JP2000254860A - Polishing device - Google Patents

Polishing device

Info

Publication number
JP2000254860A
JP2000254860A JP6003199A JP6003199A JP2000254860A JP 2000254860 A JP2000254860 A JP 2000254860A JP 6003199 A JP6003199 A JP 6003199A JP 6003199 A JP6003199 A JP 6003199A JP 2000254860 A JP2000254860 A JP 2000254860A
Authority
JP
Japan
Prior art keywords
polishing
detection window
light
liquid
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6003199A
Other languages
Japanese (ja)
Inventor
Hirochika Shinjo
啓慎 新城
Tatsuya Chiga
達也 千賀
Akira Miyaji
章 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6003199A priority Critical patent/JP2000254860A/en
Publication of JP2000254860A publication Critical patent/JP2000254860A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/12Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with apertures for inspecting the surface to be abraded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the reflection light on the boundary surface between a detection window and abrasive liquid by providing a grinding body with at least one detection window for penetrating the measurement light and the signal light for measuring the grinding condition during the grinding. SOLUTION: A grinding head 3 is rotated (100) on a shaft A by a proper means, and a surface plate 7 is rotated (101) on a shaft B by a proper means. During this process, a surface to be ground of a wafer 4 is ground by the action of the abrasive liquid 6 and a grinding pad 2. During the grinding, the measurement light emitted from a final point detecting device 8 penetrates through a detection window 10, penetrates through the abrasive liquid, and reaches the surface to be ground of the wafer 4, and the reflection light having the information on the surface to be ground penetrates through the abrasive liquid and the detection window 10 again as the signal light, and is detected by an optical detecting device of the final point detecting device 8. On this occasion, the detection window 10 is formed by a glass plate. The refraction factor of this glass plate is determined to be approximately same as that of the abrasive liquid.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、研磨対象物の被研
磨面を研磨する研磨装置、特にULSI(大規模集積回
路)等の半導体を製造するプロセスにおいて実施される
半導体デバイスの平坦化研磨に用いるのに好適なCMP
用研磨装置に関するものである。 【0002】 【従来の技術】半導体集積回路の高集積化、微細化に伴
って半導体製造プロセスの工程が増加し複雑になってき
ている。これに伴い、半導体デバイスの表面は必ずしも
平坦ではなくなってきている。表面に於ける段差の存在
は配線の段切れ、局所的な抵抗の増大などを招き、断線
や電気容量の低下をもたらす。また、絶縁膜では耐電圧
劣化やリークの発生にもつながる。 【0003】一方、半導体集積回路の高集積化、微細化
に伴って光リソグラフィの光源波長は短くなり、開口数
いわゆるNAが大きくなってきていることに伴い、半導体
露光装置の焦点深度が実質的に浅くなってきている。焦
点深度が浅くなることに対応するためには、今まで以上
にデバイス表面の平坦化が要求されている。このような
半導体表面を平坦化する方法としては、化学的機械的研
磨(Chemical Mechanical Polishing又はChemical Mecha
nical Planarization 、これよりCMP と呼ぶ)技術が有
望な方法と考えられている。 【0004】CMP はシリコンウェハの鏡面研磨法を基に
発展しており、図5に示すような装置を用いて行われて
いる。図5で1はCMP 研磨装置、20は研磨体、3は研
磨ヘッド、4は研磨対象物( ウエ ハ) 、5は研磨液供給
部、6は研磨液である。研磨体20は、定盤7の上に研
磨パッド2を貼り付けたものである。研磨パッド2とし
ては、発泡ポリウレタンよりなるシート状のもの、ある
いは表面に溝構造を有した無発泡樹脂が使用されてい
る。研磨ヘッド3は適当な手段により軸Aを中心に回転
運動(100)し、また定盤7は適当な手段により軸B
を中心に回転運動(101)する。この過程でウェハ4
は、研磨液6と研磨パッド2の作用により被研磨面が研
磨される。 【0005】上記研磨過程によりウェハ表面が所定量研
磨され充分平坦化した時点、つまり研磨終了点を検出す
る方法として、振動、音響、摩擦変動、ウェハ回転やパ
ッドの回転のモータートルクの変化、スラリー分析、等
による方法があるが、特に測定精度が高い点から光学的
方法が注目され始めている。光学的方法はウェハの被研
磨面に測定光を照射し、被研磨面を透過または反射した
信号光を利用して測定する方法である。8は終点検出装
置で、測定光を出射する光源とウェハからの反射光を検
出する検出器等から構成されている。定盤7および研磨
パッド2にはこの測定光が通過するためのアパーチャが
設けられており、研磨液6がアパーチャから流れ出ない
ように検出窓9がはめ込まれている。検出窓9の上面
は、ウェハ4の被研磨面21に接触しないように研磨パ
ッド2の上面と同一平面か少し低くなっている。終点検
出装置8から出射された測定光は検出窓9を透過した
後、ウェハ4の被研磨面21で反射され、反射光は再び
検出窓9を透過して終点検出装置8に戻り、終点検出装
置8の検出器で検出される。いま、ウェハのデバイスパ
ターン上に絶縁膜が形成されている被研磨面を考える
と、反射率は絶縁膜の膜厚に依存した分光特性を示す。
終点検出装置8はこの反射率の分光特性から絶縁膜の膜
厚を算出し、研磨工程の終了点を検出する。 【0006】 【発明が解決しようとする課題】しかしながら従来の技
術では研磨液6の影響については考慮されていなかっ
た。測定光及び信号光がウェハ4と検出窓9の間の研磨
液6を透過する際に、検出窓9と研磨液6の境界面が測
定光及び信号光を反射する。すなわち、研磨液6と検出
窓9の屈折率の違いにより検出窓9の境界面で反射が起
こり、その反射損失のため、検出のために光検出器に入
射する信号光量が低下していた。更に、研磨液に含まれ
る砥粒による光散乱の影響も無視できなかった。砥粒が
測定光及び信号光を散乱し、その散乱光が信号光と一緒
にノイズ光として光検出器に入射することがあった。ま
た更に、砥粒が測定光及び信号光を吸収し、光検出器に
入射する信号光量が低下する問題があった。 【0007】以上のような信号光量の低下とノイズ光に
より測定のS/N比が低下し、終点検出の測定精度が悪
化する原因となっていた。本発明は以上を解決するため
になされたものであり、反射損失による測定光量の低下
の問題を解決した、測定精度の高い終点検出機および研
磨装置を提供することを課題としている。 【0008】 【課題を解決するための手段】上記課題を解決するた
め、本発明は第一に、「研磨対象物を保持する研磨ヘッ
ドと研磨体とを具え、前記研磨体と前記研磨対象物との
間に研磨液を介在させた状態で、前記研磨体と前記研磨
対象物を相対移動させることにより、前記研磨対象物を
研磨する研磨装置において、前記研磨中に研磨状態を測
定するための測定光と信号光を通すための1個以上の検
出窓を前記研磨体に具え、前記検出窓が上記研磨液に近
い屈折率を有することを特徴とする研磨装置(請求項
1)」を提供する。 【0009】本発明は、検出窓の屈折率を研磨液の屈折
率に近くすることにより境界面の反射による光量損失を
低減し、測定のS/N比を向上するのである。第二に、
「前記研磨液は、溶媒に砥粒を混合分散させて成り、前
記溶媒の屈折率と前記砥粒の屈折率がほぼ等しいことを
特徴とする、請求項1記載の研磨装置(請求項2)」を
提供する。 【0010】本発明は、溶媒の屈折率と砥粒の屈折率を
ほぼ等しくすることにより散乱光から来るノイズ光を減
らし、測定のS/N比を向上するのである。第三に、
「研磨対象物を保持する研磨ヘッドと研磨体とを具え、
前記研磨体と前記研磨対象物との間に研磨液を介在させ
た状態で、前記研磨体と前記研磨対象物を相対移動させ
ることにより、前記研磨対象物を研磨する研磨装置にお
いて、前記研磨中に研磨状態を測定するための測定光と
信号光を通すための1個以上の検出窓を前記研磨体に具
え、前記検出窓と前記研磨対象物の間に介在する前記研
磨液を排除する研磨液排出部を具えることを特徴とする
研磨装置(請求項3)」を提供する。 【0011】本発明は、測定光を散乱させる研磨液を排
除することにより研磨液による散乱光、更にはノイズ光
を減らし、測定のS/N比を向上させるのである。第四
に、「前記研磨液排出部は、液体により検出窓近傍にあ
る研磨液を外部に流出させることを特徴とする請求項3
記載の研磨装置(請求項4)」を提供する。 【0012】第五に、「前記研磨液排出部は、気体によ
り検出窓近傍にある研磨液を外部に流出させることを特
徴とする請求項3記載の研磨装置(請求項5)」を提供
する。第六に、「研磨対象物を保持する研磨ヘッドと研
磨体とを具え、前記研磨体と前記研磨対象物との間に研
磨液を介在させた状態で、前記研磨体と前記研磨対象物
を相対移動させることにより、前記研磨対象物を研磨す
る研磨装置において、前記研磨中に研磨状態を測定する
ための測定光と信号光を通すための1個以上の検出窓を
前記研磨体に具え、前記検出窓は疎水性の材料から作ら
れていることを特徴とする研磨装置(請求項6)」を提
供する。 【0013】本発明は、測定光を散乱させる研磨液が付
着しない表面特性を有する検出窓を用い、研磨液による
測定光の散乱がないため、ノイズ光が減り、測定のS/
N比が向上するのである。 【0014】 【発明の実施の形態】以下図を用いて、本発明の実施形
態を説明するが、本発明は本図に限定されるものではな
い。 [実施の形態1]図1は本発明の実施の形態1(請求項
1、2に相当する)の研磨装置を示す図である。20は
研磨体、3は研磨ヘッド、4は研磨対象物( ウエ ハ) 、
5は研磨液供給部、6は研磨液である。研磨体20は、
定盤7の上に研磨パッド2を貼り付けたものである。研
磨パッド2としては、発泡ポリウレタンよりなるシート
状のもの、あるいは表面に溝構造を有した無発泡樹脂の
どちらを使用しても良い。研磨ヘッド3は適当な手段に
より軸Aを中心に回転運動(100)し、また定盤7は
適当な手段により軸Bを中心に回転運動(101)す
る。この過程でウェハ4は、研磨液6と研磨パッド2の
作用により被研磨面が研磨される。 【0015】研磨の間、終点検出装置8から出射した測
定光は検出窓10を透過し、研磨液を透過し、ウェハの
被研磨面に達し、被研磨面の情報を持った反射光は信号
光として再び研磨液、検出窓10を透過し、終点検出装
置8の光検出装置にて検出される。ここで、検出窓10
はガラス板から構成されている。このガラス板の屈折率
は研磨液の屈折率とほぼ同じになるよう選択されてい
る。 【0016】以下、研磨液の屈折率について述べる。C
MPに用いられている研磨液は溶媒に砥粒を調合したも
のであり、研磨対象である絶縁膜や金属膜の種類により
その組合せが選択される。一般的に使用されている砥粒
として、酸化セリウム(CeO2 )、アルミナ(Al2
3 )、シリカ(SiO2 )等がある。これら砥粒の屈
折率は可視域で1.55から2.0であり、溶媒は、こ
れら砥粒よりも一般に屈折率が低く、研磨液は研磨状態
で溶媒中に砥粒が均一に分散したものと見做すことがで
きる。砥粒の粒径は、通常は測定光の波長の数百nmよ
りも充分に小さい100nm程度である。このとき、研
磨液は透明となり、その屈折率は、砥粒の濃度に依存
し、溶媒の屈折率と砥粒の屈折率との中間を示すことが
知られている。以上のように研磨液の屈折率は、砥粒の
種類、砥粒の濃度、溶媒の種類に依存し、通常は1.5
〜1.8である。 【0017】ここで用いるガラス板に用いる光学ガラス
材料の選択に当たっては、屈折率の他に、コスト、化学
的耐久性が考慮される。好ましく用いられる光学ガラス
材料は、クラウン、重クラウン、フリント、重フリント
等であるが、上記条件を充たしさえすれば、特にこれら
の硝材に限定されるものではない。例えば、研磨液の屈
折率によっては石英ガラスも好ましく使われる。 【0018】硝材の使い分けの例としては、屈折率が
1.50の研磨液に対してはクラウン系ガラスから選ば
れた屈折率1.50前後の硝材が好ましく用いられ、屈
折率が1.60の研磨液に対しては重クラウン系ガラス
から選ばれた屈折率1.60前後の硝材が好ましく用い
られ、屈折率が1.80の研磨液に対してはフリント系
ガラスから選ばれた屈折率1.80前後の硝材が好まし
く用いられる。 【0019】このようにして検出窓に用いるガラス板の
硝材を研磨液の屈折率に応じて使い分ける効果について
は以下に述べられる。一般に異なる屈折率を持つ媒質間
の境界面では光の反射が起こり、その反射率は境界への
入射角、屈折率等により変化することが知られている。
このため両媒質の屈折率がほぼ等しいとき、境界面で反
射される光の反射率は小さくなる。一例として、酸化セ
リウム(CeO2 )砥粒を用いた屈折率が1.80の研
磨液を使用する場合、本発明によれば、検出窓のガラス
板の材料として、研磨液の屈折率に近い重フリント系の
屈折率1.80の硝材を用いているため、両媒質の境界
面で反射される光の反射率は、極めて小さくなり、光量
損失は無視できる程度である。 【0020】なお、検出窓にはガラス板の他に、プラス
チック板、等の測定光を透過する材料を使用することが
出来る。以上、研磨液と検出窓との境界面での反射損失
の他に、研磨液の溶媒と砥粒との境界面での反射光が問
題になることがある、それは砥粒の径が入射光の波長と
較べて充分に小さくない場合に起こり、この反射光は光
散乱を生じる。この散乱光は、ノイズ光として、信号光
と一緒に光検出器に入射し、測定のS/N比を低下させ
るので、好ましくない。この反射光の低減即ち、散乱光
の低減のために、砥粒の屈折率に近い屈折率を有する溶
媒を選定することが好ましい。 【0021】以上のような条件で、終点検出装置8の光
検出装置が好ましく信号光(多成分波長光)を受光した
あと、終点検出装置8は、信号光を分光し、その分光信
号の極大値、または極小値、または(極大値−極小
値)、または(極小値/極大値)、または最大極大値、
または最小極小値、または(最大極大値−最小極小
値)、または(最小極小値/最大極大値)、または分光
信号の分散、または分光信号の適当なフーリエ変換の成
分から選ばれた何れか一つ以上をモニタすることによ
り、または測定された分光信号またはそのフーリエ変換
信号と、予めシミュレーション計算され記憶された分光
信号またはそのフーリエ変換信号とのフイッティングに
より研磨状態の測定が行われる。フィッティングの方法
としては相互相関係数を比較する方法が好ましく用いら
れる。具体的な測定項目として重要なものは、研磨膜厚
の検出、工程終了点の検出(終点検出)である。 【0022】以上のように本発明によれば、研磨液に近
い屈折率の検出窓を用いているので、信号光の光量損失
が少なく、且つ散乱が少ないので、高いS/N比で信号
光を測定可能であり、従って高精度で研磨膜厚の検出、
終点検出が可能である。 [実施の形態2]図2は本発明の実施の形態2(請求項
3、4に相当する)を示す図で、実施の形態1とは純水
供給部11と供給経路13とが設けられている点で異な
っている。純水供給部11は純水をためるタンク12を
具え、供給経路13を通して検出窓9とつながってい
る。圧力の関係から純水供給部11から検出窓9へ純水
は流れ、タンク12へは補給口14から純水が補給され
る。研磨の過程で検出窓9およびウェハ4には研磨液6
が付着しているが、この純水供給部11から供給される
純水により流され研磨液6濃度は低くなる。このため測
定光及び信号光を散乱・吸収する砥粒の数は少なくな
り、終点検出装置8で検出される光量は増大する。これ
により信号光のS/N比が向上し、より高精度に研磨膜
厚の検出、終点検出が可能である。 【0023】図2ではタンク12からの静水圧で純水を
供給しているが、タンク12をピストン状にして強制的
に圧力をかけて供給しても良い。また、純水供給部11
を定盤7に固定し供給経路13を通して純水を供給して
いたが、単に検出窓9上面から純水を流すようにしても
良い。更にまた、図2では研磨液の除去を純水により行
っているが、研磨液に使用している溶液を使用して行っ
ても良い。 [実施の形態3]図3は本発明の実施の形態3(請求項
3、5に相当する)を示す図である。実施の形態2とは
純水供給部11の替わりにエアブロー部15が設けられ
ている点で異なっている。エアブロー部15にはエアタ
ンク16とバルブ17が設けられており、供給経路13
を通して検出窓9へつながっている。エアタンク16内
は高圧になっており、検出窓9へ空気を吹き付ける。こ
のときバルブ17でエア流量を調節することが出来る。
研磨の過程で検出窓9およびウェハ4には研磨液6が付
着しているが、このエアブロー部15から吹き付けられ
る空気により研磨液6は吹き飛ばされる。このため測定
光はウェハ4と検出窓9の間で散乱されることなく終点
検出装置8に入射する。これにより信号光測定のS/N
比が向上し、従って高精度に研磨膜厚の検出、終点検出
を行うことが出来る。 【0024】図3では供給経路13を通してエアを吹き
付けていたが、検出窓9上面から吹き付けるようにして
も良い。また空気に限らず窒素ガス等を吹き付けて研磨
液6を除去することもできる。 [実施の形態4]図4 (a)は本発明の実施の形態4
(請求項6に相当する)を示す図で、本発明のCMP装
置を上部から見た図である。定盤2は矢印101の方向
に回転し、ウェハ4は矢印100の方向に回転する。定
盤2には終点検出用の検出窓18がはめ込まれている。
検出窓18は疎水性の材料から作られており、測定光が
透過する透明なプラスティックなどを使用する事が出来
る。検出窓18は細長い長方形をしており、図4(a)
のようにその長辺を定盤2の回転中心方向に向けて取り
付けられている。 【0025】定盤2が矢印101の方向に回転し、ウェ
ハ4が検出窓18を横切る時を考える。検出窓18の表
面には研磨液6が付着しているが、検出窓18の窓材は
疎水性の材料で出来ているため研磨液6が弾かれ易くな
っている。更に細長い形をしているため、定盤2の回転
による遠心力により付着した研磨液6は検出窓18に沿
って外側に流れ出易くなっている。そのため、検出窓に
は研磨液は付着しないが、仮に付着しても、ウェハ4が
検出窓18に差し掛かると、ウェハ4は検出窓18表面
の研磨液6を弾き出すので、ウェハ4の表面と検出窓1
8の間から研磨液6は取り除かれる。このため測定光は
ウェハ4と検出窓18の間で散乱されることも吸収され
ることもなく終点検出装置8に入射する。これにより信
号光測定のS/N比が向上し、従って高精度に研磨膜厚
の検出、終点検出を行うことが出来る。 【0026】図4(a)では検出窓18を回転中心方向
に向けて設置しているが、図4(b)の様に配置しても
構わない。図4(b)では、定盤2の回転中心から同心
円上に細長い検出窓18をはめ込んである。この場合も
上述と同様の効果により、ウェハ4と検出窓18の間か
ら研磨液6を取り除くことができる。図4(a)、
(b)では検出窓にプラスティックを使用しているが、
それ以外にもガラスや石英ガラス等の表面にシリコン樹
脂系、フッ素樹脂系、またはワックス系の疎水コートを
施して使用する事も出来る。測定光が透過する材料の表
面に研磨液6を弾くコーティングを施す事で、研磨液6
による測定光の減衰を防ぐ事が出来る。 【0027】以上、実施の形態1〜4により本発明を説
明したが、ここで更に検出窓のガラス板の終点検出装置
側の面の反射光も考慮しなければならない。この反射率
は使用するガラス板の屈折率に依存するが、通常数%以
上であり、この反射光は光量損失としての信号光の減
少、ノイズ光の増大を起こし、何れも信号光測定のS/
N比を低下させる。 【0028】これを低減するため、必要に応じてこの面
には周知の方法で多層反射防止膜を形成することが好ま
しい。これにより反射率を大幅に低減させることがで
き、信号光測定のS/N比が向上する。また、ガラス板
の終点検出装置側の面からの反射光を測定光の光軸から
逸らして、反射光が終点検出装置8の光検出装置に入射
しないようにするために、ガラス板の終点検出装置側の
面法線方向を光軸方向と非平行とする。そのためにガラ
ス板を楔状にすることも好ましい方法である。ガラス板
を楔状にする方法は、ノイズ光として終点検出装置8の
光検出装置に入射する反射光を皆無にすることはできる
が、光量損失を低減することはできない。そのため、必
要に応じて、反射防止膜とガラス板を楔状にする方法の
両方が併用される。 【0029】以上、実施の形態1〜4により本発明を説
明したが、本発明は、半導体装置製造工程における、半
導体素子の表面の絶縁層あるいは電極層の除去工程にお
ける除去膜厚または終点検出方法のみならず、各種産業
における製造工程に於ける表面状態の検出方法に適用さ
れる。 【0030】 【発明の効果】以上、本発明の実施の形態1によれば、
検出窓と研磨液の境界面に於ける反射光を低減できるの
で、信号光の量が増加し、その結果、信号光測定のS/
N比が向上し、従って、高精度に研磨膜厚の検出、終点
検出を行うことが出来る。本発明の実施の形態2によれ
ば、信号光を散乱・吸収する砥粒の数は少なくなり、信
号光量は増大し、且つ不要な散乱光は低減する。これに
より信号光のS/N比が向上し、より高精度に研磨膜厚
の検出、終点検出が可能である。本発明の実施の形態
3、4によれば、信号光を散乱・吸収する砥粒がなくな
り、信号光量は増大し、且つ不要な散乱光は実質的にな
くなる。これにより信号光のS/N比が向上し、より高
精度に研磨膜厚の検出、終点検出が可能である。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a polishing apparatus for polishing a surface to be polished, particularly a process for manufacturing a semiconductor such as ULSI (Large Scale Integrated Circuit). CMP suitable for use in planarization polishing of a semiconductor device to be performed
The present invention relates to a polishing apparatus for polishing. 2. Description of the Related Art As the degree of integration and miniaturization of semiconductor integrated circuits increases, the number of steps in a semiconductor manufacturing process increases and becomes more complicated. Along with this, the surface of a semiconductor device is not necessarily flat. The presence of a step on the surface causes disconnection of the wiring, an increase in local resistance, and the like, resulting in disconnection and a decrease in electric capacity. In addition, in the case of an insulating film, withstand voltage degradation and leakage may occur. On the other hand, the light source wavelength of optical lithography has been shortened with the increase in the degree of integration and miniaturization of semiconductor integrated circuits, and the numerical aperture, or NA, has been increased. It is getting shallower. In order to cope with the shallow depth of focus, flattening of the device surface is required more than ever. As a method of flattening such a semiconductor surface, a chemical mechanical polishing (Chemical Mechanical Polishing or Chemical Mecha
(Nical Planarization, hereinafter referred to as CMP) is considered a promising method. [0004] CMP has been developed based on a mirror polishing method for a silicon wafer, and is performed using an apparatus as shown in FIG. In FIG. 5, 1 is a CMP polishing apparatus, 20 is a polishing body, 3 is a polishing head, 4 is a polishing object (wafer), 5 is a polishing liquid supply section, and 6 is a polishing liquid. The polishing body 20 is obtained by attaching the polishing pad 2 to the surface plate 7. As the polishing pad 2, a sheet-like material made of foamed polyurethane or a non-foamed resin having a groove structure on its surface is used. The polishing head 3 is rotated (100) about the axis A by a suitable means, and the platen 7 is rotated by a suitable means on the axis B.
(101). In this process, the wafer 4
The surface to be polished is polished by the action of the polishing liquid 6 and the polishing pad 2. As a method of detecting the point at which the wafer surface is polished by a predetermined amount and sufficiently flattened in the above-mentioned polishing process, that is, the polishing end point, vibration, sound, friction fluctuation, change in motor torque of wafer rotation and pad rotation, slurry Although there is a method based on analysis, etc., an optical method has begun to attract attention because of its particularly high measurement accuracy. The optical method is a method of irradiating the surface to be polished of a wafer with measurement light, and performing measurement using signal light transmitted or reflected on the surface to be polished. Reference numeral 8 denotes an end point detection device, which includes a light source for emitting measurement light, a detector for detecting light reflected from the wafer, and the like. The platen 7 and the polishing pad 2 are provided with an aperture through which the measurement light passes, and the detection window 9 is fitted so that the polishing liquid 6 does not flow out of the aperture. The upper surface of the detection window 9 is flush with or slightly lower than the upper surface of the polishing pad 2 so as not to contact the surface 21 to be polished of the wafer 4. The measurement light emitted from the end point detection device 8 passes through the detection window 9 and is reflected on the polished surface 21 of the wafer 4, and the reflected light passes through the detection window 9 again and returns to the end point detection device 8 to detect the end point. It is detected by the detector of the device 8. Now, considering a surface to be polished in which an insulating film is formed on a device pattern of a wafer, the reflectance exhibits a spectral characteristic depending on the thickness of the insulating film.
The end point detecting device 8 calculates the thickness of the insulating film from the spectral characteristics of the reflectance, and detects the end point of the polishing process. However, in the prior art, the influence of the polishing liquid 6 has not been considered. When the measurement light and the signal light pass through the polishing liquid 6 between the wafer 4 and the detection window 9, the interface between the detection window 9 and the polishing liquid 6 reflects the measurement light and the signal light. That is, reflection occurs at the boundary surface of the detection window 9 due to the difference in the refractive index between the polishing liquid 6 and the detection window 9, and the amount of signal incident on the photodetector for detection decreases due to the reflection loss. Furthermore, the effect of light scattering by abrasive grains contained in the polishing liquid could not be ignored. The abrasive grains scatter the measurement light and the signal light, and the scattered light may enter the photodetector as noise light together with the signal light. Further, there is a problem that the abrasive grains absorb the measurement light and the signal light, and the amount of the signal incident on the photodetector is reduced. The S / N ratio of measurement decreases due to the decrease of the signal light amount and the noise light as described above, causing the measurement accuracy of end point detection to deteriorate. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide an end point detector and a polishing apparatus with high measurement accuracy that have solved the problem of a decrease in the amount of measured light due to reflection loss. In order to solve the above-mentioned problems, the present invention firstly provides a polishing head and a polishing body for holding a polishing object, wherein the polishing body and the polishing object are provided. In a polishing apparatus for polishing the polishing object by relatively moving the polishing body and the polishing object with a polishing liquid interposed therebetween, for measuring the polishing state during the polishing. A polishing apparatus comprising: one or more detection windows for transmitting measurement light and signal light in the polishing body, wherein the detection windows have a refractive index close to that of the polishing liquid. I do. According to the present invention, by making the refractive index of the detection window close to the refractive index of the polishing liquid, the loss of light amount due to the reflection at the boundary surface is reduced, and the S / N ratio of the measurement is improved. Secondly,
2. The polishing apparatus according to claim 1, wherein the polishing liquid is formed by mixing and dispersing abrasive grains in a solvent, and a refractive index of the solvent is substantially equal to a refractive index of the abrasive grains. "I will provide a. The present invention reduces the noise light coming from the scattered light and improves the S / N ratio of the measurement by making the refractive index of the solvent and the refractive index of the abrasive grains substantially equal. Third,
"Equipped with a polishing head and a polishing body for holding a polishing object,
In a polishing apparatus for polishing the object to be polished by relatively moving the object to be polished and the object to be polished while a polishing liquid is interposed between the object to be polished and the object to be polished, A polishing body provided with at least one detection window for transmitting measurement light and signal light for measuring a polishing state, and removing the polishing liquid interposed between the detection window and the object to be polished; A polishing apparatus (claim 3) comprising a liquid discharge section. According to the present invention, by eliminating the polishing liquid that scatters the measuring light, the light scattered by the polishing liquid and further the noise light are reduced, and the S / N ratio of the measurement is improved. Fourthly, "the polishing liquid discharge section causes the polishing liquid in the vicinity of the detection window to flow out to the outside by the liquid.
The polishing apparatus according to claim 4 is provided. Fifthly, there is provided the polishing apparatus according to claim 3, wherein the polishing liquid discharge section causes the polishing liquid in the vicinity of the detection window to flow out to the outside by gas. . Sixth, `` having a polishing head and a polishing body for holding a polishing object, and in a state where a polishing liquid is interposed between the polishing body and the polishing object, the polishing body and the polishing object By relatively moving, in the polishing apparatus for polishing the polishing object, the polishing body includes one or more detection windows for passing measurement light and signal light for measuring the polishing state during the polishing, The polishing apparatus according to claim 6, wherein the detection window is made of a hydrophobic material. The present invention uses a detection window having a surface characteristic on which a polishing liquid that scatters the measuring light does not adhere, and there is no scattering of the measuring light by the polishing liquid.
The N ratio is improved. An embodiment of the present invention will be described below with reference to the drawings, but the present invention is not limited to the drawings. [First Embodiment] FIG. 1 shows a polishing apparatus according to a first embodiment of the present invention (corresponding to claims 1 and 2). 20 is a polishing body, 3 is a polishing head, 4 is a polishing object (wafer),
Reference numeral 5 denotes a polishing liquid supply unit, and reference numeral 6 denotes a polishing liquid. The polishing body 20
The polishing pad 2 is stuck on the surface plate 7. As the polishing pad 2, either a sheet-like one made of foamed polyurethane or a non-foamed resin having a groove structure on the surface may be used. The polishing head 3 is rotated (100) about the axis A by suitable means, and the platen 7 is rotated (101) about the axis B by suitable means. In this process, the surface to be polished of the wafer 4 is polished by the action of the polishing liquid 6 and the polishing pad 2. During polishing, the measurement light emitted from the end point detection device 8 passes through the detection window 10, penetrates the polishing liquid, reaches the surface to be polished of the wafer, and the reflected light having information on the surface to be polished is a signal. The light again passes through the polishing liquid and the detection window 10 and is detected by the light detection device of the end point detection device 8. Here, the detection window 10
Is composed of a glass plate. The refractive index of this glass plate is selected to be substantially the same as the refractive index of the polishing liquid. Hereinafter, the refractive index of the polishing liquid will be described. C
The polishing liquid used for MP is prepared by mixing abrasive grains with a solvent, and a combination thereof is selected depending on the type of an insulating film or a metal film to be polished. Cerium oxide (CeO 2 ), alumina (Al 2
O 3 ) and silica (SiO 2 ). The refractive index of these abrasive grains is 1.55 to 2.0 in the visible region, the solvent generally has a lower refractive index than these abrasive grains, and the polishing liquid has the abrasive grains uniformly dispersed in the solvent in the polished state. Can be considered. The particle size of the abrasive grains is usually about 100 nm, which is sufficiently smaller than several hundred nm of the wavelength of the measurement light. At this time, it is known that the polishing liquid becomes transparent and its refractive index depends on the concentration of the abrasive grains, and is intermediate between the refractive index of the solvent and the refractive index of the abrasive grains. As described above, the refractive index of the polishing liquid depends on the type of abrasive grains, the concentration of abrasive grains, and the type of solvent, and is usually 1.5 times.
11.8. In selecting the optical glass material used for the glass plate used here, in addition to the refractive index, cost and chemical durability are taken into consideration. Optical glass materials preferably used are crown, heavy crown, flint, heavy flint and the like, but are not particularly limited to these glass materials as long as the above conditions are satisfied. For example, quartz glass is preferably used depending on the refractive index of the polishing liquid. As an example of the proper use of the glass material, for a polishing liquid having a refractive index of 1.50, a glass material having a refractive index of about 1.50 selected from crown glass is preferably used, and the refractive index is 1.60. A glass material having a refractive index of about 1.60 selected from heavy crown type glass is preferably used for the polishing liquid of the above, and a refractive index selected from flint glass is used for the polishing liquid having a refractive index of 1.80. A glass material of about 1.80 is preferably used. The effect of selectively using the glass material of the glass plate used for the detection window in accordance with the refractive index of the polishing liquid will be described below. In general, it is known that light is reflected on a boundary surface between media having different refractive indexes, and the reflectance changes depending on an incident angle to the boundary, a refractive index, and the like.
Therefore, when the refractive indices of both media are substantially equal, the reflectance of light reflected on the boundary surface becomes small. As an example, when a polishing liquid using cerium oxide (CeO 2 ) abrasive grains and having a refractive index of 1.80 is used, according to the present invention, as a material of the glass plate of the detection window, a refractive index close to that of the polishing liquid is used. Since a heavy-flint glass material having a refractive index of 1.80 is used, the reflectance of light reflected on the boundary surface between the two media is extremely small, and the light amount loss is negligible. In addition to the glass plate, a material that transmits the measuring light, such as a plastic plate, can be used for the detection window. As described above, in addition to the reflection loss at the interface between the polishing liquid and the detection window, the reflected light at the interface between the solvent of the polishing liquid and the abrasive may be a problem. This reflected light causes light scattering when it is not sufficiently small compared to the wavelength of This scattered light is incident on the photodetector together with the signal light as noise light, and lowers the S / N ratio of the measurement, which is not preferable. In order to reduce the reflected light, that is, the scattered light, it is preferable to select a solvent having a refractive index close to the refractive index of the abrasive grains. Under the conditions described above, after the photodetector of the end point detecting device 8 preferably receives the signal light (multi-component wavelength light), the end point detecting device 8 splits the signal light, and the maximum of the spectral signal is obtained. Value, or local minimum, or (local maximum-local minimum), or (local minimum / local maximum), or maximum local maximum,
Or any one selected from the minimum minimum value, or (maximum minimum value-minimum minimum value), or (minimum minimum value / maximum maximum value), or the variance of the spectral signal, or an appropriate Fourier transform component of the spectral signal. The polishing state is measured by monitoring one or more of them, or by fitting the measured spectral signal or its Fourier transform signal to a spectral signal calculated and stored in advance by simulation or its Fourier transform signal. As a fitting method, a method of comparing cross-correlation coefficients is preferably used. Important as specific measurement items are detection of a polishing film thickness and detection of a process end point (end point detection). As described above, according to the present invention, since the detection window having a refractive index close to that of the polishing liquid is used, the light quantity loss of the signal light is small and the scattering is small, so that the signal light has a high S / N ratio. Can be measured, and therefore the polishing film thickness can be detected with high accuracy.
End point detection is possible. [Embodiment 2] FIG. 2 shows a second embodiment (corresponding to claims 3 and 4) of the present invention. The first embodiment differs from the first embodiment in that a pure water supply unit 11 and a supply path 13 are provided. Is different. The pure water supply unit 11 includes a tank 12 for storing pure water, and is connected to the detection window 9 through a supply path 13. Pure water flows from the pure water supply unit 11 to the detection window 9 due to the pressure, and pure water is supplied to the tank 12 from the supply port 14. During the polishing process, the polishing liquid 6 is applied to the detection window 9 and the wafer 4.
Is adhered, but the concentration of the polishing liquid 6 is lowered by the pure water supplied from the pure water supply unit 11. Therefore, the number of abrasive grains that scatter and absorb the measurement light and the signal light decreases, and the amount of light detected by the end point detection device 8 increases. Thereby, the S / N ratio of the signal light is improved, and the detection of the polished film thickness and the end point detection can be performed with higher accuracy. In FIG. 2, pure water is supplied by the hydrostatic pressure from the tank 12, but it may be supplied by forcibly applying pressure by making the tank 12 into a piston shape. The pure water supply unit 11
Is fixed to the surface plate 7 and pure water is supplied through the supply path 13, but pure water may simply flow from the upper surface of the detection window 9. Further, in FIG. 2, the polishing liquid is removed with pure water, but the removal may be performed using the solution used for the polishing liquid. Third Embodiment FIG. 3 is a diagram showing a third embodiment (corresponding to claims 3 and 5) of the present invention. Embodiment 2 is different from Embodiment 2 in that an air blow unit 15 is provided instead of the pure water supply unit 11. The air blow section 15 is provided with an air tank 16 and a valve 17.
Through to the detection window 9. The inside of the air tank 16 has a high pressure and blows air to the detection window 9. At this time, the air flow rate can be adjusted by the valve 17.
The polishing liquid 6 adheres to the detection window 9 and the wafer 4 during the polishing process. The polishing liquid 6 is blown off by the air blown from the air blow unit 15. For this reason, the measurement light enters the end point detection device 8 without being scattered between the wafer 4 and the detection window 9. Thereby, S / N of signal light measurement
As a result, the ratio of the polishing film thickness and the end point can be detected with high accuracy. Although air is blown through the supply path 13 in FIG. 3, it may be blown from the upper surface of the detection window 9. The polishing liquid 6 can also be removed by blowing not only air but also nitrogen gas or the like. [Fourth Embodiment] FIG. 4A shows a fourth embodiment of the present invention.
FIG. 7 is a view showing a CMP apparatus according to the present invention as viewed from above. The platen 2 rotates in the direction of arrow 101, and the wafer 4 rotates in the direction of arrow 100. A detection window 18 for detecting an end point is fitted in the surface plate 2.
The detection window 18 is made of a hydrophobic material, and a transparent plastic or the like through which measurement light passes can be used. The detection window 18 has an elongated rectangular shape and is shown in FIG.
It is attached with its long side directed toward the rotation center of the surface plate 2 as shown in FIG. Consider a case where the platen 2 rotates in the direction of the arrow 101 and the wafer 4 crosses the detection window 18. Although the polishing liquid 6 adheres to the surface of the detection window 18, the polishing liquid 6 is easily repelled because the window material of the detection window 18 is made of a hydrophobic material. Since the polishing liquid 6 has a more elongated shape, the polishing liquid 6 attached by centrifugal force due to the rotation of the platen 2 easily flows outward along the detection window 18. Therefore, although the polishing liquid does not adhere to the detection window, even if it does, if the wafer 4 approaches the detection window 18, the wafer 4 flips out the polishing liquid 6 on the surface of the detection window 18. Detection window 1
The polishing liquid 6 is removed from between 8. For this reason, the measurement light enters the end point detection device 8 without being scattered or absorbed between the wafer 4 and the detection window 18. As a result, the S / N ratio of the signal light measurement is improved, and thus the detection of the polished film thickness and the end point detection can be performed with high accuracy. In FIG. 4A, the detection window 18 is installed facing the center of rotation, but may be arranged as shown in FIG. 4B. In FIG. 4B, an elongated detection window 18 is fitted concentrically from the rotation center of the surface plate 2. Also in this case, the polishing liquid 6 can be removed from between the wafer 4 and the detection window 18 by the same effect as described above. FIG. 4 (a),
(B) uses plastic for the detection window,
In addition, it is also possible to apply a silicon resin-based, fluororesin-based, or wax-based hydrophobic coating on the surface of glass, quartz glass, or the like. By applying a coating to repel the polishing liquid 6 on the surface of the material through which the measurement light passes, the polishing liquid 6
This can prevent the measurement light from being attenuated. Although the present invention has been described with reference to the first to fourth embodiments, the reflected light from the surface of the glass plate of the detection window on the end point detection device side must be further considered. This reflectivity depends on the refractive index of the glass plate used, but is usually several percent or more. This reflected light causes a decrease in signal light as a loss of light amount and an increase in noise light. /
Decrease the N ratio. In order to reduce this, it is preferable to form a multilayer antireflection film on this surface by a known method, if necessary. As a result, the reflectance can be significantly reduced, and the S / N ratio of signal light measurement improves. Further, in order to deflect the reflected light from the surface of the glass plate on the end point detection device side from the optical axis of the measurement light and to prevent the reflected light from being incident on the light detection device of the end point detection device 8, the end point of the glass plate is detected. The surface normal direction on the device side is not parallel to the optical axis direction. Therefore, it is also a preferable method to make the glass plate wedge-shaped. The method of making the glass plate wedge-shaped can eliminate reflected light incident on the light detection device of the end point detection device 8 as noise light, but cannot reduce the light amount loss. Therefore, if necessary, both the antireflection film and the method of forming the glass plate into a wedge shape are used in combination. Although the present invention has been described with reference to the first to fourth embodiments, the present invention relates to a method for detecting a thickness or an end point of a removed layer in a step of removing an insulating layer or an electrode layer on a surface of a semiconductor element in a semiconductor device manufacturing process. In addition, the present invention is applied to a method for detecting a surface state in a manufacturing process in various industries. As described above, according to the first embodiment of the present invention,
Since the amount of reflected light at the interface between the detection window and the polishing liquid can be reduced, the amount of signal light increases, and as a result, the S /
The N ratio is improved, so that the detection of the polished film thickness and the end point can be performed with high accuracy. According to the second embodiment of the present invention, the number of abrasive grains that scatter and absorb signal light is reduced, the signal light amount is increased, and unnecessary scattered light is reduced. Thus, the S / N ratio of the signal light is improved, and the detection of the polished film thickness and the end point detection can be performed with higher accuracy. According to the third and fourth embodiments of the present invention, there is no abrasive grain for scattering / absorbing the signal light, the signal light amount is increased, and unnecessary scattered light is substantially eliminated. Thus, the S / N ratio of the signal light is improved, and the detection of the polished film thickness and the end point detection can be performed with higher accuracy.

【図面の簡単な説明】 【図1】本発明の実施の形態1のCMP研磨装置を表す
概念図である。 【図2】本発明の実施の形態2のCMP研磨装置を表す
概念図である。 【図3】本発明の実施の形態3のCMP研磨装置を表す
概念図である。 【図4】(a)、(b)本発明の実施の形態4のCMP
研磨装置を表す概念図である。 【図5】従来のCMP研磨装置を示す図である。 【符号の説明】 1 研磨ヘッド部 2 研磨パッド 3 研磨ヘッド 4 ウェハ 5 研磨液供給部 6 研磨液 7 定盤 8 終点検出装置 9 検出窓 10 検出窓 11 純水供給装置 12 タンク 13 供給経路 14 補給口 15 エアブロー部 16 エアタンク 17 バルブ 18 検出窓 20 研磨体 21 被研磨面 22 測定光と反射光(信号光)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram illustrating a CMP polishing apparatus according to a first embodiment of the present invention. FIG. 2 is a conceptual diagram illustrating a CMP polishing apparatus according to a second embodiment of the present invention. FIG. 3 is a conceptual diagram illustrating a CMP polishing apparatus according to a third embodiment of the present invention. FIGS. 4A and 4B show a CMP according to a fourth embodiment of the present invention;
It is a conceptual diagram showing a grinding device. FIG. 5 is a view showing a conventional CMP polishing apparatus. [Description of Signs] 1 Polishing head unit 2 Polishing pad 3 Polishing head 4 Wafer 5 Polishing liquid supply unit 6 Polishing liquid 7 Surface plate 8 End point detection device 9 Detection window 10 Detection window 11 Pure water supply device 12 Tank 13 Supply path 14 Supply Port 15 Air blow unit 16 Air tank 17 Valve 18 Detection window 20 Polishing body 21 Polished surface 22 Measurement light and reflected light (signal light)

フロントページの続き Fターム(参考) 2G059 AA05 BB16 CC20 DD01 DD12 EE02 FF06 GG00 KK01 NN01 3C058 AA07 AA16 AB06 AC04 BA07 CB01 DA02 DA17 Continuation of front page    F term (reference) 2G059 AA05 BB16 CC20 DD01 DD12                       EE02 FF06 GG00 KK01 NN01                 3C058 AA07 AA16 AB06 AC04 BA07                       CB01 DA02 DA17

Claims (1)

【特許請求の範囲】 【請求項1】研磨対象物を保持する研磨ヘッドと研磨体
とを具え、前記研磨体と前記研磨対象物との間に研磨液
を介在させた状態で、前記研磨体と前記研磨対象物を相
対移動させることにより、前記研磨対象物を研磨する研
磨装置において、前記研磨中に研磨状態を測定するため
の測定光と信号光を通すための1個以上の検出窓を前記
研磨体に具え、前記検出窓が上記研磨液に近い屈折率を
有することを特徴とする研磨装置。 【請求項2】前記研磨液は、溶媒に砥粒を混合分散させ
て成り、前記溶媒の屈折率と前記砥粒の屈折率がほぼ等
しいことを特徴とする、請求項1記載の研磨装置。 【請求項3 】研磨対象物を保持する研磨ヘッドと研磨体
とを具え、前記研磨体と前記研磨対象物との間に研磨液
を介在させた状態で、前記研磨体と前記研磨対象物を相
対移動させることにより、前記研磨対象物を研磨する研
磨装置において、前記研磨中に研磨状態を測定するため
の測定光と信号光を通すための1個以上の検出窓を前記
研磨体に具え、前記検出窓と前記研磨対象物の間に介在
する前記研磨液を排除する研磨液排出部を具えることを
特徴とする研磨装置。 【請求項4】前記研磨液排出部は、液体により検出窓近
傍にある研磨液を外部に流出させることを特徴とする請
求項3記載の研磨装置。 【請求項5】前記研磨液排出部は、気体により検出窓近
傍にある研磨液を外部に流出させることを特徴とする請
求項3記載の研磨装置。 【請求項6】研磨対象物を保持する研磨ヘッドと研磨体
とを具え、前記研磨体と前記研磨対象物との間に研磨液
を介在させた状態で、前記研磨体と前記研磨対象物を相
対移動させることにより、前記研磨対象物を研磨する研
磨装置において、前記研磨中に研磨状態を測定するため
の測定光と信号光を通すための1個以上の検出窓を前記
研磨体に具え、前記検出窓は疎水性の材料から作られて
いることを特徴とする研磨装置。
Claims: 1. A polishing body comprising: a polishing head for holding an object to be polished; and a polishing body, wherein a polishing liquid is interposed between the polishing body and the object to be polished. And by relatively moving the object to be polished, in a polishing apparatus for polishing the object to be polished, one or more detection windows for passing measurement light and signal light for measuring the polishing state during the polishing. A polishing apparatus provided in the polishing body, wherein the detection window has a refractive index close to that of the polishing liquid. 2. The polishing apparatus according to claim 1, wherein the polishing liquid is obtained by mixing and dispersing abrasive grains in a solvent, and a refractive index of the solvent is substantially equal to a refractive index of the abrasive grains. A polishing head for holding a polishing object and a polishing body, wherein the polishing body and the polishing object are interposed in a state where a polishing liquid is interposed between the polishing body and the polishing object. By relatively moving, in the polishing apparatus for polishing the polishing object, the polishing body includes one or more detection windows for passing measurement light and signal light for measuring the polishing state during the polishing, A polishing apparatus, comprising: a polishing liquid discharge unit configured to remove the polishing liquid interposed between the detection window and the polishing target. 4. The polishing apparatus according to claim 3, wherein the polishing liquid discharge section causes the polishing liquid in the vicinity of the detection window to flow out to the outside by a liquid. 5. The polishing apparatus according to claim 3, wherein the polishing liquid discharge section discharges the polishing liquid in the vicinity of the detection window to the outside by gas. 6. A polishing head for holding an object to be polished and a polishing body, wherein the polishing body and the object to be polished are interposed in a state where a polishing liquid is interposed between the polishing body and the object to be polished. By relatively moving, in the polishing apparatus for polishing the polishing object, the polishing body includes one or more detection windows for passing measurement light and signal light for measuring the polishing state during the polishing, The polishing apparatus according to claim 1, wherein the detection window is made of a hydrophobic material.
JP6003199A 1999-03-08 1999-03-08 Polishing device Pending JP2000254860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6003199A JP2000254860A (en) 1999-03-08 1999-03-08 Polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6003199A JP2000254860A (en) 1999-03-08 1999-03-08 Polishing device

Publications (1)

Publication Number Publication Date
JP2000254860A true JP2000254860A (en) 2000-09-19

Family

ID=13130305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6003199A Pending JP2000254860A (en) 1999-03-08 1999-03-08 Polishing device

Country Status (1)

Country Link
JP (1) JP2000254860A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062440A1 (en) * 2000-02-25 2001-08-30 Rodel Holdings, Inc. Polishing pad with a transparent portion
JP2002305165A (en) * 2001-01-31 2002-10-18 Nikon Corp Machining-shape estimating method, machining condition determining method, machining method, machining system, manufacturing method for semiconductor device, computer program and computer program storage medium
US6758723B2 (en) 2001-12-28 2004-07-06 Ebara Corporation Substrate polishing apparatus
US6785010B2 (en) 1999-12-13 2004-08-31 Ebara Corporation Substrate film thickness measurement method, substrate film thickness measurement apparatus and substrate processing apparatus
JP2004260156A (en) * 2003-02-06 2004-09-16 Toyobo Co Ltd Polishing pad and manufacturing method of semiconductor device
JP2006005358A (en) * 2004-06-16 2006-01-05 Rohm & Haas Electronic Materials Cmp Holdings Inc Polishing pad having pressure-relief channel
WO2007091439A1 (en) * 2006-02-06 2007-08-16 Toray Industries, Inc. Abrasive pad and abrasion device
JP2009196000A (en) * 2008-02-19 2009-09-03 Nikon Corp Polishing device
JP2013107203A (en) * 2013-03-11 2013-06-06 Nikon Corp Polishing device
US8845852B2 (en) 2002-11-27 2014-09-30 Toyo Tire & Rubber Co., Ltd. Polishing pad and method of producing semiconductor device
WO2015029524A1 (en) * 2013-08-28 2015-03-05 Sumco Techxiv株式会社 Method and device for polishing semiconductor wafer
JP2015077684A (en) * 2005-08-22 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Device and method for spectrum-based monitoring of chemical mechanical polishing
CN114434314A (en) * 2017-07-24 2022-05-06 株式会社荏原制作所 Polishing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675634B2 (en) 1999-12-13 2010-03-09 Ebara Corporation Substrate film thickness measurement method, substrate film thickness measurement apparatus and substrate processing apparatus
US6785010B2 (en) 1999-12-13 2004-08-31 Ebara Corporation Substrate film thickness measurement method, substrate film thickness measurement apparatus and substrate processing apparatus
US7072050B2 (en) 1999-12-13 2006-07-04 Ebara Corporation Substrate film thickness measurement method, substrate film thickness measurement apparatus and substrate processing apparatus
US7428064B2 (en) 1999-12-13 2008-09-23 Ebara Corporation Substrate film thickness measurement method, substrate film thickness measurement apparatus and substrate processing apparatus
WO2001062440A1 (en) * 2000-02-25 2001-08-30 Rodel Holdings, Inc. Polishing pad with a transparent portion
JP2002305165A (en) * 2001-01-31 2002-10-18 Nikon Corp Machining-shape estimating method, machining condition determining method, machining method, machining system, manufacturing method for semiconductor device, computer program and computer program storage medium
US6758723B2 (en) 2001-12-28 2004-07-06 Ebara Corporation Substrate polishing apparatus
US6942543B2 (en) 2001-12-28 2005-09-13 Ebara Corporation Substrate polishing apparatus
US7241202B2 (en) 2001-12-28 2007-07-10 Ebara Corporation Substrate polishing apparatus
US7585204B2 (en) 2001-12-28 2009-09-08 Ebara Corporation Substrate polishing apparatus
US7510460B2 (en) 2001-12-28 2009-03-31 Ebara Corporation Substrate polishing apparatus
US8845852B2 (en) 2002-11-27 2014-09-30 Toyo Tire & Rubber Co., Ltd. Polishing pad and method of producing semiconductor device
JP2004260156A (en) * 2003-02-06 2004-09-16 Toyobo Co Ltd Polishing pad and manufacturing method of semiconductor device
JP2006005358A (en) * 2004-06-16 2006-01-05 Rohm & Haas Electronic Materials Cmp Holdings Inc Polishing pad having pressure-relief channel
JP2015077684A (en) * 2005-08-22 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Device and method for spectrum-based monitoring of chemical mechanical polishing
KR101294863B1 (en) 2006-02-06 2013-08-08 도레이 카부시키가이샤 Abrasive pad and abrasion device
JP5223336B2 (en) * 2006-02-06 2013-06-26 東レ株式会社 Polishing pad and polishing apparatus
US8337277B2 (en) 2006-02-06 2012-12-25 Toray Industries, Inc. Polishing pad and polishing apparatus
WO2007091439A1 (en) * 2006-02-06 2007-08-16 Toray Industries, Inc. Abrasive pad and abrasion device
JP2009196000A (en) * 2008-02-19 2009-09-03 Nikon Corp Polishing device
JP2013107203A (en) * 2013-03-11 2013-06-06 Nikon Corp Polishing device
WO2015029524A1 (en) * 2013-08-28 2015-03-05 Sumco Techxiv株式会社 Method and device for polishing semiconductor wafer
US10553420B2 (en) 2013-08-28 2020-02-04 Sumco Techxiv Corporation Method and device for polishing semiconductor wafer
CN114434314A (en) * 2017-07-24 2022-05-06 株式会社荏原制作所 Polishing method

Similar Documents

Publication Publication Date Title
JP2000254860A (en) Polishing device
JP5363470B2 (en) Thin polishing pad with window and molding process
US6994607B2 (en) Polishing pad with window
KR20050059123A (en) Polishing pad, polishing plate hole cover, polishing apparatus, polishing method, and method for manufacturing semiconductor device
JP4131632B2 (en) Polishing apparatus and polishing pad
US6716085B2 (en) Polishing pad with transparent window
KR101109156B1 (en) Anti-scattering layer for polishing pad windows
CN101791781B (en) Monitoring method of polishing state, monitor of polishing state, polishing apparatus, processed wafer, semiconductor device manufacturing method, and semiconductor device
US8393933B2 (en) Polishing pad and system with window support
TWI548482B (en) Method of making and apparatus having windowless polishing pad and protected fiber
WO2001056068A1 (en) Monitor, method of monitoring, polishing device, and method of manufacturing semiconductor wafer
JP2000326220A (en) Detection of end point using light of different wavelength
US20040082271A1 (en) Polishing pad with window
KR20130103674A (en) Pad window insert
US6007405A (en) Method and apparatus for endpoint detection for chemical mechanical polishing using electrical lapping
US6832947B2 (en) CMP pad with composite transparent window
JP3374814B2 (en) Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device
KR20090055859A (en) Chamical machanical polishing pad
JP2004106174A (en) Polishing pad, lap hole cover, polishing device, polishing method, and method of manufacturing semiconductor device
JP2004319584A (en) Polishing pad and its manufacturing method
US20070210268A1 (en) Flow speed measuring apparatus and flow speed measuring method
JP3991743B2 (en) Polishing pad, polishing apparatus, and semiconductor device manufacturing method
JP2001287158A (en) Polishing member, polishing machine, adjusting method, measuring method, semiconductor device manufacturing method, and semiconductor device
US6916525B2 (en) Method of using films having optimized optical properties for chemical mechanical polishing endpoint detection
TW490361B (en) Optical endpoint detection system for chemical mechanical polishing