JP2000239843A - Production of metallic thin film - Google Patents

Production of metallic thin film

Info

Publication number
JP2000239843A
JP2000239843A JP3844899A JP3844899A JP2000239843A JP 2000239843 A JP2000239843 A JP 2000239843A JP 3844899 A JP3844899 A JP 3844899A JP 3844899 A JP3844899 A JP 3844899A JP 2000239843 A JP2000239843 A JP 2000239843A
Authority
JP
Japan
Prior art keywords
thin film
raw material
substrate
metallic
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3844899A
Other languages
Japanese (ja)
Inventor
Kojiro Hirao
浩二郎 平尾
Yoshinori Sawato
義規 沢渡
Junichi Hidaka
淳一 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP3844899A priority Critical patent/JP2000239843A/en
Publication of JP2000239843A publication Critical patent/JP2000239843A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a metallic thin film excellent in coating suitability for the parts different in level and uniformity by feeding a gaseous starting material obtd. by heating and vaporizing a soln. obtd. by dissolving a β diketonate metallic complex into an organic solvent to the surface of a substrate heated to a prescribed temp., decomposing the metallic complex on the substrate and forming a film. SOLUTION: A raw material soln. obtd. by dissolving a βdiketonate metallic complex into an organic solvent having a reducibility is fed from a raw material vessel 11 to a vaporizer 13 at a prescribed flow rate by a fixed quantity soln. feeding pump 12. The gaseous starting material heated and vaporized by the vaporizer 13 is introduced into a reaction furnace 18 accompanied by carrier gas fed from a carrier gas feeding path 15 and is brought into reaction at the part of a substrate 16 heated to a prescribed temp., and the metallic ions in the metallic complex are reduced by the reducing force of the organic solvent to form into a metallic simple substance, which is deposited on the upper face of the substrate 16 to form a thin film. Thus, the low-cost metallic complex relatively stable in the air can be used as the raw material, and, moreover, the amt. of the raw material to be fed can precisely be controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属薄膜の製造方
法に関し、詳しくは、段差被覆性が良好で均一性に優れ
た金属薄膜を製造する方法に関する。
The present invention relates to a method for producing a metal thin film, and more particularly, to a method for producing a metal thin film having good step coverage and excellent uniformity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】半導体
チップ内の配線には、主にアルミニウム配線が用いられ
てきているが、近年の半導体の高集積化や高速化に伴
い、より低抵抗で、耐EM性にも優れた配線材料が要望
されている。現在最も有力視され、実用化されつつある
ものの一つが銅配線であり、この銅配線を製作する方法
として、段差被覆性に優れた成膜法であるCVD法が注
目されている。
2. Description of the Related Art Aluminum wiring has been mainly used for wiring in a semiconductor chip. However, with the recent increase in the degree of integration and speed of semiconductors, lower resistance has been required. There is a demand for a wiring material having excellent EM resistance. At present, one of the most promising and practically used ones is a copper wiring. As a method of manufacturing the copper wiring, a CVD method, which is a film forming method excellent in step coverage, has attracted attention.

【0003】CVD法により金属銅の薄膜を得る方法と
して、1価の錯体である「Cu(hfac)(tmv
s)」を原料とした方法が知られている。しかし、この
錯体は非常に高価であり、さらに大気中で非常に不安定
なため、安定供給という点についても問題が多い。ま
た、プラズマCVD法によって金属薄膜を成膜すること
も行われているが、この方法では、プラズマによって原
料だけでなく不純物成分も活性化してしまうため、、こ
れが金属薄膜中に取込まれてしまうという問題があっ
た。
As a method of obtaining a thin film of metallic copper by the CVD method, a monovalent complex “Cu (hfac) (tmv
s) "as a raw material. However, since this complex is very expensive and very unstable in the air, there are many problems in terms of stable supply. In addition, a metal thin film is formed by a plasma CVD method. However, in this method, not only the raw material but also the impurity component is activated by the plasma, so that this is taken into the metal thin film. There was a problem.

【0004】また、常温付近で固体の原料を使用する場
合、該固体原料を直接加熱して気化させ、気化したガス
をキャリアガスで搬送すること、いわゆる固体昇華法に
より原料を供給することが行われているが、この方法で
は原料供給量を精密に制御することが困難であった。
When a solid material is used at around normal temperature, the solid material is directly heated and vaporized, and the vaporized gas is conveyed by a carrier gas, that is, the material is supplied by a so-called solid sublimation method. However, it has been difficult to precisely control the amount of raw material supplied by this method.

【0005】そこで本発明は、安定で安価な原料を使用
して銅等の金属薄膜を容易に製造することができる金属
薄膜の製造方法を提供することを目的としている。
Accordingly, an object of the present invention is to provide a method of manufacturing a metal thin film that can easily manufacture a metal thin film of copper or the like using a stable and inexpensive raw material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の金属薄膜の製造方法は、βジケトネート金
属錯体を有機溶媒に溶解させたβジケトネート金属錯体
溶液を加熱気化させた原料ガスを、所定温度に加熱した
基板上に供給し、該基板上で前記βジケトネート金属錯
体を分解して基板上に金属薄膜を成膜することを特徴と
している。
In order to achieve the above object, a method for producing a metal thin film according to the present invention comprises the steps of: heating a source gas obtained by heating and evaporating a β-diketonate metal complex solution obtained by dissolving a β-diketonate metal complex in an organic solvent; Is supplied onto a substrate heated to a predetermined temperature, and the β-diketonate metal complex is decomposed on the substrate to form a metal thin film on the substrate.

【0007】金属薄膜の原料となるβジケトネート金属
錯体は、薄膜を形成する金属を含む2価あるいは3価の
錯体であり、このような金属錯体は、前述のCu(hf
ac)(tmvs)のような1価の金属錯体に比べて安
定であり、しかも、遙かに低価格である。金属として
は、薄膜の使用目的に応じて種々のものを選択すること
が可能であるが、イオン化傾向の高いもの、すなわち還
元され難いものは不適当である。現在の半導体分野での
状況を考慮すると、銅、イリジウム、ルテニウム、ロジ
ウムが適している。
The β-diketonate metal complex used as a raw material of the metal thin film is a divalent or trivalent complex containing a metal forming the thin film, and such a metal complex is the aforementioned Cu (hff
It is more stable than monovalent metal complexes such as ac) (tmvs), and at a much lower cost. Various metals can be selected according to the purpose of use of the thin film, but those having a high ionization tendency, that is, those which are difficult to be reduced, are inappropriate. Considering the current situation in the semiconductor field, copper, iridium, ruthenium and rhodium are suitable.

【0008】また、錯体の形態も種々のものが考えられ
るが、一般的には、これらの金属のアセチルアセトネー
ト金属錯体、ヘキサフルオロアセチルアセトネート金属
錯体、ジピバロイルメタナト金属錯体が適当である。具
体的には、ジピバロイルメタナト銅錯体(Cu(DP
M))、アセチルアセトネート銅錯体(Cu(AcA
c))、ヘキサフルオロアセチルアセトネート銅錯体
(Cu(hfac))、アセチルアセトネートイリジ
ウム錯体(Ir(AcAc))、ジピバロイルメタナ
トルテニウム錯体(Ru(DPM))、アセチルアセ
トネートルテニウム錯体(Ru(AcAc))等を挙
げることができる。
Various forms of the complex can be considered. In general, acetylacetonate metal complexes, hexafluoroacetylacetonate metal complexes, and dipivaloylmethanato metal complexes of these metals are suitable. is there. Specifically, dipivaloylmethanato copper complex (Cu (DP
M) 2 ), copper acetylacetonate complex (Cu (AcA)
c) 2 ), hexafluoroacetylacetonate copper complex (Cu (hfac) 2 ), acetylacetonate iridium complex (Ir (AcAc) 3 ), dipivaloylmethanatruthenium complex (Ru (DPM) 2 ), acetylacetoacetate A sodium ruthenium complex (Ru (AcAc) 2 ) can be exemplified.

【0009】前記有機溶媒は、任意のものを使用するこ
とができるが、還元性を有しているものが特に好まし
い。還元性を有する有機溶媒としては、還元性が強すぎ
ると溶液の安定性が損われることがあるので、適度な還
元力を有しているものを選択すればよい。例えば、アル
コール系有機溶媒、エーテル系有機溶媒、エステル系有
機溶媒、アミン系有機溶媒を使用することができ、具体
的には、2−プロパノール、テトラヒドロフラン、酢酸
ブチル、酢酸エチル、ジエチルアミン,トリエチルアミ
ン等のルイス塩基性の高い有機溶媒が好ましい。なお、
有機溶媒に溶解する前記βジケトネート金属錯体の濃度
は任意である。
Although any organic solvent can be used, those having a reducing property are particularly preferable. As the organic solvent having a reducing property, if the reducing property is too strong, the stability of the solution may be impaired. Therefore, an organic solvent having an appropriate reducing power may be selected. For example, alcohol-based organic solvents, ether-based organic solvents, ester-based organic solvents, and amine-based organic solvents can be used. Specifically, 2-propanol, tetrahydrofuran, butyl acetate, ethyl acetate, diethylamine, triethylamine, and the like can be used. Organic solvents having high Lewis basicity are preferred. In addition,
The concentration of the β-diketonate metal complex dissolved in the organic solvent is arbitrary.

【0010】また、金属薄膜を成膜する基板には、一般
的なTiN基板やSi基板等の各種基板を使用すること
ができるが、導電性物質であるTiN基板が好適であ
る。成膜時の温度や圧力は、原料となるβジケトネート
金属錯体や有機溶媒の種類等の条件によって異なるが、
一般的なCVD法における成膜温度より高めに設定する
ことが反応を促進する上で好ましく、通常は500℃程
度が適当である。
Various substrates such as a general TiN substrate and a Si substrate can be used as the substrate on which the metal thin film is formed, but a TiN substrate, which is a conductive substance, is preferable. The temperature and pressure during film formation vary depending on conditions such as the type of β-diketonate metal complex and organic solvent used as the raw material,
It is preferable to set the temperature higher than the film forming temperature in a general CVD method in order to promote the reaction, and usually about 500 ° C. is appropriate.

【0011】[0011]

【発明の実施の形態】以下、図1に系統図で示すCVD
装置を使用して基板上に金属薄膜を成膜する手順に基づ
いて説明する。このCVD装置は、原料溶液を貯蔵する
原料容器11と、該原料容器11内の原料溶液を所定の
流量で送液する定量送液ポンプ12と、原料溶液を加熱
して気化させるための気化器13と、該気化器13で気
化した原料ガスを搬送するためのキャリアガスを流量制
御器14を介して供給するキャリアガス供給経路15
と、基板16を加熱する加熱手段17を備えた反応炉1
8と、反応炉18内を所定圧力に保持するとともに、反
応炉18からの排気ガス及びベント配管19からの排気
ガスを吸引排気するための真空ポンプ20と、排気ガス
の除害を行う除害装置21とにより形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a CVD system shown in FIG.
A description will be given based on a procedure for forming a metal thin film on a substrate using the apparatus. This CVD apparatus includes a raw material container 11 for storing a raw material solution, a fixed-quantity liquid supply pump 12 for feeding the raw material solution in the raw material container 11 at a predetermined flow rate, and a vaporizer for heating and vaporizing the raw material solution. 13 and a carrier gas supply path 15 for supplying a carrier gas for transporting the source gas vaporized by the vaporizer 13 via a flow rate controller 14
Reactor 1 having heating means 17 for heating substrate 16
8, a vacuum pump 20 for holding the inside of the reaction furnace 18 at a predetermined pressure, and sucking and exhausting the exhaust gas from the reaction furnace 18 and the exhaust gas from the vent pipe 19; And the device 21.

【0012】まず、原料であるβジケトネート金属錯体
を還元性を有する有機溶媒に溶解した原料溶液は、定量
送液ポンプ12によって所定流量で原料容器11から気
化器13に送込まれる。なお、原料容器11内には、配
管22から不活性ガス、例えばヘリウムが所定圧力で導
入され、大気との接触による原料溶液の劣化を防止する
とともに原料溶液を所定圧力で送出するようにしてい
る。
First, a raw material solution in which a β-diketonate metal complex as a raw material is dissolved in an organic solvent having a reducing property is sent from a raw material container 11 to a vaporizer 13 at a predetermined flow rate by a constant-rate liquid sending pump 12. In addition, an inert gas, for example, helium is introduced into the raw material container 11 from the pipe 22 at a predetermined pressure to prevent the raw material solution from deteriorating due to contact with the atmosphere and to deliver the raw material solution at a predetermined pressure. .

【0013】所定温度に保持された気化器13で加熱さ
れて気化した原料ガスは、キャリアガス供給経路15か
ら供給されるキャリアガスに同伴され、所定温度に保温
された配管23、弁24を経て反応炉18内に導入され
る。
The source gas heated and vaporized by the vaporizer 13 maintained at a predetermined temperature is entrained by the carrier gas supplied from the carrier gas supply path 15 and passes through a pipe 23 and a valve 24 maintained at a predetermined temperature. It is introduced into the reaction furnace 18.

【0014】反応炉18内に導入された原料ガスは、所
定温度に加熱されている基板16部分で反応し、βジケ
トネート金属錯体中の金属イオンが有機溶媒の還元力で
還元されて金属単体となり、基板16の上面に順次堆積
して薄膜を形成する。
The raw material gas introduced into the reaction furnace 18 reacts on the portion of the substrate 16 heated to a predetermined temperature, and the metal ions in the β-diketonate metal complex are reduced by the reducing power of the organic solvent to become a simple metal. Are sequentially deposited on the upper surface of the substrate 16 to form a thin film.

【0015】すなわち、βジケトネート金属錯体と還元
性を有する有機溶媒分子とを所定温度で接触させ、錯体
分子の周辺に有機溶媒の蒸気が存在する状態にすること
により、錯体中の金属イオンが酸化剤となって有機溶媒
分子を酸化し、金属イオン自身は有機溶媒分子から電子
を受取って金属単体に還元され、これが基板上に堆積す
ることによって金属薄膜が得られる。
That is, the metal ion in the complex is oxidized by bringing the β-diketonate metal complex into contact with the organic solvent molecule having a reducing property at a predetermined temperature so that the vapor of the organic solvent exists around the complex molecule. As an agent, the organic solvent molecules are oxidized, and the metal ions themselves receive electrons from the organic solvent molecules and are reduced to simple metals, which are deposited on a substrate to obtain a metal thin film.

【0016】このようにして金属薄膜を得るようにした
ことにより、大気中で比較的安定で、かつ、低コストの
βジケトネート金属錯体を原料として使用することがで
き、しかも、有機溶媒に所定量を溶解させたものを気化
して供給するので、原料供給量を精密に制御することが
できる。特に、熱によってのみ原料を分解、還元する熱
CVD法で金属薄膜を成膜するので、プラズマを使用し
て金属薄膜を成膜するときのように、不純物が膜中に大
量に取込まれることがなくなり、高品質な金属薄膜を得
ることができる。さらに、水素や一酸化炭素のような還
元性ガスを用いなくても金属薄膜を成膜することができ
るが、これらを併用することにより、上述の還元反応を
促進させて成膜速度を向上させることができる。
Since the metal thin film is obtained in this manner, a β-diketonate metal complex which is relatively stable in the air and inexpensive can be used as a raw material. Is dissolved and vaporized and supplied, so that the raw material supply amount can be precisely controlled. In particular, since a metal thin film is formed by a thermal CVD method in which a raw material is decomposed and reduced only by heat, a large amount of impurities are taken into the film as when a metal thin film is formed using plasma. And a high quality metal thin film can be obtained. Furthermore, a metal thin film can be formed without using a reducing gas such as hydrogen or carbon monoxide. By using these together, the above-described reduction reaction is promoted and the film formation rate is improved. be able to.

【0017】[0017]

【実施例】実施例1 原料錯体としてCu(DPM)、有機溶媒としてテト
ラヒドロフランを用いて窒化チタン(TiN)基板上に
金属銅の薄膜を成膜した。まず、テトラヒドロフラン中
にCu(DPM)を濃度0.2mol/Lで溶解して
原料溶液とし、これを毎分1ミリリットルで、約150
℃に加熱した気化器に送液して気化させた。気化器に
は、毎分10ミリリットルでキャリアガスとしてのアル
ゴンを供給し、気化した原料ガスを同伴させて200℃
程度に保温した配管から反応炉に導入した。反応炉内の
圧力は10〜20Torrとし、基板の加熱温度は約5
00℃とした。その結果、毎分約8nmの成膜速度で金
属銅の薄膜が成膜された。
EXAMPLE 1 A metal copper thin film was formed on a titanium nitride (TiN) substrate using Cu (DPM) 2 as a raw material complex and tetrahydrofuran as an organic solvent. First, Cu (DPM) 2 was dissolved in tetrahydrofuran at a concentration of 0.2 mol / L to prepare a raw material solution, which was dissolved at a rate of about 150 ml / min.
The solution was sent to a vaporizer heated to ° C. and vaporized. The vaporizer is supplied with argon as a carrier gas at a rate of 10 ml / min.
It was introduced into the reactor from a pipe kept at a moderate temperature. The pressure in the reactor is 10 to 20 Torr, and the heating temperature of the substrate is about 5
The temperature was set to 00 ° C. As a result, a thin film of metallic copper was formed at a film formation rate of about 8 nm per minute.

【0018】上述のようにして得た膜厚250nmの銅
薄膜の特性を測定したところ、段差被覆性(側壁膜厚/
底面膜厚)は0.85であり、4針法による抵抗値は
2.0μΩcmであった。また、二次イオン質量分析法
(SIMS)によって膜中の不純物濃度を測定したとこ
ろ、酸素が約100ppm、水素が約60ppmであっ
た。
When the characteristics of the copper thin film having a thickness of 250 nm obtained as described above were measured, the step coverage (the side wall thickness /
The bottom surface film thickness) was 0.85, and the resistance value according to the four-needle method was 2.0 μΩcm. When the impurity concentration in the film was measured by secondary ion mass spectrometry (SIMS), oxygen was about 100 ppm and hydrogen was about 60 ppm.

【0019】実施例2 原料溶液としてヘキサフルオロアセチルアセトネート銅
錯体をテトラヒドロフラン中に0.1mol/Lで溶解
させたものを使用した。送液量を毎分2ミリリットルと
し、気化器での気化温度は120℃とした。また、反応
炉内の圧力は20torrとして金属銅の薄膜を成膜し
た。その他のキャリアガス量や基板温度等は実施例1と
同じにした。このときの成膜速度は毎分10nmであ
り、得られた銅薄膜の特性は実施例1と略同様であっ
た。
Example 2 A solution prepared by dissolving a hexafluoroacetylacetonate copper complex at 0.1 mol / L in tetrahydrofuran was used as a raw material solution. The amount of liquid sent was 2 ml per minute, and the vaporization temperature in the vaporizer was 120 ° C. The pressure in the reactor was set to 20 torr to form a thin film of metallic copper. Other carrier gas amounts, substrate temperatures, and the like were the same as in Example 1. The film formation rate at this time was 10 nm per minute, and the characteristics of the obtained copper thin film were almost the same as those in Example 1.

【0020】比較例 原料としてCu(hfac)を使用してプラズマCV
D法により金属薄膜を成膜した。基板温度は170℃、
プラズマ密度は0.25W/cmとした。その結果、
毎分25nmの速度で金属薄膜を成膜することができた
が、SIMSで膜中の不純物濃度を測定したところ、酸
素が約1000ppm、水素が約400ppmであっ
た。
Comparative Example Plasma CV using Cu (hfac) 2 as a raw material
A metal thin film was formed by Method D. The substrate temperature is 170 ° C,
The plasma density was 0.25 W / cm 2 . as a result,
Although a metal thin film could be formed at a rate of 25 nm per minute, when the impurity concentration in the film was measured by SIMS, oxygen was about 1000 ppm and hydrogen was about 400 ppm.

【0021】[0021]

【発明の効果】以上説明したように、本発明の金属薄膜
の製造方法によれば、大気中で比較的安定であり、か
つ、低コストのβジケトネート金属錯体を使用して段差
被覆性が良好で低抵抗であり、不純物量も少ない高品質
な金属薄膜を得ることができる。
As described above, according to the method for producing a metal thin film of the present invention, the step coverage can be improved by using a β-diketonate metal complex which is relatively stable in the air and low in cost. Thus, a high-quality metal thin film having low resistance and a small amount of impurities can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法を実施するためのCVD装置の一
例を示す系統図である。
FIG. 1 is a system diagram showing an example of a CVD apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

11…原料容器、12…定量送液ポンプ、13…気化
器、14…流量制御器、15…キャリアガス供給経路、
16…基板、17…加熱手段、18…反応炉、19…ベ
ント配管、20…真空ポンプ、21…除害装置
11: raw material container, 12: fixed-quantity liquid sending pump, 13: vaporizer, 14: flow rate controller, 15: carrier gas supply path,
Reference numeral 16: substrate, 17: heating means, 18: reaction furnace, 19: vent piping, 20: vacuum pump, 21: abatement device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日高 淳一 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 4K030 AA11 BA01 CA04 CA12 4M104 BB30 DD43 DD45 FF18  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Junichi Hidaka 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo F-term in Nippon Sanso Corporation (reference) 4K030 AA11 BA01 CA04 CA12 4M104 BB30 DD43 DD45 FF18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 βジケトネート金属錯体を有機溶媒に溶
解させたβジケトネート金属錯体溶液を加熱気化させた
原料ガスを、所定温度に加熱した基板上に供給し、該基
板上で前記βジケトネート金属錯体を分解して基板上に
金属薄膜を成膜することを特徴とする金属薄膜の製造方
法。
1. A raw material gas obtained by heating and vaporizing a β-diketonate metal complex solution in which a β-diketonate metal complex is dissolved in an organic solvent is supplied to a substrate heated to a predetermined temperature, and the β-diketonate metal complex is supplied to the substrate. A method for producing a metal thin film, comprising decomposing a metal thin film on a substrate.
【請求項2】 前記βジケトネート金属錯体が、アセチ
ルアセトネート金属錯体、ヘキサフルオロアセチルアセ
トネート金属錯体、ジピバロイルメタナト金属錯体のい
ずれかであることを特徴とする請求項1記載の金属薄膜
の製造方法。
2. The metal thin film according to claim 1, wherein the β-diketonate metal complex is any one of an acetylacetonate metal complex, a hexafluoroacetylacetonate metal complex, and a dipivaloylmethanato metal complex. Manufacturing method.
【請求項3】 前記金属が、銅、イリジウム、ルテニウ
ム、ロジウムのいずれかであることを特徴とする請求項
1記載の金属薄膜の製造方法。
3. The method according to claim 1, wherein the metal is one of copper, iridium, ruthenium, and rhodium.
JP3844899A 1999-02-17 1999-02-17 Production of metallic thin film Withdrawn JP2000239843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3844899A JP2000239843A (en) 1999-02-17 1999-02-17 Production of metallic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3844899A JP2000239843A (en) 1999-02-17 1999-02-17 Production of metallic thin film

Publications (1)

Publication Number Publication Date
JP2000239843A true JP2000239843A (en) 2000-09-05

Family

ID=12525581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3844899A Withdrawn JP2000239843A (en) 1999-02-17 1999-02-17 Production of metallic thin film

Country Status (1)

Country Link
JP (1) JP2000239843A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006033037A1 (en) * 2006-07-14 2008-01-24 Universität Bielefeld One step process for applying a metal layer to a substrate
JP2008031541A (en) * 2006-07-31 2008-02-14 Tokyo Electron Ltd Cvd film deposition process and cvd film deposition system
JP2014111842A (en) * 2002-07-23 2014-06-19 Advanced Technology Materials Inc Vaporizer delivery ampoule
JP2017066045A (en) * 2015-09-28 2017-04-06 気相成長株式会社 Method for transporting solid metal complex
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111842A (en) * 2002-07-23 2014-06-19 Advanced Technology Materials Inc Vaporizer delivery ampoule
US9469898B2 (en) 2002-07-23 2016-10-18 Entegris, Inc. Method and apparatus to help promote contact of gas with vaporized material
US10465286B2 (en) 2002-07-23 2019-11-05 Entegris, Inc. Method and apparatus to help promote contact of gas with vaporized material
DE102006033037A1 (en) * 2006-07-14 2008-01-24 Universität Bielefeld One step process for applying a metal layer to a substrate
JP2008031541A (en) * 2006-07-31 2008-02-14 Tokyo Electron Ltd Cvd film deposition process and cvd film deposition system
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology
JP2017066045A (en) * 2015-09-28 2017-04-06 気相成長株式会社 Method for transporting solid metal complex

Similar Documents

Publication Publication Date Title
JP3875491B2 (en) Chemical properties of precursors for chemical vapor deposition of ruthenium or ruthenium oxide.
US6162712A (en) Platinum source compositions for chemical vapor deposition of platinum
US6844261B2 (en) Method of forming ruthenium and ruthenium oxide films on a semiconductor structure
US6074945A (en) Methods for preparing ruthenium metal films
KR20010049584A (en) Improved organocopper precursor blend and method of depositing copper by chemical vapor deposition
US4842891A (en) Method of forming a copper film by chemical vapor deposition
JP2002543284A (en) PECVD of TaN film from tantalum halide precursor
US6517616B2 (en) Solvated ruthenium precursors for direct liquid injection of ruthenium and ruthenium oxide
US20030165619A1 (en) Chemical vapor deposition process for depositing titanium nitride films from an organo-metallic compound
KR100256669B1 (en) Chemical vapor deposition apparatus and method for forming copper film using the same
JPH08269720A (en) Formation of titanium nitride thin film and film forming device used therefor
JP2005171291A (en) Titanium-containing thin film and production method therefor
JP2000239843A (en) Production of metallic thin film
KR20040088110A (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
KR100358045B1 (en) Method of forming a copper wiring in a semiconductor device
JP2002060942A (en) Copper thin film deposition method and copper thin film deposition system
JP5732772B2 (en) Ruthenium complex mixture, production method thereof, film-forming composition, ruthenium-containing film and production method thereof
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
JP2007332422A (en) Film deposition method and film deposition apparatus
KR101237634B1 (en) Film forming method and film forming apparatus
JP7245521B2 (en) Atomic layer deposition method for thin metal films
JPH04214867A (en) Method for growing thin film and apparatus therefor
JP2001308087A (en) Film-forming method and film-forming apparatus
JPH06196438A (en) Titanium thin film forming method
JP4634572B2 (en) Copper thin film formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080221