JP2000254724A - METHOD FOR HOT-ROLLING HIGH Si STEEL - Google Patents

METHOD FOR HOT-ROLLING HIGH Si STEEL

Info

Publication number
JP2000254724A
JP2000254724A JP6342399A JP6342399A JP2000254724A JP 2000254724 A JP2000254724 A JP 2000254724A JP 6342399 A JP6342399 A JP 6342399A JP 6342399 A JP6342399 A JP 6342399A JP 2000254724 A JP2000254724 A JP 2000254724A
Authority
JP
Japan
Prior art keywords
steel
nozzle
scale
slab
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6342399A
Other languages
Japanese (ja)
Other versions
JP3872609B2 (en
Inventor
Hideki Murakami
英樹 村上
Mitsuyoshi Osawa
三好 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06342399A priority Critical patent/JP3872609B2/en
Publication of JP2000254724A publication Critical patent/JP2000254724A/en
Application granted granted Critical
Publication of JP3872609B2 publication Critical patent/JP3872609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a good quality hot-rolled steel plate removing Si scale by specifying the heating temp. of a steel slab, the perpendicular component in colliding flow velocity and the colliding energy onto the surface of the cast slab and the liquid phase ratio in jetting flow at the colliding time onto the surface of the steel slab. SOLUTION: After removing the scale by spouting water from a nozzle, the high Si steel having >=0.5 wt.% Si content is hot-rolled. At this time, the steel slab is heated so that the surface temp. of the steel slab becomes <1173 deg.C in a heating furnace and it is regulated so as to satisfy the formula I to the perpendicular component in the colliding flow velocity V (m/s) onto the steel slab surface, the formulas II and III to the colliding energy E (J/mm2) onto the steel slab surface and the formula IV to the liquid phase α in the jetting flow velocity into the steel slab surface. Wherein, E=(P.Q)/(W.L) and α=Q/(V.A), and P is the spout pressure (Pa) from the nozzle, Q is the spouting flow rate (m3/S) (per one nozzle), W is shifting velocity (m/s) of the cast slab, L is the jetting width (m) at the colliding time onto the steel slab surface (per one nozzle) and A is the jetting area (m2) at the colliding time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、Si含有量が多
い鋼を熱間圧延する際の圧延材表面のスケールの除去方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing scale from the surface of a rolled material when hot rolling steel having a high Si content.

【0002】[0002]

【従来の技術】鋼の熱間圧延に際しては、圧延に先立っ
て鋼片を加熱炉に装入して1100〜1400℃の高温
に加熱する。加熱炉内は酸化雰囲気なので、加熱中に鋼
片の表面は酸化され、スケールが生成する。スケールは
酸化鉄を主体とし、加熱炉から抽出された時点での鋼片
表面のスケールの厚さは1〜2mmに達する。このスケ
ールが鋼片表面に付着したままで圧延を行うと、圧延材
の表面にスケールが食い込み、スケール疵として残存す
る。このスケール疵の発生を防止するため、従来から圧
延前の鋼板表面に100〜150kg/cm2の圧力で
水を噴射してスケールを除去する方法が知られている。
2. Description of the Related Art During hot rolling of steel, prior to rolling, a steel slab is charged into a heating furnace and heated to a high temperature of 1100 to 1400 ° C. Since the inside of the heating furnace is an oxidizing atmosphere, the surface of the steel slab is oxidized during heating, and scale is generated. The scale is mainly composed of iron oxide, and the thickness of the scale on the surface of the billet when extracted from the heating furnace reaches 1 to 2 mm. If rolling is performed while the scale remains attached to the surface of the billet, the scale bites into the surface of the rolled material and remains as scale flaws. In order to prevent the occurrence of scale flaws, a method of spraying water at a pressure of 100 to 150 kg / cm 2 onto a steel sheet surface before rolling to remove scales has been conventionally known.

【0003】しかし、スケールの剥離のしやすさは鋼の
成分によっても異なり、特にSi含有量が多い鋼に生成
するスケールは、非常に剥離しにくいことが知られてい
る。この理由は、スケール生成の際にファイアライト
(Fe2SiO4)が生成し、スケールと鋼との界面が複
雑に入り組んだ特有の構造が形成されるからである。こ
のような構造のスケールが生成する鋼を熱間圧延する場
合には、上記のスケール除去方法ではスケールを十分に
除去することができず、圧延後の製品表面にスケール疵
が残存し、製品欠陥の原因となる。
[0003] However, the ease of peeling of the scale varies depending on the composition of the steel, and it is known that the scale formed on steel having a high Si content is particularly difficult to peel. This is because firelite (Fe 2 SiO 4 ) is generated when the scale is formed, and a unique structure in which the interface between the scale and the steel is complicated and complicated is formed. In the case of hot rolling a steel having a scale having such a structure, the scale cannot be sufficiently removed by the above-described scale removing method, scale flaws remain on the product surface after rolling, and product defects are generated. Cause.

【0004】Si含有鋼の上記問題を解決するため、特
開平6−114432号公報では、加熱炉から抽出した
後、一次スケールの上部層を除去した鋼片に、粗圧延の
前あるいは少なくとも1パスの粗圧延後に吐出圧力30
0〜700kg/cm2の高圧水を衝突エネルギーEが
0.05J/mm2以上となる条件で吹き付ける高Si
鋼の熱延鋼板の製造方法が開示されている。ここで、衝
突エネルギーEは、(ノズル吐出圧力×1ノズル当たり
流量)/(1ノズル辺りの噴射幅×鋼片の走行速度)で
表される。
[0004] In order to solve the above-mentioned problem of the Si-containing steel, Japanese Patent Application Laid-Open No. HEI 6-114432 discloses that, after extraction from a heating furnace, a steel slab from which an upper layer of a primary scale is removed is subjected to at least one pass before rough rolling. Discharge pressure after rough rolling of
High Si spraying high pressure water of 0 to 700 kg / cm 2 under the condition that the collision energy E is 0.05 J / mm 2 or more
A method for producing a hot rolled steel sheet of steel is disclosed. Here, the collision energy E is represented by (nozzle discharge pressure × flow rate per nozzle) / (injection width per nozzle × travel speed of steel slab).

【0005】また、同じ問題を解決するため、特開平8
−24937号公報では、鋼板の表面温度を850℃以
上とし、吐出圧力×吐出量(kg/cm2×リットル/
cm2)≧0.8×(wt%Si)でノズルから吐出さ
せた液体の流れのうち液滴流領域で生成した液滴を鋼板
表面に衝突させて清浄にする鋼板表面の清浄方法が記載
されている。ノズルと鋼板表面との距離Lは、下記式の
範囲とすることが好ましい。 390000/(x+360)+P/5-960≦L≦ 390000/(x+360)+P/29-9
60 また、上記公報では、実施例において吐出圧力300、
450、800kg/cm2の条件での実施結果が示さ
れている。
In order to solve the same problem, Japanese Patent Laid-Open No.
According to Japanese Patent No. 24937, the surface temperature of the steel sheet is set to 850 ° C. or more, and the discharge pressure × the discharge amount (kg / cm 2 × liter /
cm 2 ) ≧ 0.8 × (wt% Si) A method for cleaning the surface of a steel sheet is described, in which a droplet generated in a droplet flow region in a liquid flow discharged from a nozzle collides with the steel sheet surface to be cleaned. Have been. It is preferable that the distance L between the nozzle and the steel plate surface be in the range of the following expression. 390000 / (x + 360) + P / 5-960 ≦ L ≦ 390000 / (x + 360) + P / 29-9
60 In the above-mentioned publication, the discharge pressure 300,
The results obtained under the conditions of 450 and 800 kg / cm 2 are shown.

【0006】[0006]

【発明が解決しようとする課題】高Si鋼の熱間圧延に
おいて、前記公知技術を適用してスケール除去を行って
も、スケールを十分に除去することができなかった。そ
のため、圧延後の製品にSiスケールが残存し、十分な
品質の熱延鋼板を製造することが困難であった。
In the hot rolling of high Si steel, the scale cannot be sufficiently removed even if the above-mentioned known technique is applied to remove the scale. Therefore, Si scale remains in the product after rolling, and it has been difficult to produce a hot-rolled steel sheet of sufficient quality.

【0007】本発明は、上記課題を解決し、高Si鋼の
熱間圧延において、Siスケールを除去して十分に良好
な品質の熱延鋼板を製造する方法を提供することを目的
とする。
An object of the present invention is to solve the above problems and to provide a method for producing a hot-rolled steel sheet of sufficiently good quality by removing Si scale in hot rolling of high Si steel.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは、 (1)ノズルから水を吐出させ鋼板の表面に衝突させて
スケールを除去して熱間圧延を行うSi含有量0.5重
量%以上の高Si鋼の熱間圧延方法において、加熱炉に
おいて鋼片表面温度が1173℃未満となるように鋼片
を加熱し、鋼片表面への衝突流速垂線成分V(m/s)
をV≧(220+300・log[%Si])とし、鋼
片表面への衝突エネルギーE(J/mm2)を[%S
i]≦1でE≧1.1J/mm2、[%Si]>1でE
≧1.1×[%Si](J/mm2)とし、鋼片表面へ
の衝突時の噴流液相化率αを0.01≦α≦0.1とす
ることを特徴とする高Si鋼の熱間圧延方法。ただし、 E=(P・Q)/(W・L) α=Q/(V・A) P:ノズルからの吐出圧力(Pa) Q:ノズルからの吐出流量(m3/s)(1ノズル当た
り) W:鋼片の移動速度(m/s) L:鋼片表面への衝突時の噴流幅(m)(1ノズル当た
り) A:鋼片表面への衝突時の噴流面積(m2) (2)ホットスカーフ又はコールドスカーフによって鋳
片表面を溶削した後に加熱−圧延を行うことを特徴とす
る請求項1に記載の高Si鋼の熱間圧延方法。である。
That is, the gist of the present invention is as follows: (1) Water is discharged from a nozzle and collides with the surface of a steel sheet to remove scale and hot-roll the Si content. In a hot rolling method for a high Si steel of not less than 0.5% by weight, the slab is heated in a heating furnace so that the slab surface temperature is less than 1173 ° C., and the impact velocity perpendicular component V (m / m / s)
Is defined as V ≧ (220 + 300 · log [% Si]), and the collision energy E (J / mm 2 ) against the steel slab surface is expressed as [% S
i] ≦ 1, E ≧ 1.1 J / mm 2 , [% Si]> 1, E
≧ 1.1 × [% Si] (J / mm 2 ), and the jet liquidus phase α at the time of collision with the steel slab is 0.01 ≦ α ≦ 0.1. Hot rolling method for steel. Here, E = (P · Q) / (W · L) α = Q / (V · A) P: Discharge pressure from nozzle (Pa) Q: Discharge flow rate from nozzle (m 3 / s) (1 nozzle W): Speed of movement of the slab (m / s) L: Jet width (m) at the time of collision with the slab surface (per nozzle) A: Jet area (m 2 ) at the time of collision with the slab surface (2) The hot-rolling method for high Si steel according to claim 1, wherein the hot-rolling is performed after the slab surface is cut by hot scarf or cold scarf. It is.

【0009】高Si鋼のSiスケール除去のために重要
な第1のポイントは、鋼材表面がFeOとFe2SiO4
が共晶し融解する温度(1173℃)未満の状態で加熱
することである。共晶物が融解し、地鉄とスケールの密
着性が強化された後では、80MPaの超高圧デスケを
用いても除去は困難であった。
The first important point for removing Si scale from high Si steel is that the surface of the steel material is made of FeO and Fe 2 SiO 4.
Is heated below the temperature (1173 ° C.) at which eutectic melts. After the eutectic material was melted and the adhesion between the base iron and the scale was strengthened, it was difficult to remove even using an 80 MPa ultra-high pressure deske.

【0010】第2のポイントは、高速噴流のエネルギー
を確実にスケール表面に伝達してスケールを除去するた
め、噴流を多数の独立した液滴に分離し、かつ個々の液
滴の大きさを適切な範囲に保つことである。本発明は、
上記液滴の適切化条件が、噴流液相化率αで表せること
を明らかにした。即ち、噴流液相化率αを上記範囲とす
ることにより、噴流の液滴は適切な大きさを保ちつつ、
独立した液滴として分離し、噴流のエネルギーを最大限
活用してスケール剥離を行うことができる。
The second point is to separate the jet into a number of independent droplets and to size the individual droplets in order to ensure that the energy of the high velocity jet is transferred to the scale surface to remove scale. It is to keep in a proper range. The present invention
It has been clarified that the appropriate conditions for the droplets can be expressed by the jet liquidus ratio α. That is, by setting the jet liquidus ratio α to the above range, the droplets of the jet maintain an appropriate size,
The droplets are separated as independent droplets, and scale separation can be performed by making full use of the energy of the jet.

【0011】第3のポイントは、噴流の衝突流速垂直成
分Vを上記値以上に確保することである。本発明におい
ては、ある特定の衝突流速垂直成分を確保しないと、流
量をどんなに流しても高Si鋼のスケールの破壊を開始
することができない点、および該必要流速が鋼のSi含
有量の関数になっている点を明らかにした。
The third point is to ensure that the collision flow velocity vertical component V of the jet flow is equal to or higher than the above value. In the present invention, the point that the failure of the scale of high-Si steel cannot be started at any flow rate without securing a specific collision flow velocity vertical component, and the required flow velocity is a function of the Si content of the steel. Clarified.

【0012】第4のポイントは、鋼片単位面積当たりの
衝突エネルギーEを上記値以上に確保することである。
本発明は、限界となる衝突エネルギーEが鋼のSi含有
量の関数となることをも明らかにした。第3のポイント
の流速を有する噴流でスケールの破壊を開始した後、第
4のポイントの衝突エネルギーを確保することによって
スケールを完全に除去することが可能になる。
The fourth point is to ensure that the collision energy E per unit area of the billet is equal to or more than the above value.
The present invention has also revealed that the critical collision energy E is a function of the Si content of the steel. After initiating scale destruction with a jet having a flow velocity at the third point, securing the collision energy at the fourth point allows the scale to be completely removed.

【0013】上記4つのポイントをすべて満足したとき
にはじめて、Siスケールに起因する表面欠陥の発生し
ない高Si鋼の熱間圧延が可能になった。
[0014] Only when all four points are satisfied, hot rolling of high Si steel without generation of surface defects caused by Si scale becomes possible.

【0014】更に、ホットスカーフ又はコールドスカー
フによって鋳片表面を溶削した後に加熱−圧延を行うこ
とによって熱間圧延後の鋼板表面の良好な品質をより確
実に確保することができる。
Further, by performing hot-rolling after hot-cold or cold-scarfing the slab surface, good quality of the steel sheet surface after hot rolling can be ensured more reliably.

【0015】[0015]

【発明の実施の形態】本発明のスケール除去のための噴
流を発生するノズルとして、吐出流が熱延鋼板の幅方向
に広がるフラットノズルを用いることができる。幅方向
の広がり角度が大きいほど熱延鋼板の全幅をカバーする
ためのノズル個数を減らすことが可能になるが、一方で
鋼片表面への衝突流速垂直成分Vを確保するためには広
がり角度θを大きくすることは得策ではない。ノズル吐
出流速をV0とすると、吐出流の広がり幅の両端におい
ては、V=V0・cos(θ/2)となる。ノズルの広
がり角度θは40°以下が好ましい。吐出流の広がり幅
の中央においては、鋼片表面への衝突流速はノズルから
の吐出流速と同等の流速を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a nozzle for generating a jet for removing scale according to the present invention, a flat nozzle whose discharge flow spreads in the width direction of a hot-rolled steel sheet can be used. As the spread angle in the width direction is larger, the number of nozzles for covering the entire width of the hot-rolled steel sheet can be reduced. On the other hand, the spread angle θ It is not advisable to increase. Assuming that the nozzle discharge flow velocity is V 0 , V = V 0 · cos (θ / 2) at both ends of the spread width of the discharge flow. The spread angle θ of the nozzle is preferably 40 ° or less. At the center of the spread width of the discharge flow, the flow velocity of the collision with the surface of the billet can be equivalent to the flow velocity of the discharge from the nozzle.

【0016】本発明においては、鋼片表面への衝突流速
垂線成分V(m/s)を V≧220+300・log[%Si] とする。Siスケールを有する鋼板表面に液滴を衝突さ
せたときの、Siスケールが破壊するまでに要する同一
箇所に衝突した液滴個数と液滴流速との関係を図1に示
す。液滴の流速を減じていくとスケール破壊に要する液
滴個数が増大していくが、ある限界流速以下まで液滴流
速を減じると、液滴個数をいくら増大してもスケールの
破壊は起こらなくなることが判明した。また、この限界
流速は鋼のSi含有量によっても変動し、Si含有量が
高いほど限界流速も高くなることがわかった。この限界
流速を式で表現したのが、上記式であり、この式を満足
する流速で噴流を鋼片に吹きつけた場合にはじめて、高
Si鋼におけるスケールを十分に除去することが可能に
なる。
In the present invention, the vertical component V (m / s) of the collision flow velocity against the steel slab is defined as V ≧ 220 + 300 · log [% Si]. FIG. 1 shows the relationship between the number of droplets colliding with the same portion required until the Si scale breaks and the flow velocity of the droplets when the droplets collide with the steel plate surface having the Si scale. Decreasing the flow velocity of the droplets increases the number of droplets required for scale destruction, but if the flow velocity of the droplets is reduced below a certain limit flow velocity, scale destruction does not occur even if the number of droplets is increased It has been found. Further, it was found that the critical flow velocity also fluctuated depending on the Si content of the steel, and the higher the Si content, the higher the critical flow velocity. The above equation is used to express this critical flow velocity, and it is possible to sufficiently remove scale in high Si steel only when a jet is blown at a flow rate that satisfies this equation. .

【0017】ノズル吐出流速はノズルからの吐出圧力P
の平方根に比例するため、鋼片表面への衝突流速垂直成
分Vを本発明の範囲に確保するためには、吐出圧力を確
保することが必要である。[%Si]=1%、ノズル広
がり角度θ=30°の市販デスケノズルを用いた場合、
吐出圧力として40MPa以上とすれば本発明の必要V
を確保することができる。
The nozzle discharge velocity is the discharge pressure P from the nozzle.
Therefore, in order to secure the vertical component V of the collision flow velocity on the billet surface within the range of the present invention, it is necessary to secure the discharge pressure. When using a commercially available Deske nozzle with [% Si] = 1% and a nozzle spread angle θ = 30 °,
If the discharge pressure is 40 MPa or more, the necessary V of the present invention is obtained.
Can be secured.

【0018】上記流速で噴流を衝突させることによって
スケールの破壊が開始されれば、その後は噴流による衝
突エネルギーEの投入量に比例してスケールの剥離が進
行する。衝突エネルギーとスケール剥離率との関係を図
2に示す。本発明においては、図2においてスケール剥
離率が100%となる衝突エネルギーを下限とし、それ
以上の衝突エネルギーで噴流を衝突させる。即ち、 [%Si]≦1 で E≧1.1J/mm2、 [%Si]>1 で E≧1.1×[%Si](J/m
2) とする。ここで、 E=(P・Q)/(W・L) α=Q/(V・A) P:ノズルからの吐出圧力(Pa) Q:ノズルからの吐出流量(m3/s)(1ノズル当た
り) W:鋼片の移動速度(m/s) L:鋼片表面への衝突時の噴流幅(m)(1ノズル当た
り) と表すことができるので、所定の鋼片の移動速度W、ノ
ズル当たりの噴流幅Lにおいて、吐出圧力Pと吐出流量
Qを確保することによって上記衝突エネルギーを確保す
ることができる。
If the destruction of the scale is started by colliding the jet at the above-mentioned flow velocity, the scale separation proceeds thereafter in proportion to the input amount of the collision energy E by the jet. FIG. 2 shows the relationship between the collision energy and the scale separation rate. In the present invention, the collision energy at which the scale separation rate becomes 100% in FIG. 2 is set as a lower limit, and the jet is collided with a collision energy higher than that. That is, when [% Si] ≦ 1, E ≧ 1.1 J / mm 2 , and when [% Si]> 1, E ≧ 1.1 × [% Si] (J / m
m 2 ). Here, E = (P · Q) / (W · L) α = Q / (V · A) P: discharge pressure from nozzle (Pa) Q: discharge flow rate from nozzle (m 3 / s) (1) W: The moving speed of the billet (m / s) L: The jet width (m) at the time of collision with the billet surface (per nozzle) The collision energy can be secured by securing the discharge pressure P and the discharge flow rate Q in the jet width L per nozzle.

【0019】高圧噴流の衝突によって十分な衝突エネル
ギーを生み出すためには、衝突時において噴流の液滴が
お互いに独立して分離しており、かつ個々の液滴の大き
さを適切な範囲に保つことが必要である。本発明は、上
記液滴の適切化条件が、噴流液相化率αで表せることを
明らかにした。噴流液相化率αとは、噴流の衝突面にお
いて、噴流全体が占める断面積のうち、液滴が占める断
面積の割合を無次元で表示したものである。即ち、 α=Q/(V・A) Q:ノズルからの吐出流量(m3/s)(1ノズル当た
り) A:鋼片表面への衝突時の噴流面積(m2) と表すことができる。噴流面積Aは、ノズルの衝突面に
相当する位置に圧力測定フィルムを配置し、所定の時
間、例えば5秒間の噴出を行った後に圧力測定フィルム
上の発色した部分の面積を測定することによって実測す
ることができる。フラットノズルを採用した場合、ノズ
ルの吐出口から衝突面までの距離が増えるほど噴流面積
Aが増大し、結果として液相化率αが減少する。
In order to generate sufficient collision energy by the collision of the high-pressure jet, the droplets of the jet are separated independently of each other at the time of the collision, and the size of each droplet is kept within an appropriate range. It is necessary. The present invention has clarified that the above-mentioned conditions for optimizing the droplets can be represented by the jet liquid phase ratio α. The jet liquidus ratio α is a dimensionless representation of the ratio of the cross-sectional area occupied by droplets to the cross-sectional area occupied by the entire jet at the collision surface of the jet. That is, α = Q / (V · A) Q: discharge flow rate from the nozzle (m 3 / s) (per nozzle) A: jet area (m 2 ) at the time of collision with the billet surface . The jet area A is actually measured by arranging a pressure measurement film at a position corresponding to the collision surface of the nozzle, and performing ejection for a predetermined time, for example, 5 seconds, and then measuring the area of the colored portion on the pressure measurement film. can do. When a flat nozzle is used, the jet area A increases as the distance from the nozzle orifice to the collision surface increases, and as a result, the liquidus ratio α decreases.

【0020】本発明でαの上限を0.1としたのは、
0.1を超えると未だ液滴の分離独立が不十分であり、
有効な液滴個数密度が少なくスケールを破壊する十分な
能力が得られないからである。また、αの下限を0.0
1としたのは、0.01未満では噴流が広がり過ぎ、各
液滴が小さくなり過ぎてスケールを破壊する衝撃力を持
ち得なくなるからである。ノズル広がり角度θ=30
°、吐出断面積4mm2の市販デスケノズルを用いた場
合、0.01≦α≦0.1となるのは、ノズルと衝突面
との距離が30〜180mmの範囲である。
In the present invention, the upper limit of α is set to 0.1 because:
If it exceeds 0.1, separation and independence of droplets are still insufficient,
This is because the effective droplet number density is so small that a sufficient ability to break the scale cannot be obtained. The lower limit of α is set to 0.0
The reason why it is set to 1 is that if it is less than 0.01, the jet flow becomes too wide, and each droplet becomes too small to have an impact force that destroys the scale. Nozzle spread angle θ = 30
When a commercially available Deske nozzle having a discharge cross-sectional area of 4 mm 2 is used, 0.01 ≦ α ≦ 0.1 is satisfied when the distance between the nozzle and the collision surface is in the range of 30 to 180 mm.

【0021】液相化率αとスケールの破壊力との関係
は、噴流をアルミ板に衝突させたときのアルミ板の壊食
量によっても評価することができる。図3に、吐出流量
185リットル/分/本、吐出流速240m/s、30
°広角でアルミ板に衝突させた場合のαと平均壊食指数
(最大壊食量で規格化)との関係を示す。スケール除去
能力と同様、壊食量も0.01≦α≦0.1の範囲で大
きな値を示している。
The relationship between the liquidus ratio α and the breaking force of the scale can also be evaluated by the amount of erosion of the aluminum plate when the jet flows impinge on the aluminum plate. FIG. 3 shows a discharge flow rate of 185 liters / min / tube, a discharge flow rate of 240 m / s,
° Shows the relationship between α and the average erosion index (normalized by the maximum erosion amount) when colliding against an aluminum plate at a wide angle. As with the scale removal ability, the erosion amount also shows a large value in the range of 0.01 ≦ α ≦ 0.1.

【0022】加熱炉における鋼片の加熱は、鋼片表面温
度が1173℃未満となるように加熱する。前述したと
おり、鋼材表面温度が1173℃以上となると、FeO
とFe2SiO4が共晶し融解し、地鉄とスケールの密着
性が強化されるからである。スケール除去のための本発
明のノズルからの水噴射は、表面温度が1100℃以下
の仕上圧延の手前で行うのが好ましい。粗圧延前にスケ
ール除去を行っても鋼板表面温度が高温である(高温に
復熱する)ため、仕上圧延までにSiスケールが発生す
るからであり、加えて粗圧延で生じるスケール中の亀裂
がデスケ性向上に作用するからである。また、本発明の
スケール除去を行う手前で、従来方法の低圧水噴射によ
るスケール除去を行ってもよい。低圧水噴射によって加
熱炉で生成した付着スケールのうちの除去しやすい上層
部を除去した後、本発明のノズルからの水噴射で最も除
去しにくい鋼との境界部のSiスケールを除去すること
により、より確実にスケール除去を完了することができ
る。
The slab is heated in the heating furnace so that the slab surface temperature is lower than 1173 ° C. As described above, when the steel material surface temperature becomes 1173 ° C. or more, FeO
And Fe 2 SiO 4 is melted eutectic is because adhesion base iron and scale is enhanced. The water injection from the nozzle of the present invention for removing scale is preferably performed before finish rolling at a surface temperature of 1100 ° C. or less. This is because even if the scale is removed before the rough rolling, the steel sheet surface temperature is high (recovery to a high temperature), so that Si scale is generated before the finish rolling. In addition, cracks in the scale generated by the rough rolling are generated. This is because it works to improve deskeability. Prior to performing the scale removal of the present invention, the scale removal by low-pressure water injection according to the conventional method may be performed. After removing the easily removable upper layer portion of the adhesion scale generated in the heating furnace by the low-pressure water injection, by removing the Si scale at the boundary with the steel which is most difficult to remove by the water injection from the nozzle of the present invention, Thus, descaling can be completed more reliably.

【0023】本発明のスケール除去を行う際の鋼材表面
温度には特に制限はなく、一般的には、950℃〜11
00℃でスケール除去が行われている。
There is no particular limitation on the surface temperature of the steel material when the scale is removed according to the present invention.
Scale removal is performed at 00 ° C.

【0024】本発明において、高Si鋼とは鋼中のSi
含有量が0.5重量%以上のものをいう。0.5重量%
未満では、従来技術によるスケール除去が充分可能であ
ったためである。
In the present invention, the high Si steel is defined as Si in the steel.
It means those having a content of 0.5% by weight or more. 0.5% by weight
If it is less than 1, the scale removal by the conventional technique was sufficiently possible.

【0025】[0025]

【実施例】Si含有量1〜2%の高Si鋼の熱間圧延に
ついて、本発明を適用した。圧延に用いた鋼片サイズ
は、長さ8500mm前後、幅は600〜1500m
m、厚は約240mmである。本発明のスケール除去は
仕上圧延前に実施し、そのときの鋼板厚みは約40mm
である。スケール除去用のノズルにはフラットノズルを
用いた。ノズルの広がり角度θは15〜40°である。
EXAMPLES The present invention was applied to hot rolling of high Si steel having a Si content of 1 to 2%. The billet size used for rolling is around 8500 mm in length and 600 to 1500 m in width
m, thickness is about 240 mm. The scale removal of the present invention is performed before finish rolling, and the steel sheet thickness at that time is about 40 mm.
It is. A flat nozzle was used as a scale removing nozzle. The spread angle θ of the nozzle is 15 to 40 °.

【0026】表1にその他の実施条件及び実施結果を示
す。ここで、「表面温度」は加熱炉における鋼片表面温
度を示す。スカーフ有りの場合のスカーフには酸素バー
ナーによるホットスカーフを用いた。スカーフ溶削量は
片面1mmとした。吐出流量の単位はリットル/分/本
である。衝突流速垂線成分Vは、吐出流速V0と広がり
角度θからV=V0×cos(θ/2)の式によって計
算できる。実施結果は、酸洗後の鋼板表面の表面疵にお
けるスケール残存率(%)によって評価した。
Table 1 shows other working conditions and working results. Here, “surface temperature” indicates the surface temperature of the slab in the heating furnace. A hot scarf using an oxygen burner was used as a scarf with a scarf. The scarf cutting amount was 1 mm on one side. The unit of the discharge flow rate is liter / minute / piece. The collision flow velocity perpendicular component V can be calculated from the discharge flow velocity V 0 and the spread angle θ by the following equation: V = V 0 × cos (θ / 2). The execution results were evaluated by the scale residual ratio (%) in the surface flaws on the steel sheet surface after pickling.

【0027】[0027]

【表1】 [Table 1]

【0028】表1のNo.1〜10が本発明例である。
表面温度、吐出流速V0、液相化率α、衝突エネルギー
Eのいずれも本発明の範囲内となっており、スケール残
存率はいずれも5%以下と良好な結果を得ることができ
た。
No. 1 in Table 1. 1 to 10 are examples of the present invention.
All of the surface temperature, the discharge flow rate V 0 , the liquidus ratio α, and the collision energy E were within the range of the present invention, and the residual ratio of the scale was 5% or less, and good results were obtained.

【0029】表1のNo.11〜22は比較例である。
No.16、20は表面温度が、No.12、17、2
1は吐出流速(衝突流速垂線成分)が、No.18、1
9は液相化率が、No.11、13〜15、22は衝突
エネルギーが、いずれも本発明の範囲を外れており、結
果としてスケール残存率がいずれも不良であった。
In Table 1, No. 11 to 22 are comparative examples.
No. Nos. 16 and 20 have the surface temperatures No. 12, 17, 2
No. 1 indicates that the discharge flow rate (collision flow velocity perpendicular component) is No. 1; 18, 1
No. 9 has a liquid phase conversion ratio of No. 9; 11, 13 to 15, and 22 all had collision energies outside the range of the present invention, and as a result, all of the scale residual ratios were poor.

【0030】[0030]

【発明の効果】ノズルから水を吐出させ鋼板の表面に衝
突させてスケールを除去して熱間圧延を行う高Si鋼の
熱間圧延方法において、鋼片の加熱温度、鋼片表面への
衝突流速垂線成分V、鋼片表面への衝突エネルギーE、
鋼片表面への衝突時の噴流液相化率αをを特定すること
により、Siスケールを除去して十分に良好な品質の熱
延鋼板を製造することが可能になった。
In the hot rolling method for high Si steel in which water is discharged from a nozzle and collides with the surface of a steel sheet to remove scale and perform hot rolling, the heating temperature of the slab and the collision with the surface of the slab Flow velocity perpendicular component V, impact energy E on the billet surface,
By specifying the jet liquidus ratio α at the time of collision with the billet surface, it became possible to remove the Si scale and produce a hot-rolled steel sheet of sufficiently good quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Siスケールが破壊するまでに要する同一箇所
に衝突した液滴個数と液滴流速との関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between the number of droplets colliding with the same location required until the Si scale is broken and the droplet flow velocity.

【図2】ノズルから鋼片表面への衝突エネルギーとスケ
ール剥離率との関係を示す図である。
FIG. 2 is a diagram showing a relationship between collision energy from a nozzle to a steel slab surface and a scale peeling rate.

【図3】アルミ板にノズル噴流を衝突させた場合のαと
単位時間の壊食量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between α and the amount of erosion per unit time when a nozzle jet collides with an aluminum plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ノズルから水を吐出させ鋼板の表面に衝
突させてスケールを除去して熱間圧延を行うSi含有量
0.5重量%以上の高Si鋼の熱間圧延方法において、
加熱炉において鋼片表面温度が1173℃未満となるよ
うに鋼片を加熱し、鋼片表面への衝突流速垂線成分V
(m/s)をV≧(220+300・log[%S
i])とし、鋼片表面への衝突エネルギーE(J/mm
2)を[%Si]≦1でE≧1.1J/mm2、[%S
i]>1でE≧1.1×[%Si](J/mm2)と
し、鋼片表面への衝突時の噴流液相化率αを0.01≦
α≦0.1とすることを特徴とする高Si鋼の熱間圧延
方法。 ただし、 E=(P・Q)/(W・L) α=Q/(V・A) P:ノズルからの吐出圧力(Pa) Q:ノズルからの吐出流量(m3/s)(1ノズル当た
り) W:鋼片の移動速度(m/s) L:鋼片表面への衝突時の噴流幅(m)(1ノズル当た
り) A:鋼片表面への衝突時の噴流面積(m2
1. A hot rolling method for a high Si steel having an Si content of 0.5% by weight or more, wherein water is discharged from a nozzle and collides with a surface of a steel sheet to remove scale and perform hot rolling.
In the heating furnace, the slab is heated so that the slab surface temperature is less than 1173 ° C., and the impact velocity perpendicular component V to the slab surface
(M / s) by V ≧ (220 + 300 · log [% S
i]) and the impact energy E (J / mm)
2 ) When [% Si] ≦ 1, E ≧ 1.1 J / mm 2 , [% S]
i]> 1 and E ≧ 1.1 × [% Si] (J / mm 2 ), and the jet liquid phase conversion rate α at the time of collision with the steel slab surface is 0.01 ≦
A hot rolling method for high Si steel, wherein α ≦ 0.1. Here, E = (P · Q) / (W · L) α = Q / (V · A) P: Discharge pressure from nozzle (Pa) Q: Discharge flow rate from nozzle (m 3 / s) (1 nozzle W): Speed of movement of the slab (m / s) L: Jet width (m) at the time of collision with the slab surface (per nozzle) A: Jet area (m 2 ) at the time of collision with the slab surface
【請求項2】 ホットスカーフ又はコールドスカーフに
よって鋳片表面を溶削した後に加熱−圧延を行うことを
特徴とする請求項1に記載の高Si鋼の熱間圧延方法。
2. The hot-rolling method for high-Si steel according to claim 1, wherein the hot-rolling is performed after the surface of the slab is cut by a hot scarf or a cold scarf.
JP06342399A 1999-03-10 1999-03-10 Hot rolling method for high Si steel Expired - Fee Related JP3872609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06342399A JP3872609B2 (en) 1999-03-10 1999-03-10 Hot rolling method for high Si steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06342399A JP3872609B2 (en) 1999-03-10 1999-03-10 Hot rolling method for high Si steel

Publications (2)

Publication Number Publication Date
JP2000254724A true JP2000254724A (en) 2000-09-19
JP3872609B2 JP3872609B2 (en) 2007-01-24

Family

ID=13228876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06342399A Expired - Fee Related JP3872609B2 (en) 1999-03-10 1999-03-10 Hot rolling method for high Si steel

Country Status (1)

Country Link
JP (1) JP3872609B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342770A (en) * 2004-06-04 2005-12-15 Sumitomo Metal Ind Ltd Method for manufacturing hot-rolled steel sheet
WO2009139496A1 (en) 2008-05-13 2009-11-19 新日本製鐵株式会社 Production method of hot rolled steel sheet
US8128754B2 (en) 2008-11-14 2012-03-06 Ak Steel Properties, Inc. Ferric pickling of silicon steel
EP2979770A4 (en) * 2013-03-27 2016-03-16 Jfe Steel Corp Thick steel plate manufacturing device and manufacturing method
EP3530770A4 (en) * 2016-10-18 2019-10-09 JFE Steel Corporation Hot-rolled steel sheet for manufacturing electrical steel, and method for manufacturing same
JP2020121318A (en) * 2019-01-29 2020-08-13 Jfeスチール株式会社 Descaling device, manufacturing equipment of hot rolled steel plate, and manufacturing method of hot rolled steel plate
CN112453055A (en) * 2020-10-26 2021-03-09 北京首钢股份有限公司 Method for controlling edge quality of interstitial-free IF steel and IF steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342770A (en) * 2004-06-04 2005-12-15 Sumitomo Metal Ind Ltd Method for manufacturing hot-rolled steel sheet
WO2009139496A1 (en) 2008-05-13 2009-11-19 新日本製鐵株式会社 Production method of hot rolled steel sheet
US20110061677A1 (en) * 2008-05-13 2011-03-17 Katsuyuki Yanagihara Production method of hot-rolled steel sheet
KR101266550B1 (en) * 2008-05-13 2013-05-24 신닛테츠스미킨 카부시키카이샤 Production method of hot rolled steel sheet
US8128754B2 (en) 2008-11-14 2012-03-06 Ak Steel Properties, Inc. Ferric pickling of silicon steel
EP2979770A4 (en) * 2013-03-27 2016-03-16 Jfe Steel Corp Thick steel plate manufacturing device and manufacturing method
EP3530770A4 (en) * 2016-10-18 2019-10-09 JFE Steel Corporation Hot-rolled steel sheet for manufacturing electrical steel, and method for manufacturing same
US11577291B2 (en) 2016-10-18 2023-02-14 Jfe Steel Corporation Hot-rolled steel sheet for electrical steel sheet production and method of producing same
JP2020121318A (en) * 2019-01-29 2020-08-13 Jfeスチール株式会社 Descaling device, manufacturing equipment of hot rolled steel plate, and manufacturing method of hot rolled steel plate
CN112453055A (en) * 2020-10-26 2021-03-09 北京首钢股份有限公司 Method for controlling edge quality of interstitial-free IF steel and IF steel

Also Published As

Publication number Publication date
JP3872609B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
WO1996002334A1 (en) Method and apparatus for washing steel plate surfaces
JP3872609B2 (en) Hot rolling method for high Si steel
JPH06269839A (en) Descaling method and rolling method for slab
JP2003285115A (en) Descaling method for steel plate and facility used for the same
JP2001047122A (en) Descaling method and descaling device
JP3811380B2 (en) Manufacturing method of thick steel plate by hot rolling
JP3994582B2 (en) Steel sheet descaling method
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP3802848B2 (en) Hot rolling method for Si-containing steel sheet
JP3129967B2 (en) How to remove scale from hot rolled steel sheet
JP2900765B2 (en) Steel descaling method
JP3231698B2 (en) Manufacturing method of hot rolled steel sheet with excellent surface properties
JP2853559B2 (en) Descaling method in hot rolling
JP4035117B2 (en) Hot rolling method for high Si content steel sheet with good surface properties
JP3924390B2 (en) Descaling nozzle and descaling method
JPH06262243A (en) Scale generation preventing method in hot rolling steel plate
JPH06154837A (en) Descaling method
JPH09271832A (en) Descaling method of hot rolled ferritic stainless steel plate
JP3985401B2 (en) Steel sheet rolling method
JP2004167586A (en) Method for manufacturing steel sheet having excellent surface property and steel sheet
JP2001276923A (en) Method for descaling steel
JP3882465B2 (en) Method for producing hot-rolled steel sheet with good surface properties
JPH06114432A (en) Manufacture of high silicon hot rolled steel sheet
JP4677056B2 (en) Manufacturing method of hot-rolled steel sheet
JPH04238620A (en) Method for descaling in hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees