-nylon, polyethyl aspartate, polyethylglutamate, polylysine, polyproline, poly (γ-
Benzyl-L-glutamate), methylcellulose, ethylcellulose, benzylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, acetylcellulose, cellulose triacetate, cellulose tributyrate, alkyd resin (phthalic anhydride + glycerin), fatty acid-modified alkyd resin (fatty acid + anhydride) Phthalic acid + glycerin), unsaturated polyester resin (maleic anhydride + phthalic anhydride + propylene glycol), epoxy resin (bisphenols + epichlorohydrin),
Resins such as polyurethane resin, phenol resin, urea resin, melamine resin, xylene resin, toluene resin, guanamine resin, organic polysilanes such as poly (phenylmethylsilane), organic polygermanes, and copolymers of these.
Copolycondensates are mentioned. Further, a polymer compound obtained by plasma-polymerizing a compound having no normal polymerizability, such as carbon disulfide, carbon tetrafluoride, ethylbenzene, perfluorobenzene, perfluorocyclohexane, or trimethylchlorosilane, can be used.

【0046】〔昇華性有機化合物〕昇華とは固体が中間
相である液体を経由せずに直接気体に変化する過程であ
り、三重点の温度以下であればすべての固体について起
こる普遍的現象である。しかしながら、例えば、大分子
量のアゾ化合物、ポリメチン色素などのイオン性結晶、
などの有機化合物は常温以上に加熱していった場合、圧
力によらず、融点を示さずに熱分解してしまう。このよ
うな物質には三重点は事実上存在せず、昇華することは
ない、ということができる。このような物質と区別する
ため、熱分解を伴わずに昇華可能な有機化合物を「昇華
性有機化合物」と呼ぶこととする。
[Sublimation organic compound] Sublimation is a process in which a solid is directly converted into a gas without passing through a liquid as an intermediate phase. is there. However, for example, large molecular weight azo compounds, ionic crystals such as polymethine dyes,
When an organic compound such as this is heated to room temperature or higher, it is thermally decomposed without showing a melting point regardless of pressure. It can be said that such materials have virtually no triple point and do not sublime. In order to distinguish from such a substance, an organic compound that can be sublimated without thermal decomposition is referred to as a “sublimable organic compound”.

【0047】昇華性有機化合物の具体例として、まず、
2次非線形光学効果を示す単結晶を形成する有機分子化
合物を挙げることができる。具体例としては、尿素およ
びその誘導体、m−ニトロアニリン、2−メチル−4−
ニトロアニリン、2−(N,N−ジメチルアミノ)−5
−ニトロアセトアニリド、N,N’−ビス(4−ニトロ
フェニル)メタンジアミンなどのベンゼン誘導体、4−
メトキシ−4’−ニトロビフェニルなどのビフェニル誘
導体、4−メトキシ−4’−ニトロスチルベンなどのス
チルベン誘導体、4−ニトロ−3−ピコリン=N−オキ
シド、(S)−(−)−N−(5−ニトロ−2−ピリジ
ル)プロリノールなどのピリジン誘導体、2’,4,
4’−トリメトキシカルコンなどのカルコン誘導体、チ
エニルカルコン誘導体などを挙げることができる。
As specific examples of the sublimable organic compound, first,
An organic molecular compound that forms a single crystal exhibiting a second-order nonlinear optical effect can be given. Specific examples include urea and its derivatives, m-nitroaniline, 2-methyl-4-
Nitroaniline, 2- (N, N-dimethylamino) -5
Benzene derivatives such as -nitroacetanilide, N, N'-bis (4-nitrophenyl) methanediamine;
Biphenyl derivatives such as methoxy-4'-nitrobiphenyl, stilbene derivatives such as 4-methoxy-4'-nitrostilbene, 4-nitro-3-picoline = N-oxide, (S)-(-)-N- (5 -Nitro-2-pyridyl) pyridine derivatives such as prolinol, 2 ′, 4
Chalcone derivatives such as 4′-trimethoxychalcone, thienylchalcone derivatives and the like can be mentioned.

【0048】次に、紫外〜可視光線〜近赤外線の波長帯
域において光吸収を示し、昇華性かつ結晶性の有機化合
物(有機色素)の具体例として、ポルフィリン系色素、
フタロシアニン系色素、ナフトキノン系色素、アントラ
キノン系色素、ナフタレンテトラカルボン酸ジイミド系
色素、ペリレンテトラカルボン酸ジイミド系色素などを
挙げることができる。
Next, as a specific example of a sublimable and crystalline organic compound (organic dye) which exhibits light absorption in a wavelength band from ultraviolet to visible light to near infrared ray, a porphyrin dye,
Examples include phthalocyanine dyes, naphthoquinone dyes, anthraquinone dyes, naphthalenetetracarboxylic diimide dyes, and perylenetetracarboxylic diimide dyes.

【0049】また、フォトクロミック現象を起こし、昇
華性かつ結晶性の有機化合物として、6−ブロモ−
1’,3’−ジヒドロ−1’,3’,3’−トリメチル
−8−ニトロスピロ[2H−1−ベンゾピラン−2,
2’−(2H)−インドール]、5−クロロ−1,3−
ジヒドロ−1,3,3−トリメチルスピロ[2H−イン
ドール−2,3’−[3H]ナフト[2,1−b]
[1,4]オキサジン]、5−クロロ−1,3−ジヒド
ロ−1,3,3−トリメチルスピロ[2H−インドール
−2,3’−[3H]ナフト[9,10−b][1,
4]オキサジン]、6,8−ジブロモ−1’,3’−ジ
ヒドロ−1’,3’,3’−トリメチルスピロ[2H−
1−ベンゾピラン−2,2’−(2H)−インドー
ル]、1’,3’−ジヒドロ−1’,3’,3’−トリ
メチル−6−ニトロスピロ[2H−1−ベンゾピラン−
2,2’−(2H)−インドール]、1’,3’−ジヒ
ドロ−5’−メトキシ−1’,3’,3’−トリメチル
−6−ニトロスピロ[2H−1−ベンゾピラン−2,
2’−(2H)−インドール]、1’,3’−ジヒドロ
−8−メトキシ−1’,3’,3’−トリメチル−6−
ニトロスピロ[2H−1−ベンゾピラン−2,2’−
(2H)−インドール]、1,3−ジヒドロ−1,3,
3−トリメチルスピロ[2H−インドール−2,3’−
[3H]ナフト[2,1−b][1,4]オキサジ
ン]、1,3−ジヒドロ−1,3,3−トリメチルスピ
ロ[2H−インドール−2,3’−[3H]フェナンス
ロ[9,10−b][1,4]オキサジン]、1,3−
ジヒドロ−1,3,3−トリメチルスピロ[2H−イン
ドール−2,3’−[3H]ナフト[2,1−b]ピラ
ン]、1,3−ジヒドロ−5−メトキシー1,3,3−
トリメチルスピロ[2H−インドール−2,3’−[3
H]ナフト[2,1−b]ピラン]などのスピロピラン
類;2,5−ジメチル−3−フリルエチリデンコハク酸
無水物、2,5−ジメチル−3−フリルイロプロピリデ
ンコハク酸無水物などのフルギド類;2,3−ビス
(2,4,5−トリメチル−3−チエニル)マレイン酸
無水物、2,3−ビス(2,4,5−トリメチル−3−
チエニル)マレイミド、cis−1,2−ジシアノ−
1,2−ビス(2,4,5−トリメチル−3−チエニ
ル)エテンなどのジアリールエテン類などを挙げること
ができる。
Further, as a sublimable and crystalline organic compound which causes a photochromic phenomenon, 6-bromo-
1 ′, 3′-dihydro-1 ′, 3 ′, 3′-trimethyl-8-nitrospiro [2H-1-benzopyran-2,
2 ′-(2H) -indole], 5-chloro-1,3-
Dihydro-1,3,3-trimethylspiro [2H-indole-2,3 '-[3H] naphtho [2,1-b]
[1,4] oxazine], 5-chloro-1,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] naphtho [9,10-b] [1,
4] oxazine], 6,8-dibromo-1 ′, 3′-dihydro-1 ′, 3 ′, 3′-trimethylspiro [2H-
1-benzopyran-2,2 '-(2H) -indole], 1', 3'-dihydro-1 ', 3', 3'-trimethyl-6-nitrospiro [2H-1-benzopyran-
2,2 ′-(2H) -indole], 1 ′, 3′-dihydro-5′-methoxy-1 ′, 3 ′, 3′-trimethyl-6-nitrospiro [2H-1-benzopyran-2,
2 ′-(2H) -indole], 1 ′, 3′-dihydro-8-methoxy-1 ′, 3 ′, 3′-trimethyl-6
Nitrospiro [2H-1-benzopyran-2,2'-
(2H) -indole], 1,3-dihydro-1,3,3
3-trimethylspiro [2H-indole-2,3'-
[3H] naphtho [2,1-b] [1,4] oxazine], 1,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] phenanthro [9, 10-b] [1,4] oxazine], 1,3-
Dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] naphtho [2,1-b] pyran], 1,3-dihydro-5-methoxy-1,3,3-
Trimethylspiro [2H-indole-2,3 '-[3
Spiropyrans such as [H] naphtho [2,1-b] pyran]; 2,5-dimethyl-3-furylethylidene succinic anhydride, 2,5-dimethyl-3-furyrylopropylidene succinic anhydride, etc. Fulgides; 2,3-bis (2,4,5-trimethyl-3-thienyl) maleic anhydride, 2,3-bis (2,4,5-trimethyl-3-
Thienyl) maleimide, cis-1,2-dicyano-
Examples include diarylethenes such as 1,2-bis (2,4,5-trimethyl-3-thienyl) ethene.

【0050】[0050]

【実施例】以下、実施例を示し、更に詳しくこの発明の
方法について説明する。
The present invention will be described in more detail with reference to the following examples.

【0051】〔実施例1〕図1に示すように、一端を閉
じたガラス管10(例えば、外径15mm、内径12m
m、長さ200mm)内に、昇華性有機化合物20とし
て例えば1,3−ジヒドロ−1,3,3−トリメチルス
ピロ[2H−インドール−2,3’−[3H]ナフト
[2,1−b][1,4]オキサジン]の結晶5mg
と、樹脂薄膜30として例えばポリ(メタクリル酸メチ
ル)(PMMA)をスピンコート法によりガラス基板4
0(例えば、厚さ0.14mm、幅10mm、長さ20
mm)上に形成した樹脂薄膜(膜厚1μm)を設置し
た。その後、図2(A)に示すように、ガラス管10の
他端を真空排気装置50に接続して室温下において管内
の圧力が10−5Pa以下になるまで排気を行った。次
いで、図2(B)に示すように、前記ガラス管10の接
続端に近い部分をガラス管封管用バーナー60にて溶融
封管して、前記有機化合物および前記樹脂薄膜を両端を
封じたガラス封管11内に密閉した。
Example 1 As shown in FIG. 1, a glass tube 10 having one end closed (for example, an outer diameter of 15 mm and an inner diameter of 12 m
m, 200 mm in length), for example, 1,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] naphtho [2,1-b] as the sublimable organic compound 20 5 mg of [1,4] oxazine] crystal
And a glass substrate 4 made of, for example, poly (methyl methacrylate) (PMMA) as a resin thin film 30 by spin coating.
0 (for example, thickness 0.14 mm, width 10 mm, length 20
mm), a resin thin film (thickness: 1 μm) was formed. Thereafter, as shown in FIG. 2A, the other end of the glass tube 10 was connected to a vacuum exhaust device 50, and the glass tube 10 was evacuated at room temperature until the pressure in the tube became 10 −5 Pa or less. Next, as shown in FIG. 2 (B), a portion near the connection end of the glass tube 10 is melted and sealed by a glass tube sealing burner 60 to seal the organic compound and the resin thin film at both ends. The inside of the sealed tube 11 was sealed.

【0052】次に、図3に示すように、前記ガラス封管
11を恒温槽70内に設置し、前記ガラス封管11全体
にわたって、前記昇華性有機化合物が熱分解せずに昇華
する温度(上記化合物の場合、115℃)を下限とし、
次の条件を満たす温度の内、最も高い温度を上限とし
て、精密に温度制御しながら加熱した。
Next, as shown in FIG. 3, the glass sealed tube 11 is placed in a thermostat 70, and the temperature at which the sublimable organic compound sublimates without being thermally decomposed over the entire glass sealed tube 11 ( In the case of the above compound, 115 ° C) is the lower limit,
Heating was performed with precise temperature control, with the highest temperature as the upper limit among the temperatures satisfying the following conditions.

【0053】(a)前記昇華性有機化合物の溶融開始温
度を越えない温度 (b)前記樹脂のガラス転移温度(PMMAの場合、約
115℃) (c)前記樹脂の熱変形開始温度 (d)前記樹脂の溶融開始温度 (e)前記樹脂の分解開始温度を越えない温度。
(A) a temperature not exceeding the melting onset temperature of the sublimable organic compound; (b) a glass transition temperature of the resin (about 115 ° C. in the case of PMMA); and (c) a thermal deformation onset temperature of the resin. Melting start temperature of the resin (e) Temperature not exceeding the decomposition start temperature of the resin.

【0054】なお、樹脂成形物の表面平滑性や表面にお
ける微細構造を失うことなく、本発明の有機薄膜作製方
法を実施する場合は、前記樹脂の熱変形開始温度を越え
ないよう、温度制御する必要がある。
When the method for producing an organic thin film of the present invention is carried out without losing the surface smoothness or fine structure of the surface of the resin molded product, the temperature is controlled so as not to exceed the thermal deformation starting temperature of the resin. There is a need.

【0055】本実施例では、恒温槽70の内部温度を1
15℃に設定し、設定温度に対して±0.1℃の精度で
24時間維持した。その後、恒温槽70の温度を25℃
まで9時間かけて徐々に低下させた。なお、ここで、例
えば前記ガラス封管11を恒温槽外に取り出すなどして
急速に冷却すると、前記昇華性有機化合物の蒸気が、冷
却された前記ガラス封管11の内壁に触れて凝集し、結
晶として析出してしまい、樹脂薄膜30内に昇華性有機
化合物が所定量均一に浸透・分散されないおそれがあ
る。
In this embodiment, the internal temperature of the thermostat 70 is set to 1
The temperature was set at 15 ° C. and maintained for 24 hours with an accuracy of ± 0.1 ° C. with respect to the set temperature. Then, the temperature of the thermostat 70 is set to 25 ° C.
Until 9 hours. Here, when the glass sealed tube 11 is rapidly cooled by, for example, being taken out of the thermostatic bath, the vapor of the sublimable organic compound touches the cooled inner wall of the glass sealed tube 11 and aggregates. There is a possibility that a predetermined amount of the sublimable organic compound does not uniformly penetrate or disperse in the resin thin film 30 due to precipitation as crystals.

【0056】本実施例では、徐々に室温まで冷却し、冷
却前記ガラス封管11を取り出し、ガラス封管11を切
断して昇華性有機化合物が浸透・分散された樹脂薄膜が
形成されたガラス基板40を取り出した。
In this embodiment, the glass substrate was cooled gradually to room temperature, the cooled glass sealed tube 11 was taken out, and the glass sealed tube 11 was cut to form a resin thin film in which a sublimable organic compound was permeated and dispersed. 40 was taken out.

【0057】得られた樹脂薄膜の光吸収スペクトルの測
定、光学顕微鏡観察(通常視野)、偏光顕微鏡観察、前
記樹脂薄膜表面の走査型電子顕微鏡観察、および、前記
樹脂薄膜断面の透過型電子顕微鏡観察によって、前記樹
脂薄膜の内部に、前記昇華性有機化合物が分子分散、す
なわち固溶化していることが確認された。得られた樹脂
薄膜の表面および内部に、前記昇華性有機化合物の結晶
は観察されなかった。
Measurement of the light absorption spectrum of the obtained resin thin film, observation with an optical microscope (normal field of view), observation with a polarizing microscope, observation of the surface of the resin thin film with a scanning electron microscope, and observation of the cross section of the resin thin film with a transmission electron microscope. By this, it was confirmed that the sublimable organic compound was molecularly dispersed, that is, solid-solubilized inside the resin thin film. No crystals of the sublimable organic compound were observed on the surface and inside of the obtained resin thin film.

【0058】図3は本発明の有機薄膜作製装置の最も単
純な実施形態を示すものである。すなわち、両端を封じ
たガラス管11内には、樹脂成形物(樹脂薄膜30)
と、前記樹脂成形物の樹脂と親和性がありかつ昇華性を
有する有機化合物20とが配置されている。このガラス
管11内で、前記有機化合物は飽和昇華圧状態に置かれ
る。また、恒温槽70は、前記有機化合物が昇華し、前
記有機化合物の蒸気が前記樹脂成形物表面に付着し、更
に前記有機化合物を前記樹脂成形物中に浸透・分散させ
るための加熱手段である。
FIG. 3 shows the simplest embodiment of the apparatus for producing an organic thin film of the present invention. That is, in the glass tube 11 whose both ends are sealed, a resin molded product (resin thin film 30)
And an organic compound 20 having an affinity for the resin of the resin molded product and having a sublimation property. In the glass tube 11, the organic compound is placed in a saturated sublimation pressure state. The thermostatic bath 70 is a heating means for sublimating the organic compound, adhering vapor of the organic compound to the surface of the resin molded product, and further penetrating and dispersing the organic compound into the resin molded product. .

【0059】〔比較例1〕一端を閉じたガラス管10
(例えば、外径15mm、内径12mm、長さ200m
m)内に、樹脂成形物が成膜されていないガラス基板4
0と、昇華性有機化合物20として例えば、1,3−ジ
ヒドロ−1,3,3−トリメチルスピロ[2H−インド
ール−2,3’−[3H]ナフト[2,1−b][1,
4]オキサジン]の結晶のみとを入れた以外は、実施例
1と同様にして、ガラス封管の加熱および徐冷を行っ
た。加熱時に昇華して発生した前記昇華性有機化合物の
蒸気は、徐冷の際、結晶の表面に戻り、ガラス壁に付着
することはなかった。なお、加熱状態にあるガラス封管
を恒温槽から取り出して急速に冷却すると、前記昇華性
有機化合物の蒸気が、冷却された前記ガラス封管11の
内壁に触れて凝集し、結晶として析出した。この急冷時
のガラス封管内壁の結晶析出により、加熱によって昇華
が進行し、ガラス封管内に前記昇華性有機化合物の蒸気
が充満していることが判る。
Comparative Example 1 Glass Tube 10 with One End Closed
(For example, outer diameter 15mm, inner diameter 12mm, length 200m
m), the glass substrate 4 on which the resin molding is not formed
0 and 1,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] naphtho [2,1-b] [1,
4] [Oxazine] was heated and slowly cooled in the same manner as in Example 1 except that only the crystal of [oxazine] was added. The vapor of the sublimable organic compound generated by sublimation during heating returned to the surface of the crystal during slow cooling, and did not adhere to the glass wall. When the heated glass sealed tube was taken out of the thermostat and cooled rapidly, the vapor of the sublimable organic compound came into contact with the cooled inner wall of the glass sealed tube 11 and aggregated to precipitate as crystals. It can be seen that sublimation progresses by heating due to the crystal precipitation on the inner wall of the glass sealed tube during the rapid cooling, and the glass sealed tube is filled with the vapor of the sublimable organic compound.

【0060】〔実施例2〕実施例1におけるPMMA基
板の他に、ポリ(メタクリル酸2−ヒドロキシプロピ
ル)(PHPMA)をスピンコート法によりガラス基板
40(例えば、厚み0.14mm、幅10mm、長さ5
0mm)上に形成した樹脂薄膜(膜厚1μm)を有する
ガラス基板40を作製した。そして、この異なる樹脂薄
膜が形成された2枚のガラス基板40をそれぞれ同一の
ガラス封管11内に入れ、実施例1と同様にして加熱お
よび徐冷を行った。スペクトル観察の結果、PMMA薄
膜には実施例1と同様に前記昇華性有機化合物が固溶化
していることが確認された。一方、得られたPHPMA
薄膜の紫外・可視・赤外線吸収スペクトルには、前記昇
華性有機化合物に帰属される吸収は確認されなかった。
この結果は、前記昇華性有機化合物はPMMAには親和
性があるが、PHPMAには全く親和性がない、また、
親和性がない場合、樹脂薄膜中への浸透・分散は起こら
ない、と解釈することができる。
Example 2 In addition to the PMMA substrate in Example 1, poly (2-hydroxypropyl methacrylate) (PHPMA) was spin-coated on a glass substrate 40 (for example, 0.14 mm thick, 10 mm wide, and 10 mm long). Sa5
(0 mm), a glass substrate 40 having a resin thin film (1 μm in thickness) formed thereon. Then, the two glass substrates 40 on which the different resin thin films were formed were respectively placed in the same glass sealed tube 11, and heated and gradually cooled in the same manner as in Example 1. As a result of spectrum observation, it was confirmed that the sublimable organic compound was dissolved in the PMMA thin film in the same manner as in Example 1. On the other hand, the obtained PHPMA
No absorption attributed to the sublimable organic compound was confirmed in the ultraviolet, visible, and infrared absorption spectra of the thin film.
This result indicates that the sublimable organic compound has an affinity for PMMA, but has no affinity for PHPMA.
If there is no affinity, it can be interpreted that no permeation / dispersion into the resin thin film occurs.

【0061】〔比較例2〕実施例1におけるPMMA塗
工ガラス基板に替えて、ポリ(メタクリル酸2−ヒドロ
キシプロピル)(PHPMA)をスピンコート法により
ガラス基板40(例えば、厚み0.14mm、幅10m
m、長さ50mm)上に形成した樹脂薄膜(膜厚1μ
m)が形成されたガラス基板を入れたガラス封管11に
ついて、実施例1と同様にして加熱および徐冷を行っ
た。スペクトル観察の結果、得られたPHPMA薄膜の
吸収スペクトルには、前記昇華性有機化合物に帰属され
る吸収は確認されなかった。
[Comparative Example 2] Instead of the PMMA-coated glass substrate in Example 1, poly (2-hydroxypropyl methacrylate) (PHPMA) was applied to the glass substrate 40 (for example, having a thickness of 0.14 mm and a width of 0.14 mm) by spin coating. 10m
m, length 50 mm)
The glass sealed tube 11 containing the glass substrate formed with m) was heated and slowly cooled in the same manner as in Example 1. As a result of spectrum observation, no absorption attributed to the sublimable organic compound was confirmed in the absorption spectrum of the obtained PHPMA thin film.

【0062】以上、実施例1および2、比較例1および
2の観察から、減圧されたガラス封管内において加熱
時、前記昇華性有機化合物が昇華し、ガラス管内に蒸気
が充満すること、その蒸気を冷却すると蒸着過程が進行
すること、冷却せずに加熱状態を保ち、そこに前記昇華
性有機化合物と親和性のある樹脂薄膜を置くと、樹脂膜
中に前記昇華性有機化合物が分子分散・固溶化すること
が確認された。一方、前記昇華性有機化合物と親和性の
ある樹脂薄膜が存在しない場合、一旦前記昇華性有機化
合物は昇華するものの、徐冷によって、前記昇華性有機
化合物蒸気は結晶表面に戻ること、が確認された。
From the observations of Examples 1 and 2 and Comparative Examples 1 and 2, it was confirmed from the observation that the sublimable organic compound sublimated when heated in a vacuum sealed glass tube, and that the glass tube was filled with steam. When the cooling process is performed, the vapor deposition process proceeds, the heating state is maintained without cooling, and when a resin thin film having an affinity for the sublimable organic compound is placed thereon, the sublimable organic compound is molecularly dispersed in the resin film. It was confirmed that a solution was formed. On the other hand, when there is no resin thin film having an affinity for the sublimable organic compound, it is confirmed that the sublimable organic compound once sublimates, but gradually cools, so that the sublimable organic compound vapor returns to the crystal surface. Was.

【0063】ここで、前記昇華性有機化合物と樹脂の親
和性に関しては「溶媒和エネルギーによる安定化の有
無」として理解することができる。すなわち、樹脂は、
ここでは前記昇華性有機化合物に対する「媒質」、溶液
の場合の「溶媒」として作用している。前記昇華性有機
化合物と樹脂の親和性が認められないケースでは、樹脂
は「溶解度ゼロの媒質」として作用している。この場
合、「溶媒和エネルギーによる安定化はなし」であるか
ら、前記昇華性有機化合物蒸気が樹脂中に浸透・分散す
ることはあり得ない。従って、飽和蒸気圧状態まで加熱
した後、徐冷していくと、前記昇華性有機化合物の蒸気
は再度結晶表面に戻って結晶化するのが熱力学的に最も
安定である。一方、「溶媒和エネルギーによる安定化が
ある」場合、樹脂表面に到達した前記昇華性有機化合物
蒸気は、再び気化し、結晶表面に戻るよりも、樹脂中へ
固溶化する方が安定化する。換言すると、「溶媒和エネ
ルギーによる安定化がある」場合、真空を媒介として、
結晶表面から樹脂中への「溶解」が進行していく。な
お、「親和性の有無」に関しては、再結晶精製に適した
溶媒を探索する場合と同様に、分子部分構造の類似性や
溶解性パラメーターなどの経験則に基づき、試行錯誤的
に探索する必要がある。その際、計算化学の手法を活用
することも可能である。
Here, the affinity between the sublimable organic compound and the resin can be understood as “the presence or absence of stabilization by solvation energy”. That is, the resin
Here, it acts as a “medium” for the sublimable organic compound and a “solvent” in the case of a solution. In the case where the affinity between the sublimable organic compound and the resin is not recognized, the resin acts as a “medium with zero solubility”. In this case, since "there is no stabilization by solvation energy", the sublimable organic compound vapor cannot penetrate or disperse in the resin. Therefore, it is the most thermodynamically stable that the vapor of the sublimable organic compound returns to the crystal surface and crystallizes when gradually cooled after being heated to the saturated vapor pressure state. On the other hand, when "there is a stabilization due to solvation energy", the sublimable organic compound vapor that has reached the resin surface is vaporized again, and is more stabilized to be dissolved in the resin than to return to the crystal surface. In other words, if there is "stabilization by solvation energy"
“Dissolution” from the crystal surface into the resin proceeds. As for the "presence or absence of affinity", it is necessary to conduct a trial and error search based on empirical rules such as similarity of molecular partial structures and solubility parameters, as in the case of searching for a solvent suitable for recrystallization purification. There is. In that case, it is also possible to utilize the technique of computational chemistry.

【0064】〔実施例3〕ポリメタクリル酸メチル(P
MMA):2.0gをアセトン:200mlに溶解し
た。この溶液を、n−ヘキサン:800ml中へかき混
ぜながら加えて、析出した樹脂粉末を濾別した。この樹
脂粉末をn−ヘキサンで洗浄した後減圧下で乾燥させ、
次いで粉砕した。得られた樹脂粉末を10−5Pa未満
の超高真空下、100℃で2日間加熱を続け、残留溶媒
等の揮発成分を完全に除去した。この粉末20mgを、
ガラス基板(厚さ0.14mm、幅10mm、長さ20
mm)とアルミホイル(厚さ20μm、幅10mm、長
さ20mm)との間に挟み、更にアルミホイルの上にも
う1枚のガラス板を重ね、真空下150℃に加熱し、2
枚のガラス板を圧着する方法(真空ホットプレス法)を
用いてガラス基板/アルミホイル間にPMMAの膜(膜
厚約22μm)を作成した。次いで、充分冷却した後、
アルミホイルを剥がして、ガラス基板上にPMMA薄膜
を成膜した。
Example 3 Polymethyl methacrylate (P
MMA): 2.0 g was dissolved in acetone: 200 ml. This solution was added to 800 ml of n-hexane while stirring, and the precipitated resin powder was separated by filtration. This resin powder was washed with n-hexane and then dried under reduced pressure,
It was then ground. The obtained resin powder was continuously heated at 100 ° C. for 2 days under an ultra-high vacuum of less than 10 −5 Pa to completely remove volatile components such as a residual solvent. 20 mg of this powder
Glass substrate (thickness 0.14mm, width 10mm, length 20
mm) and an aluminum foil (thickness: 20 μm, width: 10 mm, length: 20 mm), another glass plate is placed on the aluminum foil, and heated to 150 ° C. under vacuum,
A PMMA film (about 22 μm thick) was formed between the glass substrate and the aluminum foil by using a method of pressing two glass plates (vacuum hot pressing method). Then, after sufficiently cooling,
The aluminum foil was peeled off, and a PMMA thin film was formed on a glass substrate.

【0065】一端を閉じたガラス管10(例えば、外径
15mm、内径12mm、長さ200mm)内に、昇華
性有機化合物20として、cis−1,2−ジシアノ−
1,2−ビス(2,4,5−トリメチル−3−チエニ
ル)エテンの結晶20mgと、前記樹脂薄膜30が形成
されたガラス基板とを設置し、ガラス管10の他端を真
空排気装置50に接続して室温下において管内の圧力が
10−5Pa以下になるまで排気を行った。その後、前
記ガラス管10の接続端に近い部分をガラス管封管用バ
ーナー60にて溶融封管して、両端を封じたガラス封管
11内に前記有機化合物と前記樹脂薄膜を密閉した。
In a glass tube 10 having one end closed (for example, an outer diameter of 15 mm, an inner diameter of 12 mm, and a length of 200 mm), cis-1,2-dicyano-
A crystal of 20 mg of 1,2-bis (2,4,5-trimethyl-3-thienyl) ethene and a glass substrate on which the resin thin film 30 is formed are installed. And evacuated at room temperature until the pressure in the tube became 10 −5 Pa or less. Thereafter, a portion near the connection end of the glass tube 10 was melted and sealed by a glass tube sealing burner 60, and the organic compound and the resin thin film were sealed in a glass sealed tube 11 having both ends sealed.

【0066】前記ガラス封管11を恒温槽70内に設置
し、前記ガラス封管11全体にわたって、前記昇華性有
機化合物が熱分解せずに昇華する温度(上記化合物の場
合、115℃)において、精密に温度制御しながら加熱
した。24時間後、恒温槽70の温度を25℃まで9時
間かけて徐々に低下させた。
The glass sealed tube 11 is placed in a thermostat 70, and at a temperature at which the sublimable organic compound sublimates without thermal decomposition (115 ° C. in the case of the above compound) over the entire glass sealed tube 11. Heating was performed with precise temperature control. After 24 hours, the temperature of the thermostat 70 was gradually decreased to 25 ° C. over 9 hours.

【0067】得られた樹脂薄膜の光吸収スペクトルの測
定、光学顕微鏡観察(通常視野)、偏光顕微鏡観察、前
記樹脂薄膜表面の走査型電子顕微鏡観察、および、前記
樹脂薄膜断面の透過型電子顕微鏡観察によって、前記樹
脂薄膜30の内部に、前記昇華性有機化合物が分子分
散、すなわち固溶化していることが確認された。得られ
た樹脂薄膜の表面および内部に、前記昇華性有機化合物
の結晶は観察されなかった。図6は本実施例で得られた
樹脂薄膜の断面を光学顕微鏡で拡大して撮影したもので
ある。写真中に挿入したスケールの1目盛りは10μm
である。樹脂薄膜の着色の様子から、膜厚約22μmの
PMMA膜の深さ方向全体に、ほぼ均一に前記昇華性有
機化合物が浸透・固溶化していることが判る。
Measurement of the light absorption spectrum of the obtained resin thin film, observation with an optical microscope (normal field of view), observation with a polarizing microscope, observation of the surface of the resin thin film with a scanning electron microscope, and observation of the cross section of the resin thin film with a transmission electron microscope. As a result, it was confirmed that the sublimable organic compound was molecularly dispersed, that is, dissolved in the resin thin film 30. No crystals of the sublimable organic compound were observed on the surface and inside of the obtained resin thin film. FIG. 6 is an enlarged photograph of a cross section of the resin thin film obtained in the present example taken by an optical microscope. One scale of the scale inserted in the photograph is 10 μm
It is. The coloring of the resin thin film shows that the sublimable organic compound permeated and dissolved almost uniformly throughout the depth of the PMMA film having a thickness of about 22 μm.

【0068】〔実施例4〕一端を閉じたガラス管10
(外径15mm、内径12mm、長さ200mm)を3
本用意し、各々の中に、昇華性有機化合物20として、
cis−1,2−ジシアノ−1,2−ビス(2,4,5
−トリメチル−3−チエニル)エテンの結晶20mg
と、樹脂成形物として、ビスフェノールAポリカーボネ
イト(アルドリッチケミカル株式会社製)のペレット
(外径約2.5mm、長さ2.5mmの円柱状)を設置
し、ガラス管10の他端を真空排気装置50に接続して
室温下において管内の圧力が10−5Pa以下になるま
で排気を行った。その後、前記ガラス管の接続端に近い
部分をガラス管封管用バーナー60にて溶融封管して、
両端を封じたガラス封管11内に前記有機化合物および
前記樹脂成形物を密閉した。
Embodiment 4 Glass Tube 10 with One End Closed
(Outer diameter 15mm, inner diameter 12mm, length 200mm)
Prepare this, in each, as a sublimable organic compound 20,
cis-1,2-dicyano-1,2-bis (2,4,5
-Trimethyl-3-thienyl) ethene crystals 20 mg
And a pellet (a cylindrical shape having an outer diameter of about 2.5 mm and a length of 2.5 mm) of bisphenol A polycarbonate (manufactured by Aldrich Chemical Co., Ltd.) as a resin molded product, and the other end of the glass tube 10 is evacuated to a vacuum. 50 and exhausted at room temperature until the pressure in the tube became 10 −5 Pa or less. Then, the portion near the connection end of the glass tube was melt-sealed with a glass tube sealing burner 60,
The organic compound and the resin molding were sealed in a glass sealed tube 11 having both ends sealed.

【0069】3本の前記ガラス封管11を1本ずつ恒温
槽70内に設置し、前記ガラス封管11全体にわたっ
て、前記昇華性有機化合物が熱分解せずに昇華する温度
(上記化合物の場合、115℃)において、精密に温度
制御しながら加熱した。加熱時間は、3本について各々
12時間、24時間、48時間とした。加熱終了後、恒
温槽70の温度を25℃まで9時間かけて徐々に低下さ
せた。いずれの場合も、前記昇華性有機化合物の結晶は
残留していた。
The three glass sealed tubes 11 are placed one by one in a thermostat 70, and the temperature at which the sublimable organic compound sublimates without being thermally decomposed over the entire glass sealed tube 11 (in the case of the above compound, , 115 ° C.) while controlling the temperature precisely. The heating time was set to 12 hours, 24 hours, and 48 hours for each of the three tubes. After the completion of the heating, the temperature of the thermostat 70 was gradually decreased to 25 ° C. over 9 hours. In each case, the crystals of the sublimable organic compound remained.

【0070】得られた樹脂ペレットの光吸収スペクトル
の測定、光学顕微鏡観察(通常視野)、偏光顕微鏡観
察、前記樹脂ペレット表面の走査型電子顕微鏡観察、お
よび、前記樹脂ペレット断面の透過型電子顕微鏡観察に
よって、前記樹脂薄膜30の内部に、前記昇華性有機化
合物が分子分散、すなわち固溶化していることが確認さ
れた。得られた樹脂ペレットの表面および内部に、前記
昇華性有機化合物の結晶は観察されなかった。
Measurement of the light absorption spectrum of the obtained resin pellet, observation with an optical microscope (normal field of view), observation with a polarizing microscope, observation of the surface of the resin pellet with a scanning electron microscope, and observation of the cross section of the resin pellet with a transmission electron microscope. As a result, it was confirmed that the sublimable organic compound was molecularly dispersed, that is, dissolved in the resin thin film 30. No crystals of the sublimable organic compound were observed on the surface and inside of the obtained resin pellet.

【0071】加熱処理時間を12、24および48時間
とした3種の前記樹脂ペレット各々について、断面の光
学顕微鏡観察を行ったところ、前記昇華性有機化合物が
浸透・固溶化した深さは、加熱処理時間に応じてそれぞ
れペレット表面から55μm、100μm、190μm
であった。すなわち、昇華性有機化合物が充分に存在す
る場合、加熱処理時間によって、前記昇華性有機化合物
の浸透・固溶化する深さを制御できることが判った。
When the cross section of each of the three types of resin pellets, for which the heat treatment time was set to 12, 24 and 48 hours, was observed by an optical microscope, the depth at which the sublimable organic compound permeated and dissolved was determined by the heating. 55 μm, 100 μm, 190 μm from the pellet surface depending on the processing time
Met. That is, it has been found that when the sublimable organic compound is sufficiently present, the depth at which the sublimable organic compound permeates and forms a solid solution can be controlled by the heat treatment time.

【0072】〔実施例5〕図4は、本実施例の有機薄膜
作製装置の概略構成を示す断面図である。
[Embodiment 5] FIG. 4 is a sectional view showing a schematic configuration of an organic thin film producing apparatus of this embodiment.

【0073】樹脂成形物としては、円形ガラス基板40
0(例えば、直径120mm、厚さ0.6mm)の1面
にスピンコート法によってポリカーボネイト樹脂のジク
ロロメタン溶液を塗工し、10−5Paの高真空下、1
50℃で2時間脱気処理した樹脂膜300(膜厚1μ
m)を用いた。
As the resin molded product, a circular glass substrate 40
0 (e.g., 120 mm in diameter, 0.6 mm in thickness) is coated with a dichloromethane solution of a polycarbonate resin by a spin coating method, and is applied under a high vacuum of 10-5 Pa.
Resin film 300 (1 μm thick) degassed at 50 ° C. for 2 hours
m) was used.

【0074】一方、昇華性有機化合物(例えば、cis
−1,2−ジシアノ−1,2−ビス(2,4,5−トリ
メチル−3−チエニル)エテン)を溶融法により昇華源
基板240(アルミニウム板、例えば、直径120m
m、厚さ2mm)上に成膜し、昇華源を作製した。
On the other hand, a sublimable organic compound (for example, cis
-1,2-dicyano-1,2-bis (2,4,5-trimethyl-3-thienyl) ethene is sublimated by a melting method to a sublimation source substrate 240 (aluminum plate, for example, having a diameter of 120 m).
m, thickness 2 mm) to form a sublimation source.

【0075】そして、上記樹脂膜300に対峙するよう
に、上記昇華源を設置した。樹脂膜300と成膜された
昇華性有機化合物200との面間隔は、例えば、5mm
とした。この面間隔が短い程、昇華源から発生した昇華
性有機化合物の蒸気は、短時間で樹脂膜表面に到達す
る。しかしながら、この間隔を極端に短くすると、密閉
式容器内部を減圧にする際、排気抵抗が増してしまう。
1mmないし10mm程度が好ましい。
Then, the sublimation source was set so as to face the resin film 300. The plane distance between the resin film 300 and the formed sublimable organic compound 200 is, for example, 5 mm.
And As the surface distance is shorter, the vapor of the sublimable organic compound generated from the sublimation source reaches the resin film surface in a shorter time. However, if this interval is made extremely short, exhaust pressure increases when the inside of the closed container is depressurized.
It is preferably about 1 mm to 10 mm.

【0076】密閉式容器外壁110はステンレスまたは
アルミニウムからなり、基板の出し入れのため、上下に
分割可能な構造(図示せず)とする。
The closed container outer wall 110 is made of stainless steel or aluminum, and has a structure (not shown) that can be vertically divided for taking in and out of the substrate.

【0077】密閉式容器内部100は真空バルブ190
および真空配管系120を経由して真空排気系150に
接続されており、室温下において密閉式容器内部100
の圧力が10−5Pa以下になるまで排気を行った後、
バルブ190を閉じる。これにより、密閉式容器は密閉
される。
The inside of the sealed container 100 is a vacuum valve 190.
And connected to a vacuum evacuation system 150 via a vacuum piping system 120, and the inside of the closed container 100 at room temperature.
After exhausting until the pressure becomes 10 −5 Pa or less,
The valve 190 is closed. Thereby, the closed container is closed.

【0078】加熱手段として用いられるヒーター71
0、昇華源基板ヒーター720、樹脂膜ガラス基板ヒー
ター740、および、真空バルブヒーター790は、例
えば、真空仕様のシーズ電気発熱線を埋め込んだアルミ
ニウムからなるものを用いることができる。伝熱性の高
い材質からなるヒーターを隙間なく設置することによっ
て、密閉式容器内部100および真空バルブ190の部
分を均一に加熱することができる。ここで、仮に、密閉
式容器内部100および/または真空バルブ190の一
部分に、他よりも温度の低い箇所が存在する場合、昇華
によって発生した昇華性有機化合物の蒸気が、その部分
で冷却され、結晶化・堆積するおそれがあるので注意が
必要である。
Heater 71 used as heating means
For example, the sublimation source substrate heater 720, the resin film glass substrate heater 740, and the vacuum valve heater 790 can be made of aluminum in which a sheathed electric heating wire of a vacuum specification is embedded. By installing a heater made of a material having high heat conductivity without any gap, the inside of the closed container 100 and the vacuum valve 190 can be uniformly heated. Here, if a portion having a lower temperature than the other exists in a part of the inside of the sealed container 100 and / or the vacuum valve 190, the vapor of the sublimable organic compound generated by the sublimation is cooled in the part, Care must be taken since crystallization and deposition may occur.

【0079】昇華源基板240と昇華源基板ヒーター7
20、および、円形ガラス基板400と樹脂膜ガラス基
板ヒーター740は、それぞれ複数の保持爪(図示せ
ず)によって、基板とヒーターとが密着させられている
ものとする。
Sublimation source substrate 240 and sublimation source substrate heater 7
20 and the circular glass substrate 400 and the resin film glass substrate heater 740 are each brought into close contact with the substrate and the heater by a plurality of holding claws (not shown).

【0080】本実施例の場合、密閉式容器内部100を
減圧にしてから、上記加熱手段により、加熱を行い、全
体が設定温度(例えば、PMMAを用いた場合115
℃)±1℃になるよう、精密に温度制御を行った。
In the case of this embodiment, the inside of the sealed container 100 is evacuated and then heated by the above-mentioned heating means, and the whole is heated to a set temperature (for example, 115 when PMMA is used).
(° C.) The temperature was precisely controlled to be ± 1 ° C.

【0081】24時間、加熱を止め、密閉式容器内部の
温度を25℃まで12時間かけて徐々に低下させた。次
いで、密閉式容器内部を大気圧に戻し、円形ガラス基板
400上の樹脂膜300を取り出した。
The heating was stopped for 24 hours, and the temperature inside the sealed container was gradually lowered to 25 ° C. over 12 hours. Next, the inside of the sealed container was returned to the atmospheric pressure, and the resin film 300 on the circular glass substrate 400 was taken out.

【0082】得られた樹脂膜300の光吸収スペクトル
の測定、光学顕微鏡観察(通常視野)、偏光顕微鏡観
察、前記樹脂薄膜表面の走査型電子顕微鏡観察、およ
び、前記樹脂薄膜断面の透過型電子顕微鏡観察によっ
て、樹脂膜300の内部に、前記昇華性有機化合物が分
子分散、すなわち固溶化していることが確認された。ま
た、得られた樹脂膜の表面および内部に、前記昇華性有
機化合物の結晶は観察されなかった。
Measurement of the light absorption spectrum of the obtained resin film 300, observation with an optical microscope (normal field of view), observation with a polarizing microscope, observation with a scanning electron microscope on the surface of the resin thin film, and transmission electron microscope with a cross section of the resin thin film From the observation, it was confirmed that the sublimable organic compound was molecularly dispersed, that is, dissolved in the resin film 300. Also, no crystals of the sublimable organic compound were observed on the surface and inside of the obtained resin film.

【0083】本実施例においては、密閉式容器内部10
0を減圧にしてから、加熱を行ったが、ヒーターを用い
た真空下における加熱は「輻射熱」のみによって進行す
るため効率がよいとはいえない。特に、面積の大きい円
形ガラス基板400および昇華源基板240を、それぞ
れ樹脂膜ガラス基板ヒーター740および昇華源基板ヒ
ーター720に密着させ、伝熱をよくするためには熱伝
導性シリコーングリスなどを塗布する必要がある。その
ようなものを用いずに、加熱工程の効率を高めるには、
大気圧下で密閉式容器内部100、密閉式容器外壁11
0、および、真空バルブ190を所定の温度まで均一に
加熱した後、密閉式容器内部100を所定の圧力まで減
圧すればよい。大気圧下で加熱する際、空気中の酸素に
よって、樹脂や昇華性有機化合物が酸化劣化するおそれ
がある場合は、密閉式容器内部100の雰囲気を予め、
窒素ガスやアルゴンガスなどの不活性ガスで置換してか
ら加熱すればよい。常圧において加熱すると気体量が減
圧時に比べ多いため、気体分子の対流によって、密閉式
容器内部全体を効率よく均一に加熱することができる。
In this embodiment, the inside of the closed container 10
Although heating was performed after reducing the pressure to 0, heating under vacuum using a heater proceeds only by "radiant heat" and is not efficient. In particular, the circular glass substrate 400 and the sublimation source substrate 240 having a large area are brought into close contact with the resin film glass substrate heater 740 and the sublimation source substrate heater 720, respectively, and heat conductive silicone grease or the like is applied to improve heat transfer. There is a need. To increase the efficiency of the heating process without using such things,
Under the atmospheric pressure, the inside of the closed container 100, the outside wall of the closed container 11
0 and after uniformly heating the vacuum valve 190 to a predetermined temperature, the pressure inside the sealed container 100 may be reduced to a predetermined pressure. When heating under atmospheric pressure, if there is a possibility that the resin or the sublimable organic compound may be oxidized and degraded by oxygen in the air, the atmosphere in the closed container 100 is set in advance.
The heating may be performed after replacing with an inert gas such as nitrogen gas or argon gas. When heated at normal pressure, the amount of gas is larger than when depressurized, so that the entire interior of the closed container can be efficiently and uniformly heated by convection of gas molecules.

【0084】なお、加熱を行ってから減圧する方法を採
用する場合、所定の圧力まで減圧するのに要する時間が
長いと、昇華性有機化合物からの昇華が始まってしま
い、一部が真空排気系150へ逃げてしまう。この損失
を最小限にするには、所定の圧力まで減圧するのに要す
る時間を極力短縮する必要がある。そのためには、真空
バルブ190および真空配管系120の排気抵抗を小さ
くし、更に、真空排気系にターボ分子ポンプなどの高効
率真空ポンプを用いればよい。
In the case of employing a method of reducing the pressure after heating, if the time required to reduce the pressure to a predetermined pressure is long, sublimation from the sublimable organic compound starts, and a part of the system is evacuated. Escape to 150. To minimize this loss, it is necessary to minimize the time required to reduce the pressure to a predetermined pressure. For that purpose, the exhaust resistance of the vacuum valve 190 and the vacuum piping system 120 may be reduced, and a high-efficiency vacuum pump such as a turbo molecular pump may be used for the vacuum exhaust system.

【0085】加熱後、減圧を行う手法を用いる際、予め
昇華性有機化合物をシリカゲル、珪藻土、ゼオライトな
どの多孔質粒子の孔内に含浸させて用いると、昇華した
蒸気が孔内から密閉式容器内まで拡散するのに時間を要
するため、減圧過程のロスを低減することが可能にな
る。
When the method of reducing the pressure after heating is used, if a sublimable organic compound is previously impregnated in the pores of porous particles such as silica gel, diatomaceous earth, zeolite, etc. Since it takes time to diffuse into the inside, it is possible to reduce the loss in the decompression process.

【0086】加熱後、減圧を行う手法を用いる際、昇華
が始まると昇華源からは昇華する蒸気の量に応じた「昇
華熱」が奪われる。これを補うため、昇華源に対して加
熱を続け、温度制御を注意深く行う必要がある。一般
に、昇華は沸騰ほど急速には進行しないため、真空中に
おける加熱であっても、昇華熱の供給に遅滞が生ずるお
それは少ない。
When a method of reducing pressure after heating is used, when sublimation starts, “sublimation heat” corresponding to the amount of sublimated steam is taken from the sublimation source. To compensate for this, it is necessary to continue heating the sublimation source and carefully control the temperature. In general, sublimation does not proceed as rapidly as boiling, so that even in the case of heating in a vacuum, there is little risk of delay in supply of sublimation heat.

【0087】密閉式容器内部を高速排気する場合、昇華
性有機化合物が飛散しないよう工夫する必要がある。万
一、昇華性有機化合物の粉末が樹脂成形物の表面に付着
すると、昇華性有機化合物の粉末が直接樹脂膜中に浸透
し、樹脂膜内への昇華性有機化合物の浸透・分散の均一
性が損なわれるおそれがある。
When the inside of the closed container is evacuated at high speed, it is necessary to take measures to prevent the sublimable organic compound from scattering. If the powder of the sublimable organic compound adheres to the surface of the resin molded product, the powder of the sublimable organic compound penetrates directly into the resin film, and the uniformity of the penetration and dispersion of the sublimable organic compound into the resin film. May be damaged.

【0088】昇華性有機化合物が飛散しないようするた
めには、次に示すいずれかの構成からなる「昇華源」を
用いればよい。
In order to prevent the sublimable organic compound from scattering, a “sublimation source” having any of the following structures may be used.

【0089】(A)昇華性有機化合物が単独で昇華源基
板の表面に塗工または成膜された膜、(B)昇華性有機
化合物とバインダー樹脂とが昇華源基板の表面に塗工ま
たは成膜された膜、(C)昇華性有機化合物を含浸して
いる多孔質粒子が昇華源基板の表面に塗工または成膜さ
れた膜、(D)昇華性有機化合物を含浸している多孔質
粒子とバインダー樹脂とが昇華源基板の表面に塗工また
は成膜された膜、(E)多孔性の昇華源基板表面(例え
ば、アルマイト加工されたアルミニウム板)の孔に昇華
性有機化合物が含浸されたもの。
(A) A film in which the sublimable organic compound is applied or formed alone on the surface of the sublimation source substrate, and (B) A sublimable organic compound and the binder resin are applied or formed on the surface of the sublimation source substrate. Film formed, (C) a film in which porous particles impregnated with a sublimable organic compound are applied or formed on the surface of a sublimation source substrate, and (D) a porous film impregnated with a sublimable organic compound. A film in which particles and a binder resin are applied or formed on the surface of a sublimation source substrate, and (E) a hole of a porous sublimation source substrate surface (for example, an alumite-processed aluminum plate) is impregnated with a sublimable organic compound. What was done.

【0090】成膜する際、バインダー樹脂を用いる場合
は、原則として、昇華性有機化合物と親和性がないもし
くは相溶性がなく、更に昇華性有機化合物を結晶または
微粒子として分散させるものを選択して用いることが望
ましい。これは、仮に、バインダー樹脂中に昇華性有機
化合物が固溶化してしまうと、厳密な意味での「昇華」
が起こらなくなるからである。
When a binder resin is used for forming a film, a binder resin having no affinity or compatibility with a sublimable organic compound and further dispersing the sublimable organic compound as crystals or fine particles is selected. It is desirable to use. This is because if the sublimable organic compound is dissolved in the binder resin, the “sublimation” in a strict sense
Is no longer possible.

【0091】成膜する際、塗工法を採用する場合は、塗
工膜中に溶剤が残留しないよう、充分注意する必要があ
る。溶剤を用いた場合には、昇華性有機化合物が昇華し
ないような条件で塗膜中の残留溶媒を除去しなければな
らない。これは容易なことではないため、極力、溶媒を
用いない塗工法、例えば、紫外線硬化型樹脂や電子線硬
化型樹脂を用いた塗工法を採用することが望ましい。
When a coating method is employed when forming a film, it is necessary to pay sufficient attention so that no solvent remains in the coated film. When a solvent is used, the solvent remaining in the coating film must be removed under such conditions that the sublimable organic compound does not sublime. Since this is not easy, it is desirable to employ a coating method using no solvent as much as possible, for example, a coating method using an ultraviolet curable resin or an electron beam curable resin.

【0092】昇華性有機化合物が溶融しやすい化合物で
ある場合、無溶媒で昇華源基板上に溶融成膜する方法が
推奨される。
When the sublimable organic compound is a compound that is easily melted, a method of forming a film on a sublimation source substrate without a solvent is recommended.

【0093】昇華性有機化合物が溶融しやすい化合物で
あれば、上述した多孔質粒子や多孔質基板のの孔中に、
無溶媒で含浸させることができる。例えば、次に述べる
ような溶融法を用いることができる。すなわち、まず適
量の多孔質粒子と昇華性有機化合物の微粉末を真空バル
ブ付き密閉式容器に仕込み、室温にて脱気を続け、多孔
質粒子の孔内の空気を除去する。その後、密閉式容器を
密閉し、加熱して、昇華性有機化合物を溶融させる。次
いで、溶融状態のまま、密閉式容器内に不活性ガスを徐
々に導入すると、溶融した昇華性有機化合物は多孔質粒
子の孔内に浸透する。次いで、冷却した後、昇華性有機
化合物によって凝集した昇華性有機化合物を含浸する多
孔質粒子の塊を粉砕し、所望の粒径の昇華性有機化合物
含浸多孔質粒子を得る。多孔質粒子の代わりに多孔質基
板を用いて同様の工程を行い、最後に、多孔質基板表面
に付着した昇華性有機化合物をかき落とせば、昇華性有
機化合物含浸多孔質基板を得ることができる。
If the sublimable organic compound is a compound that is easily melted, the above-described porous particles and the pores of the porous substrate are
It can be impregnated without solvent. For example, the following melting method can be used. That is, first, an appropriate amount of the porous particles and the fine powder of the sublimable organic compound are charged into a closed container equipped with a vacuum valve, degassing is continued at room temperature, and air in the pores of the porous particles is removed. Thereafter, the sealed container is closed and heated to melt the sublimable organic compound. Next, when the inert gas is gradually introduced into the closed container in the molten state, the molten sublimable organic compound permeates into the pores of the porous particles. Next, after cooling, a lump of the porous particles impregnated with the sublimable organic compound aggregated by the sublimable organic compound is pulverized to obtain a sublimable organic compound-impregnated porous particle having a desired particle size. A similar process is performed using a porous substrate in place of the porous particles, and finally, the sublimable organic compound attached to the surface of the porous substrate is scraped off to obtain a sublimable organic compound-impregnated porous substrate. .

【0094】〔応用例〕実施例5で作製したcis−
1,2−ジシアノ−1,2−ビス(2,4,5−トリメ
チル−3−チエニル)エテン/ポリカーボネイト薄膜
は、紫外線をカットした可視光線および/または赤外線
の照射で黄色に、紫外線の照射によって赤色に変化す
る。すわわち、フォトクロミック薄膜として機能するこ
とが確認された。
[Application Example] The cis-
The 1,2-dicyano-1,2-bis (2,4,5-trimethyl-3-thienyl) ethene / polycarbonate thin film turns yellow by irradiation with visible light and / or infrared light from which ultraviolet light has been cut, and by irradiation with ultraviolet light. Turns red. That is, it was confirmed to function as a photochromic thin film.

【0095】400nm未満の波長の光をカットした可
視光線および赤外線を20分照射して、黄色になったも
のに、ブラックライトの紫外線(中心波長366nm)
を2、4、6、8、10時間照射して吸収スペクトルの
変化を測定した結果を図5に示す。波長400nm以上
の可視光線および赤外線照射20分後のスペクトルを点
線、紫外線照射2時間後を長い鎖線、同4時間後を短い
鎖線、同6時間後を2点鎖線、同8時間後を1点鎖線、
同10時間後を実線で示す。
Irradiation with visible light and infrared light having a wavelength of less than 400 nm for 20 minutes was performed, and the yellow light was irradiated with black light ultraviolet rays (center wavelength 366 nm).
Was irradiated for 2, 4, 6, 8, and 10 hours to measure the change in the absorption spectrum. The results are shown in FIG. A dotted line indicates the spectrum after 20 minutes of irradiation with visible light and infrared light having a wavelength of 400 nm or more, a long dashed line after 2 hours of ultraviolet irradiation, a short dashed line after 4 hours, 2 dashed line after 6 hours, and 1 point after 8 hours. Chain line,
The solid line after 10 hours is shown.

【0096】[0096]

【発明の効果】以上、詳細に説明したように、本発明の
有機薄膜作製方法および有機薄膜作製装置によれば、昇
華性有機化合物と樹脂からなり組成が均一な有機薄膜;
昇華性有機化合物を含有し、かつ、揮発性の不純物を含
まない有機薄膜;および昇華性有機化合物と樹脂からな
り組成が均一な有機薄膜を効率よく作製することができ
る。
As described above in detail, according to the method and apparatus for preparing an organic thin film of the present invention, an organic thin film composed of a sublimable organic compound and a resin and having a uniform composition;
An organic thin film containing a sublimable organic compound and containing no volatile impurities; and an organic thin film comprising a sublimable organic compound and a resin and having a uniform composition can be efficiently produced.

【0097】更に、有機薄膜の表面平滑性を損なわず
に、昇華性有機化合物を含有した有機薄膜を作製するこ
と;表面に微細加工を施した有機薄膜の表面構造を損な
わずに、昇華性有機化合物を含有した有機薄膜を作製す
ること;広範な種類の昇華性有機化合物に適用可能な、
昇華性有機化合物を含有した有機薄膜を作製すること;
複雑な機械的制御なしに、膜厚および/または組成が均
一な昇華性有機化合物を含有した有機薄膜を作製するこ
と、および、薄膜の面積の大小に関わらず、均一な膜厚
および/または組成の昇華性有機化合物を含有した有機
薄膜を作製することが可能になる。
Further, an organic thin film containing a sublimable organic compound is prepared without impairing the surface smoothness of the organic thin film; the sublimable organic thin film is finely processed without deteriorating the surface structure of the organic thin film. Making organic thin films containing compounds; applicable to a wide variety of sublimable organic compounds;
Producing an organic thin film containing a sublimable organic compound;
Preparation of an organic thin film containing a sublimable organic compound having a uniform thickness and / or composition without complicated mechanical control, and uniform thickness and / or composition regardless of the area of the thin film It is possible to produce an organic thin film containing the sublimable organic compound.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の有機薄膜作製方法の1段階におけ
る有機薄膜作製装置の概略構成を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a schematic configuration of an organic thin film manufacturing apparatus in one stage of an organic thin film manufacturing method according to a first embodiment.

【図2】 実施例1の有機薄膜作製方法の1段階におけ
る有機薄膜作製装置の概略構成を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a schematic configuration of an organic thin film manufacturing apparatus at one stage of the organic thin film manufacturing method of Example 1.

【図3】 実施例1の有機薄膜作製方法の1段階におけ
る有機薄膜作製装置の概略構成を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a schematic configuration of an organic thin film manufacturing apparatus in one stage of the organic thin film manufacturing method of Example 1.

【図4】 実施例5の有機薄膜作製方法および有機薄膜
作製装置の概略構成を示す断面図である。
FIG. 4 is a cross-sectional view illustrating a schematic configuration of an organic thin film manufacturing method and an organic thin film manufacturing apparatus according to a fifth embodiment.

【図5】 実施例5で作製したフォトクロミック有機薄
膜へ紫外線を照射したときのスペクトル変化を示す図で
ある。
FIG. 5 is a diagram showing a spectrum change when the photochromic organic thin film produced in Example 5 is irradiated with ultraviolet rays.

【図6】 実施例3で得られたPMMA樹脂薄膜の断面
を光学顕微鏡で拡大して観察した状況を示す図である。
FIG. 6 is a diagram showing a state in which a cross section of the PMMA resin thin film obtained in Example 3 is observed by enlarging it with an optical microscope.

【符号の説明】[Explanation of symbols]

10 一端を封じたガラス管、11 両端を封じたガラ
ス管、20 昇華性有機化合物、30 樹脂薄膜、40
ガラス基板、50 真空排気装置、60 ガラス管封
管用バーナー、70 恒温槽、100 密閉式容器内
部、110 密閉式容器外壁、120 真空配管系、1
50 真空排気系、190 真空バルブ、200 成膜
された昇華性有機化合物、240 昇華源基板、300
樹脂膜、400 円形ガラス基板、710 ヒータ
ー、720 昇華源基板ヒーター、740 樹脂膜ガラ
ス基板ヒーター、790 真空バルブヒーター。
Reference Signs List 10 Glass tube sealed at one end, 11 Glass tube sealed at both ends, 20 Sublimable organic compound, 30 Resin thin film, 40
Glass substrate, 50 Vacuum exhaust device, 60 Burner for sealing glass tube, 70 Thermostat, 100 Inside sealed container, 110 Outside wall of sealed container, 120 Vacuum piping system, 1
50 vacuum evacuation system, 190 vacuum valve, 200 deposited sublimable organic compound, 240 sublimation source substrate, 300
Resin film, 400 circular glass substrate, 710 heater, 720 sublimation source substrate heater, 740 resin film glass substrate heater, 790 vacuum valve heater.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 597007743 守谷 哲郎 茨城県つくば市東2丁目23番地8号 (74)上記1名の代理人 100075258 弁理士 吉田 研二 (外2名) (71)出願人 000002820 大日精化工業株式会社 東京都中央区日本橋馬喰町1丁目7番6号 (74)上記1名の代理人 100075258 弁理士 吉田 研二 (外2名) (71)出願人 000004329 日本ビクター株式会社 神奈川県横浜市神奈川区守屋町3丁目12番 地 (74)上記1名の代理人 100075258 弁理士 吉田 研二 (外2名) (72)発明者 平賀 隆 茨城県つくば市梅園1丁目1番4 工業技 術院 電子技術総合研究所内 (72)発明者 守谷 哲郎 茨城県つくば市梅園1丁目1番4 工業技 術院 電子技術総合研究所内 (72)発明者 陳 啓嬰 茨城県つくば市東1丁目1番4 工業技術 院 産業技術融合領域研究所内 (72)発明者 富永 淳二 茨城県つくば市東1丁目1番4 工業技術 院 産業技術融合領域研究所内 (72)発明者 阿刀田 伸史 茨城県つくば市東1丁目1番4 工業技術 院 産業技術融合領域研究所内 (72)発明者 田中 教雄 東京都中央区日本橋馬喰町1丁目7番6号 大日精化工業株式会社内 (72)発明者 柳本 宏光 東京都中央区日本橋馬喰町1丁目7番6号 大日精化工業株式会社内 (72)発明者 上野 一郎 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 (72)発明者 辻田 公二 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 Fターム(参考) 4K029 AA09 BA62 BC07 BD09 DA02 DB06 DB08 4K044 AA12 AA16 BA21 BC14 CA13 CA71  ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 597007743 Tetsuro Moriya 2-23-8 Higashi, Tsukuba City, Ibaraki Prefecture (74) One of the above agents 100075258 Patent Attorney Kenji Yoshida (two outsiders) (71) Applicant 000002820 Dainichi Seika Kogyo Co., Ltd. 1-7-6, Bakurocho, Nihonbashi, Chuo-ku, Tokyo (74) One of the above agents 100075258 Patent Attorney Kenji Yoshida (two outsiders) (71) Applicant 000004329 Victor Company of Japan, Ltd. Yokohama, Kanagawa 3-12 Moriyacho, Kanagawa-ku, Kanagawa-shi (74) One of the above agents 100075258 Patent Attorney Kenji Yoshida (two outsiders) (72) Inventor Takashi Hiraga 1-4-1 Umezono, Tsukuba-shi, Ibaraki Industrial Technology Institute Inside the Electrotechnical Laboratory (72) Inventor Tetsuro Moriya 1-1-4 Umezono, Tsukuba, Ibaraki Pref. Keiki Iki, 1-4-1 Higashi, Tsukuba City, Ibaraki Prefectural Institute of Industrial Technology, Research Institute for Industrial Technology Integration (72) Inventor Junji Tominaga 1-4-1, Higashi, Tsukuba City, Ibaraki Pref. Nobushi Atoda 1-1-4 Higashi, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Norio Tanaka 1-7-6, Nihonbashi Bakurocho, Chuo-ku, Tokyo 72) Inventor Hiromitsu Yanagimoto 1-7-6 Nihonbashi Bakurocho, Chuo-ku, Tokyo Dainichi Seika Kogyo Co., Ltd. (72) Inventor Ichiro Ueno 3--12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Victor Company of Japan, Ltd. (72) Inventor Koji Tsujita 3-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term in JVC Co., Ltd. 4K029 AA09 BA62 BC07 BD09 DA02 DB06 DB08 4K044 AA12 AA16 BA21 BC14 CA13 CA71

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 昇華性を有しかつ被覆される樹脂成形物
の樹脂と親和性を有する有機化合物と、前記樹脂成形物
とを、閉じた空間内に載置し、 前記閉じた空間内を前記有機化合物の飽和昇華圧状態に
置き、 前記有機化合物蒸気を前記樹脂成形物表面に均一に付着
させ、 付着した前記有機化合物を前記樹脂成形物表面から内部
に浸透・分散させることを特徴とする有機薄膜作製方
法。
An organic compound having sublimability and having an affinity for a resin of a resin molded product to be coated and the resin molded product are placed in a closed space, and the closed space is placed in the closed space. Placing the organic compound in a saturated sublimation pressure state, uniformly adhering the organic compound vapor to the surface of the resin molded product, and permeating and dispersing the attached organic compound from the surface of the resin molded product to the inside. Organic thin film preparation method.
【請求項2】 請求項1に記載の有機薄膜作製方法にお
いて、 前記有機化合物は、前記樹脂成形物表面に付着可能なよ
うに、以下の(A)〜(E)の5つの態様からなる群の
中から選択される少なくとも1つの態様で、昇華源基板
に付着または含有されていることを特徴とする有機薄膜
作製方法。 (A)前記有機化合物が単独で昇華源基板の表面に塗工
または成膜されている、 (B)前記有機化合物とバインダー樹脂とが昇華源基板
の表面に塗工または成膜されている、 (C)前記有機化合物を含浸している多孔質粒子が昇華
源基板の表面に塗工または成膜されている、 (D)前記有機化合物を含浸している多孔質粒子とバイ
ンダー樹脂とが昇華源基板の表面に塗工または成膜され
ている、 (E)多孔性の昇華源基板表面の孔に前記有機化合物が
含浸されたもの。
2. The method for preparing an organic thin film according to claim 1, wherein the organic compound is formed of the following five groups (A) to (E) so that the organic compound can adhere to the surface of the resin molded product. A method for producing an organic thin film, wherein the method is attached to or contained in a sublimation source substrate in at least one mode selected from the group consisting of: (A) the organic compound is applied or deposited on the surface of the sublimation source substrate alone; (B) the organic compound and the binder resin are applied or deposited on the surface of the sublimation source substrate; (C) the porous particles impregnated with the organic compound are applied or formed on the surface of the sublimation source substrate, and (D) the porous particles impregnated with the organic compound and the binder resin are sublimated. (E) A porous sublimation source substrate having pores impregnated with the organic compound, which is applied or formed on the surface of the source substrate.
【請求項3】 請求項2に記載の有機薄膜作製方法にお
いて、 上記(A)〜(E)のいずれかの態様でその表面に前記
有機化合物を付着または含有する前記昇華源基板の表面
を前記樹脂成形物表面の近傍に配置することを特徴とす
る有機薄膜作製方法。
3. The method for producing an organic thin film according to claim 2, wherein the surface of the sublimation source substrate that adheres or contains the organic compound to the surface thereof in any one of the modes (A) to (E). A method for producing an organic thin film, wherein the method is arranged near a surface of a resin molded product.
【請求項4】 請求項1に記載の有機薄膜作製方法にお
いて、 前記樹脂成形物および前記有機化合物を一端が封止され
他端が開放された容器に入れ、 前記容器の他端開放口より前記容器内の圧力を、室温以
上であって前記有機化合物および/または前記樹脂の熱
分解温度を越えない温度における前記有機化合物の飽和
昇華圧まで減圧し、 前記容器の他端開放口を封止して密閉し、 密閉された前記容器内部の温度を、上記減圧状態におい
て前記有機化合物の分圧が飽和昇華圧に到達する温度ま
で加熱し、 所定時間加熱後前記容器を徐冷することを特徴とする有
機薄膜作製方法。
4. The method for producing an organic thin film according to claim 1, wherein the resin molded product and the organic compound are put in a container having one end sealed and the other end opened, and the other end opened from the other end opening of the container. The pressure in the container is reduced to the saturation sublimation pressure of the organic compound at a temperature not lower than room temperature and not exceeding the thermal decomposition temperature of the organic compound and / or the resin, and the other end opening of the container is sealed. The temperature inside the sealed container is heated to a temperature at which the partial pressure of the organic compound reaches a saturation sublimation pressure in the reduced pressure state, and the container is gradually cooled after heating for a predetermined time. Organic thin film production method.
【請求項5】 請求項2に記載の有機薄膜作製方法にお
いて前記請求項2に記載のいずれかの態様で昇華源基板
に付着または含有された前記有機化合物および前記樹脂
成形物を、一端が封止され他端が開放された容器に入
れ、 前記容器の他端開放口より前記容器内の圧力を、室温以
上であって前記有機化合物および/または前記樹脂の熱
分解温度を越えない温度における前記有機化合物の飽和
昇華圧まで減圧し、 前記容器の他端開放口を封止して密閉し、 密閉された前記容器内部の温度を、上記減圧状態におい
て前記有機化合物の分圧が飽和昇華圧に到達する温度ま
で加熱し、 所定時間加熱後前記容器を徐冷することを特徴とする有
機薄膜作製方法。
5. The method for producing an organic thin film according to claim 2, wherein the organic compound and the resin molded product adhered or contained on the sublimation source substrate according to any one of the aspects described in claim 2 are sealed at one end. The container is closed and the other end is opened, and the pressure in the container through the other end opening of the container is set to a temperature not lower than room temperature and not exceeding the thermal decomposition temperature of the organic compound and / or the resin. The pressure is reduced to the saturation sublimation pressure of the organic compound, the other end opening of the container is sealed and sealed, and the temperature inside the sealed container is increased to a partial sublimation pressure of the organic compound under the reduced pressure. A method for producing an organic thin film, comprising heating the container to a temperature at which the container reaches the temperature, and gradually cooling the container after heating for a predetermined time.
【請求項6】 請求項3に記載の有機薄膜作製方法にお
いて、 前記請求項2に記載のいずれかの態様で昇華源基板に付
着または含有された前記有機化合物および前記樹脂成形
物を、一端が封止され他端が開放された容器に入れ、 前記容器の他端開放口より前記容器内の圧力を、室温以
上であって前記有機化合物および/または前記樹脂の熱
分解温度を越えない温度における前記有機化合物の飽和
昇華圧まで減圧し、 前記容器の他端開放口を封止して密閉し、 密閉された前記容器内部の温度を、上記減圧状態におい
て前記有機化合物の分圧が飽和昇華圧に到達する温度ま
で加熱し、 所定時間加熱後徐冷することを特徴とする有機薄膜作製
方法。
6. The method for producing an organic thin film according to claim 3, wherein the organic compound and the resin molded product adhered to or contained in the sublimation source substrate according to any one of the aspects described in claim 2 are attached at one end. The container is sealed and the other end is opened, and the pressure in the container through the other end opening of the container is set to a temperature not lower than room temperature and not exceeding the thermal decomposition temperature of the organic compound and / or the resin. Reduce the pressure to the saturation sublimation pressure of the organic compound, seal and open the other end opening of the container, and adjust the temperature inside the sealed container to a partial sublimation pressure of the organic compound under the reduced pressure. A method for producing an organic thin film, comprising heating to a temperature at which the temperature reaches a predetermined temperature, heating the material for a predetermined time, and then gradually cooling the material.
【請求項7】 請求項4または請求項5または請求項6
に記載の有機薄膜作製方法において、 前記密閉された容器内部の温度を前記樹脂のガラス転移
温度以上であって、前記有機化合物および/または前記
樹脂の熱分解温度を越えない温度まで加熱することを特
徴とする有機薄膜作製方法。
7. The method of claim 4 or claim 5, or claim 6.
In the method for producing an organic thin film according to the above, the temperature inside the closed container is not lower than the glass transition temperature of the resin, and is heated to a temperature not exceeding the thermal decomposition temperature of the organic compound and / or the resin. Characteristic organic thin film production method.
【請求項8】 請求項1に記載の有機薄膜作製方法にお
いて、 前記樹脂成形物および前記有機化合物を一端が封止され
他端が開放された容器に入れ、 前記容器内部の温度を室温以上であって、前記有機化合
物および/または前記樹脂の熱分解温度を越えない温度
まで加熱し、 上記温度に保ちながら、前記容器の他端開放口より前記
容器内の圧力を上記温度における前記有機化合物の飽和
昇華圧まで減圧し、 前記容器の他端開放口を密閉し、 所定時間加熱減圧後、前記容器を徐冷することを特徴と
する有機薄膜作製方法。
8. The method for producing an organic thin film according to claim 1, wherein the resin molded product and the organic compound are placed in a container having one end sealed and the other end opened, and the temperature inside the container is set to room temperature or higher. And heating the organic compound and / or the resin to a temperature not exceeding the thermal decomposition temperature of the resin, while maintaining the temperature, increasing the pressure in the container from the other end opening of the container at the above temperature. A method for producing an organic thin film, comprising reducing the pressure to a saturation sublimation pressure, sealing the other end opening of the container, heating and reducing the pressure for a predetermined time, and then gradually cooling the container.
【請求項9】 請求項2に記載の有機薄膜作製方法にお
いて、 前記請求項2に記載のいずれかの態様で昇華源基板に付
着または含有された前記有機化合物および前記樹脂成形
物を、一端が封止され他端が開放された容器に入れ、 前記容器内部の温度を室温以上であって、前記有機化合
物および/または前記樹脂の熱分解温度を越えない温度
まで加熱し、 上記温度に保ちながら、前記容器の他端開放口より前記
容器内の圧力を上記温度における前記有機化合物の飽和
昇華圧まで減圧し、 前記容器の他端開放口を密閉し、 所定時間加熱減圧後、前記容器を徐冷することを特徴と
する有機薄膜作製方法。
9. The method for producing an organic thin film according to claim 2, wherein the organic compound and the resin molded product adhered to or contained in the sublimation source substrate according to any one of the aspects described in claim 2 are attached at one end. The container is sealed and placed in a container having the other end opened, and the temperature inside the container is heated to a temperature equal to or higher than room temperature and does not exceed the thermal decomposition temperature of the organic compound and / or the resin, and while maintaining the above temperature, Reducing the pressure in the container from the other end opening of the container to the saturation sublimation pressure of the organic compound at the above temperature, closing the other end opening of the container, heating and reducing the pressure for a predetermined time, and then gradually lowering the container. A method for producing an organic thin film, comprising cooling.
【請求項10】 請求項3に記載の有機薄膜作製方法に
おいて、 前記請求項2に記載のいずれかの態様で昇華源基板に付
着または含有された前記有機化合物および前記樹脂成形
物を、一端が封止され他端が開放された容器に入れ、 前記容器内部の温度を室温以上であって、前記有機化合
物および/または前記樹脂の熱分解温度を越えない温度
まで加熱し、 上記温度に保ちながら、前記容器の他端開放口より前記
容器内の圧力を上記温度における前記有機化合物の飽和
昇華圧まで減圧し、 前記容器の他端開放口を密閉し、 所定時間加熱減圧後、前記容器を徐冷することを特徴と
する有機薄膜作製方法。
10. The method for producing an organic thin film according to claim 3, wherein the organic compound and the resin molded product adhered to or contained in the sublimation source substrate according to any one of the aspects described in claim 2, The container is sealed and placed in a container having the other end opened, and the temperature inside the container is heated to a temperature equal to or higher than room temperature and does not exceed the thermal decomposition temperature of the organic compound and / or the resin, and while maintaining the above temperature, Reducing the pressure in the container from the other end opening of the container to the saturation sublimation pressure of the organic compound at the above temperature, closing the other end opening of the container, heating and reducing the pressure for a predetermined time, and then gradually lowering the container. A method for producing an organic thin film, comprising cooling.
【請求項11】 請求項8または請求項9または請求項
10に記載の有機薄膜作製方法において、 前記容器内部の温度を前記樹脂のガラス転移温度以上で
あって、前記有機化合物および/または前記樹脂の熱分
解温度を越えない温度まで加熱することを特徴とする有
機薄膜作製方法。
11. The method for producing an organic thin film according to claim 8, wherein the temperature inside the container is equal to or higher than the glass transition temperature of the resin, and the organic compound and / or the resin are formed. A method for preparing an organic thin film, comprising heating to a temperature not exceeding the thermal decomposition temperature of the organic thin film.
【請求項12】 昇華性を有しかつ被覆される樹脂成形
物の樹脂と親和性を有する有機化合物を、飽和昇華圧状
態に置くための密閉可能な容器と、 前記有機化合物が昇華して有機化合物の蒸気が前記樹脂
成形物表面に付着した後、更に前記有機化合物が前記樹
脂成形物中に浸透・分散するための加熱手段と、を設け
たことを特徴とする有機薄膜作製装置。
12. A hermetically sealable container for placing an organic compound having a sublimation property and having an affinity for a resin of a resin molded article to be coated in a saturated sublimation pressure state; An organic thin film manufacturing apparatus, further comprising: heating means for allowing the organic compound to permeate and disperse in the resin molded product after the compound vapor adheres to the surface of the resin molded product.
【請求項13】 請求項12に記載の有機薄膜作製装置
であって、 更に、前記有機化合物が、前記樹脂成形物表面に付着可
能なように、上記5つの態様からなる群の中から選択さ
れる少なくとも1つの態様で、保持されるための昇華源
基板を設けたことを特徴とする有機薄膜作製装置。
13. The apparatus for producing an organic thin film according to claim 12, wherein the organic compound is selected from the group consisting of the five aspects so that the organic compound can adhere to the surface of the resin molded product. An organic thin film production apparatus, wherein a sublimation source substrate to be held is provided in at least one embodiment.
JP06138099A 1999-03-09 1999-03-09 Organic thin film manufacturing method and organic thin film manufacturing apparatus Expired - Lifetime JP3740557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06138099A JP3740557B2 (en) 1999-03-09 1999-03-09 Organic thin film manufacturing method and organic thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06138099A JP3740557B2 (en) 1999-03-09 1999-03-09 Organic thin film manufacturing method and organic thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2000256877A true JP2000256877A (en) 2000-09-19
JP3740557B2 JP3740557B2 (en) 2006-02-01

Family

ID=13169522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06138099A Expired - Lifetime JP3740557B2 (en) 1999-03-09 1999-03-09 Organic thin film manufacturing method and organic thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3740557B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069259A1 (en) * 2006-12-05 2008-06-12 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus, film formation method, manufacturing apparatus, and method for manufacturing light-emitting device
US7932112B2 (en) 2008-04-14 2011-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US7993945B2 (en) 2008-04-11 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8080811B2 (en) 2007-12-28 2011-12-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing evaporation donor substrate and light-emitting device
US8153201B2 (en) 2007-10-23 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device, and evaporation donor substrate
US8182863B2 (en) 2008-03-17 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US8232038B2 (en) 2007-06-01 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus and manufacturing method of light-emitting device
US8241700B2 (en) 2008-12-15 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US8277902B2 (en) 2008-03-07 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Method for forming film and method for manufacturing light emitting device
US8277871B2 (en) 2007-10-23 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate and method for manufacturing light-emitting device
US8293319B2 (en) 2008-04-25 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8409672B2 (en) 2008-04-24 2013-04-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing evaporation donor substrate and method of manufacturing light-emitting device
US8425974B2 (en) 2007-11-29 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate and method for manufacturing light-emitting device
US8486736B2 (en) 2008-10-20 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8581234B2 (en) 2008-02-29 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US8734915B2 (en) 2008-02-29 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Film-formation method and manufacturing method of light-emitting device
WO2014125918A1 (en) * 2013-02-14 2014-08-21 富士フイルム株式会社 Sublimation and purification device and sublimation and purification method
US8821963B2 (en) 2008-02-04 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing light-emitting device
US8840972B2 (en) 2008-03-07 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing light-emitting device
US9159923B2 (en) 2007-12-26 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate, method for manufacturing the same, and method for manufacturing light-emitting device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920562B2 (en) 2006-12-05 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus, film formation method, manufacturing apparatus, and method for manufacturing light-emitting device
WO2008069259A1 (en) * 2006-12-05 2008-06-12 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus, film formation method, manufacturing apparatus, and method for manufacturing light-emitting device
US8313603B2 (en) 2006-12-05 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus, film formation method, manufacturing apparatus, and method for manufacturing light-emitting device
US8232038B2 (en) 2007-06-01 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus and manufacturing method of light-emitting device
US9444051B2 (en) 2007-10-23 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device, and evaporation donor substrate
US8153201B2 (en) 2007-10-23 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device, and evaporation donor substrate
US8277871B2 (en) 2007-10-23 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate and method for manufacturing light-emitting device
US8425974B2 (en) 2007-11-29 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate and method for manufacturing light-emitting device
US9159923B2 (en) 2007-12-26 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate, method for manufacturing the same, and method for manufacturing light-emitting device
US8080811B2 (en) 2007-12-28 2011-12-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing evaporation donor substrate and light-emitting device
US8435811B2 (en) 2007-12-28 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing evaporation donor substrate and light-emitting device
US8821963B2 (en) 2008-02-04 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing light-emitting device
US8734915B2 (en) 2008-02-29 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Film-formation method and manufacturing method of light-emitting device
US8581234B2 (en) 2008-02-29 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US8277902B2 (en) 2008-03-07 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Method for forming film and method for manufacturing light emitting device
US8840972B2 (en) 2008-03-07 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing light-emitting device
US8182863B2 (en) 2008-03-17 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US8956709B2 (en) 2008-03-17 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US7993945B2 (en) 2008-04-11 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8653543B2 (en) 2008-04-14 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Deposition substrate and method for manufacturing light-emitting device
US7932112B2 (en) 2008-04-14 2011-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8409672B2 (en) 2008-04-24 2013-04-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing evaporation donor substrate and method of manufacturing light-emitting device
US8293319B2 (en) 2008-04-25 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8486736B2 (en) 2008-10-20 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8241700B2 (en) 2008-12-15 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
WO2014125918A1 (en) * 2013-02-14 2014-08-21 富士フイルム株式会社 Sublimation and purification device and sublimation and purification method
JP2014176838A (en) * 2013-02-14 2014-09-25 Fujifilm Corp Sublimation refining apparatus

Also Published As

Publication number Publication date
JP3740557B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP2000256877A (en) Formation of organic thin film and organic thin film forming device
US6913783B2 (en) Method of obtaining anisotropic crystalline films and devices for implementation of the method
US20060156986A1 (en) Modification method of surface layer of molded resin article, and modification apparatus of surface layer of molded resin article
US5352651A (en) Nanostructured imaging transfer element
JP3846929B2 (en) Thermal image forming method using black metal thermal imageable transparent element
US5139598A (en) Vapor deposited multi-layered films--a method of preparation and use in imaging
JP4133833B2 (en) Method for forming anisotropic crystal film on receptor plate by transfer from donor plate, donor plate and method for producing donor plate
JP2599569B2 (en) Method and apparatus for manufacturing composite optical thin film
JP3059972B2 (en) Manufacturing method of organic optical thin film and its equipment
JPH0820165A (en) Black metal heat picture formable transparent component
US5236739A (en) Vapor deposited multi-layered films--a method of preparation
JPS6236878B2 (en)
JP3435691B2 (en) Method for modifying surface layer and functional thin film produced by the method
JPH0453709B2 (en)
Yoshida et al. Photochromism of a vacuum-deposited 1′, 3′, 3′-trimethyl-6-hydroxyspiro [2 H-1-benzopyran-2, 2′-indoline] film
JP3928066B2 (en) Laminated optical thin film and method for producing the same
JPH0336039B2 (en)
JPS63164037A (en) Optical information recording medium
JPH022019A (en) Rotary drum for thermal transfer recording
JP2004232097A (en) Method for dyeing plastic lens
JPH08104058A (en) Novel information image forming method
JP2008280393A (en) Method for producing photochromic material
Kim et al. The effects of excimer laser irradiation on surface morphology development in stretched poly (ethylene therephthalate), poly (butylene therephthalate) and polystyrene films
JPH06240047A (en) Polymer composite containing pigment molecule dispersed therein and its production
JPH07276819A (en) Production of thermal transfer recording medium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050404

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term