JP2000237523A - Moisture-preventive valve member - Google Patents

Moisture-preventive valve member

Info

Publication number
JP2000237523A
JP2000237523A JP11039477A JP3947799A JP2000237523A JP 2000237523 A JP2000237523 A JP 2000237523A JP 11039477 A JP11039477 A JP 11039477A JP 3947799 A JP3947799 A JP 3947799A JP 2000237523 A JP2000237523 A JP 2000237523A
Authority
JP
Japan
Prior art keywords
moisture
humidity
water
housing
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11039477A
Other languages
Japanese (ja)
Inventor
Akira Morinaka
彰 森中
Yasuji Omori
保治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11039477A priority Critical patent/JP2000237523A/en
Publication of JP2000237523A publication Critical patent/JP2000237523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moisture-preventive valve member which always holds humidity in the inside lower than outside relative humidity and has a self- recovery function at use for a long period. SOLUTION: In the moisture-preventive valve member installed on an opening part of a housing 5 requiring low humidity, the moisture-preventive valve member is constituted by holding a water absorbing cotton member 4 between a water impermeable moisture permeable cloths 2, 3. Thus, the housing inside can always be held at lower humidity with respect to the outside humidity, and also supply of energy from the outside is unnecessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高湿度の存在を嫌う
電気部品や光通信用ガラス部品のパッケージなどの分野
で用いられる筐体の内部の湿度を制御する防湿バルブ部
材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture-proof valve member for controlling the humidity inside a housing used in the field of packaging of electric parts and optical communication glass parts which do not like the presence of high humidity.

【0002】[0002]

【従来の技術及び課題】電気・電子部品の高密度高集積
化に従って、部品収納筐体やパッケージヘの高湿度水蒸
気の存在や露結は電気接点の劣化あるいは清浄面への塵
挨汚染を伴うため非常に嫌われる状態になってきてい
る。また、光コネクタの端面や、光学部品の結晶端面あ
るいは光半導体素子の劈開結晶端面は極端に水分の付着
を避ける必要性が高くなってきている。このために、ハ
ーメチックシールによる封止や、乾燥窒素或いはアルゴ
ン、ヘリウムの圧力封止を行った金属缶封止などが、様
々な形状とアイディアを加えて考案されている。また、
湿度侵入を防ぐために、このような電子部品、光学部品
を殆ど空隙なく、樹脂で埋め込んでしまう樹脂モールド
法も検討されている。
2. Description of the Related Art With the high density and high integration of electric and electronic components, the presence and dew condensation of high humidity water vapor on component housings and packages is accompanied by deterioration of electrical contacts or dust contamination on clean surfaces. It is becoming very hated. In addition, there is an increasing need to avoid extreme attachment of moisture to the end face of the optical connector, the crystal end face of the optical component, or the cleavage crystal end face of the optical semiconductor element. To this end, sealing with a hermetic seal, metal can sealing with dry nitrogen, argon, or helium pressure sealing has been devised with various shapes and ideas. Also,
In order to prevent moisture intrusion, a resin molding method of embedding such an electronic component or an optical component with a resin with almost no void has been studied.

【0003】ところが、水分や水蒸気を完全に防ぐこと
は、通常の環境では困難である。密閉系の筐体を用いた
場合でも、ドライルームでの封止、真空環境下でのガス
置換などが必要であり湿度の制御は非常に手間とコスト
が掛かるものであった。
[0003] However, it is difficult to completely prevent moisture and water vapor in a normal environment. Even when a closed casing is used, sealing in a dry room, gas replacement in a vacuum environment, and the like are necessary, and controlling the humidity is extremely laborious and costly.

【0004】また、このような部品を収納する筐体やパ
ッケージは様々な環境下で用いられるため作製時には、
低湿度或いは完全乾燥状態であっても、その後の使用環
境下での水分浸透や温度変化によるパッケージ封止部分
の変形などで水分の完全な制御を行うことは不可能であ
った。
[0004] Further, since a housing or a package for housing such components is used in various environments, at the time of manufacture,
Even in a low humidity or completely dry state, it was impossible to completely control the moisture due to the subsequent penetration of moisture under the use environment or deformation of the package sealing portion due to temperature change.

【0005】従来は、これまで述べたようなハーメチッ
ク封止や金属缶筐体に加え、吸水材の筐体内配置による
湿度制御などが試みられてきた。
Conventionally, in addition to the hermetic sealing and the metal can housing as described above, humidity control by disposing a water absorbing material in the housing has been attempted.

【0006】筐体内部の部品の動作温度を利用して、ヘ
ッドランプ内の排湿を行う従来の例を、図4に示す。図
4中、筐体41、ランプ42、ライト前面ガラス部4
3、排湿円筒部44、非透水性・透湿布材45はそれぞ
れの構成部品名を示す。
FIG. 4 shows a conventional example in which the operating temperature of the components inside the housing is used to evacuate the inside of the headlamp. 4, a housing 41, a lamp 42, and a light front glass part 4 are shown.
3. The moisture-discharging cylindrical portion 44 and the water-impermeable / moisture-permeable cloth material 45 indicate the respective component names.

【0007】この構成の防湿のメカニズムは以下の通り
である。ヘッドランプの内部に水が侵入すると、内部に
結露などを生じて、ランプ42の照射光が散乱し、ラン
プ機能に悪影響を及ぼす。しかし、ランプ42は交換が
必要で、完全な封止は不可能であるため、ランプハウジ
ングに、透湿性・非透水性のフッ素樹脂加工をした非透
水性・透湿布材45を張った排湿円筒部44を設ける。
ランプ42が点灯し、ライト前面ガラス部43および筐
体41で構成されるランプハウジングが熱せられると、
ランプ内部の水滴は蒸発し、透湿性・非透水性布材45
を通して、外部に発散される。この非透水性・透湿布材
45は水滴を通さないので、ランプハウジングが雨粒な
どで濡れても、内部に水滴は侵入しない。この結果、ラ
ンプが点灯されたり、消灯されても外部温度に対して高
い温度を維持するならば、ランプハウジング内部の湿度
は外部に対して低い相対湿度に保たれる。
[0007] The moisture-proof mechanism of this configuration is as follows. When water enters the inside of the headlamp, dew condensation or the like occurs inside the headlamp, and the irradiation light of the lamp 42 is scattered, which adversely affects the lamp function. However, since the lamp 42 needs to be replaced and cannot be completely sealed, the lamp housing is covered with a non-permeable and moisture-permeable cloth material 45 which is made of a moisture-permeable and non-permeable fluororesin. A cylindrical portion 44 is provided.
When the lamp 42 is turned on and the lamp housing composed of the light front glass part 43 and the housing 41 is heated,
Water droplets inside the lamp evaporate, and the moisture-permeable and water-impermeable cloth 45
Through the outside. Since the water-impermeable and moisture-permeable cloth material 45 does not allow water droplets to pass through, even if the lamp housing gets wet with raindrops or the like, water droplets do not enter inside. As a result, if the lamp maintains a high temperature relative to the external temperature even when the lamp is turned on or off, the humidity inside the lamp housing is maintained at a relative humidity lower than the outside.

【0008】図5には従来の外部環境湿度に対して、調
湿部材の物理変形を利用して、湿度コントロールを行う
例について示した。内容は、奈良正倉院の建物壁部に用
いられている校倉造りである。図中51、53は外部環
境湿度によって形状変化する木材等の湿度変形材料構成
材、52は高湿度下で膨張している変形構成構成材によ
って遮断される通風状態、54は乾燥状態でフリーとな
る通風状態を各々示した。図において、左図は高湿度状
態で前記湿度変形材料構成材51が膨張して、相互に接
触して通風を遮断していることが示されており、右図は
乾燥状態で前記変形材料構成材53が収縮して変形材料
構成材53間に隙間が形成されて通風可能になっている
ことが示されている。以上の従来例では、各々、構成す
る部材の特質を活かして、巧みに湿度制御を行うように
考案されているが、図4の例ではランプハウジング内部
の温度が外部と同等或いは低いときは、非透水性・透湿
性布の湿度制御機能は働かない。同様に、図5の湿度バ
ルブ機構も、外部環境湿度以下に内部湿度を保つことは
不可能であった。
FIG. 5 shows an example in which the conventional humidity control is performed on the external environmental humidity by utilizing the physical deformation of the humidity control member. The content is the schoolhouse building used for the building wall of Nara Shosoin. In the figure, reference numerals 51 and 53 denote humidity-modifying material components such as wood whose shape changes depending on the external environmental humidity, 52 denotes a ventilation state interrupted by a deforming component material expanding under high humidity, and 54 denotes a dry state and free. The respective ventilation states are shown below. In the figure, the left figure shows that the humidity deformable material constituents 51 expand in a high humidity state and block the ventilation by contacting each other, and the right figure shows the deformable material structure in a dry state. It is shown that the material 53 contracts and a gap is formed between the deformable material constituent materials 53 so that the ventilation is possible. In the above conventional examples, each is designed to perform the humidity control skillfully by making use of the characteristics of the constituent members, but in the example of FIG. 4, when the temperature inside the lamp housing is equal to or lower than the outside, The humidity control function of the water-impermeable and moisture-permeable cloth does not work. Similarly, the humidity valve mechanism of FIG. 5 cannot maintain the internal humidity below the external environmental humidity.

【0009】本発明は、以上述べた従来の外部環境に適
応して能動的に調湿を行う防湿バルブに工夫を加え、常
に外部相対湿度以下に内部の湿度を保持し、且つ長期の
使用に対して自已回復作用を持つ防湿バルブ部材を考案
し、世に供するものである。
The present invention is devised to the above-mentioned conventional moisture-proof valve which actively adjusts the humidity in accordance with the external environment, always keeps the internal humidity below the external relative humidity, and is suitable for long-term use. On the other hand, a moisture-proof valve member having a self-healing effect has been devised and provided to the world.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明による防湿バルブ部材は、低湿度を必要とす
る筐体の開口部に設置する防湿バルブ部材において、前
記防湿バルブ部材は吸水性綿状部材が非透水性・透湿布
材で挟まれた構成であることを特徴とする。
In order to solve the above-mentioned problems, a moisture-proof valve member according to the present invention is a moisture-proof valve member installed at an opening of a housing requiring low humidity, wherein the moisture-proof valve member is water-absorbing. The cotton-like member is characterized by being sandwiched between water-impermeable and moisture-permeable cloth materials.

【0011】本発明は、密閉・反密閉筐体の内部を、常
に外部相対湿度に対して低湿度に保つことが出来る防湿
バルブ部材に関するものであり、極めて単純な構成部材
の組合せによって能動的に筐体の解放・密閉を行うこと
を最も主要な特徴とする。以下、本発明の構成を図によ
って簡単に説明する。
The present invention relates to a moisture-proof valve member capable of always keeping the inside of a sealed / anti-sealed housing at a low humidity relative to the external relative humidity, and actively using a very simple combination of components. The main feature is to open and close the housing. Hereinafter, the configuration of the present invention will be briefly described with reference to the drawings.

【0012】図1中で、防湿バルブ部品1、外部非透水
性・透湿布材2、内部非透水性・透湿布材3、吸水綿状
部材4、筐体5、筐体内部の発熱源6及び、外部供給電
源7を示す。ここで、外部非透水性・透湿布材2、内部
非透水性・透湿布材3、吸水綿状部材4で防湿バルブ部
材を構成する。基本的には、調湿したい筐体の一部に防
湿バルブ部品1による外部との連絡孔を設けた形とな
る。
In FIG. 1, a moisture-proof valve component 1, an external water-impermeable / moisture-permeable cloth material 2, an internal water-impermeable / moisture-permeable cloth material 3, a water-absorbing cotton member 4, a housing 5, and a heat source 6 inside the housing. And an external power supply 7. Here, the moisture-proof valve member is constituted by the external water-impermeable / moisture-permeable cloth material 2, the internal water-impermeable / moisture-permeable cloth material 3, and the water-absorbing cotton-like member 4. Basically, the moisture-proof valve part 1 is provided with a communication hole with the outside in a part of the housing to be conditioned.

【0013】図2に動作原理のモデル図を示す。通常は
図1に示したように吸水綿状部材4と内部非透水性・透
湿布材3はギャッブGを持った状態である。外部環境が
通常であり、筐体5内部の発熱源6が加熱状態であれ
ば、筐体5内の水分は蒸発し、内部非透水性・透湿布材
3を抜けて、まず吸水性綿状部材4に吸湿される。同時
に吸水綿状部材4とのギャップ及び表面から内部蒸気圧
(陽圧)によって蒸気のみ外部非透水性・透湿布材2を
ぬけて外部へ発散する。この状態で、筐体5内部の相対
湿度は、同一温度での吸水性綿状部材4に吸水された水
分の蒸気圧と平衡になる。一般に吸水性綿状部材4に吸
着された水蒸気圧は、自由状態の蒸気圧より低いので、
筐体5内部は、外部相対湿度より低い値に達してその状
態に保たれる。
FIG. 2 shows a model diagram of the operation principle. Normally, as shown in FIG. 1, the water-absorbent cotton-like member 4 and the internal water-impermeable and moisture-permeable cloth material 3 have a gap G. If the external environment is normal and the heat source 6 inside the housing 5 is in a heated state, the moisture in the housing 5 evaporates, passes through the internal water-impermeable / moisture-permeable cloth material 3 and firstly becomes The member 4 absorbs moisture. At the same time, only the vapor passes through the outer impermeable / moisture-permeable cloth material 2 and radiates to the outside from the gap and the surface with the water-absorbing cotton-like member 4 by the internal vapor pressure (positive pressure). In this state, the relative humidity inside the housing 5 is in equilibrium with the vapor pressure of the water absorbed by the water-absorbent cotton member 4 at the same temperature. Generally, the water vapor pressure adsorbed by the water-absorbent cotton-like member 4 is lower than the vapor pressure in the free state.
The inside of the housing 5 reaches a value lower than the external relative humidity and is kept in that state.

【0014】図2の右上は、外部が高温高湿で、筐体5
内部の電源等が停止して温度が低くなった状態を示す。
この状態では外部からは外部非透水性・透湿性布材2に
よって水滴等の直接水分は侵入しないが水蒸気は通過し
て、防湿バルブ前室まで達する。ところが、ここで吸水
性綿状部材4に湿度が吸収され、水蒸気は吸水性綿状部
材4に吸着されてゲル状になり、吸水性綿状部材4は膨
潤する。これによって、内部非透水性・透湿布材3との
ギャップは埋まり、膨潤した吸水性綿状部材4はゲル状
態で内部非透水性・透湿布材3と接触し、防湿バルブ1
を閉じる動作となる。内部非透水性・透湿布材3と接触
するゲル部分は液体状態を示すため、内部非透水性・透
湿布材3の非透水性によって筐体5内部に水分は侵入で
きなくなる。
In the upper right part of FIG.
This indicates a state in which the internal power supply has stopped and the temperature has dropped.
In this state, water such as water droplets does not invade directly from the outside by the external non-permeable and moisture-permeable cloth material 2, but water vapor passes through and reaches the moisture-proof valve front chamber. However, here, the moisture is absorbed by the water-absorbent cotton-like member 4, and the water vapor is adsorbed by the water-absorbent cotton-like member 4 to form a gel, and the water-absorbent cotton-like member 4 swells. As a result, the gap between the inner water-impermeable and moisture-permeable cloth material 3 is filled, and the swollen water-absorbent cotton-like member 4 comes into contact with the inner water-impermeable and moisture-permeable cloth material 3 in a gel state, and the moisture-proof valve 1
Is closed. Since the gel portion in contact with the inner water-impermeable / moisture-permeable cloth material 3 shows a liquid state, moisture cannot enter the housing 5 due to the water impermeability of the internal water-impermeable / moisture-permeable cloth material 3.

【0015】図2の中央下部に示すように、外部環境が
通常状態に変化すると、吸水性綿状部材4の外部側から
徐々に、水分が外部に蒸発し、吸水性綿状部材4は収縮
し、初期と同様に筐体5内部の内部非透水性・透湿布材
3とギャップを持つ状態に戻る。
As shown in the lower part of the center of FIG. 2, when the external environment changes to the normal state, the water gradually evaporates from the outside of the water-absorbent cotton-like member 4 and the water-absorbent cotton-like member 4 shrinks. Then, as in the initial stage, the state returns to a state having a gap with the internal water-impermeable and moisture-permeable cloth material 3 inside the housing 5.

【0016】このような動作機構を持つため、本発明に
よる防湿バルブを備えた筐体の内部は常に低湿度に保た
れ、その調湿機能は内部電源動作や外部環境の変化に応
じて自已修復を繰り返し、極めて効率的かつ合理的に動
作を継続できる。
Because of such an operation mechanism, the inside of the housing provided with the moisture proof valve according to the present invention is always kept at a low humidity, and its humidity control function is self-repairing in accordance with the operation of the internal power supply and changes in the external environment. , And the operation can be continued extremely efficiently and rationally.

【0017】図3は、本発明の請求項3による発明の原
理動作図である。図1、図2と異なっているのは、外部
透湿・非透水性布材2と吸水性綿状部材4との間に、内
部から外部へ向かうに従って繊維径が細くなる半吸水性
繊維による積層布8が設けられていることである。
FIG. 3 is a principle operation diagram of the invention according to claim 3 of the present invention. The difference from FIG. 1 and FIG. 2 is that a semi-absorbent fiber having a smaller fiber diameter from the inside to the outside is provided between the external moisture-permeable / non-permeable cloth material 2 and the water-absorbent cotton-like member 4. That is, the laminated cloth 8 is provided.

【0018】この繊維細径が異なる積層布の作用は、以
下の通りである。
The operation of the laminated fabrics having different fiber diameters is as follows.

【0019】積層布8は、ポリエステル等の半吸水性繊
維によって構成されていて、吸水性綿状部材4に接した
水分は積層布8の繊維間の表面張力によって生じる毛管
現象で、物理的に外部方向へ吸い上げられる。最外層は
非透水性・透湿布材2のため、ここで水分は蒸発してこ
のサイクルが繰り返される。
The laminated fabric 8 is made of a semi-absorbent fiber such as polyester, and the moisture in contact with the water-absorbent cotton-like member 4 is a capillary phenomenon caused by the surface tension between the fibers of the laminated fabric 8 and physically. It can be sucked out. Since the outermost layer is the water-impermeable and moisture-permeable cloth material 2, the water evaporates here and this cycle is repeated.

【0020】[0020]

【実施例】以下に本発明の具体的な実施例について述
べ、簡単にその効果について説明を加える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below, and effects thereof will be briefly described.

【0021】[0021]

【実施例1】内径10×30×5mm、壁厚み2mmの
ジュラコン削りだし加工筐体に切り欠き溝を加工した。
Example 1 A Duracon having a diameter of 10 × 30 × 5 mm and a wall thickness of 2 mm was machined.

【0022】別途、外径2mm、内径1.5mmの円筒
(長さ5mm)の内部に、直径1.5mmφのゴアテッ
クス(TM)を挿入し、ポリアクリルアミド綿(1mm
厚)を厚入し、最後にゴアテックスの円布カバーを挿入
し外周部を接着固定して、円筒内部に小型の防湿バルブ
部材を作製した。この防湿バルブ部品を切り欠き溝に固
定し、エポキシ接着剤で固定した。筐体内部に5V2W
のシート型ヒータをシリコーングリスで半固定し、更に
Si湿度センサをセットしセンサリード線を取り出した
後、アルミ材での上蓋をやはりエポキシ接着剤で固定し
た。室温25℃、湿度50%の環境下で、上蓋を接着固
定した時の内部湿度は22%となった。
Separately, a Gore-Tex (TM) having a diameter of 1.5 mm is inserted into a cylinder (length: 5 mm) having an outer diameter of 2 mm and an inner diameter of 1.5 mm, and is made of polyacrylamide cotton (1 mm).
Thickness), and finally, a Gore-Tex circular cloth cover was inserted and the outer peripheral portion was bonded and fixed to produce a small moisture-proof valve member inside the cylinder. This moisture-proof valve component was fixed in the notch groove and fixed with an epoxy adhesive. 5V2W inside the housing
After the sheet heater was semi-fixed with silicone grease, a Si humidity sensor was set, and the sensor lead wire was taken out. Then, the upper lid made of aluminum was also fixed with an epoxy adhesive. Under an environment of room temperature 25 ° C. and humidity 50%, the internal humidity when the top cover was fixed by adhesion was 22%.

【0023】次に、内部ヒータを加熱し、内部温度を4
0℃に上昇させ2時間保持した。この40℃の条件下で
湿度センサは18%以下の値を示した。
Next, the internal heater is heated to set the internal temperature to 4
The temperature was raised to 0 ° C. and maintained for 2 hours. Under the condition of 40 ° C., the humidity sensor showed a value of 18% or less.

【0024】40℃に試料を加熱したまま、高温高湿槽
(85℃、90%)に8時間入れて、筐体内部の相対湿
度を測定すると湿度は約30分間で22%の最高値を示
したが、その後徐々に湿度は低下し、15%の値を示し
続けた。この状態で内部ヒータを停止して湿度を測定し
たが、値は変化しなかった。高温高湿槽から試料を25
℃50%の環境下に取り出すと湿度は17%に変化し
た。40℃に4時間保持した後、再度高温高湿槽に入れ
たが、内部湿度条件は殆ど変化がなかった。
With the sample heated to 40 ° C., the sample was placed in a high-temperature and high-humidity bath (85 ° C., 90%) for 8 hours, and the relative humidity inside the housing was measured. However, the humidity gradually decreased thereafter and continued to show a value of 15%. In this state, the internal heater was stopped and the humidity was measured, but the value did not change. 25 samples from high temperature and high humidity chamber
When taken out in an environment of 50 ° C., the humidity changed to 17%. After maintaining at 40 ° C. for 4 hours, the sample was put into the high-temperature and high-humidity tank again, but the internal humidity condition hardly changed.

【0025】[0025]

【実施例2】内径10×30×5mm、壁厚み2mmの
ジュラコン削りだし加工筐体に切り欠き溝を加工した。
Example 2 A Duracon having an inner diameter of 10 × 30 × 5 mm and a wall thickness of 2 mm was cut out.

【0026】別途、外径2mm、内径1.5mmの円筒
(長さ5mm)の内部に、直径1.5mmφのゴアテッ
クス(TM)を挿入し、200μmのリングスペーサを
狭んで接着固定後、ポリアクリルアミド綿(1mm厚)
を厚入し、最後に200μmリングスペーサを挟んだゴ
アテックスの円布カバーを挿入しリング部を接着固定し
て、円筒内部に小型の防湿バルブ部材を作製した。この
防湿バルブ部品を切り欠き溝に固定し、エポキシ接着剤
で固定した。筐体内部に5V2Wのシート型ヒータをシ
リコーングリスで半固定し、更にSi湿度センサをセッ
トしセンサリード線を取り出した後、アルミ材での上蓋
をやはりエポキシ接着剤で固定した。室温25℃、湿度
50%の環境下で、上蓋を接着固定した時の内部湿度は
20%となった。
Separately, a Gore-Tex (TM) having a diameter of 1.5 mm is inserted into a cylinder (length: 5 mm) having an outer diameter of 2 mm and an inner diameter of 1.5 mm, and a 200 μm ring spacer is narrowed and adhered. Acrylamide cotton (1mm thick)
Finally, a Gore-Tex circular cloth cover sandwiching a 200 μm ring spacer was inserted, and the ring portion was bonded and fixed to produce a small moisture-proof valve member inside the cylinder. This moisture-proof valve component was fixed in the notch groove and fixed with an epoxy adhesive. A 5V2W sheet type heater was half-fixed inside the housing with silicone grease, a Si humidity sensor was set, and a sensor lead wire was taken out. Then, an aluminum lid was fixed with an epoxy adhesive. Under an environment of room temperature of 25 ° C. and humidity of 50%, the internal humidity when the upper lid was bonded and fixed was 20%.

【0027】次に、内部ヒータを加熱し、内部温度を4
0℃に上昇させ、この40℃の条件下で湿度センサは1
5%以下の値を示した。
Next, the internal heater is heated to set the internal temperature to 4
0 ° C. Under the condition of 40 ° C, the humidity sensor
It showed a value of 5% or less.

【0028】40℃に試料を加熱したまま、高温高湿槽
(85℃、90%)に8時間入れて、筐体内部の相対湿
度を測定すると湿度は約30分間で20%の最高値を示
したが、その後徐々に湿度は低下し、12%の値を示し
続けた。この状態で内部ヒータを停止して湿度を測定し
たが、値は変化しなかった。高温高湿槽から試料を25
℃50%の環境下に取り出すと湿度は15%に変化し
た。この条件で、3時間保持した後、再度高温高湿槽に
入れたが、内部湿度条件は殆ど変化がなかった。
With the sample heated to 40 ° C., the sample was placed in a high-temperature, high-humidity bath (85 ° C., 90%) for 8 hours, and the relative humidity inside the housing was measured. The humidity reached a maximum of 20% in about 30 minutes. However, the humidity gradually decreased thereafter and continued to show a value of 12%. In this state, the internal heater was stopped and the humidity was measured, but the value did not change. 25 samples from high temperature and high humidity chamber
When taken out in an environment of 50 ° C., the humidity changed to 15%. After maintaining for 3 hours under these conditions, the container was placed again in a high-temperature and high-humidity tank, but the internal humidity condition was hardly changed.

【0029】[0029]

【実施例3】内径50×80×l0mm、壁厚み2mm
のジュラコン削りだし加工筐体に切り欠き溝を加工し
た。裏面アルミ放熱フィンをネジ止め加工した。
Embodiment 3 Inner diameter 50 × 80 × 10 mm, wall thickness 2 mm
Notched grooves were machined in the Duracon's housing. The rear aluminum fins were screwed.

【0030】別途、外径5mm、内径4mmの円筒(長
さ7mm)の内部に、直径4.5mmφのゴアテックス
(TM)を挿入し、200μmのリングスペーサを挟ん
で接着固定後、ポリアクリルアミド綿(2mm厚)を厚
入し、最後に200μmリングスペーサを挟んだゴアテ
ックスの円布カバーを挿入しリング部を接着固定して、
円筒内部に中型の防湿バルブ部材を作製した。この防湿
バルブ部品を切り欠き溝に固定し、エポキシ接着剤で固
定した。筐体内部に5V10Wのペルチェ素子をシリコ
ーングリスで筐体に密着させた後、ネジで筐体に固定し
た。更にSi湿度センサをセットしセンサリード線を取
り出した後、アルミ材上蓋をエポキシ接着剤で固定し恒
温型筐体試料とした。
Separately, a Gore-Tex (TM) having a diameter of 4.5 mm is inserted into a cylinder (length: 7 mm) having an outer diameter of 5 mm and an inner diameter of 4 mm, and adhesively fixed with a 200 μm ring spacer therebetween. (2 mm thick), and finally insert a Gore-Tex circular cloth cover with a 200 μm ring spacer in between, and fix the ring by adhesive.
A medium-sized moisture-proof valve member was manufactured inside the cylinder. This moisture-proof valve component was fixed in the notch groove and fixed with an epoxy adhesive. A 5 V, 10 W Peltier element was adhered to the housing with silicone grease inside the housing, and then fixed to the housing with screws. Further, after setting the Si humidity sensor and taking out the sensor lead wire, the upper lid of the aluminum material was fixed with an epoxy adhesive to obtain a constant temperature case sample.

【0031】室温25℃、湿度50%の環境下で、上蓋
を接着固定した時の内部湿度は25%となった。次に、
内部ペルチェに通電し、内部温度を25℃に固定した条
件下で湿度センサは25%以下の値を示した。
Under an environment of room temperature of 25 ° C. and humidity of 50%, the internal humidity when the upper lid was bonded and fixed was 25%. next,
Under the condition that the internal Peltier was energized and the internal temperature was fixed at 25 ° C., the humidity sensor showed a value of 25% or less.

【0032】25℃にペルチェ素子を保特したまま、高
温高湿槽(85℃、90%)に8時間入れて、筐体内部
の相対湿度を測定すると湿度は約10分間で30%の最
高値を示したが、その後徐々に湿度は低下し、20%の
値を示し続けた。
With the Peltier element kept at 25 ° C., the sample was put in a high-temperature and high-humidity bath (85 ° C., 90%) for 8 hours, and the relative humidity inside the housing was measured. However, the humidity gradually decreased and continued to show a value of 20%.

【0033】この状態でペルチェ素子への通電を停止す
ると、筐体内部の湿度は15%まで低下した。ここで、
通電を再開し、内部温度を下げると、湿度は18%に変
化し、その値を保ち続けた。ペルチェ通電のまま、高温
高湿槽から試料を取り出し25℃50%の環境下では湿
度は20%一定になった。この状態で4時間保持した
後、再度高温高湿槽に入れたが、内部湿度条件は、初回
と殆ど同一の値を示した。
When the power supply to the Peltier element was stopped in this state, the humidity inside the housing was reduced to 15%. here,
When the energization was resumed and the internal temperature was lowered, the humidity changed to 18% and kept at that value. The sample was taken out of the high-temperature and high-humidity chamber with the Peltier energized, and the humidity became constant at 20% under an environment of 25 ° C. and 50%. After being kept in this state for 4 hours, it was put into the high-temperature and high-humidity tank again, but the internal humidity condition showed almost the same value as the first time.

【0034】[0034]

【実施例4】内径10×30×5mm、壁厚み2mmの
ジュラコン削りだし加工筐体に切り欠き溝を加工した。
Embodiment 4 A Duracon having a diameter of 10 × 30 × 5 mm and a wall thickness of 2 mm was machined.

【0035】別途、外径2mm、内径1.5mmの円筒
(長さ5mm)の内部に、直径1.5mmφのゴアテッ
クス(TM)を挿入し、200μmのリングスペーサを
挟んで接着固定後、ポリアクリルアミド綿(1mm厚)
を厚入し、繊維径が外部方向に従って細くなる布材を綿
材に密着させ、最後にゴアテックスの円布カバーを挿入
し外側のリング部を接着固定して、円筒内部に小型の防
湿バルブ部材を作製した。この防湿バルブ部品を切り欠
き溝に固定し、エポキシ接着剤で固定した。筐体内部に
5V2Wのシート型ヒータをシリコーングリスで半固定
し、Si湿度センサをセットしセンサリード線を取り出
した後、アルミ材での上蓋をエポキシ接着剤固定した。
室温25℃、湿度50%の環境下で、上蓋を接着固定し
た時の内部湿度は20%となった。
Separately, a Gore-Tex (TM) having a diameter of 1.5 mm is inserted into a cylinder (length: 5 mm) having an outer diameter of 2 mm and an inner diameter of 1.5 mm, and is adhered and fixed with a 200 μm ring spacer. Acrylamide cotton (1mm thick)
Thickness is applied, and the cloth material whose fiber diameter becomes thinner according to the outer direction is brought into close contact with the cotton material.Finally, a Gore-Tex circular cloth cover is inserted and the outer ring is bonded and fixed. A member was manufactured. This moisture-proof valve component was fixed in the notch groove and fixed with an epoxy adhesive. A 5V2W sheet-type heater was half-fixed inside the housing with silicone grease, a Si humidity sensor was set, and sensor leads were taken out. Then, an aluminum lid was fixed with an epoxy adhesive.
Under an environment of room temperature of 25 ° C. and humidity of 50%, the internal humidity when the upper lid was bonded and fixed was 20%.

【0036】次に、内部ヒータを加熱し、内部温度を4
0℃に上昇させ、この40℃の条件下で湿度センサは1
5%以下の値を示した。40℃に試料を加熱したまま、
高温高湿槽(85℃、90%)に8時間入れて、筐体内
部の相対湿度を測定すると湿度は約30分間で20%の
最高値を示したが、その後徐々に湿度は低下し、12%
の値を示し続けた。この状態で内部ヒータを停止して湿
度を測定したが、値は変化しなかった。
Next, the internal heater is heated to set the internal temperature to 4
0 ° C. Under the condition of 40 ° C, the humidity sensor
It showed a value of 5% or less. While heating the sample to 40 ° C,
When placed in a high-temperature, high-humidity bath (85 ° C., 90%) for 8 hours and the relative humidity inside the housing was measured, the humidity showed a maximum value of 20% in about 30 minutes, but then the humidity gradually decreased, 12%
The value of continued to be shown. In this state, the internal heater was stopped and the humidity was measured, but the value did not change.

【0037】高温高湿槽から試料を25℃50%の環境
下に取り出すと湿度は15%に変化した。この条件で、
2時間保持した後、再度高温高湿槽に入れたが、内部湿
度条件は殆ど変化がなかった。
When the sample was taken out of the high-temperature and high-humidity chamber under an environment of 25 ° C. and 50%, the humidity changed to 15%. Under these conditions,
After holding for 2 hours, the sample was put into the high-temperature and high-humidity tank again, but the internal humidity condition hardly changed.

【0038】[0038]

【発明の効果】以上説明したように、本発明による防湿
バルブ部材は、従来の湿度調整部材や調湿バルブ機構と
比較して、筐体内部を外部湿度に対して常に低湿度に保
つことが可能であり、かつ外部からの供給エネルギーが
不要である特徴を持っている。
As described above, the moisture-proof valve member according to the present invention can always keep the inside of the housing at a low humidity relative to the external humidity as compared with the conventional humidity adjusting member and the humidity control valve mechanism. It has the feature that it is possible and does not require external energy supply.

【0039】また、外部温湿度環境と筐体内部の温度変
化に応じて、調湿バルブの能動的自已回復効果を有して
おり、温湿度変化の繰り返しが生じる筐体モジュールの
実使用条件下での筐体内部の低湿度化に極めて有効であ
る利点がある。
In addition, the humidity control valve has an active self-healing effect in accordance with the external temperature and humidity environment and the temperature change inside the case, and the actual use condition of the case module in which the temperature and humidity change is repeated is generated. There is an advantage that it is extremely effective for lowering the humidity inside the housing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による防湿バルブ部材の機構のモデル
図。
FIG. 1 is a model diagram of a mechanism of a moisture-proof valve member according to the present invention.

【図2】本発明による防湿バルブ部材の動作原理を示す
図。
FIG. 2 is a view showing the operation principle of the moisture-proof valve member according to the present invention.

【図3】請求項3による繊維層積層樽構造を持つ防湿バ
ルブ部材の動作原理を示す図。
FIG. 3 is a view showing the operation principle of a moisture-proof valve member having a fiber layer laminated barrel structure according to claim 3;

【図4】従来の温度差を利用した筐体内部の湿度制御機
構を示す図。
FIG. 4 is a diagram showing a conventional humidity control mechanism inside a housing using a temperature difference.

【図5】従来の外部環境による調湿機構例を示す図。FIG. 5 is a diagram showing an example of a conventional humidity control mechanism using an external environment.

【符号の説明】[Explanation of symbols]

1 防湿バルブ部品 2 外部非透水性・透湿布材 3 内部非透水性・透湿布材 4 吸水綿状部材 5 筐体 6 発熱源 7 外部供給電源 8 積層布 41 筐体 42 ランプ 43 ライト前面ガラス部 44 排湿円筒部 45 非透水性・透湿布材 51 湿度変形材料構成材 52 高湿度環境下での通風遮断状態 53 湿度変形材料構成材 54 乾燥環境下での通風状態 DESCRIPTION OF SYMBOLS 1 Moisture-proof valve component 2 External water-impermeable / moisture-permeable cloth material 3 Internal water-impermeable / moisture-permeable cloth material 4 Water-absorbent cotton-like member 5 Housing 6 Heat source 7 External power supply 8 Laminated cloth 41 Housing 42 Lamp 43 Light front glass part 44 Moisture-displacement cylindrical part 45 Non-permeable / moisture-permeable cloth material 51 Humidity-modifying material component 52 Air-blocking state in high-humidity environment 53 Humidity-modifying material component 54 Ventilation state in dry environment

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D052 AA00 BA06 CA02 CA06 CA08 FA01 FA03 GA01 GA03 GA04 GB00 GB02 GB03 GB13 HA27 HA34  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D052 AA00 BA06 CA02 CA06 CA08 FA01 FA03 GA01 GA03 GA04 GB00 GB02 GB03 GB13 HA27 HA34

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低湿度を必要とする筐体の開口部に設置
する防湿バルブ部材において、前記防湿バルブ部材は吸
水性綿状部材が非透水性・透湿布材で挟まれた構成であ
ることを特徴とする防湿バルブ部材。
1. A moisture-proof valve member installed in an opening of a housing requiring low humidity, wherein the moisture-proof valve member has a structure in which a water-absorbing cotton-like member is sandwiched between non-permeable and moisture-permeable cloth materials. A moisture-proof valve member.
【請求項2】 上記請求項1における防湿バルブ部材お
いて、 筐体内部側に設けられる内部非透水性・透湿布材と吸水
性綿状部材が前記吸水性綿状部材の吸水状態で接触する
構成であることを特徴とする防湿バルブ部材。
2. The moisture-proof valve member according to claim 1, wherein the internal water-impermeable and moisture-permeable cloth material provided inside the housing and the water-absorbent cotton-like member come into contact with each other in a state where the water-absorbent cotton-like member absorbs water. A moisture-proof valve member having a configuration.
【請求項3】 上記請求項1、請求項2における防湿バ
ルブ部材おいて、 筐体外部側に設けられる外部非透水性・透湿布材と吸水
性綿状部材間に、外部面に向かって、繊維径が段階的に
小さくなる積層布が設けられたことを特徴とする防湿バ
ルブ部材。
3. The moisture-proof valve member according to claim 1 or 2, wherein an outer non-water-permeable / moisture-permeable cloth material provided on the outer side of the housing and the water-absorbent cotton-like member face the outer surface. A moisture-proof valve member provided with a laminated cloth having a fiber diameter gradually reduced.
JP11039477A 1999-02-18 1999-02-18 Moisture-preventive valve member Pending JP2000237523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11039477A JP2000237523A (en) 1999-02-18 1999-02-18 Moisture-preventive valve member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11039477A JP2000237523A (en) 1999-02-18 1999-02-18 Moisture-preventive valve member

Publications (1)

Publication Number Publication Date
JP2000237523A true JP2000237523A (en) 2000-09-05

Family

ID=12554155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11039477A Pending JP2000237523A (en) 1999-02-18 1999-02-18 Moisture-preventive valve member

Country Status (1)

Country Link
JP (1) JP2000237523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104603A1 (en) * 2015-12-17 2017-06-22 日東電工株式会社 Ventilation and humidity-conditioning unit, and equipment
JP2018014382A (en) * 2016-07-20 2018-01-25 株式会社ケーヒン Electronic control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104603A1 (en) * 2015-12-17 2017-06-22 日東電工株式会社 Ventilation and humidity-conditioning unit, and equipment
CN108370648A (en) * 2015-12-17 2018-08-03 日东电工株式会社 Ventilative damping unit and equipment
US10458640B2 (en) 2015-12-17 2019-10-29 Nitto Denko Corporation Ventilation and humidity-conditioning unit and apparatus
JP2018014382A (en) * 2016-07-20 2018-01-25 株式会社ケーヒン Electronic control device

Similar Documents

Publication Publication Date Title
US4455998A (en) Solar collector
GB2194845A (en) A sensor with a detecting unit and a reference unit
US20140087410A1 (en) Culture container, culture observation apparatus and culture observation method
JP2000237523A (en) Moisture-preventive valve member
JP2011044357A (en) Photocell module, and manufacturing method of photocell module
JP2010153963A (en) Cooling camera
JP3750366B2 (en) Solid optical element mount cell
CA1179311A (en) Getter and electrical switching system using such getter
CA2937217C (en) Self-dimming system
JPH08201331A (en) Gas sensor
US4256814A (en) Photoelectro-chemical cell system
JPH0943723A (en) Camera housing provided with cloud preventing window
JPH0210374B2 (en)
JPH11103117A (en) Housing structure for optical absorption cell
JPH0674820A (en) Infrared sensor
ATE546419T1 (en) THERMAL INSULATION MATERIAL WITH HIGH CYCLIC TEMPERATURE CAPACITY
CN214754667U (en) Laser with water vapor treatment structure
KR0120151Y1 (en) The protection system of solar cell
JP2938687B2 (en) sensor
JPH1137340A (en) Thermally-actuated valve
AU2020425837B2 (en) Dehumidification of a photovoltaic module by means of electrolysis
JP4434859B2 (en) camera
JPS607739A (en) Manufacture of semiconductor device
JP2011142575A (en) Cooled imaging apparatus
JP2000121851A (en) Optical module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405