JP2000249579A - Flow-rate measurement method and differential- pressure-type flowmeter utilizing it - Google Patents

Flow-rate measurement method and differential- pressure-type flowmeter utilizing it

Info

Publication number
JP2000249579A
JP2000249579A JP11052125A JP5212599A JP2000249579A JP 2000249579 A JP2000249579 A JP 2000249579A JP 11052125 A JP11052125 A JP 11052125A JP 5212599 A JP5212599 A JP 5212599A JP 2000249579 A JP2000249579 A JP 2000249579A
Authority
JP
Japan
Prior art keywords
fluid
pressure
flow rate
differential pressure
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052125A
Other languages
Japanese (ja)
Inventor
Manabu Fueki
学 笛木
Tomomi Nishi
智美 西
Hitoaki Tanaka
仁章 田中
Daisuke Yamazaki
大輔 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Oil Co Ltd
Japan Petroleum Exploration Co Ltd
JFE Engineering Corp
Japan Oil Gas and Metals National Corp
Yokogawa Electric Corp
Original Assignee
Teikoku Oil Co Ltd
Japan National Oil Corp
Japan Petroleum Exploration Co Ltd
Yokogawa Electric Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Oil Co Ltd, Japan National Oil Corp, Japan Petroleum Exploration Co Ltd, Yokogawa Electric Corp, NKK Corp, Nippon Kokan Ltd filed Critical Teikoku Oil Co Ltd
Priority to JP11052125A priority Critical patent/JP2000249579A/en
Publication of JP2000249579A publication Critical patent/JP2000249579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the flow rate of a fluid with large viscosity and that with a low speed. SOLUTION: A differential-pressure-type flowmeter for obtaining the amount of pressure change and the flow rate of fluid by utilizing a constriction mechanism and calculating the flow rate of the fluid is provided with an operation means 6 for calculating the amount of correction pressure change from the first differential pressure and the second differential pressure between the inlet of a constriction mechanism 1 and a constriction part only by the change in the sectional area of a pipeline based on the Bernoulli's theorem, obtaining a flow rate by utilizing the amount of correction pressure change, and calculating the flow rate of the fluid according to the flow rate and the sectional area in the pipeline.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベンチュリ管など
の絞り機構を利用した流量測定方法及びそれを利用した
差圧式流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring method using a throttle mechanism such as a venturi tube and a differential pressure type flow meter using the same.

【0002】[0002]

【従来の技術】流体が絞り部を通過する時には流路断面
積の変化により流速が早くなり、圧力が小さくなる。こ
れをベルヌーイの定理と呼び、以下のような式(1)が
成り立つ。
2. Description of the Related Art When a fluid passes through a throttle, the flow velocity increases due to a change in the flow path cross-sectional area, and the pressure decreases. This is called Bernoulli's theorem, and the following equation (1) holds.

【0003】[0003]

【数1】 (Equation 1)

【0004】ここで、pは圧力、ρは流体密度、uは流
体流速であって、添え字は、1が断面積変化前で、2が
断面積変化後を意味する。また、絞り部分で流量は保存
するので以下の式(2)が成立する。
Here, p is a pressure, ρ is a fluid density, and u is a fluid flow velocity, and the suffixes 1 before the cross-sectional area change and 2 after the cross-sectional area change. Further, since the flow rate is stored in the throttle portion, the following equation (2) is established.

【0005】[0005]

【数2】 (Equation 2)

【0006】ここで、Aは流路断面積である。式(1)
と式(2)からu2 を消去すると以下の式(3)が得ら
れ、密度が変化しない場合には、絞り部前後の差圧を測
定することにより流速および流量が得られることにな
る。
Here, A is a cross-sectional area of the flow path. Equation (1)
By eliminating u 2 from equation (2), the following equation (3) is obtained. If the density does not change, the flow velocity and the flow rate can be obtained by measuring the differential pressure across the throttle.

【0007】[0007]

【数3】 (Equation 3)

【0008】この原理を利用した差圧式流量計がオリフ
ィス流量計やベンチュリ流量計である。図1には、従来
のベンチュリ流量計の構成を示した。ここでは、流体1
0が絞り機構を備えた導圧管11の中を流れ、その絞り
部での差圧が差圧計12で測定されている。なお、この
場合、式(3)を書き直した以下の式(4)が、測定に
際して実際に用いられている。
A differential pressure type flow meter utilizing this principle is an orifice flow meter or a venturi flow meter. FIG. 1 shows the configuration of a conventional Venturi flow meter. Here, fluid 1
0 flows through the pressure guiding tube 11 provided with the throttle mechanism, and the differential pressure at the throttle portion is measured by the differential pressure gauge 12. In this case, the following equation (4) obtained by rewriting the equation (3) is actually used for measurement.

【0009】[0009]

【数4】 (Equation 4)

【0010】ここで、△pv が絞りによって生じた差
圧、cが流出係数、εが膨張係数、βは絞り比(A2
11/2 である。式(4)を実際に使用する際には、
気体を測定するときの密度変化は膨張係数で補正してい
る。また、管摩擦により生じる圧力損失を流出係数とい
う一定値を与えて測定流量範囲で補正している。
Here, Δp v is the differential pressure generated by the throttle, c is the outflow coefficient, ε is the expansion coefficient, and β is the throttle ratio (A 2 /
A 1 ) 1/2 . When actually using equation (4),
The density change when measuring gas is corrected by the expansion coefficient. In addition, the pressure loss caused by the pipe friction is corrected within the measured flow rate range by giving a constant value called an outflow coefficient.

【0011】[0011]

【発明が解決しようとする課題】しかし、管摩擦により
生じる圧力損失はレイノルズ数の関数となるため、レイ
ノルズ数が高い領域では流出係数を一定と仮定しても問
題はないが、レイノルズ数が低い場合には問題が生じ
る。この問題は粘度の高い流体や速度の小さい流体の場
合に現れるため、上述の測定方法は油などの流量測定に
は適さない。特に、水と油が混ざった流体を測定する場
合、油の中に水が分散している状態(油連続状態)と、
水の中に油が分散している状態(水連続状態)では流出
係数が大きく変化する。
However, since the pressure loss caused by pipe friction is a function of the Reynolds number, there is no problem in assuming that the outflow coefficient is constant in a region where the Reynolds number is high, but the Reynolds number is low. In some cases, problems arise. Since this problem appears in the case of a fluid having a high viscosity or a fluid having a low speed, the above-described measuring method is not suitable for measuring the flow rate of oil or the like. In particular, when measuring a fluid in which water and oil are mixed, the state in which water is dispersed in oil (continuous oil state)
In a state where oil is dispersed in water (water continuous state), the outflow coefficient changes greatly.

【0012】水、油、気体が混ざった流体を測定する多
相流流量計にベンチュリ管を用いた場合も、同じように
問題が生じる。図2は、水と油と空気を混ぜた流体を流
し、その時のベンチュリ差圧を利用して流体の平均密度
を測定した結果である。横軸はこの三成分からなる流体
の理論的な平均密度であり、縦軸はその流体の測定に基
づき式(5)から得られる流体の平均密度ρ1である。
A similar problem arises when a Venturi tube is used in a multi-phase flow meter for measuring a fluid containing water, oil and gas. FIG. 2 shows the result of measuring the average density of the fluid using a Venturi differential pressure at that time by flowing a fluid in which water, oil, and air are mixed. The horizontal axis is the theoretical average density of the fluid composed of these three components, and the vertical axis is the average density ρ 1 of the fluid obtained from the equation (5) based on the measurement of the fluid.

【0013】[0013]

【数5】 (Equation 5)

【0014】この図を見ると、液体中の水の割合を示す
ウォータカットW/Cが20%以下と30%以上とで
は、結果が明らかに異なっている。すなわち、W/Cが
20%以下の状態は油の中に水が分散している油連続状
態であり、W/Cが30%以上の状態は水の中に油が分
散している水連続状態となっている。これは、油連続と
水連続の変化がこの間のW/Cで起こったためであり、
本来は流出係数を変化させなければならないのに対し
て、それを変化させていないために生じたものである。
[0014] Referring to this figure, the results are clearly different between the water cut W / C indicating the ratio of water in the liquid of 20% or less and the water cut W / C of 30% or more. That is, a state where the W / C is 20% or less is a continuous oil state in which water is dispersed in oil, and a state where the W / C is 30% or more is a continuous water state in which the oil is dispersed in water. It is in a state. This is because the change between oil continuation and water continuation occurred in W / C during this period,
Originally, the outflow coefficient had to be changed, but it was not changed.

【0015】これを修正するためには、粘度計のような
新しい測定器を用いて、レイノルズ数の関数となってい
る流出係数を補正する方法があるが、それは装置が複雑
になる欠点がある。本発明は、この問題を解決するた
め、より簡便な方法で流出係数の補正を行う手法を適用
した、差圧式流量計を提案するものである。
One way to correct this is to use a new measuring device such as a viscometer to correct the outflow coefficient as a function of the Reynolds number, but this has the disadvantage of complicating the equipment. . In order to solve this problem, the present invention proposes a differential pressure type flow meter to which a method of correcting the outflow coefficient by a simpler method is applied.

【0016】[0016]

【課題を解決するための手段】本発明の流量測定方法
は、絞り機構を利用して流体の圧力変化量及び流速を求
め、流体の流量を算出する流量測定方法において、管路
を流れる流体の圧力損失によって生じる第1の差圧を測
定する装置を設け、前記第1の差圧と、前記絞り機構の
入口と絞り部の間の第2の差圧とから、ベルヌーイの定
理に従う管路断面積が変化したことのみによる補正圧力
変化量を算出し、この補正圧力変化量を利用して流体の
流速を求め、その流速と管路断面積とから流体の流量を
算出するようにしたものである。
According to a flow rate measuring method of the present invention, a pressure change amount and a flow velocity of a fluid are obtained by using a throttle mechanism, and the flow rate of the fluid is calculated. A device for measuring a first differential pressure caused by a pressure loss, wherein a line disconnection according to Bernoulli's theorem is obtained from the first differential pressure and a second differential pressure between an inlet of the throttle mechanism and a throttle portion. The corrected pressure change amount only due to the change in the area is calculated, the flow velocity of the fluid is obtained by using the corrected pressure change amount, and the flow rate of the fluid is calculated from the flow velocity and the pipe cross-sectional area. is there.

【0017】また、本発明の差圧流量計は、絞り機構を
利用して流体の圧力変化量及び流速を求め、流体の流量
を算出する差圧式流量計において、管路を流れる流体の
圧力損失によって生じる第1の差圧を測定する装置を設
け、前記第1の差圧と、前記絞り機構の入口と絞り部の
間の第2の差圧とから、ベルヌーイの定理に従う管路断
面積が変化したことのみによる補正圧力変化量を算出
し、この補正圧力変化量を利用して流体の流速を求め、
その流速と管路断面積とから流体の流量を算出する演算
手段を備えたものである。
The differential pressure flow meter according to the present invention calculates the flow rate of the fluid by calculating the fluid pressure change amount and the flow velocity using a throttle mechanism. A device for measuring a first differential pressure caused by the first differential pressure and a second differential pressure between the inlet of the throttle mechanism and the throttle unit, the cross-sectional area of a pipe according to Bernoulli's theorem is provided. Calculate the corrected pressure change amount only due to the change, calculate the flow velocity of the fluid using this corrected pressure change amount,
An arithmetic means for calculating the flow rate of the fluid from the flow velocity and the cross-sectional area of the pipeline is provided.

【0018】また、前記圧力損失が前記絞り機構の上流
または下流に配置したスタティックミキサによるもので
ある。
Further, the pressure loss is caused by a static mixer arranged upstream or downstream of the throttle mechanism.

【0019】さらに、前記圧力損失が前記絞り機構によ
るものである。
Further, the pressure loss is caused by the throttle mechanism.

【0020】[0020]

【発明の実施の形態】図3は絞り機構としてベンチュリ
管を用いた本発明の差圧流量計の構成図である。ここで
は、ベンチュリ管1の入口とスロート部との差圧Δpv
を測定する差圧計2と、ベンチュリ管1の入口の絶対圧
を測定する絶対圧計3を設置する。また、ベンチュリ管
1の上流にはスタティックミキサ4を設置し、さらに、
スタティックミキサ4の上流の絶対圧を測定する絶対圧
計5を設置する。スタティックミキサ4における圧力損
失による差圧Δps は、絶対圧計3と絶対圧計5との差
から計算される。なお、これらの差圧計2、および絶対
圧計3、5から各圧力信号を受けとり、所定の計算を行
うのが演算装置6である。
FIG. 3 is a block diagram of a differential pressure flow meter according to the present invention using a venturi tube as a throttle mechanism. Here, the differential pressure Δp v between the inlet of the venturi tube 1 and the throat portion
, And an absolute manometer 3 for measuring the absolute pressure at the inlet of the venturi tube 1. In addition, a static mixer 4 is installed upstream of the Venturi tube 1, and further,
An absolute pressure gauge 5 for measuring the absolute pressure upstream of the static mixer 4 is provided. The pressure difference Delta] p s due to pressure loss in the static mixer 4 is calculated from the difference between the absolute pressure gauge 3 with the absolute pressure gauge 5. The arithmetic unit 6 receives the pressure signals from the differential pressure gauge 2 and the absolute pressure gauges 3 and 5 and performs a predetermined calculation.

【0021】ベンチュリ管1の入口とスロート部との差
圧Δpv は、先述した式(4)ではなくて、管摩擦など
による圧力損失を考慮した式(6)のようになる。
The differential pressure Δp v between the inlet of the venturi tube 1 and the throat portion is not the above-mentioned equation (4) but is the equation (6) taking into account the pressure loss due to pipe friction and the like.

【0022】[0022]

【数6】 (Equation 6)

【0023】式(6)の右辺第1項はベルヌーイの定理
に従う断面積が変化したことよる圧力の変化の項であ
る。そして、右辺第2項が管摩擦などによる圧力損失の
項となる。多相流のような場合は、複数の相が混合する
ことによるエネルギ損失もこの中に含まれる。なお、K
はベンチュリ管1の入口とスロート部の間の圧力損出係
数である。一方、スタティックミキサ4での圧力損失に
よる差圧Δps は、断面積変化がないため、式(7)に
示すように、式(6)の右辺第2項と同じ形になる。
The first term on the right side of the equation (6) is a term for a change in pressure due to a change in cross-sectional area according to Bernoulli's theorem. The second term on the right side is a term for pressure loss due to pipe friction or the like. In the case of multi-phase flow, energy loss due to mixing of a plurality of phases is included in this. Note that K
Is a pressure loss coefficient between the inlet of the venturi tube 1 and the throat portion. On the other hand, the pressure difference Delta] p s due to pressure loss in the static mixer 4, since there is no change in sectional area, as shown in Equation (7), the same shape as the second term of the right side of the equation (6).

【0024】[0024]

【数7】 (Equation 7)

【0025】ただし、K′はスタティックミキサにおけ
る圧力損出係数である。よって、管摩擦などに依存せず
にベルヌーイの定理に従う断面積が変化したことのみに
よる圧力の変化△pの項だけを残すために、以下の補正
式(8)を用いる。
Here, K 'is a pressure loss coefficient in the static mixer. Therefore, the following correction equation (8) is used in order to leave only the term of the pressure change Δp due to the change in the cross-sectional area according to Bernoulli's theorem without depending on the pipe friction or the like.

【0026】[0026]

【数8】 (Equation 8)

【0027】ここで、K″はK/K′であり、ベンチュ
リ管に固有の係数であるため、あらかじめ水、油で値を
決めておく。さらに、次の式(9)が成り立つ。
Here, K ″ is K / K ′, which is a coefficient unique to the Venturi tube, and hence its value is determined in advance with water and oil, and the following equation (9) is established.

【0028】[0028]

【数9】 (Equation 9)

【0029】この式(9)を変形することにより、流体
の密度ρ1 は、流出係数に依存しない、次の(10)式
から求められる。
By modifying the equation (9), the density ρ 1 of the fluid can be obtained from the following equation (10), which does not depend on the outflow coefficient.

【0030】[0030]

【数10】 (Equation 10)

【0031】このようにして得られた流体の平均密度ρ
1とその理論的平均密度との関係(図2に対応する関
係)は、図4に表される。これを見ると、W/Cが20
%より小さい場合でも、また30%より大きい場合で
も、流体の平均密度の理論値と実測値とがほぼ一致して
おり、従って、この圧力変化Δpの補正式が適切である
ことを示している。
The average density ρ of the fluid thus obtained
The relationship between 1 and its theoretical average density (corresponding to FIG. 2) is shown in FIG. Looking at this, W / C is 20
The theoretical value and the measured value of the average density of the fluid are almost the same regardless of whether it is less than 30% or more than 30%, indicating that the correction formula for the pressure change Δp is appropriate. .

【0032】従って、このΔpの値を用いて、式(9)
より流速u1 が求められ、さらに、その流速u1 に断面
積A1 を掛けることにより、流体10の流量を求めるこ
とができる。なお、上記に示した各処理計算はすべて演
算装置6で行うものとする。
Therefore, using the value of Δp, the equation (9)
The flow velocity u 1 is further obtained, and the flow rate of the fluid 10 can be obtained by multiplying the flow velocity u 1 by the cross-sectional area A 1 . It is assumed that all the processing calculations described above are performed by the arithmetic unit 6.

【0033】図5には本発明の他の構成を示した。これ
は、先の例におけるスタティックミキサ4に代えて、ベ
ンチュリ管1により発生する圧力損失を利用したもの
で、その圧力損失による差圧Δpe は差圧計7により測
定される。なお、図5中に示す符号のうち、図3と同じ
物は同一物または相当物を表すものとする。
FIG. 5 shows another configuration of the present invention. This is in place of the static mixer 4 in the previous example, utilizes the pressure loss generated by the Venturi tube 1, the pressure difference Delta] p e according to the pressure loss is measured by the differential pressure gauge 7. Note that, among the reference numerals shown in FIG. 5, the same items as those in FIG. 3 represent the same or corresponding items.

【0034】この例では、差圧計7で測定される差圧を
Δpe とすると、式(8)に相当する補正式は、式(1
1)として得られる。
[0034] In this example, the differential pressure measured at the differential pressure gauge 7 When Delta] p e, correction formula corresponding to formula (8), equation (1
Obtained as 1).

【0035】[0035]

【数11】 [Equation 11]

【0036】従って、このΔpの値を用いて、式(9)
より流速u1 が求められ、さらに、その流速u1 に断面
積A1 を掛けることにより流体10の流量を求めること
ができる。この場合には、スタティックミキサのような
障害物がないため、詰まりやすい流体を測定する時でも
詰まりが生じる危険が少なくなり、メンテナンスを容易
に行えるという利点がある。
Therefore, using the value of Δp, the equation (9)
The flow velocity u 1 is further obtained, and the flow rate of the fluid 10 can be obtained by multiplying the flow velocity u 1 by the cross-sectional area A 1 . In this case, since there is no obstacle such as a static mixer, there is an advantage that the risk of clogging is reduced even when measuring a clogged fluid, and maintenance can be easily performed.

【0037】[0037]

【発明の効果】以上説明したように、本発明の差圧式流
量計によれば、高粘度流体や低流速の流体を測定すると
きに流出係数が適切に補正されるため、正確に流量計測
を行うことができる。また、多相流流量の計測において
は、各相の状態が変化しても影響を受けることなく計測
を行うことができる。
As described above, according to the differential pressure type flow meter of the present invention, the outflow coefficient is appropriately corrected when measuring a high viscosity fluid or a fluid having a low flow velocity, so that the flow rate can be accurately measured. It can be carried out. In the measurement of the flow rate of the multiphase flow, the measurement can be performed without being affected even if the state of each phase changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のベンチュリ流量計の構成図である。FIG. 1 is a configuration diagram of a conventional Venturi flow meter.

【図2】 従来の圧力変化量を用いた水、油および空気
からなる流体の平均密度と測定によって得られた平均密
度の関係図である。
FIG. 2 is a diagram showing a relationship between an average density of a fluid composed of water, oil, and air using a conventional pressure change amount and an average density obtained by measurement.

【図3】 本発明の差圧式流量計の構成図である。FIG. 3 is a configuration diagram of a differential pressure type flow meter according to the present invention.

【図4】 本発明の補正圧力変化量を用いた場合の水、
油および空気からなる流体の平均密度と測定によって得
られた平均密度の関係図である。
FIG. 4 shows water when the corrected pressure change amount of the present invention is used.
It is a relation diagram of the average density of the fluid which consists of oil and air, and the average density obtained by measurement.

【図5】 本発明の他の差圧式流量計の構成図である。FIG. 5 is a configuration diagram of another differential pressure type flow meter of the present invention.

【符号の説明】[Explanation of symbols]

1 ベンチュリ管 2 差圧計 3 絶対圧計 4 スタティックミキサ 5 絶対圧計 6 演算装置 7 差圧計 DESCRIPTION OF SYMBOLS 1 Venturi tube 2 Differential pressure gauge 3 Absolute pressure gauge 4 Static mixer 5 Absolute pressure gauge 6 Operation device 7 Differential pressure gauge

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591234178 帝国石油株式会社 東京都渋谷区幡ケ谷1丁目31番10号 (71)出願人 000006507 横河電機株式会社 東京都武蔵野市中町2丁目9番32号 (72)発明者 笛木 学 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 西 智美 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 田中 仁章 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 山崎 大輔 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 Fターム(参考) 2F030 CA04 CC01 CC06 CD20 CE04 CE40  ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 591234178 Teikoku Oil Co., Ltd. 1-31-10 Hatagaya, Shibuya-ku, Tokyo (71) Applicant 000006507 Yokogawa Electric Corporation 2-9-132 Nakamachi, Musashino-shi, Tokyo (72) Inventor Manabu Fueki 2-9-32 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Tomomi Nishi 2-9-132 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation (72 ) Inventor, Hitoshi Tanaka 2-9-132 Nakamachi, Musashino-shi, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Daisuke Yamazaki 2-9-132 Nakamachi, Musashino-shi, Tokyo F-term in Yokogawa Electric Corporation Reference) 2F030 CA04 CC01 CC06 CD20 CE04 CE40

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絞り機構を利用して流体の圧力変化量及
び流速を求め、流体の流量を算出する流量測定方法にお
いて、 管路を流れる流体の圧力損失によって生じる第1の差圧
を測定する装置を設け、 前記第1の差圧と、前記絞り機構の入口と絞り部の間の
第2の差圧とから、ベルヌーイの定理に従う管路断面積
が変化したことのみによる補正圧力変化量を算出し、こ
の補正圧力変化量を利用して流体の流速を求め、その流
速と管路断面積とから流体の流量を算出する流量測定方
法。
1. A flow rate measuring method for calculating a fluid flow rate by obtaining a pressure change amount and a flow rate of a fluid using a throttle mechanism, wherein a first differential pressure generated by a pressure loss of a fluid flowing through a pipeline is measured. A device is provided, from the first differential pressure and the second differential pressure between the inlet of the throttle mechanism and the throttle unit, a correction pressure change amount only due to a change in a pipe cross-sectional area according to Bernoulli's theorem. A flow measurement method for calculating the flow rate of a fluid using the corrected pressure change amount and calculating the flow rate of the fluid from the flow rate and the cross-sectional area of the pipeline.
【請求項2】 絞り機構を利用して流体の圧力変化量及
び流速を求め、流体の流量を算出する差圧式流量計にお
いて、 管路を流れる流体の圧力損失によって生じる第1の差圧
を測定する装置を設け、 前記第1の差圧と、前記絞り機構の入口と絞り部の間の
第2の差圧とから、ベルヌーイの定理に従う管路断面積
が変化したことのみによる補正圧力変化量を算出し、こ
の補正圧力変化量を利用して流体の流速を求め、その流
速と管路断面積とから流体の流量を算出する演算手段を
備えた差圧式流量計。
2. A differential pressure type flow meter for calculating a flow rate of a fluid by obtaining a pressure change amount and a flow velocity of a fluid using a throttle mechanism, and measuring a first differential pressure generated by a pressure loss of a fluid flowing through a pipeline. A correction pressure change amount based only on a change in the cross-sectional area of a pipe according to Bernoulli's theorem, based on the first differential pressure and the second differential pressure between the inlet of the throttle mechanism and the throttle section. A differential pressure type flow meter comprising calculating means for calculating the flow velocity of the fluid using the corrected pressure change amount, and calculating the flow rate of the fluid from the flow velocity and the cross-sectional area of the pipeline.
【請求項3】 前記圧力損失が前記絞り機構の上流また
は下流に配置したスタティックミキサによるものである
請求項2記載の差圧式流量計。
3. The differential pressure type flow meter according to claim 2, wherein the pressure loss is caused by a static mixer disposed upstream or downstream of the throttle mechanism.
【請求項4】 前記圧力損失が前記絞り機構によるもの
である請求項2記載の差圧式流量計。
4. The differential pressure type flow meter according to claim 2, wherein said pressure loss is caused by said throttle mechanism.
JP11052125A 1999-03-01 1999-03-01 Flow-rate measurement method and differential- pressure-type flowmeter utilizing it Pending JP2000249579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052125A JP2000249579A (en) 1999-03-01 1999-03-01 Flow-rate measurement method and differential- pressure-type flowmeter utilizing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052125A JP2000249579A (en) 1999-03-01 1999-03-01 Flow-rate measurement method and differential- pressure-type flowmeter utilizing it

Publications (1)

Publication Number Publication Date
JP2000249579A true JP2000249579A (en) 2000-09-14

Family

ID=12906168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052125A Pending JP2000249579A (en) 1999-03-01 1999-03-01 Flow-rate measurement method and differential- pressure-type flowmeter utilizing it

Country Status (1)

Country Link
JP (1) JP2000249579A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537464A (en) * 2002-07-19 2005-12-08 マイクロリス コーポレイション Fluid flow measurement and proportional fluid flow control device
JP2014507007A (en) * 2011-03-03 2014-03-20 ローズマウント インコーポレイテッド Differential pressure type flow measuring device
CN106123983A (en) * 2016-06-28 2016-11-16 浙江汽轮成套技术开发有限公司 The charge flow rate measuring method of air compressor tubular air inlet pipe
CN108414400A (en) * 2018-04-19 2018-08-17 泉州市法尔机械科技有限公司 The determination method and decision-making system of oil viscosity
CN115216647A (en) * 2022-07-08 2022-10-21 遵义钛业股份有限公司 Method for calculating flow velocity of high-temperature fluid in distillation passageway for preparing titanium sponge by adopting inverted U-shaped combination method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537464A (en) * 2002-07-19 2005-12-08 マイクロリス コーポレイション Fluid flow measurement and proportional fluid flow control device
JP2010072008A (en) * 2002-07-19 2010-04-02 Entegris Inc Fluid flow measuring and proportional fluid flow control device
JP2014507007A (en) * 2011-03-03 2014-03-20 ローズマウント インコーポレイテッド Differential pressure type flow measuring device
CN106123983A (en) * 2016-06-28 2016-11-16 浙江汽轮成套技术开发有限公司 The charge flow rate measuring method of air compressor tubular air inlet pipe
CN108414400A (en) * 2018-04-19 2018-08-17 泉州市法尔机械科技有限公司 The determination method and decision-making system of oil viscosity
CN108414400B (en) * 2018-04-19 2021-02-26 泉州市法尔机械科技有限公司 Oil product viscosity determination method and system
CN115216647A (en) * 2022-07-08 2022-10-21 遵义钛业股份有限公司 Method for calculating flow velocity of high-temperature fluid in distillation passageway for preparing titanium sponge by adopting inverted U-shaped combination method

Similar Documents

Publication Publication Date Title
EP1305579B1 (en) A meter for the measurement of multiphase fluids and wet gas
JP2790260B2 (en) Apparatus and method for measuring the flow of a two or three phase fluid using one or more momentum and one volume flow meter
US6993979B2 (en) Multiphase mass flow meter with variable venturi nozzle
EP2192391A1 (en) Apparatus and a method of measuring the flow of a fluid
AU2083402A (en) Multiphase flow meter using multiple pressure differentials
CA2375474A1 (en) Multiphase venturi flow metering method
JP2005517170A (en) Method and apparatus for measuring fluid flowing through a turbine flow meter without reference to viscosity using a turbine flow meter
JP2000249579A (en) Flow-rate measurement method and differential- pressure-type flowmeter utilizing it
JP4693990B2 (en) Device for measuring the flow rate of liquid in a pipe
Johnson et al. Development of a turbine meter for two-phase flow measurement in vertical pipes
JPH1164067A (en) Flowmeter for multi-phase flow
CN1043988A (en) The measuring method of gas-liquid fixed double phase flow
US3812714A (en) Method and device for measuring the flow rate of an intermittent fluid flow
JP3398251B2 (en) Flowmeter
Seyer et al. Laminar and turbulent entry flow of polymer solutions
JP3766777B2 (en) Flowmeter
RU2106640C1 (en) Device measuring speed of flow
JP3192912B2 (en) Flowmeter
JP2002340632A (en) Flowmeter
JP2002214002A (en) Flow meter
US11815524B2 (en) Volume fraction meter for multiphase fluid flow
RU2106639C1 (en) Method measuring velocity of stream and device for its implementation
JPS61253424A (en) Vortex flowmeter
JPH07209042A (en) Vibration type flow meter
RU1776996C (en) Method of indication of given value of discharge of continuous medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331