JP2000239742A - Production of carburized steel omissible of normalizing after hot-forging - Google Patents

Production of carburized steel omissible of normalizing after hot-forging

Info

Publication number
JP2000239742A
JP2000239742A JP11044085A JP4408599A JP2000239742A JP 2000239742 A JP2000239742 A JP 2000239742A JP 11044085 A JP11044085 A JP 11044085A JP 4408599 A JP4408599 A JP 4408599A JP 2000239742 A JP2000239742 A JP 2000239742A
Authority
JP
Japan
Prior art keywords
steel
hot
forging
hot forging
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11044085A
Other languages
Japanese (ja)
Inventor
Misaki Nagao
実佐樹 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP11044085A priority Critical patent/JP2000239742A/en
Publication of JP2000239742A publication Critical patent/JP2000239742A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To omit a normalizing treatment after hot-forging by providing a producing method of a carburized steel having the same characteristics as the micro-structure, hardness and crystal grain size obtained after executing the normalizing treatment in the hot-forging state. SOLUTION: The steel composed of wt.% of 0.1-0.35% C, 0.05-0.5% Si, 0.2-2.9% Mn, 0.005-0.05% Al and further, 0.1-0.3% Ti and/or Nb and the balance Fe with inevitable impurities is heated at 900-1150 deg.C, and hot-worked at <=1,150 deg.C. Further, the heating temp. and the hot-forging temp. are regulated to <=1,150 deg.C, and the cooling is executed at 0.2-2 deg.C/sec cooling speed and thus, the structure after hot-forging is made to <=5% bainite structure and the balance ferrite-pearlite structure, and the hardness thereof is made to <=220 Hv, and when the carburizing treatment is executed at 950 deg.C, the austenite crystal grain size is regulated to No.8 or higher and the different crystal coarse grain size of No.3 or higher is regulated so as not to exceed 20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術的分野】本発明は熱間鍛造ままの状
態で焼ならしと同等のミクロ組織、硬さ、結晶粒度特性
を有する浸炭鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carburized steel having the same microstructure, hardness and grain size characteristics as in normalizing in the state of hot forging.

【0002】[0002]

【従来の技術】熱間鍛造を実施した浸炭鋼は、冷却時に
ベイナイト組織が発生し、浸炭時に浸炭粒度が比較的大
きくなりかつ混粒が発生しやすくなるため、一般的には
焼ならしを実施して使用されている。ベイナイト組織の
発生は硬さの向上につながり、鍛造後の機械加工におい
て被削性を低下させる原因となり、特に浸炭鋼の使用さ
れる自動車の歯車の歯切加工などでは機械加工前の硬さ
が220HV以下で規定されているところも多い。さら
にはベイナイト組織の発生により浸炭前の組織がフェラ
イト・パーライト・ベイナイトの3相になると、浸炭後
に混粒が発生しやすくなることが知られている。
2. Description of the Related Art Hot-forged carburized steel has a bainite structure during cooling, and has a relatively large carburized grain size during carburization, and tends to form mixed grains. It has been implemented and used. The formation of a bainite structure leads to an increase in hardness, which causes a reduction in machinability in machining after forging.In particular, gear cutting of automobile gears using carburized steel reduces the hardness before machining. In many cases, it is specified at 220 HV or less. Furthermore, it is known that if the structure before carburization becomes three phases of ferrite, pearlite, and bainite due to the generation of bainite structure, mixed grains are likely to occur after carburization.

【0003】ベイナイト組織の発生を防止するために、
熱間鍛造後の冷却時に変態点付近で徐冷されるような簡
易焼鈍炉を設置しているところも多いが、変態点付近に
て徐冷されるため結晶粒度が大きくなり、結果として疲
労強度の低下を招き、さらに温度調整のため炉中雰囲気
の加熱が実施されており、完全な熱処理省略コストの低
減には至っていない。
In order to prevent the formation of a bainite structure,
There are many places where a simple annealing furnace is installed so that it is gradually cooled near the transformation point during cooling after hot forging.However, since it is gradually cooled near the transformation point, the crystal grain size increases, resulting in fatigue strength. In addition, the furnace atmosphere is heated for temperature adjustment, and the cost of omitting the heat treatment is not completely reduced.

【0004】従来の技術では、例えば特公昭63-62568号
公報のように、熱間圧延の条件を規定することにより熱
間圧延ままで焼ならし処理をしたものと同等の組織を有
し、浸炭時に結晶粒が粗大化しない浸炭鋼を提案してい
る。しかし、この中では圧延温度および理想臨界直径D
Iの管理により熱間圧延後の焼ならし省略を検討したも
のであり、この温度にて熱間鍛造を行なうことは加工
性、生産性などから極めて困難である。またNb、Ti
添加についても結晶粒成長の抑制を考慮したものであ
り、焼ならし後の組織改善のために積極的に添加された
ものではない。
[0004] In the prior art, for example, as disclosed in Japanese Patent Publication No. 63-62568, by defining the conditions of hot rolling, it has a structure equivalent to that of normalizing as hot rolled, We have proposed carburized steel in which crystal grains do not become coarse during carburization. However, among these, the rolling temperature and the ideal critical diameter D
The purpose of the present invention was to examine the omission of normalization after hot rolling by the management of I. It is extremely difficult to perform hot forging at this temperature because of workability and productivity. Nb, Ti
The addition is also intended to suppress the growth of crystal grains, and is not actively added for improving the structure after normalizing.

【0005】従って、熱間鍛造ままの状態にて焼ならし
処理と同等のミクロ組織、硬さ、結晶粒度特性をもつ鋼
が切望されている。
[0005] Therefore, there is a demand for steel having the same microstructure, hardness, and grain size characteristics as those of normalizing treatment in the state of hot forging.

【0006】[0006]

【発明が解決しようとする課題】本発明では熱間鍛造ま
まの状態で焼ならし処理と同等のミクロ組織、硬さ、結
晶粒度特性をもつ浸炭鋼の製造方法を提供することによ
り熱間鍛造後の焼ならし処理を省略することを目的とし
ている。
SUMMARY OF THE INVENTION The present invention provides hot forging by providing a method for producing a carburized steel having the same microstructure, hardness, and grain size characteristics as in normalizing treatment in the state of hot forging. The purpose is to omit the subsequent normalizing process.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めのこの発明の手段は、請求項1の発明では重量%で
C:0.1〜0.35%、Si:0.05〜0.5%、
Mn:0.2〜2.0%、Al:0.005〜0.05
%を含有し、さらにTiまたはNbを1種または2種あ
わせて0.1〜0.3%含有し、残部Feおよび不可避
不純物からなる鋼を素材とし、熱間圧延時に加熱温度を
900〜1150℃とし、1150℃以下の温度にて熱
間加工して鋼材を製造し、さらに熱間鍛造時に加熱温度
および加工温度を1150℃以下とし、冷却時に0.2
〜2℃/sec以下の冷却速度にて冷却することにより、
熱間鍛造後に組織がベイナイト組織が5%以下で残部が
フェライト・ パーライト組織で硬さが220HV以下
であり、950℃で浸炭した時にオーステナイト結晶粒
度が8番以上かつ結晶粒度が3番以上異なる粗大粒が2
0%を超えないことを特徴とする熱間鍛造後焼ならしの
省略可能な浸炭鋼の製造方法である。
In order to solve the above-mentioned problems, the invention according to the first aspect of the present invention is characterized in that, in the invention of claim 1, C: 0.1 to 0.35% and Si: 0.05 to 0% by weight%. .5%,
Mn: 0.2-2.0%, Al: 0.005-0.05
%, Further contains 0.1 or 0.3% of one or two kinds of Ti or Nb, and a steel consisting of a balance of Fe and unavoidable impurities is used as a raw material. ° C and hot working at a temperature of 1150 ° C or less to produce a steel material. Further, the heating temperature and the working temperature are set to 1150 ° C or less at the time of hot forging and 0.2% at the time of cooling.
By cooling at a cooling rate of ~ 2 ° C / sec or less,
After hot forging, the structure has a bainite structure of 5% or less, the balance is a ferrite / pearlite structure and a hardness of 220 HV or less. 2 grains
This is a method for producing carburized steel that can be omitted from normalization after hot forging, characterized by not exceeding 0%.

【0008】請求項2の発明では、請求項1の手段の鋼
の製造方法において、鋼の化学成分にさらに重量%で、
Ni:0.1〜1%、Cr:0.2〜2%、Mo:0.
03〜0.35%のうち1種または2種以上を含有せし
めたことを特徴とする熱間鍛造後焼ならしの省略可能な
浸炭鋼の製造方法である。
According to a second aspect of the present invention, in the method for producing steel according to the first aspect, the chemical composition of the steel further includes
Ni: 0.1-1%, Cr: 0.2-2%, Mo: 0.
This is a method for producing carburized steel that can be omitted from normalization after hot forging, characterized in that one or two or more of the elements are contained in an amount of 03 to 0.35%.

【0009】請求項3の発明では、請求項1の手段の鋼
の製造方法において、鋼の化学成分にさらに重量%で、
B:0.0005〜0.005%を含有せしめたことを
特徴とする熱間鍛造後焼ならしの省略可能な浸炭鋼の製
造方法である。
According to a third aspect of the present invention, in the method for producing steel according to the first aspect, the chemical composition of the steel further includes
B: A method for producing carburized steel that can be omitted from normalization after hot forging, characterized by containing 0.0005 to 0.005%.

【0010】請求項4の発明では、請求項2の手段の鋼
の製造方法において、鋼の化学成分にさらに重量%で、
B:0.0005〜0.005%を含有せしめたことを
特徴とする熱間鍛造後焼ならしの省略可能な浸炭鋼の製
造方法である。
According to a fourth aspect of the present invention, in the method for producing steel according to the second aspect, the chemical composition of the steel further includes:
B: A method for producing carburized steel that can be omitted from normalization after hot forging, characterized by containing 0.0005 to 0.005%.

【0011】本発明は上記のようにTiまたはNbを1
種または2種あわせて0.1〜0.3%含有することに
より、形成されるTi炭化物、Tiを含有する複合炭化
物およびNb炭化物、Nbを含有する複合炭化物等の析
出物を利用して、熱間圧延時には加熱温度を900〜1
150℃とし1150℃以下の温度にて熱間加工するこ
とにより、鋼中にTi炭化物等の析出物を微細に分散さ
せ、さらに熱間鍛造時に加熱温度および加工温度を11
50℃以下とし析出物を微細に分散させたまま熱間加工
を行なうことで、冷却時の変態において微細に分散した
析出物がフェライトの生成核となり、より多くのフェラ
イトを生成させ結晶粒を微細化しかつフェライトの生成
によりベイナイト組織の発生を抑え硬さを低下させる。
さらに浸炭時には微細に分散した析出物の働きによりオ
ーステナイト結晶粒の粗大化が防止でき結晶粒度が8番
以上で安定した結晶粒を得ることが可能となる。
According to the present invention, Ti or Nb is added as described above.
By containing 0.1 to 0.3% of the seed or two kinds in total, utilizing the formed Ti carbide, a composite carbide containing Ti and Nb carbide, a precipitate such as a composite carbide containing Nb, During hot rolling, the heating temperature is 900-1
By hot working at 150 ° C. and a temperature of 1150 ° C. or less, precipitates such as Ti carbides are finely dispersed in the steel, and the heating temperature and working temperature during hot forging are reduced to 11 ° C.
By performing hot working with the precipitates finely dispersed at a temperature of 50 ° C or less, the finely dispersed precipitates in the transformation during cooling become nuclei of ferrite, generate more ferrite and refine the crystal grains. And the formation of ferrite suppresses the formation of a bainite structure and lowers the hardness.
Further, at the time of carburizing, the finely dispersed precipitates can prevent the austenite crystal grains from being coarsened and can obtain stable crystal grains having a crystal grain size of 8 or more.

【0012】[0012]

【発明の実施の形態】本発明の請求項1の発明では、C
重量%でC:0.1〜0.35%、Si:0.05〜
0.5%、Mn:0.2〜2.0%、Al:0.005
〜0.05%を含有し、さらにTiまたはNbを1種ま
たは2種あわせて0.1〜0.3%含有し、残部Feお
よび不可避不純物からなる鋼を、電気炉にて溶製し、連
続鋳造、鋼片圧延により鋼片を製造した。
BEST MODE FOR CARRYING OUT THE INVENTION In the first aspect of the present invention, C
C: 0.1-0.35% by weight, Si: 0.05-
0.5%, Mn: 0.2 to 2.0%, Al: 0.005
Containing 0.05 to 0.05%, further containing 0.1 or 0.3% of one or two kinds of Ti or Nb, and the balance of Fe and unavoidable impurities was melted in an electric furnace, A billet was manufactured by continuous casting and billet rolling.

【0013】請求項2の発明では、さらに請求項1の発
明の鋼組成に、必要とする焼入性、強度にあわせて、N
i:0.1〜1%、Cr:0.2〜2%以下、Mo:
0.03〜0.35%を含有させて溶製した。請求項3
の発明では、請求項1の鋼組成に、さらにB:0.00
05〜0.005%のうち1種または2種以上含有させ
溶製した。請求項4の発明では、請求項2の鋼組成に、
さらにB:B:0.0005〜0.005%のうち1種
または2種以上含有させ溶製した。これらも上記と同様
に、連続鋳造、鋼片圧延により鋼片を製造した。
According to the second aspect of the present invention, the steel composition according to the first aspect of the present invention further contains N in accordance with the required hardenability and strength.
i: 0.1-1%, Cr: 0.2-2% or less, Mo:
It was melted by containing 0.03 to 0.35%. Claim 3
In the invention of claim 1, the steel composition of claim 1 further comprises B: 0.00
One or two or more of them were contained and melted. In the invention according to claim 4, the steel composition according to claim 2 has the following composition:
B: B: One or two or more of B: 0.0005 to 0.005% were contained and melted. In the same manner as above, a billet was manufactured by continuous casting and billet rolling.

【0014】それらの製造した鋼片を加熱炉に挿入し、
1100℃で3時間程度の加熱を実施し、加熱炉から抽
出して所定の形状に圧延し、冷却床にて400℃より低
い温度になるまで自然空冷を実施した。
[0014] The prepared steel slabs are inserted into a heating furnace,
Heating was carried out at 1100 ° C. for about 3 hours, extracted from a heating furnace, rolled into a predetermined shape, and cooled naturally on a cooling floor until the temperature became lower than 400 ° C.

【0015】上記で得られた鋼材をシャー切断した後、
高周波加熱にて1100℃まで加熱し、所定の形状に鍛
造した後、常温まで自然冷却を実施した。さらに、機械
加工を実施し、950℃でトータル6時間の浸炭を行な
った。
After shearing the steel material obtained above,
After heating to 1100 ° C. by high-frequency heating and forging into a predetermined shape, natural cooling was performed to room temperature. Further, machining was performed, and carburization was performed at 950 ° C. for a total of 6 hours.

【0016】ここで、本発明の組成割合の限定理由を述
べる。以下%は重量%である。
Here, the reasons for limiting the composition ratio of the present invention will be described. Hereinafter,% is% by weight.

【0017】C:Cは機械構造用部品として浸炭処理後
の芯部強度を確保するために必要な元素である。0.1
%未満ではその効果が十分に得られず、反対に0.35
%を超えると芯部の靭性を低下させる。そのため、含有
量を0.1〜0.35%とした。
C: C is an element necessary for securing the core strength after carburizing as a component for machine structure. 0.1
%, The effect is not sufficiently obtained.
%, The toughness of the core decreases. Therefore, the content is set to 0.1 to 0.35%.

【0018】Si:Siは転動疲労中の組織変化の遅延
および焼入性に効果のある元素であるが、0.05%未
満では脱酸効果が十分でなく、0.5%を超えると加工
性を低下させる。そのため含有量を0.05〜0.5%
とした。
Si: Si is an element effective in delaying the structural change during rolling fatigue and hardening, but if it is less than 0.05%, the deoxidizing effect is not sufficient, and if it exceeds 0.5%, it is not sufficient. Decreases workability. Therefore the content is 0.05-0.5%
And

【0019】Mn:Mnは焼入性を向上させる元素であ
るが、0.2%未満では脱酸効果が十分でなく、2.0
%を超えるとベイナイト組織が発生し加工性、粒度特性
が低下する。そのため含有量を0.2〜2%とした。
Mn: Mn is an element for improving hardenability, but if it is less than 0.2%, the deoxidizing effect is not sufficient, and Mn is 2.0%.
%, A bainite structure is generated, and workability and particle size characteristics deteriorate. Therefore, the content is set to 0.2 to 2%.

【0020】Al:Alは脱酸のために必要な元素であ
る。しかし、0.005%未満ではその効果が十分得ら
れず、0.05%を超えてもその効果は飽和しアルミナ
系酸化物の増加により疲労強度が低下する。そのため含
有量を0.005〜0.05%とした。
Al: Al is an element necessary for deoxidation. However, if the content is less than 0.005%, the effect cannot be sufficiently obtained, and if the content exceeds 0.05%, the effect is saturated, and the fatigue strength is reduced due to the increase of the alumina-based oxide. Therefore, the content is made 0.005 to 0.05%.

【0021】Ti、Nb:TiとNbは本発明において
重要な元素である。鋼中に微細に分散した析出物が冷却
時の変態においてフェライトの生成核となり、より多く
のフェライトを生成させて結晶粒を微細化し、かつ、フ
ェライトの生成によりベイナイト組織の発生を抑えて硬
さを低下させる。さらに、浸炭時には微細に分散した析
出物の働きによりオーステナイト結晶粒の粗大化を防止
する。TiまたはNbの1種または2種の含有量があわ
せて0.1%未満の場合には所望の効果が得られず、
0.3%を超えると析出物が過剰となり、加工性や強度
の低下を招く。そのためTiまたはNbの1種または2
種の含有量をあわせて0.1〜0.3%とした。さら
に、Tiは鋼中のfree−Nを固定し、Bの焼入性への効
果を向上させるため、Bを添加して使用する場合には、
Tiを0.025%以上添加することが必要である。
Ti, Nb: Ti and Nb are important elements in the present invention. Precipitates finely dispersed in steel become nuclei of ferrite during transformation during cooling, generate more ferrite and refine crystal grains, and suppress the generation of bainite structure by the formation of ferrite and hardness. Lower. Further, at the time of carburization, the finely dispersed precipitates prevent coarsening of austenite crystal grains. If the content of one or two of Ti or Nb is less than 0.1% in total, the desired effect cannot be obtained,
If it exceeds 0.3%, the precipitates become excessive, resulting in a reduction in workability and strength. Therefore, one or two of Ti or Nb
The total content of the seeds was 0.1-0.3%. In addition, Ti fixes free-N in steel and improves the effect of B on hardenability.
It is necessary to add 0.025% or more of Ti.

【0022】Ni、Cr、Mo:これらの元素は焼入性
を向上させる元素であるが、多すぎるとベイナイト組織
が発生し、加工性、粒度特性が低下する。逆に少なすぎ
ればその効果が十分に期待できない。そこでNi:0.
1〜1%、Cr:0.2〜2%以下、Mo:0.03〜
0.35%とし、そのうち1種または2種以上を要求さ
れる用途に応じて適宜使用しても良い。
Ni, Cr, Mo: These elements are elements that improve hardenability, but if they are too much, a bainite structure is generated, and workability and grain size characteristics are deteriorated. Conversely, if the amount is too small, the effect cannot be expected sufficiently. Therefore, Ni: 0.
1 to 1%, Cr: 0.2 to 2% or less, Mo: 0.03 to
0.35%, one or more of which may be used as appropriate according to the required use.

【0023】B:Bは微量の添加により焼入性を向上さ
せる元素である。0.0005%未満ではその効果が十
分得られず、0.005%を超えると逆に焼入性を低下
させる。そのため0.0005〜0.005%を要求さ
れる用途に応じて適宜使用しても良い。
B: B is an element which improves hardenability by adding a small amount. If it is less than 0.0005%, the effect cannot be sufficiently obtained, and if it exceeds 0.005%, the hardenability is reduced. Therefore, 0.0005 to 0.005% may be appropriately used according to the required use.

【0024】なお、Pは粒界に偏析して靭性を著しく劣
化させるため、本発明中の不純物としてのPは、鋼の靭
性確保の点から0.04%以下とすることが好ましい。
さらに、NはTiとの親和力が強く容易に大きなTiN
を形成し、Tiの効果を十分発揮できないこととなる。
本発明においてTiを添加する場合にはNは上限を0.
008%以下とすることが好ましい。
Since P segregates at grain boundaries and significantly deteriorates toughness, it is preferable that P as an impurity in the present invention be 0.04% or less from the viewpoint of securing toughness of steel.
Further, N has a strong affinity with Ti, and easily has a large TiN.
Is formed, and the effect of Ti cannot be sufficiently exhibited.
In the case where Ti is added in the present invention, N has an upper limit of 0.1.
008% or less is preferable.

【0025】次いで、鋼材の熱間圧延条件の限定の理由
を以下に述べる。
Next, the reasons for limiting the hot rolling conditions for steel materials will be described below.

【0026】本発明では、鋼材の熱間圧延時に加熱温
度、加工温度の上限を1150℃以下にすることによ
り、オーステナイト中へのTi、Nbの固溶を最小限に
抑え、かつ微細な析出物を鋼中に分散させることによ
り、熱間鍛造時にフェライトが析出する核とするもので
ある。加熱温度が900℃未満では鋼材の変形抵抗が高
くなり、キズや割れの発生につながるので900℃以上
で加熱することとする。
In the present invention, the upper limit of the heating temperature and the working temperature at the time of hot rolling of a steel material is set to 1150 ° C. or less, so that the solid solution of Ti and Nb in austenite is minimized and fine precipitates are formed. Is dispersed in steel so that ferrite precipitates during hot forging. If the heating temperature is lower than 900 ° C., the deformation resistance of the steel material increases, which leads to the generation of scratches and cracks.

【0027】さらに、熱間鍛造条件の限定理由を以下に
述べる。
Further, the reasons for limiting the hot forging conditions will be described below.

【0028】熱間鍛造条件は本発明において重要な点で
ある。熱間鍛造時の加熱温度は熱間圧延で得られた微細
な析出物の固溶を防ぐため1150℃以下としなければ
ならない。1150℃を超えるとTi、Nbのオーステ
ナイト中への固溶がおこり、鍛造後にTi炭化物等によ
る析出硬化が起こる。加熱温度の下限は特に規定はしな
いが、加工性、生産性を考慮して適切な温度に設定すれ
ば良い。冷却は自然空冷でよいが冷却速度が2℃/sec
を超えるような過冷却ではベイナイト組織が発生し、
0.2℃/secより遅い徐冷になると鍛造後に得られる
フェライト・パーライトの粒が粗大化するため、冷却速
度は0.2〜2℃/secとする。
The hot forging conditions are important in the present invention. The heating temperature during hot forging must be 1150 ° C. or lower in order to prevent solid solution of fine precipitates obtained by hot rolling. If the temperature exceeds 1150 ° C., solid solution of Ti and Nb in austenite occurs, and precipitation hardening due to Ti carbide or the like occurs after forging. The lower limit of the heating temperature is not particularly limited, but may be set to an appropriate temperature in consideration of workability and productivity. Cooling may be natural air cooling, but the cooling rate is 2 ° C / sec.
If the supercooling exceeds the bainite structure,
If the cooling rate is slower than 0.2 ° C./sec, the ferrite / pearlite grains obtained after forging become coarse, so the cooling rate is 0.2 to 2 ° C./sec.

【0029】[0029]

【実施例】表1に示す化学組成の鋼を真空溶解炉にて溶
製した。表1における鋼のNo.1〜7は本発明鋼、N
o.8〜11は成分のいずれかが本発明で規定する含有
量の範囲から外れた比較鋼である。
EXAMPLES Steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace. No. of steel in Table 1 1 to 7 are steels of the present invention, N
o. Nos. 8 to 11 are comparative steels in which one of the components is out of the range of the content specified in the present invention.

【0030】[0030]

【表1】 次いでこれらの鋼を1250℃で6時間加熱した後に熱
間圧延を実施した。熱間圧延は1100℃で3時間程度
加熱した後、φ60mmへ熱間圧延を行ない、冷却床に
て400℃より低い温度になるまで自然空冷を実施し
た。
[Table 1] Next, these steels were heated at 1250 ° C. for 6 hours and then subjected to hot rolling. In the hot rolling, after heating at 1100 ° C. for about 3 hours, hot rolling was performed to φ60 mm, and natural air cooling was performed on the cooling floor until the temperature became lower than 400 ° C.

【0031】こうして得られた鋼材の外径から直径の1
/4内部のところより、φ8mm×12mmの試験片を
切り出し、加工フォーマスターによる熱間鍛造テストを
実施した。テストは高周波加熱により室温から15秒で
1100℃および1250℃に加熱し、各温度にて60
秒保持した後、1050℃で高さ50%になるまで圧縮
を行ない、その後φ30mmの鋼材の空冷に相当する
0.7℃/secの冷却速度にて室温まで冷却した。その
後圧縮したテストピースの中心を切断し、元の試験片の
外径から直径の1/4内部に相当する部位にてビッカー
ス硬度計により硬さ測定を実施した。ミクロ組織はテス
トピースを切断した断面すべてを検鏡している。また加
工フォーマスターにて加熱温度を1100℃とし他は上
記と同一条件にて加工したテストピースを950℃×6
hr保持した後急冷し、オーステナイト結晶粒度を判定
した。
From the outer diameter of the steel material thus obtained to the diameter of 1
A test piece of φ8 mm × 12 mm was cut out from the inside of / 4, and a hot forging test was carried out using a processing for master. The test was conducted by heating from room temperature to 1100 ° C and 1250 ° C in 15 seconds, and 60 ° C at each temperature.
After holding for 2 seconds, compression was performed at 1050 ° C. until the height became 50%, and then cooled to room temperature at a cooling rate of 0.7 ° C./sec corresponding to air cooling of a φ30 mm steel material. Thereafter, the center of the compressed test piece was cut, and the hardness was measured by a Vickers hardness tester at a portion corresponding to 1 / of the diameter from the outer diameter of the original test piece. In the microstructure, all cross sections obtained by cutting the test piece are inspected. A test piece processed under the same conditions as above except that the heating temperature was 1100 ° C. using a processing for master was 950 ° C. × 6.
After holding for an hour, the mixture was rapidly cooled, and the austenite grain size was determined.

【0032】[0032]

【表2】 [Table 2]

【0033】これらの結果を表2に示す。表2の硬さ、
ミクロ組織より本発明の組成を有する鋼では熱間鍛造時
の加熱温度を1150℃以下に抑えることにより目的と
する220HV以下の硬さが得られている。発明鋼はミ
クロ組織もすべてフェライト・ パーライトとなってい
るのに対して比較鋼では全てにベイナイトが発生してい
る。また加熱温度を1250℃とした場合、発明鋼では
ベイナイト組織の発生と、Ti、Nbの析出強化により
比較鋼より硬さが高くなっていた。
Table 2 shows the results. Table 2 hardness,
From the microstructure, the steel having the composition of the present invention has a desired hardness of 220 HV or less by controlling the heating temperature during hot forging to 1150 ° C. or less. Inventive steels all have ferrite-pearlite microstructures, whereas all comparative steels have bainite. When the heating temperature was 1250 ° C., the hardness of the invention steel was higher than that of the comparative steel due to the generation of the bainite structure and the precipitation strengthening of Ti and Nb.

【0034】950℃で6時間保持した場合には発明鋼
は多くのフェライトが析出したために結晶粒が微細にな
っており、かつ混粒の発生も認められず目的とする結晶
粒度特性を得られていることが確認された。
When kept at 950 ° C. for 6 hours, the invention steel has a fine crystal grain due to the precipitation of a large amount of ferrite. It was confirmed that.

【0035】[0035]

【発明の効果】以上に説明した通り、本発明方法により
熱間鍛造後の組織をフェライト・ パーライトとし、硬
さが220HV 以下となり、950℃の浸炭温度においても
オーステナイト結晶粒度が8番以上かつ結晶粒度番号が
3番以上異なる粗大粒が20%を超えることのない鋼の
製造が可能となった。本発明の製造方法により、熱間鍛
造後の焼ならしが省略でき、熱処理コストの低減が期待
できる。
As described above, the structure after hot forging is made into ferrite pearlite by the method of the present invention, the hardness becomes 220 HV or less, and even at the carburizing temperature of 950 ° C., the austenite grain size is 8 or more and the crystal size becomes 8 or more. It has become possible to produce steel in which the number of coarse grains having a grain number of 3 or more does not exceed 20%. According to the production method of the present invention, normalization after hot forging can be omitted, and reduction in heat treatment cost can be expected.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.1〜0.35%、S
i:0.05〜0.5%、Mn:0.2〜2.0%、A
l:0.005〜0.05%を含有し、さらにTiまた
はNbを1種または2種あわせて0.1〜0.3%含有
し、残部Fe及び不可避不純物からなる鋼を素材とし、
熱間圧延時に加熱温度を900〜1150℃とし、11
50℃以下の温度にて熱間加工して鋼材を製造し、さら
に熱間鍛造時に加熱温度および加工温度を1150℃以
下とし、冷却時に0.2〜2℃/sec以下の冷却速度に
て冷却することにより、熱間鍛造後に組織がベイナイト
組織が5%以下で残部がフェライト・ パーライト組織
で硬さが220HV以下であり、950℃で浸炭した時
にオーステナイト結晶粒度が8番以上かつ結晶粒度が3
番以上異なる粗大粒が20%を超えないことを特徴とす
る熱間鍛造後焼ならしの省略可能な浸炭鋼の製造方法。
1. C: 0.1-0.35% by weight, S
i: 0.05 to 0.5%, Mn: 0.2 to 2.0%, A
l: steel containing 0.005 to 0.05%, and further containing 0.1 or 0.3% of one or two kinds of Ti or Nb, and the balance being Fe and inevitable impurities,
The heating temperature is set to 900 to 1150 ° C. during hot rolling, and 11
A steel material is manufactured by hot working at a temperature of 50 ° C. or less, and the heating temperature and the working temperature are set to 1150 ° C. or less during hot forging, and cooled at a cooling rate of 0.2 to 2 ° C./sec or less during cooling. After hot forging, the structure is 5% or less in bainite structure, the balance is ferrite-pearlite structure and hardness is 220 HV or less after hot forging, and the austenite grain size is 8 or more and the grain size is 3
A method for producing a carburized steel which can be omitted from normalization after hot forging, characterized in that the number of coarse grains different from each other does not exceed 20%.
【請求項2】 請求項1記載の鋼の製造方法において、
鋼素材の化学成分にさらに重量%でNi:0.1〜1
%、Cr:0.2〜2%、Mo:0.03〜0.35%
以下のうち1種または2種以上を含有せしめたことを特
徴とする熱間鍛造後焼ならしの省略可能な浸炭鋼の製造
方法。
2. The method for producing steel according to claim 1, wherein
Ni: 0.1 to 1 in weight% based on the chemical composition of the steel material
%, Cr: 0.2-2%, Mo: 0.03-0.35%
A method for producing carburized steel which can be omitted from normalization after hot forging, characterized in that one or more of the following are contained.
【請求項3】 請求項1記載の鋼の製造方法において、
鋼素材の化学成分にさらに重量%でB:0.0005〜
0.005%を含有せしめたことを特徴とする熱間鍛造
後焼ならしの省略可能な浸炭鋼の製造方法。
3. The method for producing steel according to claim 1, wherein
B: 0.0005-% by weight in addition to the chemical composition of the steel material
A method for producing carburized steel that can be omitted from normalization after hot forging, characterized by containing 0.005%.
【請求項4】 請求項2記載の鋼の製造方法において、
鋼素材の化学成分にさらに重量%でB:0.0005〜
0.005%を含有せしめたことを特徴とする熱間鍛造
後焼ならしの省略可能な浸炭鋼の製造方法。
4. The method for producing steel according to claim 2, wherein
B: 0.0005-% by weight in addition to the chemical composition of the steel material
A method for producing carburized steel that can be omitted from normalization after hot forging, characterized by containing 0.005%.
JP11044085A 1999-02-23 1999-02-23 Production of carburized steel omissible of normalizing after hot-forging Pending JP2000239742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11044085A JP2000239742A (en) 1999-02-23 1999-02-23 Production of carburized steel omissible of normalizing after hot-forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11044085A JP2000239742A (en) 1999-02-23 1999-02-23 Production of carburized steel omissible of normalizing after hot-forging

Publications (1)

Publication Number Publication Date
JP2000239742A true JP2000239742A (en) 2000-09-05

Family

ID=12681792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11044085A Pending JP2000239742A (en) 1999-02-23 1999-02-23 Production of carburized steel omissible of normalizing after hot-forging

Country Status (1)

Country Link
JP (1) JP2000239742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056296A (en) * 2005-08-23 2007-03-08 Ntn Corp Method for producing carburized parts for constant velocity joint
JP2014155944A (en) * 2013-02-15 2014-08-28 Kawakami Tekkosho:Kk Forging and production method thereof
CN114990430A (en) * 2022-05-08 2022-09-02 江阴兴澄特种钢铁有限公司 Steel for annealing-free cold heading gear and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056296A (en) * 2005-08-23 2007-03-08 Ntn Corp Method for producing carburized parts for constant velocity joint
JP2014155944A (en) * 2013-02-15 2014-08-28 Kawakami Tekkosho:Kk Forging and production method thereof
CN114990430A (en) * 2022-05-08 2022-09-02 江阴兴澄特种钢铁有限公司 Steel for annealing-free cold heading gear and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2001240941A (en) Bar wire rod for cold forging and its production method
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP6401143B2 (en) Method for producing carburized forging
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JP2013108129A (en) Rolled steel bar for hot forging
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP2004027334A (en) Steel for induction tempering and method of producing the same
JPH06172867A (en) Production of gear excellent in impact fatigue life
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP2716301B2 (en) Manufacturing method of grain size stabilized case hardening steel
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
CN113366136A (en) High carbon hot-rolled steel sheet and method for producing same
JP5206911B1 (en) Non-tempered steel for hot forging, non-tempered hot forged product, and method for producing the same
JP4488228B2 (en) Induction hardening steel
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
EP3483293A1 (en) Rolled wire rod
JP2003201513A (en) High strength case hardening steel
JP2000239742A (en) Production of carburized steel omissible of normalizing after hot-forging
JPH08260039A (en) Production of carburized and case hardened steel
JP6752624B2 (en) Manufacturing method of carburized steel
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205