JPH1164067A - Flowmeter for multi-phase flow - Google Patents

Flowmeter for multi-phase flow

Info

Publication number
JPH1164067A
JPH1164067A JP21656497A JP21656497A JPH1164067A JP H1164067 A JPH1164067 A JP H1164067A JP 21656497 A JP21656497 A JP 21656497A JP 21656497 A JP21656497 A JP 21656497A JP H1164067 A JPH1164067 A JP H1164067A
Authority
JP
Japan
Prior art keywords
mixture
phase
electrode
phase ratio
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21656497A
Other languages
Japanese (ja)
Inventor
Manabu Fueki
学 笛木
Daisuke Yamazaki
大輔 山崎
Shuichi Haruyama
周一 春山
Hitoaki Tanaka
仁章 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Oil Co Ltd
Japan Petroleum Exploration Co Ltd
JFE Engineering Corp
Yokogawa Electric Corp
SEKIYU SHIGEN KAIHATSU KK
Original Assignee
Teikoku Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Yokogawa Electric Corp
SEKIYU SHIGEN KAIHATSU KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Oil Co Ltd, Japan Petroleum Exploration Co Ltd, Yokogawa Electric Corp, SEKIYU SHIGEN KAIHATSU KK, NKK Corp, Nippon Kokan Ltd filed Critical Teikoku Oil Co Ltd
Priority to JP21656497A priority Critical patent/JPH1164067A/en
Publication of JPH1164067A publication Critical patent/JPH1164067A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flowmeter for multi-phase flow, which can accurately measure the flow rate of each component, namely, each phase of a multi-phase fluid by preventing the occurrence of capacitance measuring errors which occur due to the nonuniform distribution of a mixture. SOLUTION: The flow rate of each phase of a multi-phase fluid 11 is found from the phase proportion and flow rate of each component of the fluid 11 and the differential pressure of a Venturi tube 51 by providing mesh-like first electrodes 23 and 33, which are provided in a conduit line 12 nearly perpendicular to the flowing direction of the fluid 11 flowing through the pipe 12 and have nearly the same size as that of the cross section of the pipe 11, mesh-like second electrodes 24 and 34 which are respectively faced opposite to the first electrodes 23 and 33 in the conduit line 12 and have nearly the same size as that of the cross section of the pipe 11, and phase proportionity measuring sensors 21 and 31 for a mixture which find the phase proportion of the fluid 11, by respectively measuring the capacitances between the first and second electrodes 34 and 33 and 24 and 34 at two locations, which are installed from each other by a prescribed distance in the pipe 12 and furthermore connecting the Venturi tube 51 to the pipe 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水と油等から成る
混合物の各成分毎(各相毎)の流量を測定する多相流流
量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-phase flow meter for measuring the flow rate of each component (each phase) of a mixture comprising water and oil.

【0002】[0002]

【従来の技術】図5は従来より一般に使用されている多
相流流量計の構成図である。図において、201は複数
の流体の混合物である測定流体、202は測定流体20
1が流れる管路、203は管路202に設けられたベン
チュリ管、204はベンチュリ管203の入り口205
と頸部206との間に設けられた差圧計、207はベン
チュリ管203の頸部206の後半部に設けられたコン
デンサである。また、208はコンデンサ207に接続
された静電容量測定装置、209は差圧計204の検出
信号△Pと静電容量測定装置208の測定信号ρから質
量流量を求める評価装置、210は評価装置209の結
果を表示する指示計である。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional multi-phase flow meter generally used. In the figure, 201 is a measurement fluid which is a mixture of a plurality of fluids, and 202 is a measurement fluid 20
1, a Venturi pipe provided in the pipe 202, 204 an entrance 205 of the Venturi pipe 203
A differential pressure gauge 207 is provided between the head 206 and the neck 206. A condenser 207 is provided in the rear half of the neck 206 of the Venturi tube 203. Reference numeral 208 denotes a capacitance measuring device connected to the capacitor 207, reference numeral 209 denotes an evaluation device for obtaining a mass flow rate from the detection signal ΔP of the differential pressure gauge 204 and a measurement signal ρ of the capacitance measuring device 208, and reference numeral 210 denotes an evaluation device 209. Is an indicator that displays the results of

【0003】[0003]

【発明が解決しようとする課題】上記装置は、ベンチュ
リ管203の最小径の部分で測定流体201の各成分が
均質に混ざった状態となり、混合物の各成分の不均一分
布の影響はないことを前提にしたものである。しかしな
がら実際には、流速や各成分の相割合の広い範囲にわた
って均質に混合することは困難であり、したがって、コ
ンデンサ207の静電容量測定値から求められる測定流
体201の相割合が精度良く測定できず、その相割合を
利用して得られる流量も正確なものではなかった。本願
発明は、これらの課題を解決するためになされたもの
で、混合物の不均一分布に基づく静電容量等の測定誤差
を防止して、各成分別すなわち各相別の流量を正確に測
定しうる多相流流量計を提供することを目的とする。
The above-described apparatus is designed so that the components of the measurement fluid 201 are homogeneously mixed in the portion of the minimum diameter of the venturi tube 203, and there is no influence of the non-uniform distribution of the components of the mixture. It is assumed. However, in practice, it is difficult to uniformly mix the flow rate and the phase ratio of each component over a wide range. Therefore, the phase ratio of the measurement fluid 201 obtained from the capacitance measurement value of the capacitor 207 can be accurately measured. In addition, the flow rates obtained using the phase ratios were not accurate. The present invention has been made to solve these problems, and prevents measurement errors such as capacitance based on non-uniform distribution of a mixture, and accurately measures the flow rate of each component, that is, each phase. To provide a multi-phase flow meter.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
管路を流れる混合物の流れ方向と略直角に該管路内に設
けられた該管路断面と略同じ大きさの網目状の第1電極
と、前記第1電極と対向させて前記管路内に設けられた
該管路断面と略同じ大きさの網目状の第2の電極と、前
記第1電極と前記第2の電極との間の静電容量を測定す
る静電容量測定装置と、測定された静電容量から前記混
合物の各成分の相割合を求める相割合演算装置とを備え
た混合物相割合測定センサを、所定の間隔で前記管路の
2カ所に設置し、前記2つの混合物相割合測定センサの
出力である各成分の相割合の時間的変動の相関から前記
混合物の流速を演算する速度演算装置と、前記管路にベ
ンチュリ管を設けてその絞り部の差圧を測定する圧力セ
ンサとを備え、混合物の各成分の相割合、混合物の流速
およびベンチュリ管の絞り部の差圧から、混合物の各相
の流量を求める演算処理装置とを備えた多相流流量計。
The invention according to claim 1 is
A mesh-like first electrode having substantially the same size as the cross section of the pipe provided in the pipe at a substantially right angle to the flow direction of the mixture flowing through the pipe; A second electrode having a mesh shape substantially the same size as the cross section of the pipeline provided in the first electrode, a capacitance measuring device for measuring a capacitance between the first electrode and the second electrode, A mixture phase ratio measurement sensor having a phase ratio calculation device for obtaining a phase ratio of each component of the mixture from the measured capacitance, is installed at two places in the pipe at predetermined intervals, and the two mixture A velocity calculating device for calculating the flow rate of the mixture from the correlation of the temporal variation of the phase ratio of each component, which is the output of the phase ratio measuring sensor, and a Venturi tube provided in the pipe line, and measuring the differential pressure of the constricted portion. A pressure sensor to determine the phase proportions of each component of the mixture, the flow rate of the mixture and the venturi. From differential pressure of the diaphragm portion of the multiphase flow meter that includes a processing unit for determining the phase of the flow rate of the mixture.

【0005】請求項2に係る発明は、管路を流れる混合
物の流れ方向と略直角に該管路内に設けられた該管路断
面と略同じ大きさの網目状の第1電極と、前記第1電極
と対向させて前記管路内に設けられた該管路断面と略同
じ大きさの網目状の第2の電極と、前記第1電極と前記
第2の電極との間の静電容量を測定する静電容量測定装
置と、測定された静電容量から前記混合物の各成分の相
割合を求める相割合演算装置とを備えた混合物相割合測
定センサを、所定の間隔で前記管路の2カ所に設置し、
前記2つの混合物相割合測定センサの出力である各成分
の相割合の時間的変動の相関から前記混合物の流速を演
算する速度演算装置と、前記管路にベンチュリ管を設け
てその絞り部の差圧から混合物の絶対圧力を測定する絶
対圧力計と、前記混合物の温度を測定する温度計とを備
え、前記絶対圧力計と前記温度計から得られる混合物の
物性値、混合物の各成分の相割合および流速から、混合
物の各相の流量を求める演算処理装置とを備えた多相流
流量計。
According to a second aspect of the present invention, there is provided a mesh-like first electrode provided in the pipe at a substantially right angle to the flow direction of the mixture flowing through the pipe and having the same size as the cross section of the pipe. A mesh-like second electrode having a size substantially the same as the cross section of the pipeline provided in the pipeline facing the first electrode, and an electrostatic force between the first electrode and the second electrode; A mixture phase ratio measuring sensor comprising a capacitance measuring device for measuring a capacitance and a phase ratio calculating device for calculating a phase ratio of each component of the mixture from the measured capacitance, at a predetermined interval, the pipe line. In two places,
A speed calculation device for calculating the flow rate of the mixture from the correlation of the temporal variation of the phase ratio of each component which is the output of the two mixture phase ratio measurement sensors; An absolute manometer for measuring the absolute pressure of the mixture from the pressure, and a thermometer for measuring the temperature of the mixture, the physical properties of the mixture obtained from the absolute manometer and the thermometer, the phase ratio of each component of the mixture And a processor for calculating the flow rate of each phase of the mixture from the flow rate and the flow rate.

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は本発明の多相流流量計の別の構成
図である。ここで、21は混合物相割合測定センサであ
って、測定しようとする多相流体11が流れる管路12
内に対向して設けられた第1容量電極23と第2容量電
極24、および第1容量電極23と第2容量電極24と
の間の静電容量を測定する静電容量測定装置22とを有
する。また、31は混合物相割合測定センサ21から距
離Lだけ下流に配置された混合物相割合測定センサであ
って、測定しようとする多相流体11が流れる管路12
内に対向して設けられた第1容量電極33と第2容量電
極34、および第1容量電極33と第2容量電極34と
の間の静電容量を測定する静電容量測定装置32とを有
する。50は2つの混合物相割合測定センサ21,31
の出力の相関を取る相関演算装置である。51はベンチ
ュリ管で、52はベンチュリ管51の上流入り口部とス
ロート部の差圧を測定する差圧センサである。また、6
1は混合物相割合測定センサ21、31、相関演算装置
50、差圧センサ52の出力を受け取り多相流体11の
各相の相割合、速度および流量を計算をする演算処理装
置である。なお、各相の相割合と速度を計算する演算処
理装置については、各混合物相割合測定センサ毎に設け
てもよい。
Embodiment 1 FIG. FIG. 1 is another configuration diagram of the multiphase flow meter of the present invention. Here, reference numeral 21 denotes a mixture phase ratio measuring sensor, which is a conduit 12 through which the multiphase fluid 11 to be measured flows.
A first capacitance electrode 23 and a second capacitance electrode 24 provided to face each other, and a capacitance measurement device 22 for measuring the capacitance between the first capacitance electrode 23 and the second capacitance electrode 24. Have. Reference numeral 31 denotes a mixture phase ratio measurement sensor disposed downstream of the mixture phase ratio measurement sensor 21 by a distance L, and the conduit 12 through which the multiphase fluid 11 to be measured flows.
A first capacitance electrode 33 and a second capacitance electrode 34 provided to face each other, and a capacitance measurement device 32 for measuring the capacitance between the first capacitance electrode 33 and the second capacitance electrode 34. Have. 50 denotes two mixture phase ratio measuring sensors 21 and 31
Is a correlation operation device that takes a correlation between the outputs of the two. Reference numeral 51 denotes a venturi tube, and reference numeral 52 denotes a differential pressure sensor for measuring a differential pressure between the upstream entrance of the venturi tube 51 and the throat portion. Also, 6
Reference numeral 1 denotes an arithmetic processing unit that receives the outputs of the mixture phase ratio measurement sensors 21 and 31, the correlation operation device 50, and the differential pressure sensor 52 and calculates the phase ratio, speed, and flow rate of each phase of the multiphase fluid 11. Note that an arithmetic processing unit that calculates the phase ratio and speed of each phase may be provided for each mixture phase ratio measurement sensor.

【0007】混合物相割合測定センサ21,31は、平
板状で網目状(又は格子状)の電極を利用したものであ
り、この混合物相割合測定センサを、図2に示す電極部
斜視図、図3の電極部分の詳細図を対照しながら説明す
る。23は、多相流体11の流れ面に対して略直角でか
つ管路12に嵌合させて管路12内に設けられた網目状
の第1容量電極であり、24は第1容量電極23に対向
して管路12に嵌合させて管路12内に設けられた、少
なくとも1枚の格子状の第2容量電極である。したがっ
て、この例では1枚の電極のみ使用されているが、2枚
以上設けてもよい。
The mixture phase ratio measurement sensors 21 and 31 utilize flat and mesh-like (or lattice) electrodes. The mixture phase ratio measurement sensor is a perspective view of an electrode portion shown in FIG. 3 will be described with reference to a detailed view of the electrode portion. Reference numeral 23 denotes a mesh-like first capacitance electrode provided in the conduit 12 at a substantially right angle to the flow surface of the multiphase fluid 11 and fitted in the conduit 12, and 24 denotes a first capacitance electrode 23. And at least one grid-like second capacitance electrode provided in the pipe 12 so as to be fitted to the pipe 12 so as to face the second capacitor electrode. Therefore, in this example, only one electrode is used, but two or more electrodes may be provided.

【0008】混合物相割合測定センサ21,31は、図
3に示すように、網目状になった第1容量電極と第2容
量電極の間に、電気力線が通過することにより生じた両
電極間の静電容量Cを測定する。これによれば、第1容
量電極及び第2容量電極を形成する多数の電極間の静電
容量を測定することになり、全体としてはこれらの和が
出力されて、従って、全体として混合物の分布の影響が
低減される。そして、この測定された静電容量を基に、
演算処理装置61が、下記のような関係から混合物の相
割合および速度を算出する。
As shown in FIG. 3, the mixture phase ratio measurement sensors 21 and 31 are provided with two electrodes formed by the passage of electric lines of force between the first capacitance electrode and the second capacitance electrode formed in a mesh. The capacitance C between them is measured. According to this, the capacitance between a number of electrodes forming the first capacitance electrode and the second capacitance electrode is measured, and the sum of these is output as a whole, and therefore, the distribution of the mixture as a whole is Is reduced. Then, based on the measured capacitance,
The arithmetic processing unit 61 calculates the phase ratio and the speed of the mixture from the following relationship.

【0009】例えば、混合物が、水と油と空気とからな
る場合、εw を水の誘電率、εo を油の誘電率、そして
εa を空気の誘電率とすると、静電容量Cは、 C=Hw・Kw・εw +Ho・Kp・εo +Ha・Ka・εa (1) の関係がある。ここで、Hw、Ho、Haは、それぞれ
水、油、空気の相割合、Kw、Ko、Kaは定数であ
る。また、ρm を混合物の平均密度、ρw を水の密度、
ρo を油の密度、そしてρa を空気の密度とすると、 ρm =Hw・ρw +Ho・ρo +Ha・ρa (2) であり、さらに、 1=Hw+Ho+Ha (3) という関係がある。
For example, if the mixture is composed of water, oil and air, and ε w is the permittivity of water, ε o is the permittivity of oil, and ε a is the permittivity of air, the capacitance C is , a relationship of C = Hw · Kw · ε w + Ho · Kp · ε o + Ha · Ka · ε a (1). Here, Hw, Ho, and Ha are phase ratios of water, oil, and air, respectively, and Kw, Ko, and Ka are constants. Also, ρ m is the average density of the mixture, ρ w is the density of water,
Assuming that ρ o is the density of oil and ρ a is the density of air, ρ m = Hw · ρ w + Ho · ρ o + Ha · ρ a (2), and 1 = Hw + Ho + Ha (3) .

【0010】いま、混合物相割合測定センサ21から出
力された信号と同じ信号が、τ0 秒後に混合物相割合測
定センサ31から出力されものとし、混合物相割合測定
センサ21で測定される時系列信号をS21(t)、混
合物相割合測定センサ31で測定される時系列信号をS
31(t)とすると、混合物相割合測定センサ21と3
1からの信号の相互相関関数Φは、以下のように表すこ
とができる。
Now, it is assumed that the same signal as the signal output from the mixture phase ratio measurement sensor 21 is output from the mixture phase ratio measurement sensor 31 after τ 0 seconds, and the time series signal measured by the mixture phase ratio measurement sensor 21 S21 (t), and the time series signal measured by the mixture phase ratio measurement sensor 31 is S21 (t).
31 (t), the mixture phase ratio measurement sensors 21 and 3
The cross-correlation function Φ of the signal from 1 can be expressed as:

【0011】[0011]

【数1】 (Equation 1)

【0012】ここで、Tは演算する時間である。この相
互相関関数Фの曲線は、τ=τ0 で極大値を持つが、こ
のτ0 は、相互相関関数Фの微分値を求めることにより
得られ、それは相関演算装置50で行われる。τ0 が決
定すれば、多相流体の速度Vは、V=L/τ0 で求ま
る。
Here, T is a calculation time. Curve of this cross-correlation function .PHI is has a maximum value at tau = tau 0, the tau 0 is obtained by obtaining the differential value of the cross-correlation function .PHI, it is carried out in the correlation calculation unit 50. If τ 0 is determined, the velocity V of the multi-phase fluid can be obtained by V = L / τ 0 .

【0013】ベンチュリ管51の差圧△pは多相流の平
均密度ρm と流速Vの関数になっている。従って、各成
分の密度がわかっていれば、混合物相割合測定センサか
らの静電容量の値及び差圧センサ52の差圧から、各相
の流量を求めることができる。たとえば、水と油と空気
とから成る多相流体の場合、水、油、空気の密度をそれ
ぞれ、ρw 、ρo 、ρa とし、水、油、空気の流速をそ
れぞれ、Vw、Vo、Vaとすると、 ρm =F(△p、Vw、Vo、Va) で表せる。また、既に説明した(1)式、(2)式、
(3)式より、各相の相割合Hw、Ho、Haが求ま
る。
The pressure difference Δp in the venturi tube 51 is a function of the average density ρ m of the multiphase flow and the flow velocity V. Therefore, if the density of each component is known, the flow rate of each phase can be determined from the value of the capacitance from the mixture phase ratio measurement sensor and the differential pressure of the differential pressure sensor 52. For example, in the case of a multi-phase fluid composed of water, oil, and air, the densities of water, oil, and air are ρ w , ρ o , and ρ a, and the flow rates of water, oil, and air are Vw, Vo, Assuming Va, it can be expressed by ρ m = F (△ p, Vw, Vo, Va). Also, the expressions (1), (2),
From the equation (3), the phase ratios Hw, Ho, and Ha of each phase are obtained.

【0014】以上によって、各成分の流速と相割合が得
られるので、水、油、空気のそれぞれの流量Qw、Q
o、Qaは、Qw=Hw・A・Vw、 Qo=Ho・A
・Vo、 Qa=Ha・A・Vaとして求められる。こ
こで、Aは混合物の管路12の断面積である。
As described above, the flow rate and the phase ratio of each component can be obtained, so that the respective flow rates Qw, Qw of water, oil, and air can be obtained.
o and Qa are: Qw = Hw · A · Vw, Qo = Ho · A
Vo, Qa = Ha · A · Va. Here, A is the cross-sectional area of the conduit 12 of the mixture.

【0015】実施の形態2.実施の形態1での差圧セン
サ52に代えて、絶対圧力センサ及び温度センサからの
出力を用いることもできる。図4にその構成図を示す。
ベンチュリ管51の差圧は、2台の絶対圧力センサ7
1、72で検出してその出力を演算処理装置61に送
り、数値的に差を取って差圧とする。また、多相流体の
温度を温度計81で測定し、その信号も演算処理装置6
1に信号送る。ベンチュリ管51の上流にある絶対圧力
センサ71の信号と温度計81の信号から、演算処理装
置61において、多相流体の密度、粘度などが物性値表
との対照や計算により求められる。この場合、測定点で
標準状態(摂氏0℃、1気圧)でなくても、物性値表を
用いることにより混合物の各成分の密度や静電容量など
の物性値を補正して、標準状態での流量に換算すること
ができる。
Embodiment 2 Instead of the differential pressure sensor 52 in the first embodiment, outputs from an absolute pressure sensor and a temperature sensor can be used. FIG. 4 shows the configuration diagram.
The differential pressure of the venturi tube 51 is determined by two absolute pressure sensors 7
Detected at 1, 72, the output is sent to the arithmetic processing unit 61, and the difference is numerically taken as a differential pressure. The temperature of the multi-phase fluid is measured by the thermometer 81, and the signal thereof is also sent to the arithmetic processing unit 6.
Signal 1 From the signal of the absolute pressure sensor 71 located upstream of the venturi tube 51 and the signal of the thermometer 81, the arithmetic processing unit 61 obtains the density, viscosity, and the like of the multiphase fluid by comparison with a physical property value table or calculation. In this case, even if the measurement point is not in the standard state (0 ° C., 1 atm), the physical property value such as the density and the capacitance of each component of the mixture is corrected by using the physical property table, and the standard state is used. Can be converted to the flow rate.

【0016】[0016]

【発明の効果】本発明によれば、管路を流れる混合物で
ある多相流体の流れ方向と略直角に該管路内に設けられ
た該管路断面と略同じ大きさの網目状の第1電極と、こ
の第1電極に対向させて管路内に設けられた該管路断面
と略同じ大きさの網目状の第2電極との間の静電容量を
測定することにより多相流体の相割合を測定する混合物
割合測定センサを流れ方向に並べ、相割合の変動の時間
遅れから流速を測定するとともに、ベンチュリ管の差圧
信号を組み合わせたので、混合物の不均一分布に影響さ
れることなく、各相の流量を正確に求めることができ
る。
According to the present invention, there is provided a mesh-like net having substantially the same size as the cross section of the pipeline provided in the pipeline at a right angle to the flow direction of the multiphase fluid as the mixture flowing through the pipeline. The multi-phase fluid is measured by measuring the capacitance between one electrode and a mesh-like second electrode provided in the conduit facing the first electrode and having substantially the same size as the cross section of the conduit. The mixture ratio measurement sensor that measures the phase ratio of the mixture is arranged in the flow direction, the flow rate is measured from the time delay of the fluctuation of the phase ratio, and the differential pressure signal of the Venturi tube is combined, so it is affected by the uneven distribution of the mixture Without this, the flow rate of each phase can be determined accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の多相流流量計の構成図である。FIG. 1 is a configuration diagram of a multiphase flow meter of the present invention.

【図2】 混合物相割合測定センサの電極部斜視図であ
る。
FIG. 2 is a perspective view of an electrode portion of a mixture phase ratio measurement sensor.

【図3】 網目状電極の部分詳細図である。FIG. 3 is a partial detailed view of a mesh electrode.

【図4】 本発明の多相流流量計の別の構成図である。FIG. 4 is another configuration diagram of the multiphase flow meter of the present invention.

【図5】 従来の多相流流量計の構成図である。FIG. 5 is a configuration diagram of a conventional multiphase flow meter.

【符号の説明】[Explanation of symbols]

11 多相流体、 12 管路、 21,31 混合物
相割合測定センサ、22,32 静電容量測定装置、
23,33 第1容量電極、24,34 第2容量電
極、 51 ベンチュリ管、 52 差圧センサ、61
演算処理装置、71,72 絶対圧力センサ、 81
温度計。
11 multi-phase fluid, 12 pipeline, 21, 31 mixture phase ratio measuring sensor, 22, 32 capacitance measuring device,
23, 33 First capacitance electrode, 24, 34 Second capacitance electrode, 51 Venturi tube, 52 Differential pressure sensor, 61
Arithmetic processing unit, 71, 72 Absolute pressure sensor, 81
thermometer.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000006507 横河電機株式会社 東京都武蔵野市中町2丁目9番32号 (72)発明者 笛木 学 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 山崎 大輔 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 春山 周一 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 田中 仁章 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 000006507 Yokogawa Electric Corporation 2-93-2, Nakamachi, Musashino-shi, Tokyo (72) Inventor Manabu Fueki 2-9-132 Nakamachi, Musashino-shi, Tokyo Yokogawa Electric Inside (72) Inventor Daisuke Yamazaki 2-9-132 Nakamachi, Musashino-shi, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Shuichi Haruyama 2-9-132 Nakamachi, Musashino-shi, Tokyo Yokogawa Electric Corporation (72) Inventor, Hitoshi Tanaka 2-9-32 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管路を流れる混合物の流れ方向と略直角
に該管路内に設けられた該管路断面と略同じ大きさの網
目状の第1電極と、 前記第1電極と対向させて前記管路内に設けられた該管
路断面と略同じ大きさの網目状の第2の電極と、 前記第1電極と前記第2の電極との間の静電容量を測定
する静電容量測定装置と、 測定された静電容量から前記混合物の各成分の相割合を
求める相割合演算装置とを備えた混合物相割合測定セン
サを、所定の間隔で前記管路の2カ所に設置し、 前記2つの混合物相割合測定センサの出力である各成分
の相割合の時間的変動の相関から前記混合物の流速を演
算する速度演算装置と、 前記管路にベンチュリ管を設けてその絞り部の差圧を測
定する圧力センサとを備え、 混合物の各成分の相割合、混合物の流速およびベンチュ
リ管の絞り部の差圧から、混合物の各相の流量を求める
演算処理装置とを備えた多相流流量計。
1. A mesh-like first electrode having a size substantially equal to a cross-section of a pipeline provided in the pipeline at a substantially right angle to a flow direction of a mixture flowing through the pipeline, and facing the first electrode. And a mesh-like second electrode having substantially the same size as the cross section of the pipeline provided in the pipeline, and an electrostatic capacitance measuring the capacitance between the first electrode and the second electrode. A mixture phase ratio measurement sensor having a capacitance measuring device and a phase ratio calculating device for calculating a phase ratio of each component of the mixture from the measured capacitance is installed at two locations in the pipe at predetermined intervals. A speed calculation device for calculating the flow rate of the mixture from the correlation of the temporal variation of the phase ratio of each component which is the output of the two mixture phase ratio measurement sensors; and A pressure sensor that measures the differential pressure, the phase ratio of each component of the mixture, and the flow rate of the mixture And a processor for calculating the flow rate of each phase of the mixture from the differential pressure at the throttle section of the venturi tube.
【請求項2】 管路を流れる混合物の流れ方向と略直角
に該管路内に設けられた該管路断面と略同じ大きさの網
目状の第1電極と、 前記第1電極と対向させて前記管路に設けられた該管路
断面と略同じ大きさの網目状の第2の電極と、 前記第1電極と前記第2の電極との間の静電容量を測定
する静電容量測定装置と、 測定された静電容量から前記混合物の各成分の相割合を
求める相割合演算装置とを備えた混合物相割合測定セン
サを、所定の間隔で前記管路の2カ所に設置し、 前記2つの混合物相割合測定センサの出力である各成分
の相割合の時間的変動の相関から前記混合物の流速を演
算する速度演算装置と、 前記管路にベンチュリ管を設けてその絞り部の差圧から
混合物の絶対圧力を測定する絶対圧力計と、 前記混合物の温度を測定する温度計とを備え、 前記絶対圧力計と前記温度計から得られる混合物の物性
値、混合物の各成分の相割合および流速から、混合物の
各相の流量を求める演算処理装置とを備えた多相流流量
計。
2. A mesh-like first electrode having a size substantially the same as the cross section of the pipe provided in the pipe at a substantially right angle to the flow direction of the mixture flowing through the pipe, and facing the first electrode. A second electrode having a mesh shape substantially the same size as the cross section of the conduit provided in the conduit, and a capacitance for measuring a capacitance between the first electrode and the second electrode A mixture phase ratio measurement sensor comprising a measurement device and a phase ratio calculation device for calculating a phase ratio of each component of the mixture from the measured capacitance, installed at two locations in the pipeline at predetermined intervals; A speed calculation device for calculating the flow rate of the mixture from the correlation of the temporal variation of the phase ratio of each component which is the output of the two mixture phase ratio measurement sensors; An absolute manometer for measuring the absolute pressure of the mixture from the pressure, and measuring the temperature of the mixture And a processor for calculating the flow rate of each phase of the mixture from the physical properties of the mixture obtained from the thermometer and the phase ratio of each component of the mixture and the flow velocity. Phase flow meter.
JP21656497A 1997-08-11 1997-08-11 Flowmeter for multi-phase flow Pending JPH1164067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21656497A JPH1164067A (en) 1997-08-11 1997-08-11 Flowmeter for multi-phase flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21656497A JPH1164067A (en) 1997-08-11 1997-08-11 Flowmeter for multi-phase flow

Publications (1)

Publication Number Publication Date
JPH1164067A true JPH1164067A (en) 1999-03-05

Family

ID=16690411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21656497A Pending JPH1164067A (en) 1997-08-11 1997-08-11 Flowmeter for multi-phase flow

Country Status (1)

Country Link
JP (1) JPH1164067A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058225A1 (en) * 2002-01-11 2003-07-17 Services Petroliers Schlumberger Device for characterizing the flow of a multiphase fluid in a tubing
WO2006083170A1 (en) * 2005-02-03 2006-08-10 Roxar As Flow measurement apparatus
WO2014015802A1 (en) * 2012-07-24 2014-01-30 兰州海默科技股份有限公司 Wet gas flow measuring method and apparatus
JP2014098701A (en) * 2012-11-14 2014-05-29 Krohne A.G. Nuclear magnetic flow meter and method for operation of nuclear magnetic flow meters
WO2014194729A1 (en) * 2013-03-25 2014-12-11 兰州海默科技股份有限公司 Device and method for online measurement of gas-phase flux and liquid-phase flux of moisture in horizontal pipe
JP2015004682A (en) * 2014-08-19 2015-01-08 株式会社タツノ Foreign matter contamination detection device
CN105806424A (en) * 2016-03-15 2016-07-27 成都中油翼龙科技有限责任公司 Multi-phase flow nondisjunction online measuring device and measuring method thereof
CN107478278A (en) * 2017-07-25 2017-12-15 西安交通大学 A kind of differential pressure type two-phase flow measurement method based on phase isolation technique in pipe
KR20190002985A (en) * 2017-06-30 2019-01-09 (주) 엔피홀딩스 Mass flow control apparatus using capacitance measuring and mass flow control method using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003058225A1 (en) * 2002-01-11 2003-07-17 Services Petroliers Schlumberger Device for characterizing the flow of a multiphase fluid in a tubing
GB2399421A (en) * 2002-01-11 2004-09-15 Schlumberger Holdings Device for characterizing the flow of a multiphase fluid in a tubing
GB2399421B (en) * 2002-01-11 2005-06-29 Schlumberger Holdings Device for characterizing the flow of a multiphase fluid in a tubing
GB2437021B (en) * 2005-02-03 2010-05-12 Roxar As Flow measurement apparatus
GB2437021A (en) * 2005-02-03 2007-10-10 Roxar As Flow measurement apparatus
US7481118B2 (en) 2005-02-03 2009-01-27 Roxar Flow Measurement As Flow measurement apparatus
WO2006083170A1 (en) * 2005-02-03 2006-08-10 Roxar As Flow measurement apparatus
WO2014015802A1 (en) * 2012-07-24 2014-01-30 兰州海默科技股份有限公司 Wet gas flow measuring method and apparatus
JP2014098701A (en) * 2012-11-14 2014-05-29 Krohne A.G. Nuclear magnetic flow meter and method for operation of nuclear magnetic flow meters
WO2014194729A1 (en) * 2013-03-25 2014-12-11 兰州海默科技股份有限公司 Device and method for online measurement of gas-phase flux and liquid-phase flux of moisture in horizontal pipe
JP2015004682A (en) * 2014-08-19 2015-01-08 株式会社タツノ Foreign matter contamination detection device
CN105806424A (en) * 2016-03-15 2016-07-27 成都中油翼龙科技有限责任公司 Multi-phase flow nondisjunction online measuring device and measuring method thereof
CN105806424B (en) * 2016-03-15 2019-07-16 成都中油翼龙科技有限责任公司 A kind of multiphase flow does not separate on-line measurement device and its measurement method
KR20190002985A (en) * 2017-06-30 2019-01-09 (주) 엔피홀딩스 Mass flow control apparatus using capacitance measuring and mass flow control method using the same
CN107478278A (en) * 2017-07-25 2017-12-15 西安交通大学 A kind of differential pressure type two-phase flow measurement method based on phase isolation technique in pipe

Similar Documents

Publication Publication Date Title
US7389687B2 (en) System for measuring a parameter of an aerated multi-phase mixture flowing in a pipe
JP3485542B2 (en) Gas mass ratio measurement method
US20160341585A1 (en) Multiphase Flow Meter
CN110726444B (en) Wet gas flow metering method and device based on Coriolis mass flowmeter
JPH1164067A (en) Flowmeter for multi-phase flow
JP3509825B2 (en) Multi-phase flow meter
JPH09311061A (en) Multiphase-flow flowmeter
US6732596B2 (en) Critical gas flow measurement apparatus and method
JPH1164066A (en) Flow meter for multi-phase flow
JP3119782B2 (en) Flowmeter
JP4094899B2 (en) Differential pressure flow measurement method
JP3103264B2 (en) Ultrasonic flow meter
JPH10281843A (en) Polyphase flowmeter
JP7037883B2 (en) Exhaust flow rate measuring device, fuel consumption measuring device, program for exhaust gas flow rate measuring device, and exhaust gas flow rate measuring method
JP3398251B2 (en) Flowmeter
JP3252187B2 (en) Flowmeter
JPH11316144A (en) Differential pressure type flow meter
JP3381122B2 (en) Steam dryness measuring device
JP3192912B2 (en) Flowmeter
RU2517996C1 (en) Ultrasonic flowmeter sensor
JP3757009B2 (en) Split flow meter
CN111473828B (en) Zero drift elimination method for commercial meter
JPS6338087B2 (en)
JP3766777B2 (en) Flowmeter
JPH11125547A (en) Method for measuring flow rate of each fluid of multiphase fluid, and flowmeter for multiphase fluid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040331

Free format text: JAPANESE INTERMEDIATE CODE: A712